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Abstract

The role of host genetic variation in the development of complicated Staphylococcus aureus

bacteremia (SAB) is poorly understood. We used whole exome sequencing (WES) to exam-

ine the cumulative effect of coding variants in each gene on risk of complicated SAB in a dis-

covery sample of 168 SAB cases (84 complicated and 84 uncomplicated, frequency

matched by age, sex, and bacterial clonal complex [CC]), and then evaluated the most sig-

nificantly associated genes in a replication sample of 240 SAB cases (122 complicated and

118 uncomplicated, frequency matched for age, sex, and CC) using targeted sequence cap-

ture. In the discovery sample, gene-based analysis using the SKAT-O program identified

334 genes associated with complicated SAB at p<3.5 x 10−3. These, along with eight biolog-

ically relevant candidate genes were examined in the replication sample. Gene-based anal-

ysis of the 342 genes in the replication sample using SKAT-O identified one gene, GLS2,
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significantly associated with complicated SAB (p = 1.2 x 10−4) after Bonferroni correction. In

Firth-bias corrected logistic regression analysis of individual variants, the strongest associa-

tion across all 10,931 variants in the replication sample was with rs2657878 in GLS2 (p = 5 x

10−4). This variant is strongly correlated with a missense variant (rs2657879, p = 4.4 x 10−3)

in which the minor allele (associated here with complicated SAB) has been previously asso-

ciated with lower plasma concentration of glutamine. In a microarray-based gene-expres-

sion analysis, individuals with SAB exhibited significantly lower expression levels of GLS2

than healthy controls. Similarly, Gls2 expression is lower in response to S. aureus exposure

in mouse RAW 264.7 macrophage cells. Compared to wild-type cells, RAW 264.7 cells with

Gls2 silenced by CRISPR-Cas9 genome editing have decreased IL1-β transcription and

increased nitric oxide production after S. aureus exposure. GLS2 is an interesting candidate

gene for complicated SAB due to its role in regulating glutamine metabolism, a key factor in

leukocyte activation.

Author summary

Complications from bloodstream infection with Staphylococcus aureus (S. aureus) are

important causes of hospitalization, significant illness, and death. The causes of these

complications are not well understood, but likely involve genetic factors rendering people

more susceptible to such infections, differences in the bacteria that cause the infection,

and the interactions between them. We examined the parts of the human genome that

code for proteins to find variations that were more common in people with complicated

S. aureus bacteremia (SAB), and identified one gene, called GLS2, in which variation is

more common in complicated SAB cases than uncomplicated cases. Expression of GLS2 is

lower in people with SAB than controls and in mouse white blood cells exposed to S.

aureus. GLS2 encodes a protein that regulates the metabolism of glutamine, a regulatory

process that activates white blood cells. These cells are very important in the immune

response to S. aureus infection, and therefore genetic variants that might influence their

growth are important potential genetic risk factors for complicated SAB.

Introduction

Staphylococcus aureus is a significant human pathogen and leading cause of skin and soft tissue

infection (SSTI) and bacteremia (SAB) in community and healthcare settings. Incidence of

SAB ranges from 10 to 30 per 100,000 person-years in developed countries and may present as

an “uncomplicated” bloodstream infection or as a “complicated” infection involving a device

implant, infective endocarditis, or bone and joint infection [1]. The etiology of SAB is complex,

involving host susceptibility, microbial virulence, and healthcare-associated factors [1].

Efforts to identify common host genetic factors underlying SAB initially examined biologi-

cally plausible candidate genes involved in the innate immune response in animal models and

human samples (reviewed by [2]). Several genes have been implicated in mouse models of

infection [3–5], but variation in these genes has not yet been associated with SAB in humans.

In contrast, genome-wide screens of S. aureus infections in individuals of European ancestry

[6] and SAB in individuals of African-American ancestry [7] have reproducibly associated S.

aureus infections with common genetic variants in the class II region of the major histocom-

patibility complex (MHC).

GLS2 variation and complicated Staphylococcal bacteremia
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In addition to influencing risk of developing SAB, host genetic factors may also contribute

to development of “complicated” infections such as infective endocarditis (IE). These more

severe infections have been associated with specific bacterial strains (clonal complexes (CC),

defined by patterns on multi-locus sequence typing and spa typing). For example, the CC5 and

CC30 clonal complexes are associated with increased risk of IE; however, host response to SAB

due to these strains is variable, and not all individuals with CC5 or CC30-related SAB develop

IE [8, 9]. Candidate gene studies have associated IE with variation in IL6, IL1B [10] and TLR6
[11], although these findings considered multiple bacterial infections underlying IE and have

yet to be replicated. Taken together, these observations suggest that host genetic susceptibility

and microbial strain variation influence development of IE.

Hypothesizing that such host genetic susceptibility is due in part to variants in coding

sequences of genes (e.g. variants leading to protein-coding changes that might disrupt gene

function or host-microbe interaction), we conducted a two-stage study to identify variants asso-

ciated with complicated SAB, selecting candidate genes in a whole-exome sequencing discovery

stage followed by a custom-sequencing replication stage. Such an approach captures both com-

mon and rare coding sequence variants, including very rare variants not included on standard

genotyping arrays. Genetic variants then can be analyzed for association with complicated SAB

individually or in gene-based tests defined by function, location, and allele frequency. Subse-

quent gene expression studies in human whole blood samples and mouse cell lines examined

changes in GLS2 expression in the context of S. aureus infection. The results of this study impli-

cate variants in the GLS2 gene, which regulates plasma glutamine levels important for modulat-

ing the adaptive immune response as risk factors underlying development of complicated SAB.

Results

Whole exome sequencing of the discovery sample

The discovery sample of 168 individuals (84 complicated SAB, 84 uncomplicated, frequency

matched by age (in deciles), sex, and bacterial clonal complex) is described in Table 1. The

Table 1. Description of discovery (168 white individuals with SAB from Duke University Hospital) and replication (240 white individuals with SAB from Danish

DANSAB study group) samples.

