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Abstract

Even across genomes of the same species, prokaryotes exhibit remarkable flexibility in

gene content. We do not know whether this flexible or “accessory” content is mostly neutral

or adaptive, largely due to the lack of explicit analyses of accessory gene function. Here,

across 96 diverse prokaryotic species, I show that a considerable fraction (~40%) of acces-

sory genomes harbours beneficial metabolic functions. These functions take two forms: (1)

they significantly expand the biosynthetic potential of individual strains, and (2) they help

reduce strain-specific metabolic auxotrophies via intra-species metabolic exchanges. I find

that the potential of both these functions increases with increasing genome flexibility.

Together, these results are consistent with a significant adaptive role for prokaryotic

pangenomes.

Author summary

Recent and rapid advancements in genome sequencing technologies have revealed key

insights into the world of bacteria and archaea. One puzzling aspect uncovered by these

studies is the following: genomes of the same species can often look very different. Specifi-

cally, some “core” genes are maintained across all intraspecies genomes, but many “acces-

sory” genes differ between strains. A major ongoing debate thus asks: do most of these

accessory genes provide a benefit to different strains, and if so, in what form? In this

study, I suggest that the answer is “yes, through metabolic interactions”. I show that many

accessory genes provide significant metabolic advantages to different strains in different

conditions. I achieve this by explicitly conducting a large-scale systematic analysis of 1,339

genomes across 96 diverse species of bacteria and archaea. A surprising prediction of this

study that in many ecological niches, co-occurring strains of the same species may help

each other survive by exchanging metabolites exclusively produced by these different

accessory genes. More pronounced gene differences lead to more underlying metabolic

advantages.
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Introduction

Prokaryotes exhibit remarkable genome flexibility, with strains from the same species often

containing dramatically different gene content [1–4]. Intraspecific differences in gene content

are often characterized by a “core” genome (genes common to all strains) and “accessory”

genome (genes found in a fraction of strains) [5]. While the core genome might represent a set

of species-specific indispensable genes, we do not yet understand whether the accessory

genome of a species is the result of neutral or adaptive evolution. Indeed, this is the subject of

an ongoing debate: do the majority of prokaryotic accessory genes have negligible or positive

fitness effects, i.e. are they neutral or adaptive?

Recent population genetics arguments support roles for both neutral and adaptive evolution as

possible factors driving accessory genome evolution [6–9]. For example, microbial species with

more accessory genes also tend to have larger effective population sizes, as expected of genetic var-

iation in a population under neutral evolution [9]. On the other hand, models in which microbial

genomes evolve in large, migrating populations, suggest that acquired genes can often be benefi-

cial, as expected under adaptive evolution [7]. However, these studies have only addressed broad

aspects of microbial populations such as effective population size, migration, and the fitness effects

of gene loss and gain. In response, subsequent criticisms of these studies have strongly expressed

the need for more functional, gene-explicit and ecological analyses [10–11]. Here I present the

first such systematic analysis of 96 phylogenetically diverse prokaryotic species, which suggests

that prokaryotic accessory genomes often provide significant metabolic benefits.

I chose to study metabolism as a possible explanatory factor for three reasons. (1) Metabolic

genes dominate the functional content of accessory genomes [12] (S8A Fig). (2) Metabolic

interactions between microbes—especially interdependencies—can often be adaptive [13–14].

For instance, microbes that obligately cross-feed, i.e. that critically depend on exchanging

metabolites with each other, can grow faster than their wild-type counterparts [13]. Such a fit-

ness benefit can also drive genomes, in many cases, to lose genes and become metabolically

dependent [14,15]. If different genes are lost between different conspecific strains, this can

lead to both metabolic interdependence, as well as accessory genomes (since different strains

will have different metabolic repertoires) [16]. (3) Databases such as KEGG contain already-

curated genomes for several fully-sequenced strains. KEGG contains high-quality gene and

reaction annotations, allowing us to accurately predict the biosynthetic capabilities of each

strain under different conditions [17].

In this study, I ask to what degree accessory genes can metabolically benefit conspecific

strains. For this, I have used genome-scale metabolic network reconstructions of 1,339 pro-

karyotic strains (corresponding to 92 bacterial and 4 archaeal species) from the KEGG data-

base over 59 distinct nutrient environments. In general, my analyses reveal two beneficial roles

for the accessory metabolic content of prokaryotes. First, I find that the accessory genome of

most species harbours extensive biosynthetic potential, with several accessory genes providing

strains with additional nutrient utilization abilities. Second, I find that pairs of strains from the

same species often display a remarkable potential for metabolic interdependence, which scales

with the amount of accessory genome content. These interdependencies have the ability to

alleviate strain-specific auxotrophies in a particular niche through the exchange of secreted

metabolites. My results are, from a metabolic standpoint, consistent with a possible adaptive

evolution of accessory genomes.

