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Abstract

The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm

organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their

animal groups. Here, we discover that Osk and Buc show similar activities during germ cell

specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and

Buc do not show homologous protein motifs that would explain their related function. None-

theless, we detect that both proteins contain stretches of intrinsically disordered regions

(IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change

their sequence during evolution, which might obscure biochemical interaction motifs.

Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos

mRNA indicating conserved biochemical activities. These data provide a molecular frame-

work for two proteins with unrelated sequence but with equivalent function to assemble a

conserved core-complex nucleating germ plasm.

Author summary

Multicellular organisms use gametes for their propagation. Gametes are formed from

germ cells, which are specified during embryogenesis in some animals by the inheritance

of RNP granules known as germ plasm. Transplantation of germ plasm induces extra

germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. There-

fore, germ plasm is key for germ cell formation and reproduction. However, the molecular

mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an

unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm

organizers. Here, we show that the two germ plasm organizers Oskar from the fly and

Bucky ball from the fish show similar functions by using a cross species approach. Both

are intrinsically disordered proteins, which rapidly changed their sequence during evolu-

tion. Moreover, both proteins still interact with conserved components of the germ cell

specification pathway. These data might provide a first example of two proteins with the

same biological role, but distinct sequence.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007696 November 6, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Krishnakumar P, Riemer S, Perera R,

Lingner T, Goloborodko A, Khalifa H, et al. (2018)

Functional equivalence of germ plasm organizers.

PLoS Genet 14(11): e1007696. https://doi.org/

10.1371/journal.pgen.1007696

Editor: Cecilia Moens, Fred Hutchinson Cancer

Research Center, UNITED STATES

Received: March 14, 2018

Accepted: September 16, 2018

Published: November 6, 2018

Copyright: © 2018 Krishnakumar et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by a GZMB

stipend, a GGNB bridging fund (SR), the German

Academic Exchange Service, DAAD https://www.

daad.de/en/) (PK, RP, HK), the Deutsche

Forschungsgemeinschaft (DO 740/2-3) (http://

www.dfg.de) the GGNB Junior Group Stipend and

the ‘‘Forschungsförderungsprogramm’’ of the

University Medical Center Göttingen (RD). The

funders had no role in study design, data collection

http://orcid.org/0000-0001-7239-7404
http://orcid.org/0000-0002-4621-4624
http://orcid.org/0000-0002-1402-2628
http://orcid.org/0000-0003-2433-1851
http://orcid.org/0000-0001-9247-8586
https://doi.org/10.1371/journal.pgen.1007696
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007696&domain=pdf&date_stamp=2018-11-06
https://doi.org/10.1371/journal.pgen.1007696
https://doi.org/10.1371/journal.pgen.1007696
http://creativecommons.org/licenses/by/4.0/
https://www.daad.de/en/
https://www.daad.de/en/
http://www.dfg.de
http://www.dfg.de


Introduction

Living systems have the unique ability to reproduce copies of themselves. In animals, the

reproductive cells or their precursors, the primordial germ cells (PGCs) are specified by two

different modes during embryogenesis [reviewed in 1]. In the inductive mode, the embryo

generates signals, which specify a subset of cells to differentiate into PGCs. This was initially

described for mouse and axolotl, which seems to be the ancestral mode [reviewed in 2]. In the

alternative, maternal-inheritance mode, the mother deposits a cytoplasmic determinant

termed germ plasm into the oocyte [reviewed in 3, 4]. After fertilization, germ plasm is inher-

ited by a subset of embryonic cells, which then differentiate into PGCs as shown for example

in Drosophila, C. elegans, Xenopus, and zebrafish. Ablation and transplantation experiments

demonstrated that germ plasm is necessary and sufficient for PGC specification [reviewed in

4, 5, 6].

Germ plasm activities can be triggered by a single Drosophila protein termed Oskar (Osk)

[reviewed in 7]. Osk mutants fail to assemble germ plasm [8, 9], whereas mis-localization of

Osk induces ectopic PGCs [10, 11]. Structural and biochemical studies revealed that Osk binds

RNA and more recently, that it increases the helicase activity of its interaction partner Vasa

[12–15]. Despite its potent activity as a germ plasm organizer, Osk homologs were not discov-

ered outside of insect genomes [reviewed in 16].

In vertebrates, we identified the zebrafish bucky ball (buc) gene, which appears similar at

the genetic level to Osk in Drosophila [17]. Buc mutants fail to assemble germ plasm, whereas

its overexpression induces ectopic PGCs [17, 18]. Biochemical studies with Buc suggest that it

acts as a scaffold bringing together RNA binding proteins like Hermes [19–24]. Interesting

results with the frog homolog Velo1 showed that its N-terminal prion-like domain forms SDS-

resistant granules and that these amyloid-like aggregates recruit RNA [25, 26]. Similar to Osk,

Buc is a fast-evolving protein, which has not been found outside of vertebrate genomes [17,

27]. It is therefore not surprising that no sequence similarity between Osk and Buc was previ-

ously discovered [28]. Nonetheless, the striking overlap in their function in Drosophila or zeb-

rafish was frequently highlighted [e.g. 29], but experiments directly addressing the functional

conservation of Osk and Buc are not available.

Here we provide a biochemical basis for the functional equivalence of both germ plasm

organizers. We show that overexpression of Drosophila Osk leads to the formation of ectopic

PGCs in zebrafish. Although Buc and Osk share this unique activity, we did not detect con-

served motifs in extensive sequence comparisons. However, we find that both germ plasm

organizers share protein stretches of intrinsically disordered regions (IDRs). Upon overexpres-

sion, we observe that Osk and Buc formed protein aggregates similar to liquid-liquid phase

separations or hydrogels as previously shown for other IDPs [30, 31]. Moreover, when we

treated early zebrafish embryos with hydrogel disruptors, we observe the fragmentation of Buc

aggregates. IDRs change their sequence rapidly during evolution, which obscures conserved

interaction motifs [32]. We indeed discover that known biochemical interactors of Osk, i.e.
Vasa protein and nanos mRNA, also interact with Buc. These data show that the functional

equivalence of germ plasm organizers is based on similar biochemical interactions and could

represent the first case of an unrelated protein pair with hidden evolutionary homology.

Results

Oskar induces primordial germ cell formation in zebrafish

We first analyzed the functional equivalence of germ plasm proteins by analyzing their activity

to reprogram somatic cells into PGCs. The germ cell induction assay exploits that the first
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somatic cells in zebrafish segregate from the germline at the 16-cell stage (Fig 1A) [17]. Inject-

ing gfp-nos3’UTR reporter mRNA [33] into a middle blastomere containing endogenous germ

plasm highlighted PGCs in 18 hours post fertilization (hpf) embryos (Fig 1B and 1J). By con-

trast, injection into a somatic cell (corner blastomere) leads to background activation of the

PGC-reporter as previously published (Fig 1C and 1J) [17]. Co-injecting wild-type buc mRNA

encoding amino acid 1–639 into somatic cells was sufficient to significantly increase PGC

specification, but mutant buc mRNA coding for aa 1–361 was not different from negative con-

trols (Fig 1D, 1E and 1J).

The Xenopus Velo1 protein was recently postulated to act as a functional homolog of Buc

[25, 26]. To test this hypothesis experimentally, we overexpressed Xenopus Velo1 in zebrafish

embryos and found ectopic germ cells (Fig 1F and 1J). To determine the specificity of the germ

cell induction assay, we injected the zebrafish Piwi homolog Ziwi, which is also a germ plasm

component [34]. However, Ziwi showed no activity confirming that not every germ plasm

component is active in the germ cell induction assay (Fig 1G).

