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Abstract

Breast cancer susceptibility gene 1 (BRCA1) and binding partner BRCA1-associated RING

domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage

repair and homologous recombination. The Caenorhabditis elegans orthologs, BRC-1 and

BRD-1, also function in DNA damage repair, homologous recombination, as well as in meio-

sis. Using functional GFP fusions we show that in mitotically-dividing germ cells BRC-1 and

BRD-1 are nucleoplasmic with enrichment at foci that partially overlap with the recombinase

RAD-51. Co-localization with RAD-51 is enhanced under replication stress. As cells enter

meiosis, BRC-1-BRD-1 remains nucleoplasmic and in foci, and beginning in mid-pachytene

the complex co-localizes with the synaptonemal complex. Following establishment of the

single asymmetrically positioned crossover on each chromosome pair, BRC-1-BRD-1 con-

centrates to the short arm of the bivalent. Localization dependencies reveal that BRC-1 and

BRD-1 are interdependent and the complex fails to properly localize in both meiotic recombi-

nation and chromosome synapsis mutants. Consistent with a role for BRC-1-BRD-1 in mei-

otic recombination in the context of the synaptonemal complex, inactivation of BRC-1 or

BRD-1 enhances the embryonic lethality of mutants defective in chromosome synapsis. Our

data suggest that under meiotic dysfunction, BRC-1-BRD-1 stabilizes the RAD-51 filament

and alters the recombination landscape; these two functions can be genetically separated

from BRC-1-BRD-1’s role in the DNA damage response. Together, we propose that BRC-1-

BRD-1 serves a checkpoint function at the synaptonemal complex where it monitors and

modulates meiotic recombination.
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Author summary

Our genomes are passed down from one generation to the next through the specialized

cell division program of meiosis. Meiosis is highly regulated to coordinate both the large

scale chromosomal and fine scale DNA events to ensure fidelity. While the tumor sup-

pressor BRCA1-BARD1 is essential for genome integrity, its specific role in meiosis has

been difficult to uncover. Taking advantage of attributes of the Caenorhabditis elegans sys-

tem, we have analyzed the function of the BRCA1-BARD1 complex in meiosis in this sim-

ple metazoan. We find that BRCA1 and BARD1 localize dynamically to the proteinaceous

structure that aligns maternal and paternal chromosomes, where it regulates homologous

recombination. Although BRCA1 and BARD1 mutants have only subtle meiotic defects,

we show that this complex plays critical roles in meiotic recombination when meiosis is

perturbed, and this is separable from BRCA1-BARD1’s function in response to DNA

damage in somatic cells. These results highlight the complexity of ensuring accurate trans-

mission of the genome and uncover the requirement for this conserved complex in

meiosis.

Introduction

BRCA1 was identified twenty-eight years ago as the causative agent of early-onset familial

breast cancer [1]. Subsequently, BRCA1 was shown to interact with BARD1 through their

RING domains [2], to form an E3 ubiquitin ligase, which adds the small polypeptide ubiquitin

to protein substrates [3] (hereafter referred to as BRCA1-BARD1). While BRCA1-BARD1 has

been extensively studied with respect to its crucial tumor suppressor activities, we still do not

fully understand how this protein complex mediates the diverse functions that have been

ascribed to it (e.g., DNA metabolism, checkpoint signaling, chromatin dynamics, centrosome

amplification, and transcriptional and translational regulation [4, 5]). This is due in part to the

diversity of protein-protein interactions involved in generating numerous distinct BRCA1-

BARD1 multi-protein complexes [6]. An additional impediment to understanding BRCA1-

BARD1 function is that the corresponding mouse knockouts are embryonic lethal [7, 8].

The simple metazoan Caenorhabditis elegans offers several advantages to the study of this

key complex. First, unlike in mammals, C. elegans BRCA1 and BARD1 orthologs, BRC-1 and

BRD-1, are not essential yet play critical roles in DNA replication and the DNA damage

response, as well as in homologous recombination, which is critical for repairing programmed

double strand breaks (DSBs) during meiosis [9–14]. Additionally, attributes of the C. elegans
system, including sophisticated genetics, ease of genome editing, and the spatio-temporal

organization of the germ line allow us to overcome some challenges inherent in studying this

complex in mammalian meiosis.

Meiosis is essential for sexual reproduction and results in the precise halving of the genome

for packaging into gametes. During meiosis, homologous chromosomes are connected by

crossover recombination to facilitate their alignment and segregation on the meiotic spindle.

Recombination is integrated and reinforced with chromosome pairing and synapsis, although

the extent of dependencies of these critical meiotic processes are distinct in different organisms

(reviewed in [15, 16]). While it is well established that BRCA1-BARD1 plays an important role

in DNA repair and recombination [5], the specific function of BRCA1-BARD1 in meiotic

recombination is not known. In mice, partial deletions of BRCA1 result in early apoptosis of

male germ cells due to failures in meiotic sex chromosome inactivation [17, 18]. BRCA1 has

been shown to co-localize with RAD51 on asynapsed chromosomes in mouse spermatocytes,
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suggesting it functions in meiotic recombination [19]. In C. elegans, brc-1 and brd-1 mutants

have mild meiotic phenotypes consistent with a role in some aspect of meiotic recombination

[9, 10]. However, the relationship between BRC-1-BRD-1 function in synapsis and recombina-

tion has not been explored.

Here, we assessed BRC-1 and BRD-1 dynamics in the C. elegans germ line. Surprisingly,

BRC-1-BRD-1 localizes to the synaptonemal complex (SC), becomes concentrated onto chro-

mosome regions upon crossover designation, and at late meiotic prophase is restricted to the

short arm of each bivalent as defined by the single crossover site on C. elegans chromosomes.

BRC-1 and BRD-1 are interdependent for localization to the SC and proper localization is

dependent on meiotic recombination and chromosome synapsis. Further, our data suggest

that the BRC-1-BRD-1 complex promotes homologous recombination under meiotic dysfunc-

tion by stabilizing the RAD-51 filament and altering the patterning of crossovers. Similar find-

ings are reported by Janisiw et al. in the accompanying paper.

Results

GFP::BRC-1 and BRD-1::GFP are expressed in embryos and the germ line

To examine BRC-1 and BRD-1 expression and localization in C. elegans, we engineered GFP::

BRC-1 and BRD-1::GFP fusions at the endogenous loci using CRISPR-Cas9 [20]. brc-1 and

brd-1 mutants have low levels of embryonic lethality, produce slightly elevated levels of male

progeny (X0), a readout of X chromosome nondisjunction, and display sensitivity to γ-irradia-

tion (IR) [10]. Worms expressing these fusions as the only source of BRC-1 or BRD-1 pro-

duced wild-type levels of viable progeny and males, and were not sensitive to IR (S1A–S1C

Fig), suggesting that the fusions are fully functional.

We monitored the localization of GFP::BRC-1 and BRD-1::GFP by live cell imaging. In

whole worms, GFP fluorescence was observed in embryos and in the germ line, with very little

signal in the soma (note auto-fluorescence of gut granules also observed in wild type; Fig 1A).

Immunoblots of whole worm extracts of gfp::brc-1; fog-2, which are true females [21] and

therefore do not contain embryos, compared to self-fertilizing gfp::brc-1 hermaphrodites con-

taining embryos, revealed that<10% of the GFP::BRC-1 signal is due to expression in embryos

(S1E Fig). Thus, BRC-1 and BRD-1 are expressed predominantly in the germ line.

BRC-1-BRD-1 and RAD-51 become concentrated in foci upon replication

stress

The C. elegans germ line is arranged in a spatio-temporal gradient, with proliferating germ

cells (premeiotic) and all stages of meiosis arrayed from the distal to proximal end [22] (Fig

1B). We first focused on the premeiotic zone, where germ cells are mitotically proliferating.

GFP::BRC-1 and BRD-1::GFP were observed diffusely throughout the nucleus, with occasional

foci that partially co-localized with the recombinase RAD-51 (Fig 1C and 1D). In mammalian

cells RAD51 marks stalled/collapsed replication forks [23], and BRCA1/BRC-1 has been impli-

cated in repair of damaged forks in both mammals and C. elegans [14, 24]. To determine

whether BRC-1-BRD-1 responds to stalled/collapsed replication forks, we treated worms with

the ribonucleotide reductase inhibitor, hydroxyurea (HU). HU slows replication causing fork

stalling and collapse, and cell cycle arrest leading to enlarged nuclei [23, 25]. GFP::BRC-1 and

BRD-1::GFP fluorescence became enriched in many foci following exposure to HU, and these

exhibited substantial co-localization with RAD-51 (Fig 1C and 1D). Consistent with a role in

resolving collapsed replication forks, both brc-1 and brd-1 mutants were sensitive to HU as

measured by embryonic lethality (S1D Fig). These results suggest that BRC-1-BRD-1 responds
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Fig 1. GFP::BRC-1 and BRD-1::GFP are expressed in the germ line and respond to stalled/collapsed replication forks. A) GFP fluorescence

of whole worms expressing GFP::BRC-1, BRD-1::GFP, or no GFP (WT). Dashed line denotes germ line with arrows to indicate GFP fluorescence;
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to replication stress and concentrates in foci where it co-localizes with RAD-51, presumably to

resolve stalled/collapsed replication forks.