Results and discussion

To obtain a large set of species pangenomes, I first collected a list of all prokaryotic species in

the KEGG GENOME database, and filtered those that had complete genomes for 5 or more
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conspecific strains. This gave me 1,339 genomes (96 species), which I used in all my subse-

quent analyses (S1 Table). To account for potential biases due to uneven phylogenetic sam-

pling, I verified that a more restrictive choice of one species per genus did not significantly

impact my results (55 species; S1 Fig). For each strain, I then extracted all annotated genes and

metabolic reactions from the KEGG GENES and REACTION databases, respectively. To

quantify accessory genome content for every species, I used the well-studied genome fluidity

measure, φ [18]. For this, I calculated, across each pair of conspecific strains, the fraction of all

genes in the pair that were unique to each strain. The average of this fraction over each species

gave me its genome fluidity φ (see Methods).

I constructed metabolic networks for every individual strain, where each network contained

the set of reactions corresponding to the strain’s genome in KEGG. I included gap-filled reac-

tions when curated models were available [19], though I verified that their addition did not

impact my results (S2 Fig). I used these reaction networks to infer the biosynthetic capabilities

of each strain under several different conditions. To define these conditions, I selected 59 dif-

ferent carbon sources, previously shown and commonly used to sustain the growth of diverse

microbial metabolisms in laboratory experiments [20–22] (S2 Table). I associated with each

carbon source a different nutrient environment or condition. In each condition, I included

exactly one of the 59 carbon sources, say glucose, along with a set of 30 commonly available

metabolites, which I assumed were always available (for example, water and ATP; S3 Table).

To assess biosynthetic capability, I curated a list of 137 crucial biomass precursor molecules,

often essential for growth (hereafter, “precursors”) from 70 experimentally verified high-qual-

ity metabolic models [23] (S4 Table). Finally, to calculate what each strain could synthesize in

a particular environment, I used a popular network expansion algorithm: called scope expan-

sion [24–25]. This algorithm determines which metabolites each strain can produce—its

“scope”—given an initial seed set of already available metabolites. To start with, only those

reactions whose substrates are available in the environment can be performed, and their prod-

ucts constitute the initial set of metabolites that can be produced. These metabolites can then

be used as substrates for new reactions that can then be performed, and step by step, more

metabolites can be produced. When no new reactions can be performed, the algorithm stops,

giving the full set of metabolites that could be synthesized in the given environment. Such a

calculation sidesteps the need for arbitrary assumptions of binary (yes/no) growth and opti-

mality typically used in more complex metabolic modeling approaches such as flux balance

analysis [26] and is well-known for its ability to infer what metabolic networks can synthesize

in diverse conditions [27–28].

I first investigated the capabilities of individual strains. Specifically, I was interested in the

extent to which the accessory genes in each strain expanded the set of precursors that could be

synthesized. For each species, I calculated, via network expansion, the list of precursors that

could be produced per strain per condition. I then counted how many unique precursors each

strain could synthesize across all conditions, i.e. by the accessory genes alone. From this, I

computed, for every species, its accessory metabolic capacity α, defined as the average number

of precursors (per strain per condition) produced exclusively due to the accessory genome.

I found that while for 18 species this quantity was zero, for the majority of prokaryotic spe-

cies (81%), this number lay between 0.1 and 15.0 (mean 3.1; median 2.0). Further, α scaled

positively with genome fluidity φ (Spearman’s rho = 0.44; P value = 7 x 10−6; Fig 1).

Since I observed that the accessory genome of different strains typically imparted different

biosynthetic capabilities to different strains, I wondered if, in the same conditions, metabolic

interactions between conspecific strains could further expand these capabilities. This could,

for instance, indicate a potential dependence of an auxotrophic strain on another strain, i.e. a

strain that cannot produce a crucial precursor in an environment. Such auxotrophies have
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been previously shown for example, in different strains of Escherichia coli co-inhabiting the

human gut [29].