The germ plasm organizers Osk and Buc have a remarkable genetic similarity [reviewed in

6, 7, 35], but conserved sequences were not discovered [28]. To compare their function experi-

mentally, we tested Osk in the germ cell induction assay. Fascinatingly, short Oskar (sOsk, aa

139–606), which is the active variant in Drosophila for specifying germ cells, also induced

PGCs in zebrafish. By contrast, mutant sOsk (aa 139–254) showed no effect (Fig 1H–1J). The

mutant controls are derived from the osk84 and the bucp43 alleles, which have identical RNA

sequences to their wild-type counterparts besides a point mutation generating a premature

STOP-codon [9, 17]. Thus, overexpression of buc or osk mRNA per se is not sufficient to

induce germ cells. Injecting GFP-fusions of these mRNAs lead to fluorescent embryos suggest-

ing that they are indeed translated into protein (S1A Fig). Quantification indicated a similar

number of specified PGCs by Osk and Buc (S1B Fig). These results suggest that the germ

plasm organizers sOsk, Buc and their homologs share the unique activity to specify germ cells.

Although these ectopic cells express the PGC reporter and migrate to the prospective

gonad, it was recently shown that reprogrammed germ cells retain GFP fluorescence, while

they differentiate into somatic tissue types of the three germ layers [36]. Similar to Buc [17],

Osk induced an increased number of vasa mRNA positive cells at 3 hpf (S2 Fig). Moreover, we

analyzed Vasa protein expression of cells expressing the PGC reporter in the 16-cell assay.

Notably, GFP positive cells after Buc or Osk injection also expressed Vasa protein (Fig 2A–2C

and 2G–2I). By contrast, embryos injected with mutant Buc (1–361) only stained the endoge-

nous germ cells with Vasa, but ectopic GFP-positive germ cells were not detected (Fig 2D–2F).

Taken together, we concluded that the cells specified by Buc and Osk differentiate into PGCs.

Osk and Buc show no conserved sequence motif

According to the sequence-structure-function paradigm, proteins with the same activity con-

tain homologous sequence motifs to interact with similar binding partners [reviewed in 37,

38]. Conserved amino acid sequences were previously described for Xenopus Velo and zebra-

fish Buc, but not between Drosophila Osk and Buc [17, 28]. We therefore pursued a stepwise

strategy for their direct, bioinformatic comparison starting with pairwise alignments (Fig 3A).

We detected only 11.5% similarity between both proteins (Fig 3B; S1 Table). The long Osk

(lOsk) isoform, which is inactive in germ cell induction in Drosophila [39], reduced similarity

to Buc even further down to 10%. A comparison of zebrafish Buc with Drosophila Vasa as an

unrelated sequence showed 18.5% similarity, while Vasa homologs in zebrafish and Drosophila
were 59.4% similar (Fig 3B).
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Fig 1. Drosophila Oskar specifies germ cell formation in zebrafish. (A) Scheme of germ cell induction assay. Left

panel: Animal view of a 16-cell embryo injected with PGC-reporter into a middle blastomere (blue arrowhead)

containing endogenous germ plasm (red dots) or into a somatic cell (corner blastomere; green arrowhead). Right

panel: Oblique, dorsal view of a 15-somite stage embryo (18 hours post fertilization, hpf), anterior to the left.

Fluorescent germ cells (white arrowhead) emerge by targeting the reporter to a PGC or transforming a somatic cell

into a PGC. (B, C) Live 18 hpf embryo after injection of PGC-reporter into a middle (B; 83±2.4%; n = 70) or corner

blastomere (C; 31±4.5%; n = 70; p = 0.005). As previously shown, the gfp-nos3’UTR reporter also frequently labeled the

midline at this stage [33]. (D, E) Wild-type Buc (aa1-639) reprograms the somatic corner blastomere to the germline

(D; wt = 78±2.6%; n = 71), but not mutant Buc (Bucp43). Bucp43 mRNA sequence is identical to wt, but carries a point

mutation (Y362STOP) [17] (E; mut = 35±1.6%; n = 68; p = 0.001). (F, G) Xenopus Velo1 acts as a functional homolog

(F; 61±3.5%; n = 41) but not zebrafish Ziwi (G). (H, I) Drosophila sOsk induces germ cell formation (H; wt = 78±1.1%;

n = 81), but not mutant sOsk084 (aa139-254) (I; mut = 25±8.7%; n = 62; p = 0.01). Scale bar (B-I): 200 μm. (J)

Quantification of injection results (three independent experiments for each RNA). Error bars represent standard

deviation of the mean. Student’s t-test; P-value: ��<0.01.

https://doi.org/10.1371/journal.pgen.1007696.g001

Fig 2. Buc and Osk induced PGCs express Vasa protein. Lateral view, anterior to the left of area indicated in icon of 18-somite stage embryo

after 16-cell assay with wt Buc(1–639) (A-C), mutant Buc(1–361) (D-F) or sOsk (G-I). Embryos were analyzed for GFP (green) and Vasa (red)

protein expression. Arrowheads indicate endogenous PGCs (Vasa positive and GFP negative). Scale bar: 20 μm.

https://doi.org/10.1371/journal.pgen.1007696.g002
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In previous studies, the alignment of orthologs from different species revealed conserved

domains and thereby hidden similarities [40, 41]. We aligned the sequences of 14 vertebrate

Buc orthologs discovering two conserved motifs (aa 24–84 and 114–128) within the previously

described BUVE-sequence (aa 23–136) [17] and another novel motif in the center of Buc (aa

372–394) (Fig 3C). The same approach with Osk detected published motifs: the LOTUS-

domain (aa 154–236 lOsk) [42, 43], the Lasp binding region (aa 290–369) [44], and the puta-

tive hydrolase homology sequence within the OSK domain (aa 452–490) [12, 14, 45] (Fig 3C).

We then generated profile hidden Markov models (HMM) of both proteins, but to our sur-

prise did not detect significant hits by searching the Drosophila genome for sequence similari-

ties with the Buc-HMM. The Buc-HMM consensus sequence, however, showed 43% identity

of aa 56–81 in Buc to the DAZ motif in zebrafish Dazl (Fig 3D; S3 Table) [46]. Searching with

Osk-HMM identified Tdrd5 and -7 in zebrafish and Tejas in Drosophila, which all contain

LOTUS-motifs, but no similarity to Buc (Fig 3D; S3 Table). Finally, comparing the HMM-

models of sOsk and Buc to each other did also not discover conserved motifs (S3 Table).

Fig 3. Drosophila Osk and zebrafish Buc display unrelated protein sequences. (A) Strategy for Osk-Buc sequence comparison using first global and local alignment

algorithms, then hidden Markov models (HMM) of both proteins to detect remote homologies, and eventually a comparison of HMM to each other. (B) Graph

comparing sequence similarity of Buc with short (aa139-606) and long Osk (aa1-606) isoforms based on global pairwise sequence alignments. Alignment of Buc and

Drosophila Vasa (Dm Vasa) serves as negative, whereas zebrafish (Zf Vasa) and Dm Vasa as positive control. (C) Scheme of conserved domains in Buc identified by

alignments of 14 protein sequences. Conserved motifs in Osk protein. Red line indicates alternative translation initiation of short Osk at Met139. (D) Scheme indicating

significant remote sequence similarity based on HMMER analysis for Buc with zebrafish Dazl and for Osk with the Lotus domain of zebrafish Tdrd7. Numbers indicate

amino acid positions.

https://doi.org/10.1371/journal.pgen.1007696.g003
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Taken together, our extensive bioinformatic analysis did not detect hidden sequence similari-

ties between the two germ plasm organizers Osk and Buc and hence, could not explain their

similar activity.