BRC-1 and BRD-1 localize to the SC and concentrate to the short arm of

the bivalent during meiotic prophase

In early meiotic prophase (transition zone/early pachytene), GFP::BRC-1 and BRD-1::GFP

direct fluorescence were observed diffusely on chromatin and in foci (Fig 2A). These foci par-

tially overlapped with RAD-51, which marks meiotic DSBs [26]. We noticed that the relative

intensity of the foci was weaker in fixed versus live imaging (see Figs 3 and 4), suggesting that

these foci were sensitive to fixation conditions. Beginning at mid-pachytene, GFP::BRC-1 and

BRD-1::GFP were observed in tracks along the entire chromosome length, and then concen-

trated to a portion of each chromosome at late pachytene (Fig 2A). In diplotene and diakinesis,

GFP::BRC-1 and BRD-1::GFP were further restricted to six short stretches on the six pairs of

homologous chromosomes (Fig 2A). As oocytes continued to mature, GFP::BRC-1 and BRD-

1::GFP were disassembled from chromosomes in an asynchronous manner, with some chro-

mosomes losing signal before others. Thus, in diakinesis nuclei we did not always observe six

stretches of fluorescence, and the fluorescence intensity varied between chromosomes.

The concentration of BRC-1-BRD-1 into tracks at mid-pachytene suggested that the com-

plex localized to the SC. To investigate this, we co-stained with antibodies against GFP and the

SC central region component, SYP-1 [27]. Homologous chromosomes begin synapsing early

in meiotic prophase (29); however, GFP::BRC-1 was not observed on tracks until after the SC

appeared to be fully formed (Fig 2B). Interestingly, the concentration of GFP::BRC-1 to a por-

tion of each chromosome preceded the relocalization of SYP-1 to the short arm of the bivalent

(arrows in late pachytene images of GFP::BRC-1; Fig 2B). As the SC reorganizes as a conse-

quence of crossover maturation [28], we examined worms co-expressing TagRFP-T::BRC-1

(TagRFP-T is a RFP variant with improved photostability [20, 29]) and GFP::COSA-1, a cyclin

related protein that marks presumptive crossover sites [30]. TagRFP-T::BRC-1 also appeared

to be fully functional (S1A–S1C Fig), although the fluorescent signal was weaker than GFP,

and could only be detected in mid-late pachytene through diakinesis. GFP::COSA-1 was

observed at one end of each TagRFP-T::BRC-1 stretch (Fig 2C). Thus, BRC-1 and BRD-1 local-

ize to the SC and are redistributed concomitant with crossover designation, suggesting that

BRC-1-BRD-1 functions in one or more aspects of meiotic recombination within the context

of the SC.

BRC-1 and BRD-1 are interdependent for localization

In both mammalian cells and C. elegans, BRCA1/BRC-1 and BARD1/BRD-1 form a stable

complex [2, 31]. To probe the relationship between C. elegans BRC-1 and BRD-1 in vivo, we

imaged live worms heterozygous for both TagRFP-T::BRC-1 and BRD-1::GFP (brc-1 and brd-
1 are linked). In the heterozygous state the TagRFP-T signal could only be detected at late

pachytene through early diakinesis when BRC-1 and BRD-1 are concentrated on short tracks.

blue arrows denote GFP signal in embryos; gut granules auto-fluoresce. Scale bar = 100μm. B) Schematic of the spatiotemporal organization of

the hermaphrodite germ line with meiotic stages indicated. C) Proliferating germ cells (premeiotic) expressing GFP::BRC-1 or BRD-1::GFP

(green), stained with antibodies against RAD-51 (red), and counterstained with DAPI (blue) in the absence (-HU) and presence of 5mM

hydroxyurea (+HU). Blue arrows denote co-localization between GFP and RAD-51. Images are projections through half of the gonad. Scale

bar = 5μm. D) Pearson’s Correlation Coefficient (PCC) measurements between RAD-51 and GFP::BRC-1 or BRD-1::GFP in the absence and

presence of HU. 95% Confidence Intervals are shown. ��� p< 0.0001, Mann-Whitney test; n = 10 nuclei.

https://doi.org/10.1371/journal.pgen.1007701.g001
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Fig 2. GFP::BRC-1 and BRD-1::GFP localize to the SC in meiotic prophase. A) Nuclei from indicated meiotic stages stained with

RAD-51 antibodies (red), DAPI (blue) and imaged for GFP fluorescence (green). White arrows demark foci positive for both GFP
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The TagRFP-T and GFP signals overlapped, suggesting that BRC-1 and BRD-1 are localized

together on the SC (Fig 3A).

To examine localization dependencies between BRC-1 and BRD-1 in C. elegans germ cells,

we monitored GFP::BRC-1 and BRD-1::GFP in the corresponding brd-1(ok1623) and brc-1
(xoe4) null mutant backgrounds by live cell imaging. In the absence of BRD-1 we observed dif-

fuse GFP::BRC-1 fluorescence within the nucleoplasm from proliferative zone to mid-pachy-

tene, with no evidence of tracks (Fig 3B). In late pachytene, weak GFP::BRC-1 foci were

observed; however, in diplotene and diakinesis only a diffuse nucleoplasmic signal was

detected, with no concentrated regions of GFP::BRC-1. This result suggests that BRD-1 is

required for the correct localization of BRC-1 in meiotic cells. In worms harboring a null allele

of brc-1, BRD-1::GFP was largely cytosolic, except at diakinesis where it was observed in the

nucleoplasm. Analysis of steady state protein levels by immunoblot revealed that BRC-1 and

BRD-1 were present, albeit at reduced levels, in the absence of the other partner (in brc-1
(xoe4), BRD-1::GFP = 60% of wild-type levels; in brd-1(ok1623), GFP::BRC-1 = 50% of wild-

type levels; Fig 3C). Thus, BRC-1 and BRD-1 are mutually dependent for localization to mei-

otic chromosomes.

Impairment of either meiotic recombination or synaptonemal complex

formation alters GFP::BRC-1 localization

To provide insight into the relationship between BRC-1-BRD-1 and the progression of meiotic

recombination, we monitored the localization of GFP::BRC-1 in mutants that impair different

steps of meiotic recombination: spo-11 mutants are unable to form meiotic DSBs [32, 33], rad-
51 mutants are blocked prior to strand invasion [34–36], and msh-5 mutants fail to form cross-

overs [37, 38]. In live spo-11 mutants, we observed many fewer GFP::BRC-1 foci in transition

zone and early pachytene compared to WT (TZ: 1.29±0.12 vs. 0.18±0.05; EP: 4.61±0.36 vs.

0.91±0.22 foci/nucleus in WT and spo-11, respectively; p<0.0001; S2A Fig). At mid-pachytene

GFP::BRC-1 was observed in tracks in the spo-11 mutant similar to wild type, as synapsis

occurs in the absence of meiotic DSB formation in C. elegans [32] (Fig 4). In late pachytene,

GFP::BRC-1 fluorescence did not concentrate on a portion of each chromosome pair nor

retract to the short arm of the bivalent as in wild type, consistent with these events being

dependent on meiotic recombination. However, in 20.23±1.78% of nuclei (n = 4 germ lines)

there was enrichment of GFP::BRC-1 on one or sometimes two tracks, in addition to weak

staining on other tracks. This is similar to what has been previously reported for synapsis

markers, including the phosphorylated form of SYP-4 [39–41], and likely represents spo-11-

independent lesions capable of recruiting meiotic DNA repair components and altering SC

properties. Consistent with this, we observed GFP::BRC-1 enrichment on the phospho-SYP-

4-marked chromosome in spo-11 mutants (S2B Fig). However, GFP::BRC-1 did not retract to

chromosome subdomains as in wild type in diplotene and diakinesis, suggesting that the relo-

calization of BRC-1-BRD-1 is dependent on formation of meiotic DSBs. As expected, BRD-1::

GFP was observed in a similar pattern to GFP::BRC-1 in spo-11 mutants throughout meiotic

prophase (S2C Fig).

fluorescence and RAD-51 signal; green arrows demark foci containing GFP but not RAD-51; red arrows demark foci containing only

RAD-51. Scale bar = 5 μm. B) Co-localization between GFP::BRC-1 (green) and SC central component SYP-1 (red) by antibody staining;

germ lines at indicated stages were counterstained with DAPI. Blue arrows at late pachytene show chromosomal regions where GFP::

BRC-1 concentrates before SYP-1. Scale bar = 2 μm. C) TagRFP-T::BRC-1 (red) and GFP::COSA-1 (green) at late pachytene showing

TagRFP-T::BRC-1 on one side of the GFP::COSA-1 focus, which marks the persumptive crossover. Scale bar = 2 μm. Images are

projections through half of the gonad. TZ = transition zone; EP = early pachytene; MP = mid pachytene; LP = late pachytene;

DP = diplotene; DK = diakinesis.

https://doi.org/10.1371/journal.pgen.1007701.g002

BRC-1-BRD-1 regulates meiotic recombination

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007701 November 1, 2018 7 / 34

https://doi.org/10.1371/journal.pgen.1007701.g002
https://doi.org/10.1371/journal.pgen.1007701


Fig 3. BRC-1 and BRD-1 are inter-dependent for localization. A) Co-localization between BRD-1::GFP (green) and TagRFP-T::BRC-1 (red) at late pachytene in

live worms. Scale bar = 10 μm. B) Stills of germline nuclei from live worms expressing GFP::BRC-1 and mCherry::Histone H2B (mCherry::his-58; gfp::brc-1); merge

and GFP channel; top two panels, respectively. GFP::BRC-1 expression in brd-1(ok1623) mutant at indicated meiotic stages. Bottom two panels show BRD-1::GFP

localization in wild type and the brc-1(xoe4) mutant. Images are projections through half of the gonad. TZ = transition zone; EP = early pachytene; MP = mid

pachytene; LP = late pachytene; DP = diplotene; DK = diakinesis. Scale bar = 5 μm. C) Immunoblot of whole worm extracts from indicated worms probed with anti-

GFP and α-tubulin antibodies. Lane 1 = N2: wild type; Lane 2 = JEL515: gfp::brc-1; Lane 3 = JEL520: gfp::brc-1 brd-1(ok1623); Lane 4 = JEL744: brc-1(xoe4) brd-1::gfp;

Lane 5 = JEL657: brd-1::gfp; Lane 6 = JEL678: brc-1(tm1145) brd-1::gfp.