For each pair of conspecific strains in each condition, I calculated a metabolic dependency

potential (MDP), defined as the average number of new precursors each strain has the poten-

tial to synthesize when grown as a pair versus alone. Here I assessed, in every pair, which

metabolites that could be produced and secreted by one strain could subsequently allow the

production of a new precursor in the other strain that it would not otherwise be able to make

(i.e. was auxotrophic for). Note that this method does not count those metabolic interactions

that can provide extra (functionally redundant) pathways to produce a precursor and supple-

ment growth, and is thus more likely to represent actual or obligate dependencies. I verified

that my approach can successfully predict such obligate dependencies by comparing with

some well-documented intra- and inter-species pairs [13–14,30–32] (see Methods) (S3 Fig).

I found that while I could not detect any dependency potential for 17 species, surprisingly,

the majority of species (82%) showed an MDP per strain per condition between 0.1 (for Bacil-
lus thuringiensis) and 3.3 (for Ralstonia solanacearum), with a mean 1.7 and median 1.4. Inter-

estingly, the 17 species for which I could not detect any MDP matched those with zero α (the

leftover Legionella pneumophila showed low MDP = 0.5). Over all tested pairs with detected

dependency potential (48%), commensal interactions were more common than mutualisms

(29% versus 19%; Fig 2B). This is because, in species with detected dependencies, not all pairs

show dependency potential (on average 46% conspecific pairs do). The auxotrophies relieved

Fig 1. The accessory genomes of prokaryotes harbour extensive biosynthetic potential. Scatter plot of genome

fluidity φ versus accessory metabolic capacity α for the 96 prokaryotic species in this study. Each point represents the

average number of precursors that could be synthesized by the accessory genome content alone in each strain of a

species. The Venn diagrams on the right provide a schematic representation of open pangenomes (high φ, small core)

versus closed pangenomes (low φ, large core). The solid black line represents a linear regression and the gray envelope

around it, the 95% prediction interval. rho corresponds to Spearman’s nonparametric correlation coefficient and the P
value to a one-way asymptotic permutation test for positive correlation.

https://doi.org/10.1371/journal.pgen.1007763.g001
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by these dependencies varied from those for amino acids, vitamins, carbohydrates, and organic

acids, among others (Fig 2C).

Strikingly, like α, MDP also scaled positively with genome fluidity φ, suggesting that greater

amounts of accessory content can potentially sustain more conspecific metabolic dependencies

(Spearman’s rho = 0.56, P value = 4 x 10−9; Fig 2A). For both α and MDP, considering medians

instead of means did not impact my results (for α: Spearman’s rho = 0.38, P value = 10−4; for

MDP: Spearman’s rho = 0.51, P value = 10−7; S4 and S5 Figs). To verify that such potential con-

specific dependencies are indeed ecologically realizable, I repeated my analysis, this time

restricting it to those genomes, which were known to co-occur in microbial communities (29

strains across 14 species; see Methods). I found that my observed trend was still valid, namely

MDP still scaled with φ, suggesting that several auxotrophies may indeed be reduced through

within-species metabolic exchanges in nature (Spearman’s rho = 0.56, P value = 0.03; S6 Fig).

Given the extent to which I detected the potential for obligate metabolic interactions

between conspecific strains, I wondered whether such interactions are possibly common

among prokaryotes. For this, I extended my study to analyze metabolic dependency potential

between inter-specific strains (see Methods). I found that, indeed, strains from all species can

metabolically depend on strains from at least one other species to alleviate potential auxotro-

phies across many different environments (with MDP ranging from 1.6 to 3.2, with mean 2.2;

Fig 2. Conspecific metabolic dependencies scale with accessory genome content. a, Scatter plot of genome fluidity φ versus conspecific metabolic dependency

potential (MDP) for the 96 prokaryotic species in this study. Each point represents the average number of dependencies detected per strain per condition across all

conspecific pairs for one species. Colours represent each species’ phylum-level taxonomic identity. The solid black line represents a linear regression and the gray

envelope around it, the 95% prediction interval. rho corresponds to Spearman’s nonparametric correlation coefficient and the P value to a one-way asymptotic

permutation test for positive correlation. b, Pie chart of the types of interactions detected in each conspecific pair. c, Pie chart of the types of auxotrophies that the

detected dependencies relieve due to pairwise growth. Each of the 137 precursors belongs to a unique chosen category (S4 Table).

https://doi.org/10.1371/journal.pgen.1007763.g002
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S7 Fig). Interestingly, I found that these interspecific metabolic interactions often involve

accessory metabolic genes as well.