Osk and Buc encode intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) seem to be an exception to the conventional sequence-

structure-function paradigm [reviewed in 47]. IDPs are defined by a disordered stretch of at

least 30 residues [reviewed in 48]. Indeed, the Xenopus homolog Velo1 was shown to contain a

low-complexity motif within the BUVE domain, which forms insoluble amyloids [25]. In addi-

tion, Osk and Buc were proposed to encode intrinsically disordered proteins [12, 49]. Similar

to Osk and Buc, IDPs frequently evolve faster than structured proteins. Furthermore, IDPs can

form liquid-liquid phase separations or hydrogels as found in RNP-granules or the germ

plasm [30, 31, 48, 50, 51, reviewed in 52, 53, 54]. As the intrinsic disorder of Osk and Buc was

previously not shown, we analyzed the intrinsic disorder prediction of Osk and Buc using the

PONDR-VSL2 algorithm [55]. PONDR-VSL2 is a metapredictor, which conservatively com-

bines the results of prediction algorithms. Both protein sequences displayed large disordered

regions (Fig 4A and 4B). Interestingly, the previously identified prion-like domain in the N-

terminus (aa 1–150) [25] appeared in this disorder prediction as the largest ordered sequence

in Buc (Fig 4A). Prion-like domains and IDR are considered low complexity sequences sug-

gesting that Buc almost entirely consists of low complexity sequences. We used zebrafish Vasa

as a positive control for IDP prediction, which showed the known unstructured domain of

about 200 aa at its N-terminus [56, 57], whereas Ziwi was largely structured (Fig 4C and 4D).

Osk does not display prion-like domains [25] but was recently shown to form aggregates in

insect S2-cells supporting its prediction as an IDP [13]. To investigate, whether Buc forms sim-

ilar protein aggregates, we transfected HEK293 cells with plasmids encoding fusions with

monomeric GFP and eGFP. Buc and Osk formed protein aggregates, whereas the GFP control

was uniformly distributed (Fig 4E–4G; S3A–S4C Figs). Moreover, when we cotransfected Buc-

mGFP with Osk-Cherry, we found partially overlapping aggregates of Buc and Osk (Fig 4H–

4J). These data indicate that Osk and Buc encode IDPs with a propensity to form cellular pro-

tein aggregates.

Buc forms hydrogels in zebrafish embryos

A short treatment with the aliphatic solvent 1,6-hexanediol dissolves hydrogels formed by

IDPs as described for germline P-granules in the C. elegans ovary, but not amyloid-like aggre-

gates like the Balbiani body in Xenopus oocytes [25, 58, 59]. To distinguish whether germ

plasm in zebrafish forms amyloid-like aggregates or hydrogels, we treated ovaries of Buc-GFP

transgenic females with hexanediol (HD). Using time lapse-microscopy we observed that a 30

min exposure to hexanediol did not disperse the Balbiani body (Fig 5A and 5B; S1–S4 Movies).

Extending the treatment to 3 hrs or doubling the hexanediol concentration to 10% did also not

dissolve the Balbiani body (S4A–S4D Fig). This result corroborates the amyloid-like character

of Buc aggregates [25]. Nonetheless, we noted that some Buc-GFP granules drained off the Bal-

biani body leaving behind a perforated Buc-GFP scaffold (Fig 5B). Interestingly, 30 minutes

after washing out hexanediol, the Balbiani body was restored similar to untreated oocytes (Fig

5C). Hexanediol did not affect oocyte microtubules or microfilaments (S4E–S4L Fig) in line

with previous studies on Xenopus oocytes showing that none of these cytoskeletal elements

seems to be required for Balbiani body integrity [60, 61]. The hexanediol experiments suggest

that Buc condensates in the Balbiani body have a partially liquid and partially solid character
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Fig 4. Buc and Osk contain intrinsically disordered regions. Predicted protein disorder in (A) Buc, (B) Osk, (C), Vasa, and (D) Ziwi.

Disorder disposition (y-axis) plotted against the amino acid residue index (x-axis). Values above the 0.5 threshold (grey bar) show the

propensity for disordered regions (bold line). The red line at aa 139 in Osk indicates the alternative translation initiation site for short Oskar.
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during zebrafish oogenesis, which is consistent with a continuous hardening model of protein

condensates [reviewed in 62].

The Xenopus germ plasm was proposed to acquire a more liquid character at the end of

oogenesis [25]. Indeed, our own time-lapse imaging results with embryos from Buc-GFP

transgenic mothers support the liquid behavior of embryonic germ plasm in zebrafish [63].

We therefore treated embryos with hexanediol and observed the integrity of germ plasm by

time-lapse microscopy. To our surprise, the embryonic germ plasm never completely dissolved

like shown for the C. elegans ovarian P-granules, but only fragmented (Fig 5D–5F). In contrast

to the oocyte however, the germ plasm did not reaggregate after washout of the drug (Fig 5G

and 5H). When we analyzed the surviving embryos at 3 hpf, the majority showed numerous

fragments of Buc-GFP aggregates, whereas control-treated embryos showed no change (Fig 5I

and 5K). 1,2,3-hexanetriol (HT) is chemically similar and frequently used as a control for the

specificity of hexanediol [59]. Indeed, the more polar structure of hexanetriol disrupted Buc-

GFP aggregates less efficiently than hexanediol (Fig 5J and 5K). These results support the

hypothesis that zebrafish germ plasm forms an intracellular hydrogel, whose aggregation is

probably mediated by intrinsically disordered regions (IDRs) of Buc.

We next addressed whether Buc aggregation is sufficient for germ cell specification. Buc(1–

601)-GFP lacks 38 C-terminal amino acids thereby retaining most of the IDRs (Fig 4A). Buc

(1–601) still forms protein aggregates in HEK293 cells (Fig 5L). Reducing Buc further to aa

1–361 still leads to protein aggregation compared to a GFP control (Fig 5M and 5N). The

aggregation of wt Buc(aa1-639) and mutant Buc(aa1-601) was confirmed in zebrafish embryos

(Fig 5O–5Q). However, Buc (aa1-601) injected embryos did not show ectopic PGCs (Fig 5R,

5S and 5U). Furthermore, the intrinsically disordered RNA-binding protein FUS [reviewed in

64] did not induce the PGC reporter (Fig 5T and 5U) suggesting that aggregation is not suffi-

cient to specify germ cells and that other biochemical interactions are critical for germ cell

specification.

Buc and Osk bind zebrafish Vasa

The similar function of Osk and Buc postulates that they perform similar biochemical interac-

tions, which then initiate the PGC-specification program. However, the fast sequence evolu-

tion of the IDRs in both proteins may obscure sequence similarities detectable by current

alignment algorithms, which then bind to conserved interactors. Osk binds to Smaug, Valois,

and Vasa protein [15, 65, 66]. To test whether these proteins are conserved in the Buc interac-

tome, we immunoprecipitated Buc-eGFP from zebrafish embryos. To avoid non-specific inter-

actions after overexpression, we used Buc-GFP transgenic fish, which express Buc under

control of its own promotor [63]. We then identified binding partners by mass-spectrometry

and searched the Buc interactome for the zebrafish homologs of Osk binding partners (Fig

6A). Interestingly, we found MACF1 highly enriched in the Buc interactome (S3 Table). Zeb-

rafish mutants in macf1 and buc show defects in embryonic polarity and Balbiani body locali-

zation [67–70] supporting the specificity of the biochemical interaction. Another good

indicator for the specificity of the pulldown was the detection of the germ plasm component

Ziwi (piwil1) [34], which was not enriched in the Buc sample (S3 Table). This result indicates

that we did not bring down the entire germ plasm during Buc pull-down. Among the zebrafish

Protein aggregates upon transfection of HEK cells with monomeric GFP (mGFP) fused to (E) Buc, (F) sOsk or (G) unfused. The profiles

below the pictures show levels of fluorescent intensity along the line indicated by white dashes. Buc-mGFP (green; H) and Osk-Cherry

aggregates (red, I) overlap (J, yellow, white arrowhead). Scale bar (E-J): 10μm.

https://doi.org/10.1371/journal.pgen.1007696.g004
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homologs of Osk binding partners, we focused on Vasa for further analysis, since its stronger

enrichment suggested a greater probability to interact with Buc.