https://doi.org/10.1371/journal.pgen.1007701.g003
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Following DSB formation and processing, RAD-51 is loaded onto resected single-stranded

DNA and facilitates strand exchange [36]. GFP::BRC-1 localization was altered in the rad-51
mutant (Fig 4). Significantly increased levels of GFP::BRC-1 foci were observed throughout

the germ line. In the proliferative zone, wild type had 0.55±0.04, while rad-51 had 0.96±0.10

foci per nucleus (S2A Fig). These most likely represent concentration of GFP::BRC-1 at

Fig 4. GFP::BRC-1 localization is perturbed when either meiotic recombination or chromosome synapsis is impaired. High-magnification images of live C.

elegans expressing GFP::BRC-1 from the indicated genetic backgrounds and gonad region (PZ = Proliferative Zone, TZ = Transition Zone, EP = Early Pachytene,

MP = Mid Pachytene, LP = Late Pachytene, DP = Diplotene, DK = Diakinesis). In wild-type worms GFP::BRC-1 localizes to chromatin and in a small number of foci

in the proliferative and transition zones. GFP::BRC-1 localizes to long tracks corresponding to the SC in mid-pachytene. In late pachytene, GFP::BRC-1 becomes

condensed to one side of each chromosome, demarcating what will become the short arms of the six bivalents in diakinesis (WT = 6). This localization pattern is

perturbed when synapsis and crossover formation are disrupted. A zim-1 diakinesis nucleus with 5 GFP::BRC-1 short stretches is shown. Images are projections

through half of the gonad. Scale bar = 5 μm.

https://doi.org/10.1371/journal.pgen.1007701.g004
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stalled/collapsed replication forks. In transition zone, wild type had 1.29±0.12, while rad-51
had 3.98±0.31 foci/nucleus, and this was further increased in early pachytene (WT: 4.6±0.4 vs.

rad-51: 13.3±0.7; S2A Fig). These foci presumably represent resected meiotic DSBs that fail to

undergo strand invasion in the absence of RAD-51, as they cannot be solely accounted for by

the elevated foci observed in proliferating cells. Track-like structures were not observed until

late pachytene in the absence of RAD-51. The punctate nature of GFP::BRC-1 was particularly

pronounced in diplotene and diakinesis, with no clear concentration to six regions. This is

consistent with the disorganized chromatin masses observed in rad-51 diakinesis nuclei [35],

and suggests that RAD-51 is required for the proper organization and retraction of GFP::

BRC-1.

In msh-5 mutants, GFP::BRC-1 appeared similar to wild type from the proliferative zone to

mid pachytene, localizing in the nucleoplasm and concentrating in foci before converging on

tracks (Fig 4; S2A Fig). Similar to spo-11, 26.27±2.25% of msh-5 late pachytene nuclei (n = 4

germ lines) contained enrichment of GFP::BRC-1 on one or occasionally two chromosomes.

In diplotene, GFP::BRC-1 was observed in long tracks, with no evidence of retraction. The

presence of more than six stretches of GFP::BRC-1 in diakinesis suggests that BRC-1 remains

associated with the univalents in msh-5 mutants. Taken together, our data suggest that GFP::

BRC-1 localizes to the SC and its retraction to the short arm of the bivalent is dependent on

processing of meiotic DSBs into crossovers.

We also examined localization of GFP::BRC-1 when synapsis is blocked by mutation of a

component of the central region of the SC, syp-1 [27]. GFP::BRC-1 in syp-1 looked similar to

wild type in proliferating germ cells (Fig 4). However, as cells entered meiosis GFP::BRC-1 was

observed in many foci (in TZ, WT: 1.29±0.12 vs. syp-1: 7.29±0.36 foci/nucleus; S2A Fig). The

number of foci increased through early and mid pachytene but GFP::BRC-1 never attained

nuclear track staining, supporting a dependency on the SC for track localization. Similarly, the

GFP::BRC-1 signal did not localize to sub-regions of condensed (DP and DK) chromosomes,

but rather was found in a small number of nuclear foci. Thus, GFP::BRC-1 localization to

tracks is dependent on SC formation.

To examine localization under conditions where a subset of chromosomes fail to synapse

and recombine, we monitored GFP::BRC-1 localization in the zim-1 mutant, in which chro-

mosomes II and III cannot synapse [42]. In transition zone and early pachytene, GFP::BRC-1

was observed in many foci in the zim-1 mutant, similar to the syp-1 mutant (TZ: WT: 1.29

±0.12 vs. zim-1: 4.5±0.36 foci/nucleus; Fig 4; S2A Fig). However, as meiosis progressed GFP::

BRC-1 was observed on tracks that condensed to the short arm of the bivalent on multiple

chromosomes. Many times we observed more than four stretches of GFP::BRC-1 fluorescence

at diplotene/diakinesis (Fig 4), suggesting that there are more than four chiasmata in the zim-1
mutant. We address the role of BRC-1 in chiasmata formation in the zim-1 mutant below.

The BRC-1-BRD-1 complex is important when chromosome synapsis and

crossover formation are perturbed

Given the association of GFP::BRC-1 and BRD-1::GFP with the SC (Fig 4), we next examined

the functional consequence of removing BRC-1-BRD-1 when synapsis is perturbed. For these

studies we focused on the zim-1 mutant, as the appearance of more than four short tracks of

GFP::BRC-1 at diplotene/diakinesis (Fig 4) suggested that these BRC-1-BRD-1-associated

regions were altered in the absence of zim-1. Additionally, unlike mutants such as syp-1 that

result in a complete failure in synapsis and therefore 95% embryonic lethality [27], loss of

ZIM-1 results in 73.9% inviable progeny [42], allowing us to determine whether removal of

BRC-1-BRD-1 enhances embryonic lethality.
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In the course of our experiments we discovered that strain DW102 [31] harbors mutations

in both brc-1 and brd-1; sequence analysis revealed that brc-1(tm1145) is an in-frame deletion,

removing 71 amino acids (116–186) C-terminal to the predicted RING domain, which in the

mammalian ortholog is responsible for E3 ubiquitin ligase activity and dimerization with

BARD1 [3, 43, 44] (Fig 5A). The brd-1 mutation in DW102 is identical to brd-1(dw1) [31];

cDNA analysis revealed that the mutation results in the use of an alternative splice site to gen-

erate a protein missing 327 amino acids, leaving the RING domain intact (Fig 5A and S3A

Fig). To discern the contributions of BRC-1 and BRD-1 we used CRISPR-Cas9 to generate a

complete deletion of BRC-1, brc-1(xoe4) (Fig 5A and S3A Fig). We also examined the brc-1
(tm1145) and brd-1(dw1) single mutants, the brc-1(tm1145) brd-1(dw1) double mutant and

brd-1(ok1623), which results in the removal of 359 amino acids C terminal of the RING

domain (Fig 5A and S3A Fig). As expected, brc-1(xoe4), brd-1(dw1), brc-1(tm1145) brd-1
(dw1), and brd-1(ok1623) displayed slightly elevated embryonic lethality (Fig 5B), male prog-

eny (Fig 5C), and IR sensitivity (Fig 5D). On the other hand, brc-1(tm1145) was not statistically

different from wild type for embryonic lethality, production of male progeny or IR sensitivity,

suggesting that this allele is not a null mutation (Fig 5B–5D). Consistent with this, BRD-1::

GFP was stable (Fig 3C) and localized similarly to wild type in the brc-1(tm1145) mutant back-

ground (S3B Fig).

In contrast to the differential impact of the alleles on embryonic lethality, male progeny,

and IR sensitivity, loss of zim-1 in any of the brc-1 or brd-1 mutants resulted in enhanced

embryonic lethality compared to the single zim-1 mutant (p<0.0001; Fig 5E). These results

suggest that the region C-terminal to the BRC-1 RING domain, which is deleted in brc-1
(tm1145), is important for promoting embryonic viability when chromosome pairing and syn-

apsis are perturbed.

To determine the nature of the enhanced embryonic lethality of zim-1 mutants when BRC-

1-BRD-1 is impaired, we first monitored germline apoptosis. Apoptosis is an output of check-

point signaling and is important for culling defective germ cells [45–47]. Previous studies had

established that both brc-1 [9] and zim-1 [48] have elevated checkpoint-dependent germline

apoptosis. We found that all brc-1 and brd-1 alleles, including brc-1(tm1145), had elevated apo-

ptosis (Fig 5F). Loss of zim-1 resulted in higher levels of apoptosis than brc-1 and brd-1
mutants; however, the levels of apoptosis in the double brc-1; zim-1 and brd-1; zim-1 mutants

were not significantly different than zim-1 alone. We also analyzed SUN-1 phosphorylated on

Serine12 (Sun-1 S12P), which is dephosphorylated following establishment of the obligate

crossover, and serves as a readout of meiotic progression [49]. Loss of ZIM-1 resulted in per-

sistent SUN-1 S12P, which was unaltered in the absence of BRC-1 (S3C Fig). These results sug-

gest that BRC-1-BRD-1 does not function in known signaling pathways responsible for

monitoring unrepaired DSBs or crossovers leading to apoptosis or cell cycle delay.