Taken together, my results suggest that a considerable fraction of prokaryotic accessory

genomes contains potentially beneficial metabolic functions (upto 70% of accessory genes per

strain across this study, with median 40%; see S8D Fig). Specifically, I found that the accessory

“metabolome”: (1) expands a genome’s biosynthetic potential, possibly allowing for niche-spe-

cific adaptations [29,33–34]; and (2) reduces potential auxotrophies via obligate metabolic

interactions, also explaining how conspecific strains can coexist despite high competitive

potential [35–38]. The accessory genes that impart these functions are often different (median

overlap 10%), suggesting that these are indeed distinct, non-redundant benefits. Moreover,

apart from these additional biosynthetic abilities, the y-intercept for genome fluidity (at φ =

0.03 for both α and MDP) provides an estimate of metabolic redundancies (such as extra

pathways).

My findings may additionally help explain the following observations: (1) metabolic func-

tions are enriched in accessory genomes (median 50% in accessory versus 38% in core; S8C

Fig); and (2) the variation in accessory metabolic genes exceeds the variation in genes of many

other functions (metabolic variation being dominant in 81% of examined cases; S8B Fig).

Previous studies have suggested that the evolution of metabolic dependencies likely occurs

via adaptive gene loss [15,39] (e.g. the Black Queen hypothesis). Such a mechanism suggests

that metabolic dependency evolution can often lead to reduced genome sizes, but makes no

comment on genome flexibility (i.e. gene content variability). My results also indicate that

metabolic dependency evolution can impact genome flexibility as well. Specifically, more flexi-

ble genomes (with more variable gene content) are more likely to display a potential for meta-

bolic interactions.

Can stochastic accessory gene turnover explain these results? To test this, I repeated my

study with randomly assembled pangenomes. Within each species, I retained the core genes in

every strain and shuffled the accessory genes between strains (see Methods). During this ran-

domization, I preserved the observed within-species genome size distribution, strain number

distribution, and ensured that any change in species’ genome fluidity was insignificant. I

found that not only did this significantly diminish the metabolic benefits observed in each spe-

cies, both measurements of α and MDP yielded non-significant correlations, suggesting that

the mere presence of additional accessory genes is unlikely to explain my observed trends (for

α: Spearman’s rho = 0.01, P value = 0.9; for MDP: Spearman’s rho = 0.17, P value = 0.1; S9A

and S10A Figs). The measured benefits remained lower than observed, even when I shuffled

known operons of genes together instead of shuffling genes one by one (S9B and S10B Figs;

see Methods). I believe this is because often, prokaryotic operons do not contain complete

metabolic pathways, but instead parts of them (in my data set, each metabolic operon encoded

1.5 reactions on average, while pathways typically had 4 to 5 steps). Collectively, this suggests

that accessory gene acquisition is consistent with the coordinated gain of functional and bene-

ficial pathways, which I believe provides further support for the accessory genes being main-

tained for adaptive reasons.

To summarize, here I addressed the debate on whether the accessory genomes of prokary-

otes are beneficial. I found that, indeed, large fractions (about 40%) of the prokaryotic acces-

sory gene pool can contribute to metabolic benefits. Specifically, such genes can allow

microbes to produce a larger repertoire of crucial molecules, and facilitate the exchange of oth-

ers. Since these functions can improve growth in many habitats, my results suggest that adap-

tation may explain accessory gene maintenance. Note, however that my analyses are only

capable of detecting obligate metabolic dependencies and biosynthetic potential, and do not

consider signaling, regulation, metabolic redundancy, etc. that could also play important
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functional roles and might indicate potential benefits due to additional accessory genes. Fur-

ther work might also explain accessory genomes in those species, where I could not detect

additional metabolic functions, if such roles are indeed there. Moreover, even in the context of

metabolism, more detailed metabolic models, when available, may be used to probe even more

precise fitness effects of intraspecies metabolic variability, including the effect of higher-order

interactions. However, these studies would require knowledge of a large number of parameters

such as reaction kinetics, thermodynamics, and exact strain biomass compositions before they

are feasible. Finally, systematic measurements of the fitness effects of all accessory genes, meta-

bolic and otherwise, are needed for more complete estimates of the fraction of accessory

genomes consistent with adaptive versus neutral evolution.