Exciting structural studies showed that Vasa interacts with the extended LOTUS domain of

Osk [13]. More specifically, helix α2 (aa156-167) and α5 (aa226-234) in the LOTUS-extension

of Osk are required for Vasa interaction. Interestingly, α5 encodes an IDR, which folds into a

helix on interacting with Vasa. Since we could not detect these peptide sequences in Buc with

bioinformatics, we verified biochemically that Buc interacts with Vasa during the period of

germ cell specification. We pulled down Buc-GFP from embryonic extracts of transgenic

embryos at 3 hpf (Fig 6B). As controls we used the H2A-GFP transgenic line, which is one of

the few strains in zebrafish expressing a GFP-fusion under maternal control similar to Buc-

GFP [71]. We detected Vasa in Western blots after Buc-GFP pulldowns, but not with

H2A-GFP controls suggesting that Vasa interacts with Buc in vivo during PGC specification.

To further corroborate the interaction of Buc and Vasa in vivo, we used bimolecular fluo-

rescence complementation (BiFC) in early zebrafish embryos [20, 72, 73]. BiFC takes advan-

tage of a split Venus protein called VN (N-terminal) and VC (C-terminal), which then

complement into a functional fluorescent protein, if they are brought in close proximity. Coin-

jecting Vasa-VN with VC-Venus or Buc-VC with VN-Venus fragments did not form a fluores-

cent protein confirming the specificity of BiFC (Fig 6C and 6D). By contrast, overexpression

of Buc-VC with Vasa-VN formed fluorescent aggregates in zebrafish embryos supporting the

hypothesis that Buc binds Vasa in vivo (Fig 6E and 6F).

Vasa protein was previously described to be ubiquitously expressed during the maternally

controlled embryogenesis [74, 75], while Buc protein is confined to the four germ plasm spots

[17, 63, 76]. To support their biochemical interaction, we determined whether endogenous

Buc and Vasa protein expression overlap during germ cell specification. Labelling zebrafish

embryos by antibody staining showed that Vasa is ubiquitous at the 16-cell stage and at 3 hpf

as previously described (Fig 6G–6L). Buc localization overlaps with Vasa only in the germ

plasm, which further supports the hypothesis that Buc and Vasa might interact in vivo.

Previous reports in chicken showed that Vasa overexpression reprograms embryonic stem

cells to a germline fate [77]. Furthermore, Drosophila Osk enhances Vasa activity suggesting

that Vasa performs a key activity during germline specification [13]. We therefore analyzed

Fig 5. Pharmacological disruption of IDR-interactions leads to partially fragmented Buc-GFP aggregates. (A-C) Balbiani body of living

Buc-GFP transgenic oocytes, either before (A), after a 30 min treatment with 5% 1,6-hexanediol (HD) (B), or 30 min after washout of the drug

(lateral view, animal to the top). Arrowheads in B and B’ indicate Buc-GFP granule outside the Balbiani body. Scale bar (A-C): 20 μm (A’-C’):

2 μm. (D-K) Germ plasm of transgenic Buc-GFP embryos after hexanediol treatment (HD). (D, E) lateral view of living 2-cell embryo as

shown in boxed area of icon. Control embryos show unfragmented Buc-GFP aggregates (green) (D arrowhead), whereas 5% hexanediol for 30

min leads to fragmentation(arrowheads). (F) Quantification of embryos with unfragmented Buc-GFP in control (Co; 100±0%; n = 20) and

embryos treated for 30 min with hexanediol (HD; 35.0±0.8%; n = 20; p = 0.0065). Student’s t-test; P-value: ��<0.01. (G, H) lateral view of

living 4-cell embryos. Control embryo with unfragmented BucGFP (green, arrowhead), whereas Buc-GFP stays fragmented 30 min after

washout of hexanediol (green; arrowheads). Scale bar (D-H): 100 μm. (I-K) Buc-GFP aggregates in 3 hpf embryos transgenic for Buc-eGFP. (I)

The morphology of control (Co) and hexanediol-treated embryos (HD). Lateral view, animal to the top. (I’, I’’) Fragmented Buc-GFP

aggregates (white arrowheads) persist until 3 hpf (I’) lateral view, (I’’) animal view. (J) Treatment with hexanetriol (HT) also leads to

fragmented germ plasm (right embryo in J; animal view). Scale bar (I-J): 500 μm. (K) Quantification of germ plasm fragmentation (more than

four puncta) at 3 hpf in controls (Co; 2.2±3.9%; n = 45), hexanetriol (HT; 26.3±11.5; n = 45) and hexanediol (HD; 75.5±3.9; n = 45; p = 1.9e-

08). Error bars represent standard deviation of the mean. Student’s t-test; P-value: ���<0.001. (L-N) Protein aggregates upon transfection of

HEK cells with (L) Buc(aa1-601)-GFP (50.32±2.95%; n = 70 percentage of transfected cells showing aggregated GFP signal), (M) Buc(aa1-

361)-GFP (77.9±8.8%; n = 89) and (N) GFP (0%; n = 81). Scale bar (L-N): 10μm. (O-Q) Buc aggregation in zebrafish embryos. Embryos at 3

hpf after injection of mRNA encoding wt Buc(aa1-639)-eGFP (O), Buc(aa1-601)-eGFP (P) or eGFP(Q) at the one cell stage (lateral view,

animal to the top). Scale bar (O-Q): 200 μm. Note the aggregation of wt Buc (aa1-639) and Buc (aa1-601) compared to GFP (insets; 25x

magnification of stippled box). (R-U) IDRs are not sufficient for germ cell induction. Embryos form germ cells (white arrowheads) after

injection with wt buc mRNA (aa 1–639) (R; 76.6±2.3%; n = 60), but less with mutant Buc (K; aa1-601) containing most IDRs (S; 35.9±2.6%;

n = 60; p = 0.04) or an unrelated IDP (human FUS; T; 0±0; n = 26). Scale bar (J-L): 200 μm. (I) Quantification of injection results (three

independent experiments for each RNA). Error bars represent standard deviation of the mean. Student’s t-test; P-value: �<0.05.

https://doi.org/10.1371/journal.pgen.1007696.g005
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the role of Vasa in the zebrafish germ cell induction assay. Surprisingly, Vasa induced ectopic

germ cells, whereas another Buc binding protein Hermes [19–21, 23] showed no activity (Fig

Fig 6. Buc binds zebrafish Vasa. (A) Zebrafish homologs of known Oskar binding proteins in the Buc-interactome detected Vasa (Ddx4) and Valois (Wdr77/Mep50),

but not Smaug (Samd4b). Enrichment indicates the ratio of unique peptide counts after Buc-GFP pulldown to GFP-control samples. (B) Buc binds to Vasa in vivo
during germ cell specification. Immunoprecipitations from 3 hpf H2A-GFP (42 kD) or Buc-GFP (130 kD) transgenic embryos blotted with GFP (green) and Vasa

(magenta) (input = 20% of pulldown). (C-F) Buc and Vasa interact in bimolecular fluorescent complementation assays (BiFC). (C-E) live embryos at 3 hpf as indicated

by the cartoon on the left, are not fluorescent (green) upon injection of mRNA encoding VC with Vasa-VN (C; 0±0%; n = 67) or Buc-VC with VN (D; 0±0%; n = 56),

but form fluorescent Venus protein with Buc-VC and Vasa-VN (E; 86.5±7.5%; n = 53). Scale bar (C-E): 100 μm. (F) Quantification of BiFC assay (three independent

experiments for each RNA). Error bars represent standard deviation of the mean. (G-L) Immunostaining of 16-cell stage (G-I) or 3 hpf (J-L) embryo as indicated by the

cartoon on the left showing expression of Buc (green) and Vasa (magenta), inset in (L) shows a 10x magnification of the boxed area. Scale bar (G-L): 200μm.

https://doi.org/10.1371/journal.pgen.1007696.g006
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7A and 7B). This result suggests that Vasa performs a critical activity during germ cell

specification.

