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Abstract

Emerging pathogens are a major threat to public health, however understanding how patho-

gens adapt to new niches remains a challenge. New methods are urgently required to pro-

vide functional insights into pathogens from the massive genomic data sets now being

generated from routine pathogen surveillance for epidemiological purposes. Here, we mea-

sure the burden of atypical mutations in protein coding genes across independently evolved

Salmonella enterica lineages, and use these as input to train a random forest classifier to

identify strains associated with extraintestinal disease. Members of the species fall along a

continuum, from pathovars which cause gastrointestinal infection and low mortality, associ-

ated with a broad host-range, to those that cause invasive infection and high mortality, asso-

ciated with a narrowed host range. Our random forest classifier learned to perfectly

discriminate long-established gastrointestinal and invasive serovars of Salmonella. Addi-

tionally, it was able to discriminate recently emerged Salmonella Enteritidis and Typhimur-

ium lineages associated with invasive disease in immunocompromised populations in sub-

Saharan Africa, and within-host adaptation to invasive infection. We dissect the architecture

of the model to identify the genes that were most informative of phenotype, revealing a com-

mon theme of degradation of metabolic pathways in extraintestinal lineages. This approach

accurately identifies patterns of gene degradation and diversifying selection specific to inva-

sive serovars that have been captured by more labour-intensive investigations, but can be

readily scaled to larger analyses.

Author summary

Researchers are now collecting a wealth of genomic data from bacterial pathogens, and

this will continue to grow with the introduction of routine sequencing for disease surveil-

lance. However, our ability to use this data to predict how changes in genome sequence

lead to differences in disease is limited. Here, we have used machine learning to detect an
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enrichment in functionally significant mutations in genes associated with a shift in patho-

genic niche. This approach captures convergence in functional outcomes that does not

necessarily result in a convergence in sequence, facilitating the inclusion of rare variants

of large effect in an analysis, and allowing for complex interactions between genes. We

apply this approach to Salmonella, showing that we can detect changes associated with

disease phenotype in emerging lineages associated with the HIV epidemic. This approach

should be applicable to other bacterial species with lineages independently adapting to

similar niches. We provide open-source implementations of both the predictive model,

and the workflow used to build it.

Introduction

Understanding how bacteria adapt to new niches and hosts and thus emerge or re-emerge as a

cause of infectious disease in human and animals is of critical importance to anticipating and

preventing epidemic disease [1,2]. With the decreasing cost of genome sequencing, compara-

tive genomics has become a rich source of insight into the origins and movement of bacteria

in new pathogenic niches. However, translating whole genome sequence databases into mech-

anistic and functional insights remains a challenge.

Early expectations were that pathogen evolution would be driven primarily by the acquisi-

tion of virulence factors. However, as whole-genome sequencing has become increasingly rou-

tine, a decidedly more complex picture has emerged [3,4]. A pattern of bacterial entrance to a

new niche followed by adaptation through the loss of antivirulence loci and reduced metabolic

flexibility is now recognised as a paradigm of the emergence of important human pathogens

from non-pathogenic bacterial species [5–8]. These new niches can be the result of virulence

factor acquisition providing access to a previously inaccessible niche in a so-called foothold

moment [8], or the emergence of new host niches driven by chronic disease [9–11]. While

pathogen and host requirements for infection vary, there is increasing evidence of parallel evo-

lution in bacteria adapting to the same or similar host niche. This is perhaps nowhere more

evident than in the species Salmonella enterica.

Salmonella enterica strains that cause disease in warm-blooded mammals lie on a spectrum

from those that have a broad host range and cause self-limiting gastrointestinal infection, to

those that are more restricted in host range, but cause systemic disease and are typically associ-

ated with higher mortality [11,12]. Host-restricted, extraintestinal variants of Salmonella enter-
ica have evolved independently multiple times from gastrointestinal ancestors [13], and show

a greater degree of gene degradation compared to their generalist relatives [14–16]. There are

common patterns in the genes that undergo pseudogenization in invasive Salmonella, most

obviously an extensive network of genes required for anaerobic metabolism in the inflamed

host [17,18], a pattern with parallels in other host-adapting enteropathogens [5].