We next monitored RAD-51 assembly/disassembly in the spatiotemporal organization of

the germ line. Previous analyses revealed that brc-1 and brd-1 mutant hermaphrodites have

elevated RAD-51 foci in late pachytene, suggesting that repair of a subset of meiotic DSBs is

delayed in the absence of BRC-1-BRD-1 [9]; this was also observed in the brc-1(tm1145) brd-1
(dw1) and brd-1(ok1623) mutants (S4A Fig). Further, blocking synapsis on some or all chro-

mosomes results in elevated RAD-51 levels genome wide [26, 50], as observed in the zim-1
mutant (Fig 6A and 6B). Surprisingly, brc-1; zim-1 and brd-1; zim-1 double mutants resulted

in fewer RAD-51 at mid-late pachytene: RAD-51 foci appeared at similar levels compared to

the zim-1 single mutant early in meiotic prophase, but in the latter half of pachytene many

fewer RAD-51 were detected on chromosomes (Fig 6A and 6B and S4B Fig). High levels of

RAD-51 were observed again at the gonad bend, as nuclei exited pachytene and entered diplo-

tene (Fig 6A and 6B and S4B Fig). Similar patterns were observed when BRC-1-BRD-1 was

BRC-1-BRD-1 regulates meiotic recombination

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007701 November 1, 2018 11 / 34

https://doi.org/10.1371/journal.pgen.1007701


Fig 5. Differential effect of brc-1 and brd-1 alleles on the DNA damage response and meiosis. A) Cartoon of predicted proteins produced from

the different brc-1 and brd-1 mutant alleles based on cDNA analysis (see also S3A Fig). RING (green), BRCT (gold) and Ankyrin (ANK; purple)

domains are indicated. B) % embryonic lethality of brc-1 and brd-1 mutants; numbers of animals scored: WT = 26; brc-1(xoe4) = 12; brc-1(tm1145)
= 12; brc-1(tm1145) brd-1(dw1) = 10; brd-1(dw1) = 12; brd-1(ok1623) = 12. C) % male progeny produced from brc-1 and brd-1 mutants; numbers

of animals scored: WT = 10; brc-1(xoe4) = 12; brc-1(tm1145) = 22; brc-1(tm1145) brd-1(dw1) = 10; brd-1(dw1) = 12; brd-1(ok1623) = 10. D) %

embryonic lethality following 75 Gy IR; numbers of animals scored: WT = 10; brc-1(xoe4) = 12; brc-1(tm1145) = 20; brc-1(tm1145) brd-1(dw1) =

12; brd-1(dw1) = 23; brd-1(ok1623) = 10. E) % embryonic lethality of zim-1 in the presence and absence of BRC-1-BRD-1. Numbers of animals
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removed in other mutants that perturb synapsis (i.e., syp-1; S4B Fig). These results suggest that

when synapsis and therefore crossover formation is impaired, BRC-1-BRD-1 plays a role in

DSB formation, DNA end resection, RAD-51 loading, and/or stabilization of the RAD-51 fila-

ment in mid-late pachytene.

To differentiate between these possible meiotic functions of BRC-1-BRD-1, we analyzed the

pattern of the single-stranded binding protein RPA-1 (GFP::RPA-1; [51]). RPA-1 binds

resected ends prior to RAD-51 loading [52, 53] and is also associated with recombination

events at a post-strand-exchange step, which can be observed in chromosome spreads [54]. In

the brc-1(tm1145); zim-1 germ line we observed an inverse pattern between RAD-51 and

RPA-1 at mid-late pachytene: GFP::RPA-1 foci were prevalent in the region where RAD-51

foci were reduced (Fig 6A). In the zim-1 single mutant, fewer GFP::RPA-1 foci were observed

at this stage, while RAD-51 remained prevalent. We also observed very few RPA-1 foci at mid-

late pachytene in wild type or brc-1(tm1145) brd-1(dw1) double mutant whole mount gonads

(S4C Fig). These results suggest that BRC-1-BRD-1 is not required for DSB formation per se in

this region of the germ line, as we observed an increase in GFP::RPA-1 foci, not a decrease as

would be expected if BRC-1-BRD-1 mediates DSB formation. Additionally, this result argues

against a role for BRC-1-BRD-1 in promoting resection as RPA-1 loads on exposed single

stranded DNA [52]. Thus, at mid to late pachytene BRC-1-BRD-1 either facilitates the assem-

bly of RAD-51 on new breaks, and/or stabilizes the RAD-51 filament.

BRC-1-BRD-1 stabilizes the RAD-51 filament when crossover formation is

impaired

The lack of RAD-51 in mid to late pachytene in brc-1; zim-1 and brd-1; zim-1 mutants is remi-

niscent of the RAD-51 “dark zone” observed in the rad-50 mutant following exposure to IR,

which likely reflects a requirement for RAD-50 in loading RAD-51 at resected DSBs on mei-

otic chromosomes [55]. However, the distal boundary of the dark zone in the brc-1; zim-1 dou-

ble mutant is distinct from the rad-50 mutant: the dark zone in rad-50 extends from meiotic

entry to late pachytene [55], while in the brc-1; zim-1 and brd-1; zim-1 mutants reduction in

RAD-51 was limited to mid-late pachytene (Fig 6A and 6B and S4B Fig), suggesting that the

nature of the dark zone is different in these mutant situations. If BRC-1-BRD-1 is required for

loading RAD-51 on breaks in mid-late pachytene, then a time course analysis would reveal a

diminution of the dark zone by twelve hours following IR exposure, as was observed for rad-
50 mutants (Fig 7A, loading defect on left) [55]. On the other hand, if BRC-1-BRD-1 was

important for protecting RAD-51 from disassembly, then the dark zone should be maintained

throughout the time course as RAD-51 would be disassembled as nuclei with pre-installed

RAD-51 move through the mid-late pachytene region of the germ line (Fig 7A, stabilization

defect on right). SPO-11 remains active under conditions where crossovers have not formed

on all chromosomes [56, 57], making it difficult to distinguish a RAD-51 loading defect onto

new breaks in this region of the germ line versus a defect in RAD-51 stability. Therefore, we

performed these experiments in the spo-11 mutant background [32], as IR will induce breaks

uniformly in the germ line at a single point in time and as nuclei move through the germ line,

no new breaks will be formed. spo-11 is tightly linked to zim-1; consequently, we used RNAi

scored: zim-1 = 12; brc-1(xoe4); zim-1 = 12; brc-1(tm1145); zim-1 = 22; brc-1(tm1145) brd-1(dw1); zim-1 = 10; brd-1(dw1); zim-1 = 12; brd-1
(ok1623); zim-1 = 10. The genetic interaction between brc-1/brd-1 and zim-1 is significant by a one-way ANOVA (p<0.0001). F) Number of

apoptotic nuclei/gonad as scored by acridine orange. Numbers of gonads scored: WT = 43; brc-1(xoe4) = 29; brc-1(tm1145) = 25; brc-1(tm1145)
brd-1(dw1) = 41; brd-1(dw1) = 24; brd-1(ok1623) = 50; zim-1 = 42; brc-1(xoe4); zim-1 = 30; brc-1(tm1145); zim-1 = 36; brc-1(tm1145) brd-1(dw1);

zim-1 = 30; brd-1(dw1); zim-1 = 31; brd-1(ok1623); zim-1 = 46. 95% Confidence Intervals are shown. Statistical comparisons by Mann-Whitney: �

p<0.05; �� p<0.001; ��� p<0.0001; ns = not significant.

https://doi.org/10.1371/journal.pgen.1007701.g005

BRC-1-BRD-1 regulates meiotic recombination

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007701 November 1, 2018 13 / 34

https://doi.org/10.1371/journal.pgen.1007701.g005
https://doi.org/10.1371/journal.pgen.1007701


Fig 6. Inactivation of BRC-1-BRD-1 alters the pattern of RAD-51 foci in the zim-1 mutant. A) Dissected germ lines from brc-1
(tm1145); zim-1; gfp::rpa-1 and zim-1; gfp::rpa-1 worms stained with anti-RAD-51 (red), counterstained with DAPI (blue) imagined

for GFP::RPA-1 fluorescence (green). Scale bar = 20 μm. Insets show selected nuclei from different regions of the germ line; bracket

indicates RAD-51 “dark zone”. Images are projections through half of the gonad. A minimum of 3 germ lines were examined for

each genotype. Scale bar = 1 μm. B) Schematic of germ line indicating zones for analysis of RAD-51 foci. Box whisker plots show
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against SYP-2, which in our hands is more efficient than zim-1(RNAi), to block synapsis and

crossover formation. To that end, we exposed spo-11 and brc-1(tm1145) brd-1(dw1); spo-11
mutants depleted for SYP-2 to 10 Gy of IR and examined RAD-51 over time. At one, four,

eight, and twelve hours following IR, the dark zone was maintained in the absence of BRC-

1-BRD-1 (Fig 7B). This result is consistent with the hypothesis that BRC-1-BRD-1 stabilizes

the RAD-51 filament rather than facilitates loading of RAD-51 on new DSBs at mid-late

pachytene.

BRC-1-BRD-1 alters recombination patterning under meiotic dysfunction

A subset of RAD-51 strand invasions are processed into crossovers, which are marked by

CNTD1/COSA-1 [30, 58]. Given the reduction in RAD-51 in mid-late pachytene in brc-1;
zim-1 and brd-1; zim-1 mutant hermaphrodites, we next analyzed crossover precursor forma-

tion in the various mutants. In C. elegans, each of the six chromosome pairs forms a single

crossover; consequently, there are six COSA-1 foci in hermaphrodite germ cells at late pachy-

tene [30] (Fig 8A). We also observed six COSA-1 foci in late pachytene nuclei in the brc-1 and

brd-1 mutants (Fig 8A), indicating that breaks are efficiently processed into crossovers in the

absence of BRC-1-BRD-1 in an otherwise wild-type worm. This is consistent with the presence

of six bivalents at diakinesis and the low embryonic lethality of brc-1 and brd-1 [9, 10] (Fig

5B). In zim-1 mutants we expected to observe four COSA-1 foci per nucleus, one on each of

the four paired chromosomes, but not on the unpaired chromosomes II and III. Contrary to

our expectations, zim-1 had an average of 6.12±0.12 COSA-1 foci (χ2: p<0.005), with a very

broad distribution ranging from 2 to 9 foci; such a wide distribution is never observed in wild

type [30] (Fig 8A; S5 Fig). Inactivation of BRC-1 and/or BRD-1 in zim-1 reduced the number

of GFP::COSA-1 foci to a range of 4.3–4.8 in the various mutants, closer to expectations

although still significantly different than expected (χ2: p<0.005), and the distribution

remained broad (p<0.0001; Fig 8A). These results suggest that when crossovers are unable to

form between some homologs, additional COSA-1-marked crossover precursors are gener-

ated, and some of these are dependent on BRC-1-BRD-1.