Methods

Acquiring pangenomes and metabolic networks from KEGG

I used the KEGG GENOMES database [17] to extract a list of all prokaryotic species with com-

plete genomes for 5 or more strains. This yielded a list of 1,339 strains or genomes correspond-

ing to 96 species (92 bacteria, 4 archaea), which I used for all subsequent analyses (see S1 Table

for the full list of species and strains, along with their taxonomic classification). For each strain

with a unique genome abbreviation, I extracted the full set of annotated genes under the

KEGG GENES database and reactions under the KEGG REACTION database using an in-

house Python script. I also extracted the full list of reactions with their stoichiometries and par-

ticipating metabolites in the database. The metabolic reaction network for each strain was con-

sidered to be the complete set of annotated reactions detected in that strain’s genome in

KEGG. Note that my analyses systematically ignore genes without known functions.

Adding gap-filled reactions from Model SEED

For strains for which genome-scale metabolic reconstructions were available in the Model

SEED database [19], I also included gap-filled reactions. Specifically, I extracted the list of all

gap-filled reactions for 130 genomes from table S3 in ref. 19. I mapped all genomes from this

table to KEGG genomes by matching strain names, and all reaction IDs to KEGG reactions by

searching the Model SEED database online (https://modelseed.org/biochem/reactions) using a

custom Python script. This resulted in a total of 562 gap-filled reactions, spread across 22

genomes (20 out of 96 species; S6 Table). I then added these reactions to the metabolic net-

works already constructed via KEGG. Separately, I verified that adding these gap-filled reac-

tions did not impact my results (S2 Fig).

Defining nutrient environments or conditions

For nutrient environments or conditions, I selected a set of 59 diverse carbon sources known

to sustain microbial biomass and energy synthesis from previous genome-scale metabolic

studies of phylogenetically broad species [20–22] (S2 Table). Every condition was assumed to

contain one of these carbon sources (such as glucose and maltose), along with a set of 30 com-

monly available metabolites (assumed to be present in all conditions, such as water, oxygen

and ATP), similar to the aforementioned studies (S3 Table). To infer biosynthetic potential, I

separately collected a set of all prokaryotic species biomass compositions and their constituent

metabolites from high-quality experimentally verified metabolic models in the BiGG database

[23]. I curated from this a list a union of 137 biomass precursors across diverse microbial

metabolisms (S4 Table).
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Network expansion algorithm

To infer what each strain could synthesize in each nutrient environment or condition, I used a

well-documented network expansion algorithm—scope expansion [24–25]. Briefly, this algo-

rithm is given a reaction network (one from each genome) and an initial “seed” set of available

metabolites (each nutrient environment). It first determines which reactions can be performed

by the network using only the nutrients in the environment. I assume that metabolites that are

products in this initial set of reactions can be synthesized by the network, and can be subse-

quently used as reactants in new reactions. Again, I consider that the products of such new

reactions can be synthesized by the network, and may allow additional new reactions to be per-

formed. This continues step by step, till no no new reactions can be performed. All metabolites

that can be produced over all such steps are defined as the “scope” of the metabolic network,

i.e. I assume that these metabolites can be synthesized by the reaction network from the initial

nutrients in the environment.

Calculating genome fluidity

I calculated genome fluidity φ as prescribed in a previous study [17], using a custom Python

script. For every genome, I considered each constituent gene’s KO number as its unique iden-

tifier. Then, to estimate φ for every species, I calculated, for all conspecific pairs, the ratio of

the number of genes unique to a strain in the pair to the total number of genes in their sum.

The average over all pairs for a species was considered its genome fluidity φ. Note that though

using KEGG orthologous groups underestimates the exact values of φ, my estimates still scale

well with previously reported values [9] (Spearman’s rho = 0.60, P value = 7 x 10−5; S11 Fig).

Calculating accessory metabolic capacity

I calculated an accessory metabolic capacity α for every species. For each conspecific strain, I

first calculated, using the network expansion algorithm described, the scope of each of the

1,339 reaction networks across all 59 conditions. Then, species by species, for every condition,

I calculated a “core” metabolome, i.e. metabolites that were present in the scope of every con-

specific strain. I then explicitly removed these metabolites within every species from the scope

of each strain and counted how many precursors remained in the corresponding “accessory”

metabolome of every strain across all conditions. This gave me a number of additional precur-

sors that could be synthesized per strain per condition for each species, and was defined as the

species’ accessory metabolic capacity α (S5 Table).