Identifying these signals of parallel evolution has been challenging, relying mainly on man-

ual annotation and comparison of pseudogenes [17,18]. Detection of pseudogenes in particu-

lar relies on ad-hoc criteria to identify large truncations, deletions, or frameshifts [19,20]. It is

rare that the same genes or complete pathways are pseudogenized in host-adapted species;

rather interpretation has relied on identifying overrepresentation of independent pseudogen-

ization events clustered in certain pathways [17]. If pseudogenization leads to pathway attenu-

ation or inactivation, it seems likely that reduced selective pressure will lead to a higher

incidence of detrimental mutation fixation in other genes in these pathways. Indeed, we have

previously shown that functional variant calling, based on sequence deviation from patterns of
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conservation observed in deep sequence alignments, shows a similar functional signal in host-

restricted Salmonella enterica serovar Gallinarum to pseudogene analysis [21], identifying a

larger cohort of genes where constraints on drift appear to have been lifted during host-

adaptation.

In previous work we developed delta bitscore (DeltaBS), a profile hidden Markov model

(HMM) based approach to functional variant calling [21]. The basic assumption of this

approach is that variation in conserved positions of a protein sequence is more likely to affect

protein function than variation in less conserved regions. This approach can integrate infor-

mation about nonsynonymous mutations, indels, and truncations. We have previously shown

that DeltaBS can successfully identify functional changes in genes that would be missed by

standard pseudogene analysis [22], and that a subset of genes in host-adapted strains appear to

accumulate large DeltaBS values [21]. Additionally, others have observed similar changes in

DeltaBS distributions during adaptation of Salmonella to a single immunocompromised host

[10]. We generally assume that a large DeltaBS value is indicative of a decay in protein func-

tion, however a modest increase in DeltaBS associated with a phenotype may instead be indica-

tive of diversifying selection.

Here, we have leveraged these previous observations to identify signatures of mutational

burden consistent with adaptation to an invasive lifestyle. We have developed a random forest

classifier using DeltaBS functional variant calling [21] that can perfectly separate intestinal Sal-
monella serovars from host-adapted, extraintestinal serovars. We use random forest models

because they perform well on datasets with few informative variables [23,24], and the decision

tree structure they employ has the potential to detect functional relationships (i.e. epistasis)

between genes [25,26]. They have been applied successfully in the past to predict microbial

phenotype using gene presence/absence data [27], and SNPs already known to be associated

with phenotype [28,29]. We show that these models produce interpretable signatures of host-

adaptation, and furthermore that these signatures can be detected in strains of Salmonella asso-

ciated with invasive disease in immunocompromised populations in sub-Saharan Africa.

Results

Constructing a random forest classifier for extraintestinal Salmonellae

The approach taken in this investigation is summarised in Fig 1, and described below. We

built our model using a collection of genomes from well-characterised reference strains of gas-

trointestinal and extraintestinal Salmonella serovars (S1 Table), drawing on the extensive cura-

tion of orthology relationships performed by Nuccio and Bäumler [17]. These strains were

originally characterised as “gastrointestinal” or “extraintestinal” based on common patterns of

gene degradation, host restriction and clinical characteristics observed among the extraintest-

inal strains [17], and we have employed this same categorisation our analysis. We scored the

functional importance of sequence variation by comparing the protein coding genes of each

serovar to profile HMMs from the eggNOG database [30], designed to capture patterns of

sequence variation typically seen in the protein coding genes of Gammaproteobacteria (see

Methods).

For each genome, the functional significance of sequence variation within protein coding

genes is quantified using the DeltaBS metric. Following scoring, a bootstrap sampling of

genomes are used to train each decision tree. For each node in the tree, a random subset of

genes are sampled, and the most informative gene from this set is chosen to split the data. For

each node in the tree, the predictive utility of the selected gene (variable importance) is tested

by calculating how well the gene separates the samples according to phenotype.
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We then employed random forests to identify the genes which were most informative of

phenotype when viewed collectively. Random forests work by building an ensemble of deci-

sion trees designed to predict a characteristic of the samples [31], in this case adaptation to an

extraintestinal, or invasive, niche. For each node in the decision tree, the best gene of a random

sampling from the training gene set is selected according to its ability to separate a randomly

selected subset of samples by phenotype based on DeltaBS values. The process of building a

random forest produces measures of variable importance that can be used to assess the relative

utility of different genes in classification of Salmonella strains based on lifestyle.