The higher than expected numbers of COSA-1 foci observed in zim-1 mutants could reflect

recombination intermediates that do not go on to form chiasmata (i.e., non-crossovers or

inter-sister crossovers). Alternatively, COSA-1 could mark bona fide inter-homolog cross-

overs, such that some chromosomes have more than one chiasma, as has been observed in

mutants where the X chromosomes fail to pair and synapse [50]. As these two possibilities are

not mutually exclusive, the extra COSA-1 foci could be due to a combination of both recombi-

nation outcomes. To provide insight into the nature of the extra COSA-1 foci, we analyzed

COSA-1 in syp-1 mutants, where no chiasmata can form as all chromosomes fail to synapse,

and found that there were on average 4.85±0.07 COSA-1 foci at late pachytene (Fig 8A; S5

Fig). These results suggest that under conditions of meiotic dysfunction when chromosomes

are unable to pair/synapse, COSA-1 is recruited to recombination intermediates that are pro-

cessed into non-crossovers and/or inter-sister crossovers. Similar numbers of COSA-1 foci,

associated with MSH-5, were observed in syp-3 mutants; high resolution cytological analyses

indicated that these recombination sites are non-randomly distributed but with some

average number of RAD-51 foci per nucleus in the different zones. Horizontal line of each box indicates the median, the top and

bottom of the box indicates medians of upper and lower quartiles, lines extending above and below boxes indicate standard

deviation and individual data points are outliers from 5–95%. Statistical comparisons by Mann-Whitney of brc-1(tm1145); zim-1
versus zim-1 in the different regions of the germ line; ��� p<0.0001. A minimum of 3 germ lines were analyzed. Numbers of nuclei

scored in each zone for brc-1; zim-1: 1 = 177; 2 = 138; 3 = 161; 4 = 61; zim-1: 1 = 159; 2 = 88; 3 = 103; 4 = 78.

https://doi.org/10.1371/journal.pgen.1007701.g006
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Fig 7. BRC-1 promotes the stability of RAD-51 filaments when crossover formation is impaired. A) Schematic of potential outcomes of IR-

induced RAD-51 (red) over time in brc-1(tm1145) brd-1(dw1); spo-11; syp-2(RNAi) worms: a defect in RAD-51 loading would result in loss of the

“dark zone” (circle) by 12 hrs (left), while a defect in RAD-51 stabilization would manifest in the maintenance of the dark zone over 12 hrs (right).

B) Projections of whole germ lines at indicated times after IR treatment in brc-1(tm1145) brd-1(dw1); spo-11; syp-2(RNAi) (left) and spo-11; syp-2
(RNAi) (right). DAPI (blue), RAD-51 (red). A minimum of 3 germ lines were imaged for each condition. Scale bar = 30 μm.

https://doi.org/10.1371/journal.pgen.1007701.g007
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Fig 8. BRC-1-BRD-1 alters the crossover landscape when meiosis is impaired. A) Number of GFP::COSA-1 foci in mid-late pachytene

in indicated mutants. Number of nuclei from a minimum of 4 germ lines scored: gfp::cosa-1 = 458, brc-1(tm1145) brd-1(dw1); gfp::cosa-1 =
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abnormalities, consistent with the formation of nonproductive intermediates or inter-sister

crossovers [59]. As with zim-1 mutants, inactivation of BRC-1-BRD-1 in the syp-1 mutant

background led to fewer COSA-1 foci (Fig 8A; S5 Fig), suggesting that BRC-1-BRD-1 pro-

motes COSA-1-associated recombination processing when chiasma formation is impaired.

To determine whether the extra COSA-1 foci on synapsed chromosomes could form chias-

mata, we examined zim-1 and brc-1(tm1145); zim-1 diplotene/diakinesis nuclei, where chro-

mosomes are individualized and cross-shaped structures indicative of crossovers between

homologs can be observed. Consistent with the formation of extra chiasmata in the zim-1
mutant background, we observed 52% of diplotene/diakinesis nuclei (n = 52) containing at

least one ring-shaped structure, and six had two ring-shaped structures. The simplest interpre-

tation is that there was a chiasma on each end of the chromosome pair (arrow; Fig 8B). This

was reduced to 21% of diplotene/diakinesis nuclei (n = 43) containing ring-shaped chromo-

somes in the brc-1(tm1145); zim-1 double mutant (zim-1 vs. brc-1(tm1145); zim-1, p = 0.0028

Mann-Whitney). These results suggest that BRC-1-BRD-1 promotes chiasma formation when

some chromosomes are unable to interact with their partner.

To examine genetic crossovers, we monitored linkage between SNP markers on chromo-

somes V and X in Bristol/Hawaiian hybrid strains to assess both crossover numbers and distri-

bution. While inactivation of brc-1 had no effect on crossover numbers on chromosome V
(WT = 48.1cM; brc-1 = 50.8cM), we observed an altered distribution compared to wild type

(Fig 8D and 8E; S1 Table). In C. elegans, crossovers are enriched on the arms [28, 60–62]; in the

brc-1(tm1145) mutant we observed a more even distribution, with more crossovers in the center

and fewer on the right arm (Fig 8E; S1 Table). On the other hand, in brc-1(tm1145), neither

crossover frequency nor distribution were significantly different on the X chromosome (Fig 8D

and 8E), which has an altered crossover landscape compared to the autosomes [63, 64].

We next monitored linkage between SNP markers in the zim-1 and brc-1(tm1145); zim-1
mutants. We observed a significant increase in the recombination map on chromosome V in

zim-1 (70.8cM), and multiple double crossovers were observed (Fig 8D; S1 Table). Extra cross-

overs were also observed on autosomes in worms unable to pair and synapse X chromosomes

[50]. Inactivation of BRC-1 in the zim-1 background resulted in significantly fewer double

crossovers (DCOs) on chromosome V (p = 0.0242; Fig 8C, S1 Table), although the overall

genetic map length was not significantly different compared to the zim-1 single mutant

(68.2cM; Fig 8D). This is most likely a consequence of an increase in the single crossover class

(SCO; zim-1 vs. brc-1(tm1145); zim-1, p = 0.0007; Fig 8C, S1 Table). On the X chromosome

crossover frequency and distribution were altered in the center region in both zim-1 and brc-1
(tm1145); zim-1 and in the left interval in zim-1; however, the overall map lengths were not sta-

tistically different between any of the strains.

815, brc-1(tm1145) brd-1(dw1); zim-1; gfp::cosa-1 = 169; brc-1(tm1145); gfp::cosa-1 = 235; brc-1(tm1145); zim-1; gfp::cosa-1 = 255, zim-1;
gfp::cosa-1 = 120, brd-1(ok1623); zim-1; gfp::cosa-1 = 164, brd-1(ok1623); gfp::cosa-1 = 145, syp-1; gfp::cosa-1 = 292, brc-1(tm1145) brd-1
(dw1); syp-1; gfp::cosa-1 = 487. The genetic interaction between brc-1/brd-1 and zim-1 is significant by a one-way ANOVA (��� p<0.0001).

B) Diplotene zim-1; gfp::cosa-1 nucleus showing ring-shaped chromosomes (arrows) and GFP::COSA-1 (green). Scale bar = 2 μm. C)

Percent recombinants for double crossover (DCO) [100 x DCO/(SCO+DCO+TCO)], p = 0.024, and single crossover (SCO) classes [100 x

SCO/(SCO+DCO+TCO)], p = 0.0007, in zim-1 and brc-1(tm1145); zim-1 mutants. Statistical analyses were conducted using Fisher exact

test on 2-by-2 contingency tables of DCO or SCO and total recombinants. D) Top: SNP markers: orange sites were analyzed from all

embryos, grey sites were used to confirm potential double and triple COs; Bottom: CO frequency on chromosome V in wild type (n = 187),

brc-1(tm1145) (n = 187), zim-1 (n = 219) and brc-1(tm1145); zim-1 (n = 192) mutants. CO frequency on the X chromosome in wild type

(n = 188), brc-1(tm1145) (n = 188), zim-1 (n = 223) and brc-1(tm1145); zim-1 (n = 112) mutants. n = number of embryos analyzed per

genotype. E) CO distribution among recombinants on chromosome V in wild type (n = 90), brc-1(tm1145) (n = 95), zim-1 (n = 155) and

brc-1(tm1145); zim-1 (n = 131) and on the X chromosome in wild type (n = 88), brc-1(tm1145) (n = 97), zim-1 (n = 121) and brc-1
(tm1145); zim-1 (n = 63). n = total number of COs per genotype; statistical analyses were conducted using χ2 on 2-by-2 contingency tables,
� p<0.05; �� p<0.001; ��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1007701.g008
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C. elegans exhibits strong interference, which is the phenomenon that a crossover at one

position on a chromosome decreases the probability of formation of a crossover nearby, result-

ing in a single crossover per chromosome [62]. Given the detection of DCOs on chromosome

V in the zim-1 and brc-1(tm1145); zim-1 mutants, we calculated the interference ratio. While

wild type and brc-1 had absolute intereference of 1, as no double crossovers were observed, the

zim-1 mutant displayed reduced interference in the left-center and left-right intervals and neg-

ative interference in the center-right interval (Table 1). Inactivation of BRC-1 in the zim-1
mutant restored positive interference in the center-right interval; however, this fell short of sta-

tistical significant (p = 0.064). In addition to the non-randomness in the number and position

of crossovers, interference also operates on the level of chromatids such that a crossover

between any two non-sister chromatids can affect the probability of those chromatids being

involved in other crossovers [65]. Chromatid interference has been shown to occur in fungi,

Drosophila, maize and humans [65–70]. Since we assayed single products of meiosis, the SCO

class includes single crossovers as well as recombinants that are the result of three- or four-

strand double crossovers, while only two strand-events can be detected as DCOs. The elevated

numbers of SCOs and reduction in two-strand DCOs on chromosome V in the brc-1(tm1145);
zim-1 mutant compared to the zim-1 single mutant (Fig 8C), suggest that there may be more

three- and/or four-strand double crossovers when BRC-1 is inactivated. Thus, BRC-1 may

counteract chromatid interference under meiotic dysfunction, such that more two-strand dou-

ble crossovers occur. Taken together, the reduced number of COSA-1 foci and alteration in

the genetic map in the brc-1(tm1145); zim-1 mutant suggest that BRC-1-BRD-1 modifies

recombination patterning under meiotic dysfunction.