Calculating metabolic dependency potential between conspecific pairs

I calculated a metabolic dependency potential (MDP) for every species. For this, I considered

within each species, all conspecific pairs across all 59 conditions. For each pair, I calculated the

scope for both strains first in “monoculture”, i.e. when grown alone. I then calculated, for

every metabolite that could be produced by one strain but not the partner strain, whether or

not its secretion could alleviate an auxotrophy in the partner. I specifically considered auxotro-

phies only for the 137 key precursors I had selected. I then counted each alleviated auxotrophy

as a potential metabolic dependency, and the average number of dependencies (per strain per

pair per condition) for each species was defined as its metabolic dependency potential, or

MDP (S5 Table).
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Calculating metabolic dependency potential between inter-specific pairs

To quantify the extent of metabolic interactions between inter-specific strains, I calculated a

separate metabolic dependency potential for every species. For each species, I paired each con-

specific strain with 25 randomly chosen strains from other species, also picked at random. For

all inter-specific pairs generated this way, I calculated metabolic dependency potential using

the same method as described above, for conspecific pairs. In this way, the average number of

dependencies identified per strain per condition was defined as the inter-specific metabolic

dependency potential, or MDP (S5 Table).

Determining strain co-occurrence from microbial community data

To test whether the conspecific metabolic interactions detected in my MDP analysis could be

realized in natural microbial communities, I analyzed genome co-occurrence data from Chaf-

fron et al [40]. These data list all 16S rRNA sequences co-detected across several microbial

community samples. Here, sets of sequences are clustered into operational taxonomic units

(OTUs) corresponding to different sequence similarity thresholds. To map these OTUs to the

genomes in my study, I first obtained 16S rRNA sequences for all the 1,339 genomes I analyzed

from KEGG. When multiple sequences were available for a given genome, I used the longest

sequence and maped that as the unique 16S identifier for that strain. Then, using BLAST, I

mapped OTUs in the co-occurrence data to the genomes in my study (where OTUs were

binned with a sequence similarity threshold of 99%). Here, I used the BLAST bit score as my

assignment criterion. I used the 689 genomes that could be mapped this way for further analy-

sis. Here, across all microbial community samples, I asked which conspecific genomes co-

occurred in at least one sample—from which I found 29 genomes corresponding to 14 species

(S7 Table). I then repeated my metabolic dependency potential analysis for these conspecific

strains, as described above.

Testing for the role of stochastic accessory gene turnover

To test if my observed correlations between φ and α as well as φ and MDP could be explained

by random accessory gene turnover, I repeated my study with a “randomly assembled” pan-

genome dataset. I randomized genomes species by species. I first collected all available

genomes for a species, and picked a random pair of these. I then shuffled the accessory genes

in this pair in two ways: (1) gene by gene, and (2) operon by operon.

When shuffling gene by gene, for each strain pair, I randomly picked two genes, one from

each strain in the pair, and swapped them. I repeated this several times before picking another

conspecific pair from the same species. The number of swaps per pair was chosen such that

each accessory gene was swapped once on average. I verified that the exact number of swaps

does not affect my results. By the end of this process, I had a new set of genomes which had

undergone “stochastic accessory gene turnover”. Note that in order to avoid any potential

biases, this process preserves the observed genome sizes and strain numbers while only slightly

affecting genome fluidity. I then repeated my α and MDP calculations for these “shuffled”

genomes. This would test if the mere acquisition of extra genes from a species’ accessory

genome could allow the expanded biosynthetic potential and metabolic dependencies

observed in the data.

To identify operons, I used the ProOpDB database, which lists operon compositions for

more than 1200 prokaryotic genomes [41]. I found that this database had operon compositions

available for 795 strains across 64 of the species in my study, which I used for the operon shuf-

fling analysis (S8 Table). Here, when shuffling operons, I used a similar method as when shuf-

fling genes, but instead of swapping merely randomly chosen genes from a pair of strains, I
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identified which operon they belonged to in their respective strain’s genome, and swapped all

genes in those operons across the pair. I repeated these operon swaps several times for each

strain pair, and for several pairs, at the end of which, I had another new set of randomly shuf-

fled genomes.