A small subset of genes are strongly predictive of invasiveness in

Salmonella

To obtain an indication of the proportion of the genome that shows patterns of unusual

sequence variation associated with an invasive phenotype, we trained a random forest model

on a set of 6,438 orthologous genes. Accuracy of the model was assessed using out-of-bag accu-

racy. This out-of-bag (OOB) measure of accuracy gives us an indication of how well each deci-

sion tree in the forest performs at predicting phenotype in a serovar it has never encountered

before, using information on DeltaBS differences collected from other serovars. Next, we per-

formed iterative feature selection to improve the performance of the model. This process

involved repeated rounds of selecting the top 50% of predictors and re-training the model,

until the model achieved perfect OOB predictive performance on the training dataset (Fig 2A).

When the full set of filtered orthologous genes was used to build a model, a subset of genes

ranked much higher than the others in variable importance (VI) (Fig 2B). We then saw a tail-

ing off of VI, resulting in 4,721 orthologous groups either not being used in the model, or not

improving classification accuracy (as indicated by VI = 0). This set of genes was discarded in

the first round of feature selection, and 1,521 genes were discarded in the subsequent three

rounds. The final model used 196 of the original 6,438 genes for prediction (S2 Table). This

model additionally achieved perfect classification accuracy on an independent set of genomes

of the same serovars as our training data (S1 Fig). We tested for overfitting using permutation

tests, and for correlation bias [32] using a variety of alternative model building strategies, and

found no evidence for either phenomenon in our model (S1 File).

Predictive genes are typically degraded or absent in invasive isolates

We anticipated that the majority of informative genes identified in our study would be genes

that showed functional degradation in invasive isolates but not in gastrointestinal isolates. Of

Fig 1. Overview of the approach employed in this study.

https://doi.org/10.1371/journal.pgen.1007333.g001
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Fig 2. A subset of Salmonella genes are strongly indicative of invasive potential. A: Out-of-bag votes for phenotype of each serovar cast by

each model. Model 1 is the model built using all predictor variables, then each successive model was built using sparsity pruning from the

previous model’s predictor variables. Model 5 is the final model with 100% accuracy. Out-of-bag votes include only those votes cast by trees

that were not trained on a given sample. The dashed grey line indicates the voting threshold to classify an isolate as invasive. Invasive serovars

are coloured in red and gastrointestinal serovars are coloured in blue. B: Of all genes used in the original training dataset, a small minority are

given high importance in identifying invasive strains. Variable importance is shown for the top 1000 genes used in the original training set.

Variable importance was measured as average decrease in Gini index in a random forest model trained on all orthologous groups that met the

inclusion criteria (N = 6,438). C: Functional categories associated with the top predictive genes. D: Mutations in mrcB (penicillin-binding

protein 1b), one of the top three predictors. Mutations in different strains are colour-coded, with bars in red indicating a mutation in an

extraintestinal strain and bars in blue indicating a mutation in a gastrointestinal strain. An estimate of the effect of the mutation on protein

function (DeltaBS) is shown on the y-axis, with positive values indicating higher chance of a mutation impacting protein function. The x-axis

represents the length of the protein.

https://doi.org/10.1371/journal.pgen.1007333.g002
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the top predictors in our study (N = 196), 154 showed significantly greater mutational burden

in extraintestinal strains compared to gastrointestinal strains (Mann-Whitney U test, adjusted

P-value< 0.05), compared to 9 genes that showed significantly greater mutational burden in

gastrointestinal strains. Of the genes that were more conserved in invasive isolates, one was the

aldo-keto reductase yakC, which was deleted or truncated in all but one gastrointestinal strain

and intact in all invasive strains. Another was the chaperone protein yajL, which appears to be

important for oxidative stress tolerance [33,34].