As Osk activates Drosophila Vasa and Vasa triggers germ cell formation in zebrafish, we

investigated, whether in vitro translated Osk-GFP binds to zebrafish Vasa. Indeed, Osk pulled

down zebrafish Vasa whereas controls did not interact (Fig 7D) supporting the hypothesis that

Osk and Buc share conserved interactions. The Buc(1–361) and Buc(1–601) mutants do not

induce PGCs and we therefore analyzed its interaction with Vasa. To our surprise both mutant

alleles bound Vasa like wt Buc, (Fig 7E), whereas a control protein (non-muscle myosin II)

was not bound by Buc (S5 Fig). Although these results show that the interaction with Vasa is

conserved among germ plasm organizer proteins, the data also indicate that the mutant Buc

proteins lack another critical interaction.

Buc interacts with nanos3 RNA

Mutant Buc(1–361) binds to Vasa, but does not induce germ cells suggesting that full-length

Buc performs additional interactions. Osk was recently shown to bind RNA e.g. nanos [12, 14]

and many IDPs are RNA-binding proteins [reviewed in 78]. To address whether Buc interacts

with zebrafish nanos3 mRNA [33], we coexpressed GFP-tagged versions in HEK293 cells.

After immunoprecipitation of Buc, we detected zebrafish nanos3 by RT-PCR, but not a

cotransfected competitor 3’UTR (SV40) or an abundant, endogenous control (18S rRNA) (Fig

8A). Similarly, Osk-GFP bound to zebrafish nanos3 mRNA. We then tested whether Buc(1–

361) pulls-down nanos3-3’-UTR RNA. Indeed, this mutant Buc could not pull-down the RNA

suggesting that it lacks a motif, necessary for RNA interaction (Fig 8B).

As Buc and Vasa interact with RNA, their interaction might be mediated indirectly via
RNA. However, RNase treatment did not inhibit Buc-Vasa binding showing that the complex

was held together by protein–protein interactions or was protected by RNA-bridging from

nuclease activity (Fig 8C). These results discover two novel biochemical interactors of Buc i.e.
Vasa protein and nanos mRNA, which are conserved with Drosophila Osk (Fig 8D).

Discussion

Here we discover a conserved core complex, which is required for germ cell specification. This

complex includes the conserved germline components Vasa protein [reviewed in 79, 80, 81]

and nanos mRNA as well as a germ plasm organizer like Osk or Buc. These molecules are

probably not the only components of the complex and might contain additional proteins or

RNAs, since numerous, canonical germ plasm components are conserved in metazoan

genomes [reviewed in 35, 82, 83]. For instance, while this manuscript was under revision, the

Tudor protein Tdrd 6 was shown to interact with Buc in zebrafish [84]. This interesting study

suggests that the Tdrd6 interaction controls the aggregation of Buc. Remarkably, Tudor as the

founding member of this protein family was first discovered as a germ plasm component in

Drosophila [85–87] thereby supporting the hypothesis of a conserved core of germ plasm com-

ponents in metazoans.

In addition to a conserved interactome, Osk and Buc also share intrinsically disordered

regions (IDRs), which probably form weak interactions to oligomerize (Fig 8D). Multimeriza-

tion of intrinsically disordered proteins causes phase-transitions or biological condensates

[reviewed in 88]. The hydrogel-disruptor hexanediol dissolves germ plasm in C. elegans,
whereas we observed fragmentation in zebrafish suggesting that the liquid character of germ

plasm varies in different species [50, 59, 89]. In Xenopus eggs however, the Buc homolog Velo

forms amyloid aggregates, which are resistant to hexanediol [25, 58, 90]. The less liquid charac-

ter of amyloids is also consistent with the initial description of the germ plasm harboring
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Balbiani body in spider oocytes, which shows a more solid state [91]. At the end of frog oogen-

esis however, it was reported that Velo does not form amyloid-like aggregates anymore, which

is in line with a more liquid behavior of the germ plasm in the embryo [25, 63].

Fig 7. Zebrafish Vasa induces germ cells and binds to Drosophila Osk. (A-C) 16-cell assay showing germ cell formation (white arrowhead) after injection with

vasa mRNA (A; 73.9±5.3%; n = 60; p = 0.01) but not with hermes (B; 22.9±4.8%; n = 60). Scale bar (A, B 200 μm (C) Quantification of injection results (three

independent experiments for each RNA). Error bars represent standard deviation of the mean. Student’s t-test; P-value: ��<0.01. (D) Western blot of Buc-GFP,

Osk-GFP, and GFP-control together with Vasa after in vitro translation (input = 40% of pulldown) and after GFP-pulldown. Vasa (upper panel, magenta in merged

panel) interacts with Buc and Osk, but not GFP controls (middle panel, green in merged panel). (M: molecular weight marker lane) (E) Western blot of Buc-GFP,

Bucp43-GFP (1–361), and Bucp106-GFP (1–601) (middle panel, green in merged panel) together with Vasa (upper panel, magenta in merged panel) after in vitro
translation (input = 40% of pulldown) and after GFP-pulldown. Vasa interacts with Buc, Buc(1–361) and Buc(1–601).

https://doi.org/10.1371/journal.pgen.1007696.g007
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Our hexanediol experiments are similar to Mip6p aggregates in yeast [90]. A 30-min pulse

of hexanediol treatment leads to the fragmentation of Mip6p aggregates and to reaggregation

after wash-out of the drug. Interestingly, the reassembled Mip6p aggregates were inherited

symmetrically during cell division, whereas Mip6p granules are inherited asymmetrically in

untreated controls leading to more Mip6p positive cells. This fragmentation of Mip6p

Fig 8. Buc interacts with RNA. (A) RT-PCR of zebrafish nanos3, SV40, human EF1α and human 18S rRNA after GFP-pulldown (IP) of

HEK293 cells either untransfected (-) or transfected with GFP, Osk-GFP or Buc-GFP together with Cherry-nos-3’UTR and Cherry-SV40-

3’UTR. RNA levels before GFP-pulldown (Input) show endogenous 18S rRNA and EF1α mRNA, and transfected Cherry-nos-3’UTR and

Cherry-SV40-3’UTR. nos3-3’UTR is detected in Osk and Buc samples after GFP-pulldown (IP).–RT: RNA without reverse transcriptase

control. (B) Buc(1–361)-GFP does not pulldown nos3-3'UTR. Cherry-nos-3’UTR (+), alone or cotransfected with Osk-GFP, Buc-GFP or Buc

(1–361)-GFP including SV40-3’-UTR. (C) RNase treatment (+) prior to GFP pulldown of in vitro translated protein does not disrupt Buc-

Vasa interaction. (D) Model for germ plasm formation. Single Buc or Osk molecules (red) aggregate through weak interactions of their

intrinsically disordered regions (hooks and loops), until a threshold concentration is reached. This leads to a liquid-liquid phase separation

(red haze) to form hydrogel-like germ plasm. The aggregate then recruits Vasa protein (blue) and nanos mRNA (green).

https://doi.org/10.1371/journal.pgen.1007696.g008
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aggregates seem similar to the behavior of germ plasm in zebrafish, which eventually results in

the increased number of Buc aggregates 2 hrs after hexanediol treatment.

Our data are consistent with a model, in which germ plasm organizers like Buc provide a

scaffold, which nucleate a phase transition at a specific location in the embryo. This aggrega-

tion drives the recruitment of other germ plasm components and eventually germ cell specifi-

cation (Fig 8D). Interestingly, RNAs might not only contribute to the specificity of different

granules, but also seem to nucleate phase transitions by recruiting IDPs as shown in the fungus

Ashbya gossypii [92]. This might explain why the IDRs of Buc are not sufficient for germline

formation. Our results however suggest that phase-transition of germ plasm seems to have a

rather permissive than an instructive role for germline formation. Although the liquid nature

of germ plasm was described in different organisms, the purpose of forming these aggregates

for germ cell development is still a matter of debate.