Discovery sample(n = 168) Replication sample(n = 240)

Complicated SAB (n = 84) Uncomplicated SAB (n = 84) Complicated SAB (n = 122) Uncomplicated SAB (n = 118)

Sex

Male 55 (65%) 55 (65%) 79 (65%) 79 (67%)

Female 29 (35%) 29 (35%) 43 (35%) 39 (33%)

Age

16–29 6 (7%) 6 (7%) 4 (3%) 4 (3%)

30–39 5 (6%) 5 (6%) 5 (4%) 4 (3%)

40–49 7 (8%) 7 (8%) 12 (10%) 9 (8%)

50–59 21 (25%) 21 (25%) 18 (15%) 14 (12%)

60–69 19 (23%) 22 (26%) 29 (24%) 33 (28%)

70–79 18 (21%) 14 (17%) 28 (23%) 34 (29%)

80–93 8 (10%) 9 (11%) 26 (21%) 20 (17%)

Mean age 59.1 years 59.1 years 65.6 years 65.2 years

Bacterial clonal complex

CC5 37 (44%) 43 (51%) 34 (28%) 31 (26%)

CC8 23 (27%) 23 (27%) 24 (20%) 23 (19%)

CC30 24 (29%) 18 (21%) 64 (52%) 64 (54%)

https://doi.org/10.1371/journal.pgen.1007667.t001
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majority of the sample was male (65%), and average age was 59.1 years. All participants were

white and non-Hispanic. By design, the majority of the sample was infected with strains of S.

aureus previously associated with complicated SAB (CC5 or CC30, 72%). All individuals were

white, non-Hispanic ethnicity, and little population stratification was detected by EIGEN-

STRAT analysis. None of the ten principal components extracted by EIGENSTRAT was signif-

icantly associated with complicated SAB in the discovery sample (p>0.05), and therefore these

variables were not included in subsequent analyses to adjust for potential confounding by pop-

ulation stratification.

After sequence alignment, base calling, and quality control steps, 404,808 autosomal single

nucleotide variants (SNV) were analyzed for association with complicated SAB, adjusting for

age (in deciles), sex, bacterial clonal complex (CC5 and CC30 vs. CC8) and sequencing batch.

No SNV was significantly associated with complicated SAB at a genome-wide corrected

threshold (p<5 x 10−8) in the overall sample (S1 Fig) or when stratified by bacterial clonal

complex (CC5 and CC30 separate from CC8 (S2 and S3 Figs)), and no inflation of SNV test

statistics was observed on quantile-quantile plots and estimates of the genomic inflation factor

(λ = 0.75 (overall; S4 Fig), 0.77 (CC5 and CC30; S5 Fig) and 0.83 (CC8; S6 Fig). Gene-based

analysis using SKAT-O (allowing for cumulative independent effects of SNVs annotated as

being in a gene by SeattleSeq) did not detect any significant associations after Bonferroni cor-

rection (p<2.5 x 10−6) for testing all variants in 20,000 genes or when restricting analysis to

SNV annotated by SeattleSeq as missense, nonsense and splice-site variants. The top gene-

based results (p<1 x 10−4) overall and in the subsets (CC5 and CC30, CC8) are presented in

Table 2, and results for all genes are presented in S1 Table (overall), S2 Table (CC5 and CC30)

Table 2. Top results (p<1 x 10−4) from SKAT-O gene-based association analysis in the discovery sample, overall

(adjusted for age, sex, and bacterial clonal complex) and stratified by bacterial clonal complex (adjusted for age

and sex).

Gene SNV p-value

Overall (n = 168), all variants

CHRNA2 17 4.6 x 10−5

PLEC 191 4.9 x 10−5

GNPDA1 16 6.5 x 10−5

FAM153B 8 7.4 x 10−5

CDK3 9 9.1 x 10−5

GLS2�� 19 5.4 x 10−3

Overall (n = 168), functional variants�

No genes with p<10−4

CC5 and CC30 subset (n = 122), all variants

LCMT2 10 2.5 x 10−5

EFCAB4B 53 6.1 x 10−5

GLS2�� 14 0.18

CC5 and CC30 subset (n = 122), functional variants�

LCMT2 5 3.1 x 10−6

CC8 subset (n = 46), all variants

FAM111B 2 5.6 x 10−6

GLS2�� 13 1.8 x 10−3

CC8 subset (n = 46), functional variants�

No genes with p<10−4

�functional variant = missense, nonsense (stop-gain or stop-loss), or splice-gain or loss

�� GLS2 is included for comparison with other top results in the discovery dataset.

https://doi.org/10.1371/journal.pgen.1007667.t002
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and S3 Table (CC8). Slight inflation of test statistics was observed on quantile-quantile plots

(overall; S7 Fig, CC5 and CC30; S8 Fig, and CC8; S9 Fig). Analysis restricted to functional vari-

ants weakened evidence of association at all top genes other than LCMT2 in the CC5 and

CC30 subset, and no genes were included among the top results solely by analysis of functional

variants. Complete SKAT-O results using only functional variants and corresponding quan-

tile-quantile plots are provided in S4 Table and S10 Fig (overall), S5 Table and S11 Fig (CC5

and CC30), and S6 Table and S12 Fig (CC8). Little inflation of test statistics was observed on

quantile-quantile plots.

The SKAT-O results overall and in the two subsets were used to identify the most signifi-

cant genes for consideration in the replication phase. Starting with genes with p< 1 x 10−4 in

at least one analysis, the list was expanded by including the next-most-significant genes from

each subset until a 2 Mb capture set was generated. This occurred at p<3.5 x 10−3 and yielded

a set of 334 genes. Eight additional biologically interesting candidate genes suggested by prior

studies in humans and mice (DUSP3, FGA, FGB, FGG, FN1, PSME3, SPINK5, TNFAIP8) were

added to this set for a final total of 342 genes that were captured and analyzed in the replication

set (S7 Table). These 342 genes contained 8,915 variants detected in the discovery dataset.

Custom capture and sequencing of the replication sample

The replication set of 240 individuals (122 with complicated SAB and 118 with uncomplicated

SAB), frequency matched by the same covariates as the discovery sample, is described in

Table 1. The sample was 66% male, and average age was 65.4 years. All participants were white

and non-Hispanic, and 80% of the sample was infected by bacterial clonal complexes previ-

ously associated with IE (CC5 or CC30). The replication sample was thus comparable to the

discovery sample in these respects, but slightly older and more likely to carry CC5 or CC30.

Like the discovery sample, little population stratification was detected by EIGENSTRAT analy-

sis. None of the ten principal components extracted by EIGENSTRAT was significantly associ-

ated with complicated SAB in the replication sample (p>0.05), and therefore these variables

were not included in subsequent analyses to adjust for potential confounding by population

stratification.