Discussion

Here we show that C. elegans BRC-1 and BRD-1 orthologs localize to the SC and regulate

recombination when meiosis is perturbed. Our results suggest that BRC-1-BRD-1 plays an

Table 1. Crossover interference on chromosome V.

WT (V) expected DCO observed DCO c.o.c. interference

LC 0.011 0.00 0.00 1.00

CR 0.016 0.00 0.00 1.00

LR 0.042 0.00 0.00 1.00

brc-1 (V) expected DCO observed DCO c.o.c. interference

LC 0.036 0.00 0.00 1.00

CR 0.016 0.00 0.00 1.00

LR 0.028 0.00 0.00 1.00

zim-1(V) expected DCO observed DCO c.o.c. interference

LC 0.072 0.055 0.75 0.25

CR 0.049 0.087 1.79 -0.79

LR 0.042 0.018 0.43 0.57

brc-1;zim-1(V) expected DCO observed DCO c.o.c. interference

LC 0.039 0.026 0.67 0.33

CR 0.055 0.031 0.57 0.43

LR 0.058 0.031 0.54 0.46

LC = left-center interval; CR = center-right interval; LR = left-right interval. DCO: double crossover; expected DCO: (crossover frequency at interval “A”) x (crossover

frequency at interval “B”). c.o.c. (coefficient of coincidence) = actual DCO frequency/ expected DCO frequency; Interference = 1- c.o.c. See S1 Table for data used for

calculations. Statistical analyses of interference using χ2 on 2-by-2 contingency tables of observed and expected DCOs [119], indicated that interference in the CR

interval fell short of statistical significance between zim-1 and brc-1(tm1145); zim-1, p = 0.064.

https://doi.org/10.1371/journal.pgen.1007701.t001
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important role in monitoring and modulating processing of meiotic DSBs into crossovers in

the context of the specialized meiotic chromosome structure.

BRC-1-BRD-1 undergoes dynamic localization that is coupled to crossover

recombination

In mouse spermatocytes BRCA1 is associated with RAD51 and enriched on asynapsed regions

of meiotic chromosomes, including the X-Y sex body [18, 19]. Here we show that C. elegans
BRC-1 and BRD-1 partially co-localize with RAD-51 in early meiotic prophase, but become

enriched on synapsed chromosomes as meiosis progresses, co-localizing with SYP-1, a SC cen-

tral region component (Fig 2B). The enrichment of mammalian BRCA1 on asynapsed chro-

mosomes versus BRC-1 on synapsed chromosomes in C. elegans most likely reflects alteration

in the relationship between meiotic recombination and SC formation in these organisms. Mei-

otic chromosomes can pair and synapse in the absence of meiotic recombination in C. elegans
[32], while these events are interdependent in mammals [15, 16]. The HORMAD axial compo-

nents also show differences in chromosome association in mice and worms: in mice, HOR-

MAD1 and HORMAD2 are enriched on asynapsed chromosomes [71, 72], while C. elegans
HORMADS, HIM-3, HTP-1/2, and HTP-3, remain associated with synapsed chromosomes

[73–76]. However, the function of HORMADs in preventing inter-sister recombination and in

checkpoint signaling appears to be similar in these different organisms [77–82]. Thus, the asso-

ciation of BRC-1-BRD-1 to the SC in C. elegans is likely a consequence of the inter-relationship

between SC formation and meiotic recombination in this organism and not due to different

functions for this complex in worm versus mammalian meiosis.

Another difference between C. elegans and mammals is the nature of the kinetochore. C.

elegans chromosomes are holocentric while in many organisms, including yeast and mice,

chromosomes are monocentric. Holocentricity dictates that a single off-centered crossover is

formed on each homolog pair to define the long and short arms necessary to ensure regulated

sister chromatid cohesion release at meiosis I and II [60–62, 83]. Interestingly, BRC-1-BRD-1

becomes restricted to the short arm of the bivalent, as defined by the crossover site, and this

precedes SC reorganization. While the absence of BRC-1-BRD-1 alone does not affect cross-

over formation on chromosome V and the X chromosome, it does have a subtle effect on the

distribution of crossovers along chromosome V such that more occur in the middle of the

chromosome (Fig 8D and 8E). The change in crossover distribution in brc-1 mutants may con-

tribute to the slightly increased nondisjunction observed in the absence of the BRC-1-BRD-1

complex.

We show that the concentration of BRC-1-BRD-1 to a portion of each chromosome track

in late pachytene is dependent on meiotic DSB formation and processing into crossovers (spo-
11, rad-51 and msh-5; Fig 4). Interestingly, in both spo-11 and msh-5 mutants there are occa-

sional chromosomal tracks in late pachytene, which are highly enriched for BRC-1. While syn-

apsis markers also show occasional enrichment to single tracks in the absence of spo-11, and

these partially overlap with BRC-1 (S2B Fig), no enrichment of synapsis markers is observed

when crossover factors (i.e., msh-5, cosa-1 or zhp-3) are removed [39–41]. While it has been

proposed that spo-11-independent lesions can recruit meiotic DNA repair components [39–

41], the enrichment of BRC-1 in the absence of such crossover factors suggests that BRC-

1-BRD-1 can respond to other repair intermediates in addition to those leading to inter-homo-

log crossovers. One possibility is that when inter-homolog crossover formation is blocked,

DSBs are repaired through site-specific nucleases [84–86], a subset of which leads to the con-

centration of BRC-1-BRD-1 on chromosomes in late pachytene. This is also consistent with

the observation that BRC-1 is maintained on chromosomes in spo-11, rad-51 and msh-5
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mutants in diakinesis nuclei. Perhaps the failure to form interhomolog crossovers in these

mutants leads to continued association of BRC-1-BRD-1 on chromosomes.

BRC-1 and BRD-1 associate and are mutually dependent for localization to

meiotic chromosomes

BRCA1 forms a potent E3 ubiquitin ligase only in complex with its partner BARD1 [2, 3]. Bio-

chemical and structural studies have defined the RING domains and associated helices of these

proteins as critical for catalytic activity and BRCA1-BARD1 interaction [43]. However, while

the BRCA1-BARD1 heterodimer exhibits substantially greater E3 ligase activity in vitro than

BRCA1 alone, only the BRCA1 RING domain interacts with the E2 for ubiquitin transfer, sug-

gesting that BRCA1 is the critical subunit for E3 ubiquitin ligase activity [3, 87]. Structure-

function analysis of the BARD1 RING domain suggests that BARD1 may serve to attenuate

BRCA1 E3 ligase activity [88]. Interestingly, while the localization of BRC-1 and BRD-1 were

interdependent (Fig 3B), BRD-1 appeared to be excluded from the nucleus in the absence of

BRC-1, while BRC-1 was nucleoplasmic and formed foci in late pachytene in the absence of

BRD-1 (Fig 3B). These differences may reflect the nature of the alleles examined: brc-1(xoe4)
produces no protein, while the two brd-1 alleles are predicted to produce truncated proteins,

where the RING domain and associated helices remain intact (Fig 5A). In humans, BRCA1

nuclear localization signals in the middle of the protein can directly mediate nuclear import,

or import can occur indirectly through interaction with BARD1 [89]. Thus, the truncated

BRD-1 protein produced from the brd-1(ok1623) allele could associate with BRC-1 and facili-

tate nuclear localization of the albeit nonfunctional complex. Alternatively, C. elegans BRC-1

may be uniquely required for nuclear localization or retention, and in its absence BRD-1 can-

not enter or be retained in the nucleus. The weak nucleoplasmic BRD-1 signal observed at the

end of meiotic prophase in the absence of BRC-1 most likely reflects differences in the nuclear

membrane as oogenesis proceeds [90, 91].

In addition to the N-terminal RING domains, both BRC-1 and BRD-1 contain long linker

and phosphoprotein binding BRCA1 C-terminal (BRCT) domains. BRCT domains are phos-

phorylation-dependent interacting modules that have been implicated in tumor suppressor

activity [92]. Interestingly, only BRD-1 contains Ankyrin (ANK) repeat interaction domains.

Recent structural and functional analyses of the ANK domain in TONSL-MMS22L, a complex

involved in homologous recombination, revealed that the ANK domain interacts with histone

H4 tails [93]. The BARD1 ANK domains have a very similar fold [93], suggesting that BARD1

ANK domains may be important for association with chromatin. The predicted truncated pro-

teins produced in the brd-1 mutants, which behave as nulls (Fig 5 and S4 Fig), lack at least part

of the BRCT domains and all of the ANK domains, suggesting that some combination of these

domains are critical for BRD-1 function with respect to both DNA damage signaling and

meiosis.

BRC-1-BRD-1 function in meiotic recombination can be genetically

separated from its established role in the DDR

It has long been appreciated that BRCA1-BARD1 mediates its tumor suppressor activity at

least in part through regulating homologous recombination [6]. Given the importance of

homologous recombination in repairing DSBs during meiosis, it is not surprising that remov-

ing BRC-1-BRD-1 impinges on meiotic recombination. Unexpectedly, we identified a small

region C-terminal to the BRC-1 RING and associated helices as being important specifically

for meiosis, suggesting that the function of BRC-1-BRD-1 in DNA damage response and meio-

sis are distinct. While containing no specific fold or homology, this region has several potential
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phosphorylation sites based on prediction algorithms that may mediate its interaction with

key meiotic proteins.