Among the top predictors were several sets of genes belonging to the same operon (S2

Table). Examples included the ttr, cbi and pdu operons, which are all required for the anaero-

bic metabolism of 1,2-propanediol [35]. These operons have previously been identified as key

degraded pathways in invasive isolates [16–18], and indicate the agreement of this method

with other studies linking loss of gene function to host niche. Overall, a large proportion of the

identified genes were involved in metabolism (Fig 2C), consistent with the findings of similar

studies [17,18]. Of the 167 central metabolism genes identified by Nuccio and Bäumler [17] as

truncated or deleted in at least one extraintestinal serovar, only one of these was previously

reported to be truncated in> 4 serovars. In contrast, we found that 20 of the 167 central

metabolism genes were identified by our model as informative of phenotype, indicating that

including signal from more subtle forms of loss of function improves our ability to detect par-

allelism across lineages of invasive Salmonella. Of the 13 genes reported to be frequently dis-

rupted by Nuccio and Bäumler, our approach identified 9. The other 4 were either not a match

to profile HMMs in our database, or the truncation did not fall within the span of the model.

Other major categories affected include proteins involved in cell wall and membrane function,

perhaps suggesting changes affecting recognition by the host immune system, and signal trans-

duction, suggesting some degree of consistent regulatory rewiring during adaptation to an

extraintestinal niche.

Information provided by multiple genes was often more informative of phenotype than a

single gene individually, as was the case for fimD and fimH (S2 Fig). FimD and FimH consti-

tute central components of type 1 pili, and both are required for expression of normal fimbriae

[36]. This demonstrates that our approach is capable of identifying epistatic relationships

between genes, where a modification in function of one gene masks the functional status of the

other.

Sequence changes in key indicator genes involve independent mutations in

each serovar, contributing to similar functional outcomes

When examining individual genes that showed differences in mutational burden between

invasive and gastrointestinal isolates, we found that most of these mutations had occurred

independently, and had occurred at different sites in the protein. Using a permissive threshold

(DBS>3), or a conservative threshold (DBS>5), there were close to twice as many deleterious,

independent mutations in the genes of the invasive serovars than those of the gastrointestinal

(476:910; 537:991, respectively, see Methods). This phenomenon was even more pronounced

when only mutations with DBS over the upper quartile were counted (249:612, S3 Table).

While the majority of genes identified appeared to be cases of gene degradation in invasive lin-

eages, some genes showed more subtle signs of mutational burden, restricted to nonsynon-

ymous changes of modest predicted functional impact.

An example of this, Fig 2D, illustrates mutation accumulation in one of the top candidate

genes, mrcB, encoding penicillin-binding protein 1b (PBP1b). Not only does mrcB carry more

mutations in invasive serovars compared to gastrointestinal serovars, the mutations have

occurred independently in different positions within the protein. Penicillin-binding proteins
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are the major target of β-lactam antibiotics and are important for synthesis and maturation of

peptidoglycan [37]. PBP1b in particular extends and crosslinks peptidoglycan chains during

cell division. While PBP1b is not essential, it has been shown to be synthetically lethal when

the partially redundant mrcA/PBP1a is deleted, and is important in E. coli for competitive sur-

vival of extended stationary phase, osmotic stress [38], and—in Salmonella Typhi—growth in

the presence of bile [39]. Bile is an important environmental challenge for Salmonella, particu-

larly for extraintestinal serovars which colonize the gall bladder [40]. While there are more

mutations in invasive than in gastrointestinal serovars, the mutations that occur in this protein

are all amino acid substitutions of modest predicted impact. This suggests that sequence

changes could result in a modification of protein function, rather than a loss, consistent with

the importance of PBP1b for the survival of S. Typhi during a typical infection cycle [39].

S. Dublin and S. Enteritidis serovars are more difficult to classify than

others

To anticipate the performance of our random forest model on new data we computed out-of-

bag (OOB) error. Because random forests train each decision tree on a random subset of the

training data, OOB error can be computed by testing the performance of these trees on data

they have not been trained on, providing inbuilt cross-validation [31]. In our case, perfect

OOB classifications were only achieved by the fifth iteration of the model. The need for itera-

tive improvement of the model came from difficulty in correctly classifying the reference

strains for serovars Enteritidis and Dublin. This is reflective of their relatively recent diver-

gence and niche adaptation compared to other serovars in the study (S3 Fig, [18]). S. Galli-

narum was classified much more readily than S. Enteritidis and S. Dublin, despite being

closely related to both serovars, perhaps due to its host restriction.