After sequence alignment, base calling, and quality control steps, 10,931 single nucleotide

variants (SNV) were analyzed for association with complicated SAB, adjusting for age (in dec-

iles), sex, and bacterial clonal complex (CC5 and CC30 vs. CC8) (S13 Fig). No SNV was signifi-

cantly associated with complicated SAB at a Bonferroni corrected threshold (p<4.5 x 10−6) in

the overall sample or when stratified by bacterial clonal complex (CC5 and CC30, S14 Fig.; too

few CC8 cases were included to analyze separately). No inflation of SNV test statistics was

observed on quantile-quantile plots and estimates of the genomic inflation factor (λ = 0.70

(overall; S15 Fig), 0.71 (CC5 and CC30; S16 Fig). Gene-based analysis using SKAT-O in the

overall replication sample detected significant association (p = 1.2 x 10−4) at one gene (GLS2)

after Bonferroni correction for 342 genes tested (p<1.5 x 10−4). The top gene-based results

(p<1 x 10−2) overall and in the CC5 and CC30 subset are presented in Table 3, and complete

gene-based test results in the replication sample are presented in S8–S11 Tables, with corre-

sponding quantile-quantile plots in S17–S20 Figs. Complete association results for individual

SNV in the GLS2 gene for both subsets and the meta-analysis are presented in S12 Table.

While not significant after multiple testing correction, it is notable that the strongest overall

association at an individual SNV in the replication sample is with intronic variant rs2657878

(p = 5 x 10−4) in GLS2, which is in strong linkage disequilibrium (r2 = 0.85) with missense vari-

ant rs2657879 (p = 4.4 x 10−3) (Fig 1, S21 Fig). While rs2657878 was not significantly associ-

ated with complicated SAB in the discovery dataset (p = 0.47; rank 262,339 of 404,809), the

GLS2 variation and complicated Staphylococcal bacteremia
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meta-analysis across subsets remained nominally significant (p = 2.4 x 10−3). The most signifi-

cant GLS2 result from the meta-analysis (which considered only SNV found in both subsets)

was at less common (minor allele frequency 1.6%) intronic variant rs937115 (OR 8.01, p = 2.0

x 10−4), which was also not significant after multiple testing correction. When meta-analyzing

gene-based test results across the discovery and replication datasets, GLS2 remains the top-

ranked gene (p = 7.9 x 10−4), with the sum test across 11 SNV more significant than the burden

test (rho = 0). The gene-based and individual SNV tests were not significant when considering

CC30 alone in the discovery and replication datsets, suggesting that the more significant over-

all results in the replication set are not attributable to the greater proportion of the sample car-

rying CC30.

GLS2 expression in SAB cases and mouse macrophages after S. aureus
exposure

To evaluate the clinical relevance of GLS2 in human bloodstream infections, we compared

microarray expression data from patients with S. aureus (n = 32) or Escherichia coli (n = 19)

bloodstream infections (BSIs) against healthy controls (n = 44). We found that GLS2 expres-

sion was significantly suppressed in S. aureus and E. coli BSI patients relative to healthy con-

trols (Fig 2A), and that the significant difference in was present in both white and African-

American subsets. Notably, no difference in expression in other genes adjacent to GLS2
(SPRYD4, MIP, RBMS2) was observed, supporting a focus on that gene. To validate our

Table 3. Top results (p<1 x 10−2) from SKAT-O gene-based association analysis in the replication sample, overall

(adjusted for age, sex, and bacterial clonal complex) and restricted to bacterial clonal complex CC5 or CC30

(adjusted for age and sex).

Gene SNV p-value

Overall (n = 240), all variants
GLS2 20 1.2 x 10−4

BEND5 10 1.8 x 10−3

GPRC6A 15 2.7 x 10−3

C14orf79 29 4.6 x 10−3

TUBD1 12 5.1 x 10−3

Overall (n = 240), functional variants�

CCDC108 19 1.8 x 10−3

LOC100129175 10 3.0 x 10−3

GLS2 1 4.7 x 10−3

AMOTL2 9 4.8 x 10−3

CC5 and CC30 subset (n = 193), all variants
GLS2 18 2.3 x 10−3

TUBD1 10 2.7 x 10−3

NAA15 10 4.6 x 10−3

SEPT8 40 7.1 x 10−3

YLPM1 36 8.4 x 10−3

CC5 and CC30 subset (n = 193), functional variants�

LOC100129175 10 1.7 x 10−4

CCDC108 18 3.4 x 10−4

AMOTL2 8 5.8 x 10−3

C14orf79 3 6.3 x 10−3

�functional variant = missense, nonsense (stop-gain or stop-loss), or splice-gain or loss

https://doi.org/10.1371/journal.pgen.1007667.t003
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microarray expression data, we next challenged RAW 264.7 macrophages with S aureus and

measured Gls2 expression by qRT-PCR. We observed the same pattern of Gls2 suppression in

macrophages challenged with S aureus (Fig 2B). Having shown that GLS2 expression is sup-

pressed in patients with S.aureus or E.coli BSI and in RAW 264.7 macrophages challenged with

S. aureus, we next sought to understand the significance of the observed GLS2 expression pat-

tern. To this end, we used CRISPR-Cas9 technology to silence Gls2 in RAW 264.7 macro-

phages, then challenged them with S. aureus and evaluated transcription of IL-1β, an

Fig 1. Regional association plot surrounding GLS2 in the overall replication sample. The–log10 p-values for individual SNV association tests

are plotted against chromosomal position. The strongest association is at intronic variant rs2657878 (purple diamond). The next strongest result

is at rs937115 (blue circle), an intronic variant in modest linkage disequilibrium (r2<0.2) with rs2657878 in the 1000 Genomes November 2014

European sample. Three additional variants (red circles), including missense variant rs2657879, are in strong linkage disequilibrium (r2>0.8)

with rs2657878.

https://doi.org/10.1371/journal.pgen.1007667.g001

Fig 2. GLS2 transcript is suppressed in (A) patients with S. aureus or E. coli blood stream infection and in (B) RAW

264.7 macrophages challenged with S. aureus. Data represent two independent experiments each with six biological

replicates.

https://doi.org/10.1371/journal.pgen.1007667.g002
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important pro-inflammatory cytokine responsible for macrophage and neutrophil activation

in response to S.aureus [12]. Silencing Gls2 in RAW 264.7 macrophages significantly decreased

IL-1β transcription compared to wild type (WT) cells (Fig 3A). Furthermore, the concentra-

tion of nitric oxide (NO), a prominent macrophage signaling molecule generated by inducible

NO synthase, was significantly increased in S. aureus Gls2-silenced macrophage as compared

to WT (Fig 3B). These data indicate that GLS2 modulates innate immune responses to S.

aureus stimulation both in vitro and in vivo.