Vasa seems to be a central component for germline specification. It was already reported

that Vasa overexpression in chicken embryonic stem cells induces germ cells [77]. In addition,

a zebrafish vasa mutant does not maintain nanos3 mRNA expression and thereby loses its

germline stem cells [93]. Interestingly, Osk activates Vasa helicase activity demonstrating that

in Drosophila the germ plasm organizer has an instructive role in germline specification [13].

Buc might also regulate Vasa activity in zebrafish and not only act as a scaffold recruiting Vasa

to the germ plasm. Our results showing germ cell induction after Vasa overexpression would

be consistent with this model. However, Vasa is already expressed in somatic cells in the early

zebrafish embryo, which raises the question, why its overexpression reprograms a corner blas-

tomere to the germline. We speculate that overexpression of Vasa bypasses the requirement

for an activator. Such an effect was also observed for intracellular signaling components. For

instance, Smad proteins in the BMP pathway are active after overexpression, but their endoge-

nous activation requires phosphorylation [94]. Similarly, overexpression of Vasa might there-

fore have sufficient activity to start germline specification. In this model, it is not the

localization of Vasa protein, which marks the germline of a species, but its activity. We there-

fore speculate that the activity of Vasa would be a more reliable marker for the germline. It

would be more precise to visualize the early germline by the localization of a germ plasm orga-

nizer as an activator like Oskar or by the downstream products of Vasa’s helicase activity such

as piRNA maturation [95–97]. This is especially interesting in species similar to zebrafish such

as the sea urchin, where Vasa is ubiquitously present in the early embryo [98].

A fascinating finding of our study is that Osk and Buc share some biochemical interactions

despite the absence of recognizable sequence homologies. These similarities are remarkable

considering that vertebrates and dipterans split more than 500 million years ago [99]. Two

alternative scenarios could explain this functional equivalence. Both proteins are analogous

designs, which converged at recruiting a similar interactome during evolution. We cannot rule

out this model, but it seems most plausible for somatic tissues, where the loss of an organ

might not lead to an evolutionary dead-end. By contrast, tinkering with a germ plasm orga-

nizer during evolution would result in reduced or missing fertility, and eventually the extinc-

tion of the entire species. As the invention of novel proteins with identical functions is very

unlikely [reviewed in 37, 100, 101], the convergence model for germ plasm organizer evolution

becomes increasingly complex to explain.

We therefore favor the second scenario, in which Osk and Buc are homologs, which

diverged from a common ancestor. They probably have unrelated sequences, because their

role as intrinsically disordered scaffolds releases the constraints to maintain a defined protein

structure as described for other IDPs [reviewed in 102]. This model is supported by the recent

finding that the LOTUS domain is not sufficient to bind Vasa, but requires an intrinsically dis-

ordered extension (aa 226–234) of low evolutionary conservation [13]. In addition, germ cell-
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specification is a very early event during the evolution of multicellularity and hence, germ

plasm organizer proteins have a long history of diverging during evolution [103]. The fast evo-

lution of IDPs probably hides conserved motifs, which bind to a similar interactome such as

Vasa and nanos mRNA [51, reviewed in 53, 54]. Indeed, a similar situation was previously

described for the intrinsically disordered domains CID and NCBD [32].

This hypothesis would also predict that Osk and Buc have a similar structure, which would

explain their conserved interactions. There are already known examples of protein pairs with

structural similarity, which do not display a related amino acid sequence. For instance, Sumo

and Ubiquitin show a sequence identity of 18%, but form almost identical structures [104].

Despite their similar structure, both have different biological roles [reviewed in 105]. More-

over, Hsc70 and Actin provide another example for structural similarity without sequence

conservation [106]. Furthermore, biochemistry has isolated numerous analogous enzymes e.g.

carbonic anhydrases from different organisms, which show identical biochemical activities

without related sequences [reviewed in 107]. However, in none of these examples, the conser-

vation of their biological role was investigated, i.e. whether the function of a protein is con-

served in the other species like Osk in zebrafish. It will therefore be fascinating to learn how

similar the structure of Buc is, compared to the known structure of Osk [12–14].

The functional equivalence of germ plasm organizers in the absence of sequence similarity

might be more widespread including other species. For instance, C. elegans germ plasm or P-

granules have a similar composition, since they also contain Vasa protein and nanos RNA

[108, reviewed in 109, 110–112]. Although the identity of a germ plasm organizer protein in C.

elegans is currently not clear, it has been speculated that MEG-3 or PGL proteins might act as

P-granule nucleators similar to Osk [113–115]. MEG-3 binds RNA [113] and could therefore

interact with the C. elegans homologs of nanos mRNA and Vasa protein similar to Osk and

Buc. Furthermore, recent studies on PGL-3 show that it binds nanos 3 RNA albeit weakly

[116]. Moreover, PGL proteins are not found in vertebrate or insect genomes and nucleate the

formation of hydrogels [116]. PGL proteins genetically interact with Vasa homologs [112,

117], but the direct biochemical binding was not tested. These examples provide some candi-

dates in C. elegans, whose conservation as germ plasm nucleators will not be revealed by

sequence comparisons but need to be analyzed with functional and biochemical experiments.

However, Osk, Buc or germ plasm organizers in other species could only be termed true

homologs, if the identity of a common ancestor is known. Without this information, the func-

tional similarity of two proteins without sequence homology remains a fascinating, but unique

case. Contrarily, Osk and Buc could also represent a widespread phenomenon. In a more

global perspective, more protein-pairs could exist, which are currently termed "novel" or "spe-

cies-specific" but show similar functions across distant species.

Materials and methods

Ethics statement

Fish were maintained as described [118] in accordance with regulations of the Georg-August

University Goettingen, Germany. Zebrafish experiments were conducted according to EU

directive 2010/63/EU and maintained according to the EuFishBioMed/Felasa recommenda-

tions (https://www.eufishbiomed.kit.edu/59.php). Experiments were approved by the Lower

Saxony State Office for Consumer Protection and Food Safety (AZ14/1681).

Zebrafish

Injections were performed into wild-type embryos (hybrid of �ABxTLF). 16-cell embryos were

injected as previously described [17]. At least 20 embryos were sorted per injection and for
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biological replicates independent clutches of eggs were used. One blastomere was injected with

0.5 nl RNA-solution containing 100 pg/nl of PGC-reporter (GFP-nos-3´UTR) plus 100 pg/nl

mRNA encoding a germ plasm component. Buc and short osk mRNAs contained their 5´ and

3´UTR sequences, respectively. Bucp43 and bucp106 were identical to wt mRNA except for a pre-

mature stop codon in 362 aa and 602 aa, respectively [17]. Short osk and osk084 mRNA were

identical except for the premature stop codon in osk084 [9].

BiFC assays were performed with modifications as previously described [72]. Briefly, wild-

type embryos (hybrid of �ABxTLF) were injected at the one-cell stage with the mRNAs encod-

ing the VN- and VC-fusions (200 pg each). Embryos were imaged for fluorescence at the 3hpf

stage with a LSM780 confocal microscope (Carl Zeiss Microscopy, Jena).

Dechorionated Buc-GFP transgenic embryos at the one cell stage were treated with 1,6-hexa-

nediol or 1,2,3-hexanetriol (5% w/v in E3-medium) for 30 min, whereas control treated embryos

were exposed to E3-medium. Embryos were incubated at 28.5˚C in glass dishes for 30min and

then transferred into fresh E3-medium in agarose coated dishes at 28.5˚C until 3 hpf.

Protein biochemistry

Embryonic extracts. Embryos were enzymatically dechorionated for 3–5 min in Pronase

solution (3 mg/ml in E3-buffer) and washed three times with E3. Then, embryos were deyolked in

50% Ginzburg Fish Ringer with Calcium (55 mM NaCl, 2.7 mM CaCl2, 1.8 mM KCl, 1.25 mM

NaHCO3) as described [119] and the cell pellet washed with wash buffer (10 mM Tris pH 8.5, 110

mM NaCl, 3.5 mM KCl, 2.7 mM CaCl2). Cells were homogenized on ice in lysis buffer (10 mM Tris

pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-40, 1x complete protease inhibitor cocktail (Roche

Mannheim)) and cell debris removed by centrifugation. The supernatant was incubated with

GFP-Trap magnetic beads (ChromoTek, Planegg-Martinsried) according to instructions by the

manufacturer. Beads were either directly resuspended in SDS-loading buffer for gel electrophoresis

or processed by the Proteome Analysis Core Facility of the University Medical Center, Goettingen.