S. Enteritidis was initially mis-classified as invasive, indicating that it shares genomic trends

with invasive lineages. Genomic analyses have indicated that the ancestor of S. Enteritidis pre-

viously possessed intact pathogenicity islands (SPI-6 and SPI-19), each encoding a type six

secretion system [18,41]. These loci have been implicated in host-adaptation and survival dur-

ing extraintestinal infection [42,43], and it has been speculated based on their loss and other

evidence that classical S. Enteritidis has been adapting towards greater host generalism with

respect to its ancestral state [18]. This could explain the greater number of disrupted and

deleted genes relative to other gastrointestinal serovars used in this study, and the difficulty in

classifying it correctly. Conversely, S. Dublin was initially mis-classified as gastrointestinal. In

previous studies S. Dublin has been shown to possess fewer pseudogenes than related invasive

isolates [17,18], suggesting a lower degree of host adaptation than other invasive isolates.

Indeed, S. Dublin is more promiscuous in its host range, primarily infecting cattle [44] while

still causing sporadic human disease [45]. It seems likely that a subset of informative genes

identified in early iterations of the model may have been indicators of host restriction or gen-

eralism rather than broad extraintestinal adaptation.

Patterns of gene degradation identified in established invasive lineages are

present in novel lineages of S. Typhimurium and S. Enteritidis associated

with systemic infection

In recent years there have been reports of novel S. Typhimurium and S. Enteritidis lineages

associated with invasive disease in sub-Saharan Africa [46–48] in populations with a high prev-

alence of immunosuppressive illness such as HIV, malaria, and malnutrition [49]. These line-

ages contribute to a staggering burden of invasive non-typhoidal salmonella (iNTS) disease,

which is responsible for an estimated 3.4 million cases and circa 680,000 deaths annually [50].
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Based on epidemiological analysis, high-throughput metabolic screening of selected strains,

and analysis of pseudogenes it has been suggested that these lineages may be rapidly adapting

to cause invasive disease in the human niche created by widespread immunosuppressive illness

[11,46–48,51].

Two iNTS-associated lineages have recently been described within serovar Enteritidis [48],

geographically restricted to West Africa and Central/East Africa, respectively. Initial observa-

tions have demonstrated that a representative isolate of the Central/East African clade has a

reduced capacity to respire in the presence of metabolites requiring cobalamin for their metab-

olism and has lost the ability to colonize a chick infection model [48], suggesting adaptation to

a new host niche. Similarly, two iNTS disease associated lineages have been described in sero-

var Typhimurium [47], both members of sequence type 313 (ST313), generally referred to as

Lineage I and II in the literature. Lineage II appears to have largely replaced Lineage I since

2004, and it has been suggested this is due to Lineage II possessing a gene encoding chloram-

phenicol resistance [47]. Laboratory characterization of Lineage II strains has shown that they

are not host-restricted [52,53], but do appear to possess characteristics suggestive of adaptation

to an invasive lifestyle [54–57], though it is important to note that this is a complex trait and

not easily quantified.

Given the evidence of adaptation to an invasive niche in these lineages, we asked if genomic

signatures of extraintestinal adaptation we had detected previously could be detected in iNTS

disease associated lineages. To this end, we applied our predictive model trained on well-char-

acterized extraintestinal strains to calculate an invasiveness index, the fraction of decision trees

in the random forest voting for an invasive phenotype. First, we compared isolates from Afri-

can iNTS-associated clades of S. Enteritidis (N = 233) to a global collection of isolates generally

associated with intestinal infection (N = 100) [48].