Discussion

This two-stage study utilized whole-exome sequencing to identify genes with differences in a

discovery stage of patients with complicated and uncomplicated SAB, followed by a replication

stage utilizing targeted capture and sequencing of 342 such genes. This strategy revealed a

novel candidate gene for SAB, GLS2, in which multiple variants are more frequent in compli-

cated SAB compared to uncomplicated SAB.

The initial gene-based test results in GLS2 in the discovery dataset were nominally signifi-

cant in multiple subsets, resulting in its inclusion in the replication study. However, no indi-

vidual variant was significantly associated with complicated SAB in the discovery sample,

indicating that the gene-based test result was due to the cumulative effect of multiple variants

that did not have significant individual effects. The gene-based test of GLS2 was the strongest

result in the replication dataset, and several individual variants were nominally significantly

associated with complicated SAB. The strongest single-variant association in the replication

dataset was with a common variant (rs2657878) in intron 14 of GLS2. While this variant does

not have a known functional consequence, it is in strong linkage disequilibrium with a coding-

sequence variant in exon 18, rs2657879, which encodes a leucine to proline change at amino

acid 581. The less common G allele at this variant has been reproducibly associated with lower

plasma glutamine concentration in several genome-wide association studies of plasma meta-

bolic markers [13–16] and was twice as frequent in complicated SAB cases in the replication

sample (OR = 2.0, p = 0.004). These associations are biologically plausible, given the role of

GLS2 (with GLS) in metabolizing glutamine. While some GLS2 variants have been suggested

to be eQTLs for the adjacent SPRYD4 gene in GTEx data (www.gtexportal.org, accessed April

10, 2018), only GLS2 was significantly differentially expressed in human BSI and was further

shown to modulate response to S. aureus in mouse macrophages, suggesting that it is the most

likely functional candidate gene. The observed pattern of association and inconsistent

Fig 3. (A) Knockdown of Gls2 decreased IL-1β mRNA and (B) enhanced NO production in RAW 264.7 macrophages

challenged with S. aureus. Data represent two independent experiments, with six biological replicates for IL-1β (A) and

three biological replicates for NO production (B).

https://doi.org/10.1371/journal.pgen.1007667.g003
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individual-variant results between discovery and replication samples suggest that the gene-

based test might be an indirect association, whereby the coding-region variants are not them-

selves the biologically relevant variants, but are in linkage disequilibrium with as yet unidenti-

fied non-coding variants that might influence gene regulation and function. Therefore, the

next steps in evaluating the role of GLS2 in SAB involved further examining gene expression

and cellular response (cytokine production, nitric oxide production) in the context of exposure

to S. aureus, and later examining regulatory sequence variants for association with these

responses.

Existing gene expression studies in individuals with bacteremia showed that GLS2 expres-

sion was lower in SAB cases compared to controls, and this pattern was reproduced in mouse

RAW 264.7 cells. However, we were not able to examine the association between GLS2 expres-

sion and complicated SAB, as sufficient RNA samples were not available in this dataset. There-

fore, while these initial functional data demonstrate changes in GLS2 expression in response to

SAB, they do not fully explain the association of genetic variants with complicated SAB in par-

ticular. Studies designed to demonstrate differences in GLS2 expression in complicated vs.

uncomplicated SAB cases are needed, but sufficient numbers of RNA samples do not yet exist

in the SABG and DANSAB datasets used for this study.

GLS2 is an intriguing candidate gene for complicated SAB due to its role in glutamine

metabolism, which is an important process for proliferation and activation of white blood cells

such as neutrophils, macrophages and T-cells in response to S. aureus infection. Inhibition of

GLS has been shown to reduce Th17 response [17], which is essential for effective neutrophil

recruitment in response to S. aureus infection [18–20]. In mice, IL-17 is essential for host

defense against S. aureus infections of the skin [21] and inhibition of IL-17 is associated with

development of acute colitis after exposure to dextran sulfate sodium [22]. In humans, reduced

levels of Th17 cells lead to increased susceptibility to S. aureus infections in patients with

hyper-IgE syndrome [23, 24], atopic dermatitis [25], and mucocutaneous candidiasis [26].

Taken together, these findings suggest that poorer Th17 responses elicited by reduced GLS2

production may influence the development of complicated SAB through a less robust T-cell

response to infection.

Further, nitric oxide, an endogenous signaling molecule produced by macrophages, is well

known for its role in host defense mechanisms against various pathogenic bacteria [27]. When

macrophages are challenged with tuberculosis for example, they produce NO which is con-

verted into reactive nitrogen species (RNS) within infected macrophages resulting in bacterial

death. The cytotoxic effects are thought to be indirect, and the role of NO is more complicated

than a simple binary (on/off) response. In fact, when NO reacts with oxygen radicals, it gener-

ates peroxynitrite, nitrogen dioxide and dinitrogen trioxide that are highly toxic to the cells

[28]. Consequently, NO levels are tightly regulated and the exact amount of NO produced

determines whether an overall pro- or anti-inflammatory response predominates. In sepsis for

example, increased production of NO triggers vasodilatation and consequent hypotension

[29]. There is also prior evidence from S. aureus sepsis models implicating the level of NO gen-

erated in regulating neutrophil migration to the site of infection [30]. Here, we found that

silencing Gls2 not only results in overproduction of NO in macrophages challenged with S.

aureus bioparticles but it also reduced expression of IL-1β relative to WT controls, suggesting

that Gls2 silencing alters macrophage responses to S. aureus.
Although GLS2 has been suggested to act as a tumor suppressor gene, nothing is known

about its role in S. aureus infection. Our results indicate that Gls2 acts to regulate the amount

of NO in S. aureus-challenged cells and thus protect those cells from damage induced by reac-

tive NO byproducts. Consistent with our findings, it was reported that one of the functions of

Gls2 is to limit reactive oxygen species levels in cells and thus protect cells from oxidative
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stress-induced cell death [31, 32]. The fact that GLS2 mutation is associated with complicated

bacteremia could thus be the consequence of increased NO levels in these patients, resulting in

the production of excessive cytotoxic oxygen radicals. Ochoa et al [33] similarly showed that

high levels of circulating NO metabolites in the blood of general surgery patients with clinical

sepsis correlated with severity of disease.