In vitro translation. The Promega TnT SP6 Quick Coupled Transcription/Translation

System was used to synthesize proteins. Products were diluted in YSS buffer and for pull-

downs GFP Trap beads were used as described above.

Western blot. Proteins were separated on denaturing 10% SDS-PAGE and transferred to

nitrocellulose by semi-dry blotting for 70 min at 25V. Blots were blocked in 5% TBS/milk for 1

hr, incubated overnight with primary antibody, washed, incubated with fluorescent secondary

antibody and detected with the Li-Cor Odyssey CLx Infrared Imaging system (Li-Cor, Lincoln,

USA). Antibodies: rabbit anti-Vasa (1:500; Genetex GTX128306 and gift from G. Vorbrueg-

gen, MPI-BPC Goettingen), mouse anti-GFP (1:1,000; Roche 11814460001), mouse anti-Myc

(1:200; Sigma), goat anti-rabbit (1:20,000; IRDye, Li-Cor, P/N 925–68071), goat anti-guinea

pig 800CW (1:20,000; IRDye, Li-Cor, P/N 925–32210).

Immunohistochemistry. Embryos were fixed and stained as previously described [63].

Microtubule and f-Actin labeling was performed as published [120]. Antibody dilutions:

guinea pig anti-Buc (1:5,000) [63], rabbit anti-Vasa (1:500). Secondary antibodies goat-anti-

guinea pig Alexa Fluor 488 (1:500, Life Technologies, Carlsbad, USA, #A-11073), goat anti-

rabbit Alexa Fluor 594 (ab150080) and imaged with a LSM780 confocal microscope (Carl

Zeiss Microscopy, Jena).

Protein aggregation assay. HEK cells (104/per well) in an eight-chambered slide (Sar-

stedt) were transfected using ScreenFectA reagent with 100 ng of the indicated plasmids (S4

Table). Cells were imaged after 48 hrs using 10X objective with a 10X digital zoom with an

LSM780 confocal microscope and cell profiles were analyzed with ZEN2011 software (Carl

Zeiss Microscopy, Goettingen).
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Proteomics

Sample preparation: Proteins were separated on denaturing 4–12% gradient SDS-PAGE (Invi-

trogen, Carlsbad/CA, U.S.A.). After Coomassie staining for visualization, each lane was cut

into 23 equidistant slices irrespective of staining. For in-gel digestion, gel slices were washed

with water, reduced with dithiothreitol (10 mM in 100 mM NH4HCO3, 50 min, 56˚C) and

alkylated with iodoacetamide (55 mM in 100 mM NH4HCO3, 20 min, RT, dark). In between,

the gel slices were washed with acetonitrile for 15 min and dried in a Speedvac at 35˚C. Gel

slices were digested overnight at 37˚C with porcine trypsin (12.5 ng/μl in 50 mM NH4HCO3, 5

mM CaCl2). Peptide extraction from the gel slices was performed with aqueous acetonitrile.

Mass spectrometry. For LC-MS analysis, the peptides derived from each SDS-PAGE slice

were dissolved in 20 μl of 2% (v/v) acetonitrile and 0.1% (v/v) formic acid aqueous solution.

5 μl each was injected for LC-MSMS analysis. LC-MSMS was carried out using the following

conditions: Peptides were separated on an Easy nLC-1000 nanoflow chromatography system

(Thermo Fisher Scientific, Bremen, Germany) operated in a vented column setup. Concentra-

tion and desalting was achieved on an in-house packed C18 trap column (2 cm, 150 μm I.D.,

Reprosil-Pur C18-AQ, 120 Å, 5 μm, Dr. Maisch, Ammerbuch-Entringen, Germany) with 20 μl

of Buffer A (0.1% formic acid). Peptides were separated on an in-house-packed C18 column

(20 cm, 75 μm I.D., Reprosil-Pur C18-AQ, 120 Å, 3 μm, Dr. Maisch) at a flow rate of 300 nl/

min with a gradient from 5–35% of Buffer B (95% acetonitrile, 0.1% formic acid) for 37 min.

Eluting peptides were analyzed on-line on a Q Exactive hybrid quadrupole/orbitrap mass spec-

trometer (Thermo Electron) operated in Data Dependent acquisition mode where the 10 most

intense ions in the MS scan (m/z 350–1400, resolution 70.000 at m/z 200, target value 1•10E6)

were selected for fragmentation by Higher Collision Energy Dissociation (2 m/z isolation win-

dow, 25% Normalized CE, Start Mass 100, resolution 17.500 at m/z 200, target value 2•10E5).

Sequenced precursors were put on a dynamic exclusion list for 15 sec. The lock mass option

(polysiloxane at m/z 445.120025) was used for internal calibration.

Mass spectrometry data analysis. Peaklists were extracted from tandem mass spectra

using Raw2MSM v1.7, selecting the top seven peaks for 100 Da. All MS/MS samples were ana-

lyzed using Mascot v2.4.1 (Matrix Science, London, UK). Mascot was set up to search the

NCBInr_20130816 database (selected for Danio rerio, v20130405, 51384 entries) assuming the

digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.020

Da and a parent ion tolerance of 5.0 ppm. Carbamidomethylation of cysteine was specified as

a fixed modification, deamidation of asparagine and glutamine, and oxidation of methionine

as variable modifications, respectively.

Scaffold (version Scaffold_4.4.1.1, Proteome Software Inc., Portland, OR) was used to vali-

date MS/MS based peptide and protein identifications. Peptide identifications were accepted if

they could be established at greater than 95.0% probability by the Scaffold Local FDR algo-

rithm. Protein identifications were accepted, if they could be established at greater than 99.0%

probability and contained at least 2 identified peptides. Protein probabilities were assigned by

the Protein Prophet algorithm [121]. Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsi-

mony. Proteins sharing significant peptide evidence were grouped into clusters.

RNA-Immunoprecipitation

HEK-293 cells (0.2 x106/ well) were co-transfected with the indicated combinations of plas-

mids for protein and RNA expression (S4 Table). Cells were incubated for 48 hrs and screened

for expression of GFP and Cherry fluorescence. Cells were then lysed in (0.5 ml) YSS buffer

(50 mM Tris pH 8, 75 mM NaCl, 1 mM MgCl2, 100 mM sucrose, 1 mM DTT, 0.5% NP- 40, 1x
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complete protease inhibitor cocktail (Roche Mannheim)) and centrifuged for 10 min. (13,000

rpm, 4 ºC). 50 μl of the supernatant were kept aside as the input fraction and the rest was incu-

bated with pre-blocked GFP nanotrap beads (Chromotek) for 3 hrs at 4˚C. Beads were washed

(YSS buffer) and the bound fraction was released from the beads in 5% SDS. RNA was isolated

using phenol/chloroform/isoamylalcohol and precipitated in 0.3 M ammonium acetate/ 50%

EtOH, washed with 70% EtOH and used for cDNA synthesis.

RT-PCR

RNA was reverse transcribed for first strand synthesis using random hexamers and Super-

Script II RTase (Thermo Fisher Scientific). cDNA was amplified using the primers described

in S4 Table.

Plasmids

Plasmids used in this study are listed in S4 Table.