Our model gave iNTS-associated S. Enteritidis strains a higher invasiveness index than the

globally distributed isolates (Fig 3A and 3B, S4 Table), indicating the presence of genetic

changes paralleling those that have occurred in extraintestinal serovars of Salmonella. Similar

gene signatures were only rarely observed in the global epidemic clade (Fig 3C). These findings

are consistent with the metabolic changes observed by Feasey et al. [48] in the Central/Eastern

African clade compared to the global epidemic clade. In particular we found signs of gene

sequence variation uncharacteristic of gastrointestinal Salmonella across a number of key

genomic indicators, including tcuR, ttrA, pocR, pduW, eutH, SEN2509 (a putative anaerobic

dimethylsulfoxide reductase) and SEN3188 (a putative tartrate dehydratase subunit), all in

pathways previously identified by Nuccio and Bäumler [17] as being involved in the utilization

of host-derived nutrients in the inflamed gut environment. This indicates that our model is

able to identify early signatures of adaptation, even in these recently emerged strains that still

retain some capacity to cause enterocolitis [48].

To confirm this, we performed an additional comparison of S. Typhimurium ST313 isolates

(N = 208), to global isolates from other STs, predominantly ST19, associated with gastroenteri-

tis (N = 51) [51,58]. Similarly to iNTS associated S. Enteritidis isolates, S. Typhimurium ST313

isolates has a higher invasiveness index than isolates from other STs (S4 Fig, S5 Table). Within

ST313, Lineage II scored higher than Lineage I, possibly suggesting differential adaptation to

the extraintestinal niche. We found that there were in fact more degraded genes unique to

Lineage I than Lineage II, but that these genes were assigned less weight in the model, so did

not impact score as strongly (S2 Fig & S3 Fig). Interestingly, ST313 has recently been shown

not to be entirely restricted to Africa, with isolation reported in Brazil [59] and the UK [58],

associated primarily with gastrointestinal disease. We included a collection of UK ST313

strains [58] in our analysis, and found that their invasiveness index tended to be elevated com-

pared to non-ST313 salmonellae, and intermediate between Lineage I and II, suggesting that
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this adaptation is not restricted to circulating African strains, as it can be seen in strains col-

lected from other countries as well (S5 Fig). This observation is consistent with the work of

Ashton et al. [58], who noted shared pseudogenes and phenotypic traits in UK and African

ST313 isolates. This suggests our model is capturing features here associated with the ability to

colonize an extraintestinal niche, rather than enter it in healthy individuals.

Fig 3. Voting of the model on African iNTS and global gastrointestinal isolates. A: Maximum likelihood phylogeny of all S. Enteritidis

isolates included in the study, annotated with invasiveness ranking and clade (note: Outlier refers to the distinct sister clade of the global

epidemic strains identified by [48], while Other refers to strains that don’t belong to a named clade). B: Invasiveness indices for African and

non-African clades of Salmonella. Lower and upper boundaries of the boxplots correspond to the 25th and 75th quantiles. C: The proportion of

isolates from each tested dataset carrying a hypothetically attenuated coding sequence (HAC, defined by a DeltaBS>3 relative to the reference

serovar). Genes are ordered by the amount of degradation observed in African clades. African strains are shown in the positive y-axis in darker

grey, global strains are shown in the negative y-axis in lighter grey.

https://doi.org/10.1371/journal.pgen.1007333.g003
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In addition to the iNTS lineages we investigated, some other strains had unusually high

invasiveness indices. Among the top scoring isolates outside of the African S. Enteritidis line-

ages are Ratin strains, a rodenticidal lineage used as commercial rat poison before the 1960s

[60]. In S. Typhimurium, a clade containing strains DT99, DT56 and U313 also scored highly.

These strains appear to be adapted to birds, and DT99 and DT56 have been reported to be

highly virulent in pigeons [12,61–63].

While the above data suggests that our model is detecting genetic changes associated with

extraintestinal survival, it is difficult to infer directionality from large isolate collections. We

have addressed this using a unique case of accelerated adaptation over the course of a single

infection (Fig 4). We scored the invasiveness index of a collection of hypermutator S. Enteriti-

dis isolates collected over a ten year period that were adapting to chronic systemic infection of

an immunocompromised patient [10]. We found a significant positive correlation between

invasiveness index and duration of carriage (r = 0.96, n = 6, P = 0.002). Additionally, there was

a significant shift over time in the DeltaBS distribution for the genes in our model as compared

to the rest of the genome (P = 7.576e-05, Mann Whitney U test). This suggests a specific

change in selective pressure on genes inferred to be important for extraintestinal survival from

established invasive serovars, and provides evidence for parallel adaptation.