Another possible explanation could be reduced neutrophil migration to the site of infection

which in turn hinders bacterial clearance [34]. Consistent with this, it was reported that high

levels of NO inhibited neutrophil migration to the site of infection in a S. aureus sepsis model

of infection [30, 35]. We also found that silencing of Gls2 significantly reduced transcription of

IL-1β, an important part of the innate immune response to S. aureus. IL-1β is required for

both neutrophil recruitment [12] and regulation of pro-inflammatory Th17 response to S.

aureus [36], and is sufficient for abscess formation in immunity against S. aureus in mice [37].

Taken together, these data strongly suggest a potential role of GLS2 in host susceptibility to S.

aureus infection, whereby (as of yet not identified) variation in regulatory regions of the GLS2
gene may alter gene expression in response to S. aureus infection, increasing NO and decreas-

ing IL-1β, allowing complicated infection to develop.

While the association of GLS2 variation with complicated SAB provides a novel target for

additional study and potential intervention, there are caveats to the interpretation of these

findings. The study was conducted in two samples of non-Hispanic whites of European

descent, and therefore the results may not generalize to other populations. Also, while there is

previous association of the L581P variant (rs2657879) with plasma glutamine concentration, a

biological mechanism for this association has yet to be elucidated. Finally, this study did not

detect association with other loci previously associated with endocarditis (SLC7A14 [38], in a

study that included a subset of the Danish sample used here in the non-significant replication),

with risk of SAB (HLA class II region [6]), or with biologically plausible candidate genes iden-

tified from prior human and mouse studies (DUSP3, FGA, FGB, FGG, FN1, PSME3, SPINK5,

TNFAIP8). This is not surprising, as most of these genes (SLC7A14 being the exception) were

associated with SAB overall, rather than complicated SAB in particular. Indeed, sub-analyses

of prior studies did not find association between complicated SAB and HLA or other candidate

genes. The lack of such associations might reflect lower power due to smaller sample sizes, or

alternatively may indicate that genetic factors influencing initial development of SAB are dis-

tinct from those governing development of complicated infections such as endocarditis and/or

bone and joint infection.

The association of GLS2 variants with complicated SAB reinforces the conclusion that the

strongest genetic susceptibility factors for S. aureus infection involved the adaptive immune

response. Genome-wide association approaches in white [6] and African-American [7] sam-

ples reproducibly implicate the HLA class II region, which encodes cell surface molecules

involved in antigen presentation and stimulation of the immune response to pathogens. Taken

together, these results suggest that genetic susceptibility to SAB is influenced by several genetic

variants that potentially modulate the macrophage and T-cell response to infection.

Methods

Ethics statement

The study was approved by the Duke University Institutional Review Board and participants

recruited at Duke University provided written informed consent according to institutional

policy. Patients dying from SAB prior to consent were included in the study in accordance

with IRB-approved policies for decedent research. Danish samples were collected as a “treat-

ment biobank” under protocols approved by the Danish Data Protection Agency (GEH-2014-
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053 // I-suite no 0337203372 and journal no. 2007-58-0015). Patient consent was not obtained

for this study. As retrospective consent of treatment biobank participants for this specific

study was not feasible, the Danish Regional Ethics Committee (journal no. H-4-2014-132)

approved a waiver of consent for this study. As a condition of this approval, all samples were

permanently anonymized prior to genetic analysis.

Discovery dataset

The discovery dataset consisted of 168 individuals with monomicrobial SAB, selected from the S.

aureus bacteremia group (SABG) repository [39], a prospective biobank of DNA, bloodstream

microbial isolates, and clinical data from all individuals diagnosed with SAB and enrolled in the

SABG repository since 1994 at Duke University Medical Center. As previously described in detail

[9], individuals were classified as having complicated SAB if they had infective endocarditis ((IE)

(native or device-associated)) or hematogenous bone and joint infection (vertebral osteomyelitis,

septic arthritis) and were classified as uncomplicated SAB if no other types of complicated infec-

tion (meningitis, abscess, etc) were present. Exclusion criteria included outpatient status, age

younger than 18 years, polymicrobial infection, and neutropenia. Equal numbers of complicated

and uncomplicated SAB individuals (n = 84) were selected for study, frequency matched on age

(in deciles), sex, and the clonal complex of the bloodstream S. aureus isolate. All individuals

selected for study were white, non-Hispanic individuals of European descent.

Replication dataset

A replication data set was created following the approach described for the discovery sample.

Complicated cases (native or device-associated IE or hematogenous bone and joint infection)

were matched to uncomplicated cases by age (in deciles), sex, and CC of the bloodstream isolate

(CC 5, 8, or 30). In this way, a replication dataset of 240 patients was created from two sources.

A total of 196 individuals were selected from the Danish Staphylococcal Bacteremia study group

(DANSAB) biobank, a national resource of blood samples with over 2500 SAB cases maintained

by the Statens Serum Institut and Herlev-Gentofte University Hospital which had been com-

bined with clinical information from the Danish Staphylococcus aureus bacteremia registry

[40]. An additional 44 SAB patients were identified by combining information from the

national Danish Bacteremia Registry, patient journals and the Copenhagen Hospital Biobank

[41]. Individuals were white, non-Hispanic (by definition) and of Northern European descent.

Determination of bacterial clonal complexes

For the discovery sample, spa typing was used to infer clonal complex (CC) as previously

described [8, 42]. Briefly, bacterial DNA was amplified using established PCR primers and

sequences were determined via capillary electrophoresis. Sequences for spa were evaluated

against eGenomics software (eGenomics, Inc, New York) and were used to determine CCs

using a validated database [43]. For the replication sample, spa typing was used to classify iso-

lates into clonal complexes, using similar laboratory methods and comparison to the MLST

database (www.mlst.net) as previously described [40]. In both discovery and replication sam-

ples, only patients whose bloodstream isolate was unambiguously mapped to CC5, CC30, or

CC8 were selected for this study.