Comparing predicted dependencies with experimentally verified pairs

To test if my metabolic dependency potential (MDP) measure could accurately predict meta-

bolic dependencies between different pairs, I compared its performance on genome-scale met-

abolic networks corresponding to some well-studied experimentally verified metabolically

dependent pairs. Specifically, I considered 2 conspecific and 4 inter-specific pairs. For conspe-

cific dependencies, I used 2 Escherichia coli cross-feeding pairs [13] and for inter-species, I

used (1) a Desulfovibrio vulgaris and Methanococcus maripaludis pair [30]; (2) an E. coli and

Acinetobacter baylyi pair [14]; (3) an Lactobacillus bulgaris and Streptococcus thermophilus pair

[31]; and (4) a Bifidobacterium longum and Eubacterium rectale pair [32]. In all cases, I

obtained the metabolic models for the closest available strains from KEGG and, when needed,

modified the genes present to best match those described in the respective studies. I then used

my MDP approach as described to infer which potential dependencies were detected in each

pair for the specific conditions mentioned in each study. I found that my method could accu-

rately identify the extent of dependencies (number of auxotrophies) and interaction direction-

ality (commensal or mutualistic interactions; S3 Fig).

Statistics

To calculate correlation coefficients throughout the study, I used Spearman’s nonparametric

rho, and for P values, I used a one-way asymptotic permutation test for positive correlation.

All statistical tests were performed using standard implementations in the SciPy (version

0.18.1) and NumPy (version 1.13.1) libraries in the Python programming language (version

3.5.2). Linear regression and prediction interval calculations were performed using the Sea-

born library function regplot (version 0.7.1).

Data and code availability

All computer code and extracted data files used in this study are available at the following

URL: https://github.com/eltanin4/pangenome_dep.

Supporting information

S1 Fig. Phylogenetic bias in species set does not impact my key result. Scatter plot of

genome fluidity φ versus conspecific metabolic dependency potential (MDP), similar to Fig 2,

but to minimize phylogenetic bias, here I only included one species per genus. This resulted in

55 species (51 bacteria, 4 archaea). Each point represents the average number of dependencies

detected per strain per condition across all conspecific pairs for one species. The solid black

line represents a linear regression and the gray envelope around it, the 95% prediction interval.

MDP still increases significantly with increasing genome fluidity.

(TIF)

S2 Fig. Using gap-filled metabolic models does not impact my results. a, Scatter plot of

genome fluidity φ versus accessory metabolic capacity α for the 96 prokaryotic species in this

study, similar to Fig 1; and b, scatter plot of genome fluidity φ versus conspecific metabolic

dependency potential (MDP), similar to Fig 2; except without the addition of any gap-filled

reactions (see Methods). This eliminates any potential bias that may arise from adding gap-
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filled reactions. Each point represents one species, both solid black lines represent linear

regression, and the gray envelopes around them, 95% prediction intervals. Both observed

trends are qualitatively unaffected.

(TIF)

S3 Fig. Metabolic dependency potential (MDP) accurately captures experimentally verified

dependencies. For a, 2 conspecific and b, 4 interspecific pairs of prokaryotes, I verified that

my approach to infer and measure metabolic dependencies using KEGG-annotated metabolic

reaction networks (see Methods) can predict both the number of dependencies between each

microbe, as well as the correct interaction type (commensalism, as in the top-left pair in b; and

mutualism, as in the top-right pair).

(TIF)

S4 Fig. The impact of considering medians instead of means for α. Same as Fig 1, except

here to calculate α, instead of using the mean number of precursors produced by each individ-

ual strain’s accessory genome, I considered medians. The solid black line represents a linear

regression and the gray envelope around it, the 95% prediction interval. rho corresponds to

Spearman’s nonparametric correlation coefficient and the P value to a one-way asymptotic

permutation test for positive correlation. This choice does not significantly impact my results

for α.

(TIF)

S5 Fig. The impact of considering medians instead of means for MDP. Same as Fig 2a,

except here to calculate α, instead of using the mean number of dependencies per strain across

conspecific pairs, I considered medians. The solid black line represents a linear regression and

the gray envelope around it, the 95% prediction interval. rho corresponds to Spearman’s non-

parametric correlation coefficient and the P value to a one-way asymptotic permutation test

for positive correlation. This choice does not significantly impact my results for MDP.

(TIF)

S6 Fig. Co-occurring genomes from microbial community data capture my key observed

trend. Scatter plot of genome fluidity φ versus conspecific metabolic dependency potential

(MDP), similar to Fig 2, but to test if the detected dependencies are realizable in nature, here I

only included known co-occurring strains (see Methods). This resulted in 29 strains across 14

species (S7 Table). Each point represents the average number of dependencies detected per

strain per condition across all co-occurring conspecific pairs for one species. The solid black

line represents a linear regression and the gray envelope around it, the 95% prediction interval.