BRCA1-BARD1 associates with the recombinase RAD51 in both mammals and C. elegans
[19, 31, 94]. BRCA1 has also been shown to be required for the assembly of DNA damage

induced RAD51 foci on chromatin [95], and this has been interpreted as a requirement for

BRCA1 in RAD51 filament assembly. However, recent biochemical analyses using purified

proteins found that BRCA1 is not required for RAD51 assembly on RPA coated single

stranded DNA and instead promotes DNA strand invasion [94]. Further, a BARD1 mutant

that cannot interact with RAD51 does not promote DNA strand invasion, and also does not

form foci in vivo. Thus, it is likely that BRCA1-BARD1 is not required for RAD51 filament

assembly per se. Our IR time course analysis of C. elegans brc-1 brd-1 mutants is consistent

with a function for this complex in stabilizing the RAD-51 filament. It is possible that similar

to the mammalian complex, BRC-1-BRD-1 promotes RAD-51 strand invasion; however, in
vivo the RAD-51 filament may be subject to disassembly by other proteins in the absence of

BRC-1-BRD-1, which would not be recapitulated in vitro. One such protein is the FANCJ/

DOG-1 helicase, which interacts with BRCA1 [96], and can disassemble RAD51 on ssDNA in
vitro [97]. It is also likely that BRCA1-BARD1 plays multiple roles during homologous recom-

bination and interacts with, and coordinates the activity, of many proteins, including RAD51,

and these interactions are modulated under different conditions, including DNA damage,

meiosis, meiotic dysfunction, as well as at different stages of the cell cycle. Consistent with this,

Janisiw et al. found that BRC-1 associates with the pro-crossover factor MSH-5.

BRCA1-BARD1 and meiotic checkpoint signaling

brc-1 and brd-1 mutants have very subtle defects in meiosis. These include low levels of X chro-

mosome nondisjunction [10] (Fig 5C), a delay in repair of a subset of DSBs through the inter-

sister pathway [9], and elevated heterologous recombination [12]. However, removing BRC-

1-BRD-1 when meiosis is perturbed in mutants that impair chromosome pairing, synapsis and

crossover recombination leads to enhanced meiotic dysfunction, including elevated embry-

onic lethality (Fig 5E), impaired RAD-51 stability (Fig 7), and alteration of COSA-1 numbers

and the crossover landscape (Fig 8). These results suggest that BRC-1-BRD-1 plays a critical

role in meiotic recombination when meiosis is impaired.

In both C. elegans and Drosophila melanogaster, preventing crossover formation on a subset

of chromosomes leads to additional events on other chromosomes, and is referred to as the

interchromosomal effect [50, 98–101]. There is also evidence in humans that Robertsonian

translocations elicit the interchromosomal effect [102]. Our analyses of the zim-1 mutant,

where chromosomes II and III fail to recombine, revealed elevated COSA-1 foci genome wide

and an increase in genetic crossovers on chromosome V (but not the X chromosome, Fig 8),

consistent with the interchromosomal effect. Further, our data suggest that when meiosis is

impaired as in syp-1, and perhaps zim-1 mutants, COSA-1 can mark events that do not ulti-

mately become interhomolog crossovers (see also [59]). Interestingly, removal of BRC-1-BRD-

1 in zim-1 and syp-1 mutants decreased the number of COSA-1 foci. On the other hand, in the

brc-1(tm1145); zim-1 mutant we detected elevated levels of single crossovers but reduced levels

of two-strand double crossovers on chromosome V compared to the zim-1 single mutant, with

no change in the overall map length (Fig 8D). One possibility to explain the observed COSA-1

and crossover pattern is that COSA-1 does not become enriched on a subset of crossovers in

brc-1; zim-1 mutants even though these events are dependent on the canonical meiotic cross-

over pathway, as observed in the rtel-1 and dyp-28 mutants [30, 103–105]. Alternatively, the

extra crossovers that are not marked by COSA-1 in the absence of BRC-1-BRD-1 may be the
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result of activation of alternative crossover formation pathways. In either scenario, BRC-1,

and presumably BRD-1, appear to dictate the patterning of crossovers among non-sister

chromatids. As interference is mediated by meiotic chromosome structure [106], perhaps SC-

associated BRC-1-BRD-1 counteracts chromatid interference in the context of meiotic

dysfunction.

In conclusion, our results suggest that BRC-BRD-1 serves a critical role in monitoring

the progression of meiotic recombination in the context of the SC when meiosis cannot

proceed normally, suggesting that BRC-1-BRD-1 serves a checkpoint function. When cross-

over formation is blocked, BRC-1-BRD-1 stabilizes the RAD-51 filament and promotes pro-

cessing of recombination intermediates marked by COSA-1. In this context, BRC-1-BRD-1

joins a growing list of proteins that monitor meiotic recombination to promote accurate

chromosome segregation, including protein kinases and ubiquitin/SUMO E3 ligases [39, 56,

57, 107–110]. Future work will examine the relationship between BRC-1-BRD-1 and other

meiotic checkpoint pathways and identify substrates of BRC-1-BRD-1-ubiquitination to

understand how this complex modulates recombination under conditions when meiosis is

perturbed.

Materials and methods

Generation of gfp::brc-1, tag-rfp-T::brc-1, brd-1::gfp and brc-1(xoe4)
Fluorescent protein knock-ins were generated using CRISPR-mediated homology dependent

repair with self-excising cassette containing hygromycin resistant as selection [20]. The brc-1
(xoe4) deletion allele was generated using Cas9-snRNPs and an single strand oligonucleotide

repair template [111]. Cas9 protein was purchased from Innovative Genomics Institute, UC

Berkeley. For a list of sgRNAs and repair templates refer to S2 Table. All CRISPR-generated

lines were back crossed a minimum of three times, with the exception of JEL744 brc-1(xoe4)
brd-1::gfp, which was only back crossed once.

Genetics

C. elegans var. Bristol (N2), was used as the wild-type strain. Other strains used in this study

are listed in S3 Table. Some nematode strains were provided by the Caenorhabditis Genetics

Center, which is funded by the National Institutes of Health National Center for Research

Resources. Strains were maintained at 20˚C.

Embryonic lethality and production of male progeny

Embryonic lethality in the absence or presence of 5mM hydroxyurea (HU) (16 hrs), or 75

Grays (Gy) of γ-irradiation (IR) from a 137Cs source, was determined over 3 days by counting

eggs and hatched larvae 24 hr after removing the hermaphrodite and calculating percent as

eggs/ (eggs + larvae); male progeny was assessed 48 hr after removing the hermaphrodite. A

minimum of 10 worms were scored for each condition.

Apoptosis assay

Acridine orange (AO) staining of apoptotic germ cells in WT (N2), brc-1 and brd-1 alleles as

well as zim-1 and corresponding double and triple mutants were performed as in [48]. Briefly,

0.5 ml of 50 mg/ml AO (Molecular Probes, Invitrogen; Carlsbad, CA) in M9 was added to

60-mm plates containing 48 hr post L4 worms and incubated at room temperature for 1 hr.

Worms were transferred to new 60-mm plates, allowed to recover 15 min, and then mounted
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under coverslips in M9 on 3% agarose pads containing 1 mM tetramisole (Sigma-Aldrich;

St. Louis). Apoptotic bodies were scored by fluorescence microscopy and DIC.

Cytological analysis

Gonads were dissected and fixed with 1% paraformaldehyde in egg buffer plus 0.01% Tween20

for 5 min, freeze-cracked and post-fixed in either ice-cold 100% methanol for indirect immu-

nofluorescence, or ice-cold 100% ethanol for direct fluorescence (GFP::BRC-1, TagRFP-T::

BRC-1, BRD-1::GFP, GFP::RPA-1, GFP::COSA-1) for 1 min [112]. For staining with antibod-

ies against phospho-SYP-4, gonads were dissected, freeze-cracked, incubated in 100% metha-

nol for 1 min and post-fixed in 4% paraformaldehyde in PBS, 80mM HEPES(pH7.4), 0.8mM

EDTA, 1.6mM MgS04 for 30 min [40]. The following primary antibodies were used at the indi-

cated dilutions: rabbit anti-RAD-51 (1:10,000; Catalog #29480002; Novus Biologicals, Littleton,

CO), rabbit anti-GFP (1:500; NB600-308; Novus Biologicals, Littleton, CO), goat anti-SYP-1

(1:200; generously provided by Anne Villeneuve); rabbit anti-phospho-SYP-4 (1:100; [40]),

and guinea pig anti-SUN-1 S12P (1:1,000; generously provided by Verena Jantsch). Secondary

antibodies Alexa Fluor 594 donkey anti-rabbit IgG, Alexa Fluor 555 donkey anti-goat IgG,

Alexa Fluor 488 donkey anti-rabbit IgG, Alexa Fluor 488 goat anti-guinea pig IgG from Life

Technologies were used at 1:500 dilutions. DAPI (2μg/ml; Sigma-Aldrich) was used to coun-

terstain DNA.

Collection of fixed images was performed using an API Delta Vision deconvolution micro-

scope, a Nikon TiE inverted microscope stand equipped with an 60x, NA 1.49 objective lens

and Andor Clara interline camera, or were captured on a spinning-disk module of an inverted

objective fluorescence microscope [Marianas spinning-disk confocal (SDC) real-time 3D Con-

focal-TIRF (total internal reflection) microscope; Intelligent Imaging Innovations] equipped

with an 63x, NA 1.46 objective lens using a Photometrics QuantiEM electron multiplying

charge-coupled device (EMCCD) camera. Z stacks (0.2 μm) were collected from the entire

gonad. A minimum of three germ lines was examined for each condition. Images were decon-

volved using Applied Precision SoftWoRx or Nikon NIS Elements Offline batch deconvolution

software employing either “Automatic3D” or “Richardson-Lucy” deconvolution modes and

subsequently processed and analyzed using Fiji (ImageJ) (Wayne Rasband, NIH).