Whole exome sequencing (WES) of discovery dataset

Whole-exome capture was performed in four batches on genomic DNA isolated from periph-

eral blood leukocytes using the Agilent SureSelect 50Mb AllExon v5, including untranslated
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regions (UTRs), capture kit (Agilent, Santa Clara, CA). Samples were ‘barcoded’ for multiplex

analysis and sequencing was performed with three samples pooled per lane on an Illumina

HiSeq2000 instrument in the Center for Genome Technology, John P. Hussman Institute for

Human Genomics, University of Miami. Sequence reads were assessed for quality and bases

were called using the Illumina CASAVA 1.8 pipeline. Calls were then exported for alignment

against the human reference genome (hg19) using the Burrows-Wheeler Alignment (BWA)

software [44]. Variants were called using the GATK UnifiedGenotyper with VQSR recalibra-

tion [45]. Genotype calls with genotype quality <30, read depth<8, or Phred-scaled likelihood

of reference genotype <99 were removed from analysis. Genotype variants with VQSR recali-

bration scores< = -2 were excluded. No allele frequency threshold was applied. After quality

control, 404,808 variants were retained for analysis. SeattleSeq [46] version 138 was used to

annotate variants to genes, and evaluate functional consequence (missense, nonsense, splice

site variation).

Statistical analysis of WES data

These variants were then analyzed for association with complicated SAB individually using

Firth-bias corrected logistic regression [47], controlling for age, sex, clonal complex, and

sequencing batch, as implemented in EPACTS (Efficient and Parallelizable Association Con-

tainer Toolbox http://genome.sph.umich.edu/wiki/EPACTS). Cumulative effects of variants

across a gene, controlling for the same covariates, were evaluated using SKAT-O specifying the

optimal adjust option and small sample size adjustment [48]. With these parameters, SKAT-O

either conducts a variant burden test, assuming all variants influence the trait in the same

direction, or a weighted SKAT test, that gives variants with frequency less than 1% in the sam-

ple greater weight and allows for the presence of both rare risk and protective alleles. Analyses

were conducted for the entire dataset (including all variants identified in the sequence cap-

tured by the whole exome capture kit, including some flanking intronic sequences and

untranslated regions), as well as stratified by bacterial clonal complex (to allow for possible

host-microbe interactions) and functional effect of variant (considering missense/nonsense/

splice variants separately). A traditional genome-wide association significance level of p< 5 x

10−8 was used to evaluate statistical significance of individual variant tests and a Bonferroni-

corrected threshold of p<2.5 x 10−6 (0.05/20,000 genes) was used for gene-based tests. Because

no results were significant after multiple-testing correction, the top gene-based test results

(with p-values < 10−4) are presented.

Targeted capture and sequencing in the replication sample

Results of the gene-based SKAT-O analysis in the discovery sample were used to select targets

for analysis in the replication sample. First, 334 genes with nominally significant gene-based

results (p<3.5 x 10−3) overall or in one of the subset analyses (by clonal complex or functional

status) were selected for analysis, and eight biological candidate genes were added based on

results from mouse model studies. A targeted capture array for 342 genes (S7 Table) was

designed using the Agilent SureSelect website (Agilent, Santa Clara, CA). Capture array probes

were selected from the probes used in the whole exome capture (Agilent SureSelect AllExon 50

Mb + UTR v5), so that the sequences for these genes captured in the replication dataset were

the same as those captured for the discovery dataset. Targeted capture was performed in a sin-

gle batch on genomic DNA isolated from peripheral blood leukocytes. Samples were ‘bar-

coded’ for multiplex analysis and sequencing was performed with samples pooled 48 per lane

on an lllumina HiSeq2500 instrument in the Center for Genome Technology, John P. Huss-

man Institute for Human Genomics, University of Miami. Sequence reads were assessed for
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quality and bases were called using the Illumina CASAVA 1.8 pipeline. Calls were then

exported for alignment against the human reference genome (hg19) using the Burrows-

Wheeler Alignment (BWA) software [44]. Variants were called using the GATK UnifiedGen-

otyper [45]. Genotype calls with genotype quality <30, read depth <8, or Phred-scaled likeli-

hood of reference genotype <99 were removed from analysis. All variants, regardless of

frequency, that passed these QC steps were retained for analysis. After quality control, 10,931

variants were retained for analysis. SeattleSeq [46] version 138 was used to annotate variants to

genes, and evaluate functional consequence (missense, nonsense, splice site variation, scaled

combined annotation dependent deletion (CADD) score [49].

Statistical analysis of targeted capture data in the replication sample

As in the discovery sample, individual variants were analyzed for association with complicated

SAB using Firth-bias corrected logistic regression [47], controlling for age, sex, and clonal

complex, as implemented in EPACTS. Cumulative effects of variants across a gene were evalu-

ated using SKAT-O specifying the optimal adjust option and small sample size adjustment

[48]. Analyses were conducted for the entire dataset, as well as stratified by bacterial clonal

complex (to allow for possible host-microbe interactions) and functional effect of variant

(defined the same as for the discovery data set). Bonferroni multiple test corrections were

applied to the single variant tests (p<4.5 x 10−6, 0.05/10,931 variants) and gene-based tests

(p< 1.5 x 10−4, 0.05/342 genes). To evaluate consistency of results across the two samples,

SKAT-O results were meta-analyzed across the two samples using the seqMeta package

(https://github.com/DavisBrian/seqMeta). To summarize single-variant results across the

most significant locus (GLS2) in both the replication and discovery datasets, we used Locus-

Zoom[50] to create regional association plots of–log p-values for each variant in a 50kb win-

dow centered on GLS2, evaluating pairwise linkage disequilibrium and recombination rate

using the 1000Genomes November 2014 EUR sample as a reference sample.

Gene expression in human samples

Existing data on gene expression profiles in individuals with bloodstream infections were used

to examine differences in GLS2 and adjacent gene expression in SAB cases, E. coli bacteremia

cases, and unaffected controls. Subjects were enrolled at Duke University Medical Center

(DUMC; Durham, NC), Durham VAMC (Durham, NC), and Henry Ford Hospital (Detroit,

Michigan) as part of a prospective, NIH-sponsored study to develop novel diagnostic tests for

severe sepsis and community-acquired pneumonia. All participants were adults. All detail

regarding clinical information of these patients, including age, gender as well as the microarray

analysis has been previously published [51], and these data are publicly available (GSE33341).

Gene expression results from that study for GLS2, SPRYD4, MIP, and RBMS2 were examined

for significant differences.

Macrophage infection and RNA extraction

The RAW 264.7 mouse macrophage cell line was maintained at 37˚C and 5% CO2 in Dulbec-

co’s Modified Eagle’s Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS). A

total of 5x105 cells were pre-seeded in a 24-well plate for 24 h. S. aureus clinical strain, Sanger

476 was used for infection studies. S. aureus for infection was prepared exactly as described

previously [5].