MDP still increases significantly with increasing genome fluidity.

(TIF)

S7 Fig. Complementary metabolic interactions are also likely to be common between pro-

karyotic species. Scatter plot of genome fluidity φ versus conspecific metabolic dependency

potential (MDP), similar to Fig 2, but here MDP was measured between inter-specific strains

(see Methods). For each strain within a species, I measured its dependency potential with 25

randomly chosen strains from other species. Each point represents the average number of

dependencies detected per strain per condition across several inter-specific pairs for one spe-

cies. The solid black line represents a linear regression and the gray envelope around it, the

95% prediction interval. MDP is nonzero for all species in the study, though it does not

increase significantly with increasing genome fluidity.

(TIF)
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S8 Fig. Quantitative aspects of prokaryotic core and accessory genomes. a, Pie chart of the

average fraction of genes belonging to different functions typical to prokaryotic accessory

genomes (for the 1,339 genomes in this study). b, Pie chart of the fraction of 96 species in the

study where metabolic functions showed more gene content variation than other functions in

accessory genomes (namely, genetic information processing, environmental information pro-

cessing, and others). c, Bar chart of the typical functional composition of both core and acces-

sory genomes, for the 96 species in the study. Values indicate median fraction, and error bars

indicate the extent of variation observed across the genomes studied. Metabolic functions are

enriched in accessory genomes when compared with core genomes. d, Histogram of the frac-

tion of accessory genes in each strain, which I identified as potential contributors to metaboli-

cally beneficial functions in the study.

(TIF)

S9 Fig. Randomly shuffling species pangenomes significantly diminishes α. Scatter plot of

genome fluidity α versus accessory metabolic capacity α for the prokaryotic species in this

study, with each species’ accessory content randomly shuffled between strains, either a, gene

by gene (for 96 species), or b, operon by operon (for 64 species, see Methods). The solid black

lines represent linear regression. In both cases, not only does randomly shuffling accessory

genes significantly reduce the additional biosynthetic potential of each strain’s accessory

genome, there is no significant correlation with increasing accessory content (compared with

Fig 1).

(TIF)

S10 Fig. Randomly shuffling species pangenomes significantly diminishes MDP. Scatter

plot of genome fluidity φ versus metabolic dependency potential MDP for the prokaryotic spe-

cies in this study, with each species’ accessory content randomly shuffled between strains,

either a, gene by gene (for 96 species), or b, operon by operon (for 64 species, see Methods).

The solid black lines represent linear regression. In both cases, not only does randomly shuf-

fling accessory genes significantly reduce the number of metabolic dependencies between con-

specific pairs, there is no significant correlation with increasing accessory content (compared

with Fig 2a).

(TIF)

S11 Fig. Comparing KEGG ortholog-based genome fluidity estimates with alignment-

based estimates. Scatter plot of genome fluidity φ using KEGG (this study; y-axis) versus esti-

mates of φ reported in Andreani et. al., The ISME Journal (2017) (x-axis) for the 38 species

common to both analyses. Each point represents one species. My measure uses KEGG’s ortho-

logous gene categories for scoring gene presence-absence, whereas Andreani et. al. use thre-

sholded sequence alignment to classify genes into “families”. The solid black line represents a

linear regression. rho corresponds to Spearman’s nonparametric correlation coefficient and P
to a one-way asymptotic permutation test for positive correlation. While my estimates are

lower than those of Andreani et. al., they show consistent linear scaling and can thus still be

used to infer trends.

(TIF)

S1 Table. List of all 96 species and 1,339 strains used in the study.

(XLSX)

S2 Table. List of all 59 carbon sources used as nutrients.

(XLSX)

Metabolism linked to prokaryote genome flexibility

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007763 October 29, 2018 12 / 15

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007763.s013
https://doi.org/10.1371/journal.pgen.1007763


S3 Table. List of all 30 compounds assumed to present in all conditions.

(XLSX)

S4 Table. List of all 137 key biomass precursors used to define biosynthetic potential.

(XLSX)

S5 Table. Summary table with all measurements made during the analyses.

(XLSX)

S6 Table. List of all 562 Model SEED-derived gap-filled reactions added to the KEGG met-

abolic models.

(XLSX)

S7 Table. List of all 29 conspecific strains found to co-occur in microbial community data.

(XLSX)

S8 Table. List of all 795 strains used for operon shuffling.

(XLSX)
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