RAD-51 foci were quantified in a minimum of three germ lines of age-matched hermaph-

rodites (18–24 hr post-L4). As zim-1 mutants have an extended transition zone [42], we

divided germ lines into four equal zones from the beginning of the transition zone (leptotene/

zygotene), as counted from the first row with three or more crescent-shaped nuclei, through

diplotene (Fig 6B). The number of foci per nucleus was scored for each region.

To assess formation of RAD-51 foci following IR treatment, 18–24 hrs post-L4 worms were

exposed to 10 Gy of IR; gonads were dissected 1, 4, 8, and 12 hr following IR treatment and

fixed for immunofluorescence as above.

GFP::COSA-1 foci were quantified from deconvolved 3D data stacks; nuclei were scored

individually through z-stacks to ensure that all foci within each individual nucleus were

counted. Nuclei with features indicative of apoptosis (compact and DAPI-bright) were

excluded. Foci were counted in the last five rows of pachytene nuclei as in [30].

For live cell imaging, 18–24 hr post L4 hermaphrodites were anesthetized in 1mM tetrami-

sole and immobilized between a coverslip and an 2% agarose pad on a glass slide. Z-stacks

(0.33 μm) were captured on a spinning-disk module of an inverted objective fluorescence

microscope (NIH 1S10RR024543) with a 100×, NA 1.46 objective, and EMCCD camera.

Z-projections of stacks were generated, cropped, and adjusted for brightness in Fiji.
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Pearson’s Correlation Coefficient (PCC) was determined by drawing a Region of Interest

(ROI) around a nucleus and using the co-localization function in Fiji.

Immunoblot analysis

Whole worm lysates were generated from indicated worms; unmated fog-2(q71) worms were

used to eliminate embryos. ~100 worms were collected, washed in M9 buffer and resuspended

in equal volume of 2X Laemmli sample buffer (Bio-RAD). Lysates were resolved on 4–15%

SDS-PAGE gradient gels (Bio-RAD) and transferred to Millipore Immobilon-P PVDF mem-

branes. Membranes were blocked with 5% nonfat milk and probed with rabbit anti-GFP

(1:1000; NB600-308; Novus Biologicals, Littleton, CO) and mouse anti-α-tubulin (1:1000;

Sigma-Aldrich; T9026) as loading control, followed by IRDye680LT- and IRDye800-conju-

gated anti-rabbit and anti-mouse IgG secondary antibodies (1:20000; LI-COR Bioscience Lin-

coln, NE). Immunoblots were imaged on a LI-COR Odyssey Infrared Imager, signal was

quantified using Fiji and normalized with the α-tubulin signal.

RNA-mediated interference analysis

RNA-mediated interference (RNAi) was performed at 20˚C, using the feeding method [113].

Cultures were plated onto NGM plates containing 25 μg/ml carbenicillin and 1 mM IPTG and

were used within 2 weeks. L4 worms were transferred to RNAi plates, and resulting progeny

were exposed to IR as described above. The efficiency of RNAi was tested in parallel by exam-

ining embryonic lethality.

Meiotic mapping

Meiotic crossover frequencies and distribution were assayed utilizing single-nucleotide poly-

morphism (SNP) markers as in [114]. The SNP markers located at the boundaries of the chro-

mosome domains were chosen based on data from WormBase (WS231) and [64], and are

indicated in Fig 8D. The SNP markers and primers used are listed in [86]. PCR and restriction

digests of single embryo lysates were performed and confirmed with additional SNPs as

described in [115, 116] (Fig 8D). Statistical analyses were performed using the two-tailed Fish-

er’s Exact test, 95% C.I., as in [117, 118]. For statistical analyses of interference we conducted

χ2 tests on 2-by-2 contingency tables of observed and expected DCOs [119].

Supporting information

S1 Table. Genetic mapping data.

(XLSX)

S2 Table. Reagents used for generating CRISPR/Cas9 edited worms.

(DOCX)

S3 Table. Strains used in this study.

(DOCX)

S1 Fig. GFP::BRC-1, TagRFP-T::BRC-1 and BRD-1::GFP are functional and expressed pre-

dominantly in the germ line. A) % embryonic lethality; B) % male progeny; C) % embryonic

lethality following 75 Gy IR; D) % embryonic lethality following treatment with 5mM HU for

16 hrs of indicated strains. 95% Confidence Intervals shown; � p<0.05; �� p<0.001; ���

p<0.0001. gfp::brc-1, tag-rfp-t::brc-1 and brd-1::gfp are not statistically different compared to

WT. A minimum of 10 worms were analyzed for each condition. E) Immunoblot of whole

worm extracts from WT, gfp::brc-1 and gfp::brc-1; fog-2 probed with rabbit anti-GFP and
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mouse anti-α-tubulin. Ratio determined by fluorescent intensities from three independent

experiments.

(TIF)

S2 Fig. In the absence of SPO-11, GFP::BRC-1 and BRD-1::GFP are enriched on a subset of

chromosomes. A) Number of GFP::BRC-1 foci in indicated mutants in Proliferative Zone,

Transition Zone and Early Pachytene. Number of foci examined in a minimum of 3 germ

lines: PZ: WT (n = 412); spo-11 (n = 177); rad-51(n = 114); msh-5 (n = 175); syp-1 (n = 140);

zim-1 (n = 142); TZ: WT (n = 287); spo-11 (n = 103); rad-51(n = 52); msh-5 (n = 94); syp-1
(n = 83); zim-1 (n = 112); EP: WT (n = 202); spo-11 (n = 106); rad-51(n = 57); msh-5 (n = 57);

syp-1 and zim-1 had too many foci to accurately count. ��� p<0.0001. B) Late pachytene region

of the germ line stained with anti-GFP (green) and anti-phosphoSYP-4 (SYP-4P) (red) and

counterstained with DAPI. Scale bar = 10 μm. C) High-magnification images of live C. elegans
expressing BRD-1::GFP in the spo-11 background. Images are projections through half of the

gonad. PZ = Proliferative Zone, TZ = Transition Zone, EP = Early Pachytene, MP = Mid

Pachytene, LP = Late Pachytene, DP = Diplotene, DK = Diakinesis. Scale bar = 5 μm.

(TIF)

S3 Fig. brc-1 and brd-1 mutant alleles and meiotic progression. A) Genomic regions of brc-1
and brd-1 from WormBase Version: WS265 (https://wormbase.org/#012-34-5), with the

region deleted in the different alleles indicated. Color dotted lines indicate the resulting splic-

ing of brd-1(ok1623) (pink; splicing of exon 7–12, which introduces a stop codon and results

in a 343 a. a. protein) and brd-1(dw1) (orange; cryptic splice site within intron 11 spliced to

exon 12, resulting in a 375 a. a. protein) as determined by cDNA analysis. B) High-magnifica-

tion images of live brc-1(tm1145) worms expressing BRD-1::GFP (PZ = Proliferative Zone,

TZ = Transition Zone, EP = Early Pachytene, MP = Mid Pachytene, LP = Late Pachytene,

DP = Diplotene, DK = Diakinesis). Scale bar = 5 μm. C) Indicated germ lines stained with anti-

bodies against SUN-1 S12P (green) and counterstained with DAPI (blue). Numbers beneath

genotype indicate the percentage of cell rows with SUN-1 S12P staining normalized to gonad

length as in [49]; 3 germ lines were examined. Images are projections through half of the

gonad. Scale bar = 20 μm.

(TIF)

S4 Fig. Inactivation of brc-1 or brd-1 alters pattern of RAD-51 foci in mid-late pachytene

in chromosome synapsis mutants. A) Box whisker plots show average number of RAD-51

foci per nucleus in the different zones of meiotic prophase (see Fig 6B). Horizontal line of each

box indicates the median, the top and bottom of the box indicates medians of upper and lower

quartiles, lines extending above and below boxes indicate standard deviation and individual

data points are outliers from 5–95%. Numbers of nuclei scored in each zone for WT: 1 = 186;

2 = 343; 3 = 292; 4 = 166; brc-1(tm1145) brd-1(dw1): 1 = 233; 2 = 303; 3 = 261; 4 = 68; brd-1
(ok1623): 1 = 186; 2 = 135; 3 = 162; 4 = 117. � p<0.05; �� p<0.001; ��� p<0.0001. B) Dissected

germ lines from brd-1(ok1623); zim-1, brc-1(tm1145) brd-1(dw1); syp-1, syp-1, brd-1(dw1);
zim-1, brc-1(tm1145) brd-1(dw1); zim-1, and brc-1(xoe4); zim-1 worms stained with anti-

RAD-51 (red) and counterstained with DAPI (blue); white bracket indicates region of reduced

RAD-51 foci. A minimum of 4 germ lines were imaged for each genotype. Full projections of

the gonads are shown. Scale bar = 20 μm. C) Mid-late pachytene region of gonad from gfp::

rpa-1 and brc-1(tm1145) brd-1(dw1); gfp::rpa-1 worms stained with anti-RAD-51 (red) and

imaged for GFP::RPA-1 fluorescence (green), counterstained with DAPI (blue). Images are

projections through half of the gonad. Scale bar = 8 μm.

(TIF)
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S5 Fig. COSA-1 foci in synapsis mutants in the presence and absence of BRC-1. Late pachy-

tene region of the germ line in indicated mutants expressing GFP::COSA-1 (green) and coun-

terstained with DAPI (blue). Images are projections through half of the gonad. Scale

bar = 5 μm.

(TIF)
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