The cells were incubated with 5x106 bacteria for 1 hour at 37˚C. The non-phagocytized bac-

teria were removed by washing, and fresh medium was added. RNA was extracted at 5 hours

post-infection using a Direct-zoL RNA MiniPrep kit (Zymo Research) according to the
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manufacturer’s instructions. The RNA was quantified using a Nanodrop 2000 instrument

(Thermo Fisher Scientific). After quantification the RNA was reversed transcribed using High

Capacity cDNA Reverse transcription kit (Thermo Fisher Scientific). Quantitative real-time

PCR (qRT-PCR) was performed using SYBR Select Master Mix (Thermo Fisher Scientifc) and

an ABI Prism 7500 Fast real-time PCR system (Life Technologies). The mRNA of Gls2 was

normalized to Actin rRNA. The Gls2, IL-1β and Actin primers used here are as follow: Gls2
(5’-AAACGCCCCATCAGTTCAGT-3’/5’-AGGCTCTCCAAGGAAGTTGC-3’); Actin (5’-AG

GTGTGATGGTGGGAATGG-3’/5’-GCCTCGTCACCCACATAGGA-3’). Il-1β (5’-GAGA

ACCAAGCAACGA-3’/5’-CAAACCGTTTTTCCATCTTCT-3’). Statistical analysis was per-

formed with GraphPad Prism, version 5, software using a Mann-Whitney U nonparametric

test.

RAW Gls2 knockdown cell lines

To generate CRISPR/Cas9-mediated Gls2 knockdown RAW cells, we cloned sgRNAs targeting

exon 2 or exon 6 of Gls2 into LentiCRISPR.v2 (Addgene #52961), for coexpression of sgRNAs

with S. pyogenes Cas9. Oligonucleotide primers sgRNA-1 (5’- ACCGTGGTGAACTTGTGG

AT-3’), sgRNA-2 (5’- AGCGGCATGCTGCCTCGACT-3’) and sgRNA-3 (5’- GGCAGAAGG

GGATCTTCGTG-3’) were ordered from Integrated DNA Technologies and cloned into Len-

tiCRISPR as described (http://genome-engineering.org/gecko/). We prepared lentiviral parti-

cles for each sgRNA vector by cotransfecting HEK293T cells with the LentiCRISPR vector,

psPAX2 and pMD2.g using TransIT-LT1 (Mirus) and harvesting virus-containing supernatant

at 48 hours post transfection. RAW cells were transduced with virus at a multiplicity of infec-

tion (MOI) of<1 by spinfection in the presence of 8 ug/ml polybrene. Twenty-four hours post

infection, cells were selected with 5 μg/ml puromycin for 72 hours and then expanded. Cells

were harvested one-week post infection and genomic DNA was prepared (Qiagen QIAamp

DNA Blood Mini kit). The Gls2 locus was PCR amplified and assessed for editing using Sur-

veyor assays (Integrated DNA Technologies) to confirm introduction of mutations in the

gene.

Measurement of nitric oxide in the supernatant of culture media

A total of 5x105 cells pre-seeded in a 24-well plate for 24 h were treated with S. aureus bioparti-

cles (Invitrogen) to a final concentration of 10 μg/ml. At 24 hours post-infection, supernatants

were collected, and nitric oxide production was determined using Nitrate/Nitrite fluorimetric

assay kit (Cayman) according to the manufacturer’s protocol.

Supporting information

S1 Fig. Manhattan plot of 404,808 single variant association results from Firth-bias cor-

rected logistic regression in the overall discovery sample (n = 168). The–log10 p-values for

each test are plotted against chromosomal position. A genome-wide significance threshold of

5 x 10−8 is indicated by the red horizontal bar.

(TIF)

S2 Fig. Manhattan plot of 355,274 single variant association results from Firth-bias cor-

rected logistic regression in the CC5 and CC30 subset of the discovery sample (n = 122).

The–log10 p-values for each test are plotted against chromosomal position. A genome-wide

significance threshold of 5 x 10−8 is indicated by the red horizontal bar.

(TIF)
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S3 Fig. Manhattan plot of 267,469 single variant association results from Firth-bias cor-

rected logistic regression in the CC8 subset of the discovery sample (n = 46). The -log10 p-

values for each test are plotted against chromosomal position. A genome-wide significance

threshold of 5 x 10−8 is indicated by the red horizontal bar.

(TIF)

S4 Fig. Quantile-quantile plot for single variant association results from the overall discov-

ery sample. The black diagonal line indicates the expected distribution of test statistics under

the null distribution. The red line indicates the linear trend of the ratio between observed and

expected statistics. The plot indicates that overall test statistics are weaker than expected under

the null hypothesis.

(TIF)

S5 Fig. Quantile-quantile plot for single variant association results from the CC5 and

CC30 subset of the discovery sample. The black diagonal line indicates the expected distribu-

tion of test statistics under the null distribution. The red line indicates the linear trend of the

ratio between observed and expected statistics. The plot indicates that overall test statistics are

weaker than expected under the null hypothesis.

(TIF)

S6 Fig. Quantile-quantile plot for single variant association results from the CC8 subset of

the discovery sample. The black diagonal line indicates the expected distribution of test statis-

tics under the null distribution. The red line indicates the linear trend of the ratio between

observed and expected statistics. The plot indicates that overall test statistics are weaker than

expected under the null hypothesis.

(TIF)

S7 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the overall

discovery sample. The black diagonal line indicates the expected distribution of test statistics

under the null distribution. The red line indicates the linear trend of the ratio between

observed and expected statistics. The plot shows little inflation of test statistics overall.

(TIF)

S8 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the CC5 and

CC30 subset of the discovery sample. The black diagonal line indicates the expected distribution

of test statistics under the null distribution. The red line indicates the linear trend of the ratio

between observed and expected statistics. The plot shows little inflation of test statistics overall.

(TIF)

S9 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the CC8

subset of the discovery sample. The black diagonal line indicates the expected distribution of

test statistics under the null distribution. The red line indicates the linear trend of the ratio

between observed and expected statistics. The plot shows slight inflation of test statistics at

nominal significance levels, but less inflation of test statistics at higher significance levels.

(TIF)

S10 Fig. Quantile-quantile plot for SKAT-O gene-based association results using only

functional (missense, nonsense, and splice) variants from the overall discovery sample.