Bioinformatics

Protein sequences for Danio rerio Bucky ball, Drosophila melanogaster Oskar, and the respec-

tive orthologs were retrieved from the NCBI protein database. The vertebrate Buc sequences

used for multiple alignments were: Danio rerio (gi|292610748), Oryzias latipes (gi|432930267),

Tetraodon nigroviridis (gi|47225100), Takifugu rubripes (gi|410909482), Oncorhynchus mykiss
(gi|642119256), Pimephales promelas (gi|73433600), Ictalurus punctatus (gi|311721748),

Xenopus laevis (gi|148230857), Xenopus tropicalis (gi|301615136), Anolis carolinensis (gi|

327275069), Gallus gallus (gi|118086206 / gi|513169732), Canis familiaris (gi|545522949 /

gi|73976581). The Oskar insect sequences: Drosophila melanogaster (gi|45553317 / gi|2464

5205 / gi|317183309), D. sechellia (gi|195330556), D. simulans (gi|195572425), D. yakuba (gi|

195499262), D. erecta (gi|194903569), D. ananassae (gi|194741640), D. pseudoobscura (gi|

198454187), D. persimilis (gi|195152922), D. mojavensis (gi|195111098), D. virilis (gi|2498716 /

gi|195389208), D. immigrans (gi|111663086 / gi|111663088), D. grimshawi (gi|195054868), D.

willistoni (gi|195445335 / gi|195445337), Aedes aegypti (gi|83701126 / gi|157134733), Culex
quinquefasciatus (gi|170041806), Anopheles gambiae (gi|118783859 / gi|333468779), Anopheles
darlingi (gi|312371899), Acromyrmex echinatior (gi|332023144), Nasonia vitripennis (gi|

302138022). Global/local pairwise alignments of Buc and Osk were performed using the

EMBOSS tools Needle/Water (http://www.ebi.ac.uk/Tools/psa/) with default parameters. Mul-

tiple alignments of Buc/Osk and their respective orthologs were constructed with the T-COF-

FEE software version 8.69 using standard parameters [122]. Hidden Markov models (HMM)

were built from the multiple alignments using the HMMER3 software in default configuration

[123]. The HMMs were used to search the complete genomic protein sequence complement of

Danio rerio and Drosophila melanogaster as obtained from the NCBI protein database. To

detect potential distant relationship between the models, the HMMs were uploaded to the

HHpred server [124]. The intrinsic disorder of proteins was predicted with PONDR-VSL2 in

default configuration [125].

Statistics

Error bars indicate the standard deviation of the average (at least three independent experi-

ments). The statistical significance (P-value) of two groups of values was calculated using a

two-tailed, two-sample unequal variance t-test with MS-Excel.
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Supporting information

S1 Fig. Expression control of injected mRNAs. (A) Microinjection of 200 pg of the indicated

mRNAs encoding GFP fusions leads to fluorescent embryos compared to uninjected controls

(Co), lateral views, animal to the top. Scale bar: 200 μm. (B) Quantification of fluorescent germ

cells per embryo at the 18-somite stage after injection of PGC reporter (GFP-nos3’-UTR)

alone (Co; 4.0±1.9; n = 5) or together with Buc (10.3±1.2; n = 4; p = 0.0008) or sOsk mRNA

(13.4±3.2 PGCs/embryo; n = 5; p = 0.0005) in a corner blastomere at the 16-cell stage. Error

bars represent standard deviation.

(TIF)

S2 Fig. Drosophila Oskar induces Vasa mRNA positive cells in zebrafish. In situ hybridiza-

tion for vasa mRNA (blue) in 3 hpf embryos in animal view after injection of control (GFP; A)

or oskar mRNA (B). Note the additional Vasa-positive germ cells (blue) after Oskar overex-

pression and the overall higher background after staining for the same period. Scale bar:

200 μm.

(TIF)

S3 Fig. Buc and Osk aggregation in HEK cells. Protein aggregates upon transfection of HEK

cells with enhanced GFP (eGFP) fused to (A) Buc (99.3 ±1.15%; n = 111 percentage of trans-

fected cells showing aggregated GFP signal) (B) sOsk (83.17± 8.18%; n = 90) or (C) unfused

(0%; n = 81). The profiles below the pictures show levels of fluorescent intensity along the line

indicated by white dashes. Scale bar (A-C): 10μm.

(TIF)

S4 Fig. Hexanediol treatment of oocytes and embryos. Buc-GFP (green) in the Balbiani

body of stage Ib oocytes before hexanediol treatment (A, C; 0 min) or after 30 min treatment

with double conc. (10%; B, D). Stippled squares indicate the magnified area shown in panel C

and D. Note the BucGFP fragments draining off the Blabiani body after HD treatment (D).

Scale bar (A, B): 20 μm; (C, D): 1 μm. Cytoskeleton after Hexanediol treatment. Oocytes (E-L)

or embryos (M-T) were treated for 30 min with hexanediol and stained for microtubules (β-

tubulin) or microfilaments (filamentous Actin). Stippled boxes (E-H, M-P) indicate magnified

area (I-L, Q-T). 2-cell embryos (M-T)are shown in animal view. Scale bars (E-H, Q-T): 20 μm.

(I-L): 1μm. (M-P):100 μm.

(TIF)

S5 Fig. Buc does not interact with Non-muscle MyosinII. Western blot of Buc-GFP (green)

and Myc-Non-muscle Myosin II (green; NMII; 20 kD) after in vitro translation (input = 40%

of pulldown) and after GFP pulldown. Buc does not interact with NMII.

(TIF)

S1 Table. Bucky ball and Oskar do not share sequence homology. Graph summarizing

scores of global (white bar; Needleman-Wunsch) and local alignments (black bar; Smith-

Waterman). Note that Buc-Osk alignments are equally low as the negative control (Buc-Dm

Vasa), whereas ZfVasa and DmVasa show a characteristic score of two homologous sequences.

Analysis of protein sequences with global pairwise alignments using the Needleman-Wunsch

algorithm (A; http://www.ebi.ac.uk/Tools/psa/emboss_needle/; standard settings) or with local

pairwise alignments using the Smith-Waterman algorithm (B; http://www.ebi.ac.uk/Tools/

psa/emboss_water/; standard settings). Depicted are the percentages of similar and identical

amino acids of two aligned protein sequences (sequences and raw data of sequence alignments

in Supplementary Data 1).

(PDF)
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S2 Table. Comparison of Buc and Osk with Hidden-Markov-Models. Homology search

with conserved domains using Hidden-Markov-Models (www.HMMer.org) of the respective

proteins did not reveal any conserved domains between Oskar and Bucky ball. Hits of the used

HMM in the NCBI databases are shown with their corresponding E-value.

(PDF)

S3 Table. Comparative Analysis of GFP and Buc-GFP Samples by Mass Spectrometric

Analysis. The number of successfully assigned MS/MS spectra per protein (Total Spectrum

Counts, TSC) was normalized to 100% for each sample. Entries labeled ’Clusters’ designate the

identification of more than one protein sequence entry with largely redundant MS/MS evi-

dence (>50% total sequence, >95% evidenced sequence). Following the principle of parsi-

mony, only the best evidenced (’primary’) protein in the cluster is listed.

(XLSX)

S4 Table. List of plasmids and primers used.

(DOCX)

S1 Movie. Time-lapse confocal microscopy of Balbiani body (Co). Balbiani body (green) in

stage Ib oocyte from Buc-GFP transgenic females. Only the first 5 minutes are shown (see S3

Movie for full time-lapse). Scale bar: 20 μm.

(WMV)

S2 Movie. Time-lapse of hexanediol treated Balbiani body. The first 5 min after adding hex-

anediol to the medium are shown (see S4 Movie for full 30 min time-lapse). Scale bar: 20 μm.

(WMV)

S3 Movie. Time-lapse of Balbiani body (Co). Full movie of S1 with untreated stage Ib oocyte.

Scale bar: 20 μm.

(WMV)

S4 Movie. Time-lapse of Balbiani-body treated with hexanediol. Full movie of S2 showing

stage Ib oocyte treated with hexanediol for 3 hrs. Note the reduction of fluorescence within the

first 5 minutes. Scale bar: 20μm.

(WMV)
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