The black diagonal line indicates the expected distribution of test statistics under the null dis-

tribution. The red line indicates the linear trend of the ratio between observed and expected

statistics. The plot shows little inflation of test statistics overall.

(TIF)
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S11 Fig. Quantile-quantile plot for SKAT-O gene-based association results using only

functional (missense, nonsense, and splice) variants from the CC5 and CC30 subset of the

discovery sample. The black diagonal line indicates the expected distribution of test statistics

under the null distribution. The red line indicates the linear trend of the ratio between

observed and expected statistics. The plot shows little inflation of test statistics overall.

(TIF)

S12 Fig. Quantile-quantile plot for SKAT-O gene-based association results using only

functional (missense, nonsense, and splice) variants from the CC8 subset of the discovery

sample. The black diagonal line indicates the expected distribution of test statistics under the

null distribution. The red line indicates the linear trend of the ratio between observed and

expected statistics. The plot shows little inflation of test statistics overall.

(TIF)

S13 Fig. Manhattan plot of 10,931 single variant association results from Firth-bias cor-

rected logistic regression in the overall replication sample (n = 240). The–log10 p-values for

each test are plotted against chromosomal position. A Bonferroni-corrected significance

threshold of 4.5 x 10−6 is indicated by the blue horizontal bar; the traditional genome-wide sig-

nificance threshold of 5 x 10−8 is indicated by the red horizontal bar.

(TIF)

S14 Fig. Manhattan plot of 9,940 single variant association results from Firth-bias cor-

rected logistic regression in the CC5 and CC30 subset of the replication sample (n = 193).

The–log10 p-values for each test are plotted against chromosomal position. A Bonferroni-cor-

rected significance threshold of 4.5 x 10−6 is indicated by the blue horizontal bar; the tradi-

tional genome-wide significance threshold of 5 x 10−8 is indicated by the red horizontal bar.

(TIF)

S15 Fig. Quantile-quantile plot for single variant association results from the overall repli-

cation sample. The black diagonal line indicates the expected distribution of test statistics

under the null distribution. The red line indicates the linear trend of the ratio between

observed and expected statistics. The plot indicates that overall test statistics are weaker than

expected under the null hypothesis.

(TIF)

S16 Fig. Quantile-quantile plot for single variant association results from the CC5 and

CC30 subset of the replication sample. The black diagonal line indicates the expected distri-

bution of test statistics under the null distribution. The red line indicates the linear trend of the

ratio between observed and expected statistics. The plot indicates that overall test statistics are

weaker than expected under the null hypothesis.

(TIF)

S17 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the over-

all replication sample. The black diagonal line indicates the expected distribution of test sta-

tistics under the null distribution. The red line indicates the linear trend of the ratio between

observed and expected statistics. The plot shows a slight but acceptable inflation of nominally

significant test statistics.

(TIF)

S18 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the analy-

sis of functional variants only in the replication sample. The black diagonal line indicates

the expected distribution of test statistics under the null distribution. The red line indicates the
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linear trend of the ratio between observed and expected statistics. The plot shows little inflation

of test statistics.

(TIF)

S19 Fig. Quantile-quantile plot for SKAT-O gene-based association results from the CC5

and CC30 subset of the replication sample. The black diagonal line indicates the expected

distribution of test statistics under the null distribution. The red line indicates the linear trend

of the ratio between observed and expected statistics. The plot shows little inflation of test sta-

tistics.

(TIF)

S20 Fig. Quantile-quantile plot for SKAT-O gene-based association results from analysis

of functional variants only in the CC5 and CC30 subset of the replication sample. The

black diagonal line indicates the expected distribution of test statistics under the null distribu-

tion. The red line indicates the linear trend of the ratio between observed and expected statis-

tics. The plot shows little inflation of test statistics.

(TIF)

S21 Fig. Regional association plot surrounding GLS2 in the overall discovery sample. The–

log10 p-values for individual SNV association tests are plotted against chromosomal position.

Linkage disequilibrium is estimated from the 1000 Genomes 2014 European (EUR) sample.

The strongest replication result at intronic variant rs2657878 is indicated by the purple dia-

mond. No individual SNV tests are significant in GLS2 or surrounding genes.

(TIF)

S1 Table. SKAT-O results for 19,822 genes analyzed in the overall discovery sample.

Results are presented in rank-order from most significant to least significant.

(CSV)

S2 Table. SKAT-O results for 19,727 genes analyzed in the CC5 and CC30 subset of the dis-

covery sample. Results are presented in rank-order from most significant to least significant.

(CSV)

S3 Table. SKAT-O results for 19,466 genes analyzed in the CC8 subset of the discovery

sample. Results are presented in rank-order from most significant to least significant.

(CSV)

S4 Table. SKAT-O results for 15,619 genes analyzed using functional variants only in the

overall discovery sample. Results are presented in rank-order from most significant to least

significant.

(CSV)

S5 Table. SKAT-O results for 14,984 genes analyzed using functional variants only in the

CC5 and CC30 subset of the discovery sample. Results are presented in rank-order from

most significant to least significant.

(CSV)

S6 Table. SKAT-O results for 13,053 genes analyzed using functional variants only in the

CC8 subset of the discovery sample. Results are presented in rank-order from most signifi-

cant to least significant.

(CSV)

S7 Table. Targeted capture array probe details for 342 target genes with SKAT-O associa-

tion p<0.0035 in discovery sample analysis. Target regions spanned 2.05 Mb. Probes were
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selected from the Agilent SureSelect AllExon 50Mb + UTR v6 catalog, using the same parame-

ters used to select that catalog and extending 10 bases from the ends of each. Targeted intervals

are mapped to hg19 (GRCh37).

(DOCX)

S8 Table. SKAT-O results for 342 genes analyzed in the overall replication sample. Results

are presented in rank-order from most significant to least significant.

(CSV)

S9 Table. SKAT-O results for 342 genes analyzed in the CC5 and CC30 subset of the repli-

cation sample. Results are presented in rank-order from most significant to least significant.

(CSV)

S10 Table. SKAT-O results for 299 genes analyzed using functional variants only in the

overall replication sample. Results are presented in rank-order from most significant to least

significant.

(CSV)

S11 Table. SKAT-O results for 289 genes analyzed using functional variants only in the

CC5 and CC30 subset of the replication sample. Results are presented in rank-order from

most significant to least significant.

(CSV)

S12 Table. GLS2 single variant association results from Firth bias-corrected logistic regres-

sion in the discovery and replication samples and meta-analysis results across samples.

(XLSX)
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