Discussion

Parallel evolution appears to be common in niche adaptation, which allows us to identify

genes that are important for survival in different environments [64]. Parallelism has been

Fig 4. Invasiveness indices and DeltaBS (DBS) values for isolates collected during long term invasive infection of an immunocompromised patient provide

evidence for parallel adaptation. Black points show the increase in the invasiveness index over time. Boxplots show a significant shift in DBS distribution over the

duration of carriage for genes selected by our model built from well-characterised invasive serovars as compared to the rest of the proteome. Isolates from [10]. DBS

distributions for 2001 have been pooled, but are representative for all three isolates individually. The y-axis for DBS values has been truncated for better visualisation.

https://doi.org/10.1371/journal.pgen.1007333.g004
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observed across vastly different time scales in adapting pathogens. Parallel evolution in the dis-

tantly related genuses Salmonella and Yersinia during adaptation to invasive infection of the

human host has led to independent losses of the ttr, cbi and pdu genes, important for anaerobic

metabolism during intestinal infection [5]. Within genuses, parallelism has been observed

when distinct lineages acquire similar virulence factors leading to similar phenotypes, as with

Yersinia pseudotuberculosis and enterocolitica [8], or the repeated emergence of the Shigella
phenotype within the Escherichia [6]. Even on the scale of a single human lifetime, parallel

adaptation has been observed in Pseudomonas aeruginosa lineages adapting to infection of the

lungs of children with cystic fibrosis [9], or a hypermutator strain of Salmonella adapting to an

immunocompromised host [10]. With pathogen sequencing for disease surveillance becoming

increasingly routine [65–67], we have the opportunity to search for signals of parallel evolution

as new pathogens emerge, or old pathogens expand into new niches.

Here, we have developed an approach for automatically learning which genes contribute to

this parallel adaptation. Leveraging the DeltaBS functional variant scoring approach we devel-

oped previously [21] allowed us to construct scores which integrate independent mutations

and indels that impact gene function. Using these scores, we were able to construct a classifier

model which is able to separate Salmonella serovars adapted to an extraintestinal niche from

gastrointestinal strains. Importantly, the random forest classifier that we used produces inter-

pretable lists of genes involved in this adaptation, which agree with results in the literature

attained through manual curation of pseudogenes. Additionally, we have shown that this clas-

sifier is able to identify nascent signatures of adaptation in strains of Salmonella which have

been evolving in response to large populations of immunocompromised patients in resource-

poor nations.

Other automated approaches to detecting adaptation have been developed which search for

SNPs [68] or words [69,70] associated with phenotype. These approaches, termed microbial

genome-wide association studies (GWASs), have used techniques adapted from human

GWASs, but better cater to methodological issues that arise due to the differences between

human and bacterial inheritance patterns. Major differences impacting analyses are stronger

linkage disequilibrium (LD) between genetic variants in bacterial genomes, greater population

stratification, and often stronger selection for traits [71]. Greater LD and population stratifica-

tion often result in traits being linked closely with particular lineages, and a large number of

variants unique to a lineage being spuriously associated with phenotype. Correction for popu-

lation stratification allows greater discrimination of true and false positive associations, but

results in a substantial loss of power to detect true positives [71], particularly in phenotypes

that are highly polygenic and are not under strong positive selection [72]. This can be cor-

rected by increasing the sample size of the study, but increasing sample size can make mea-

surement of complex phenotypes infeasible [23].

A number of machine learning approaches to predicting phenotype from genotypic infor-

mation have also been recently developed. A notable example is a Support Vector Machine

(SVM) based approach to predicting host range in Salmonella enterica and Escherichia coli
[73], as it has a similar aim of predicting strains with a higher probability of causing severe dis-

ease. We have taken a markedly different approach to other machine learning based studies,

primarily in our use of few, distantly related training examples, rather than densely sampled

strains across a narrower phylogenetic distance. This is because we wanted to prevent over-fit-

ting of the model through the inclusion of predictors that were informative of phylogeny

rather than phenotype, and we wanted an accurate estimation of predictive error, which can-

not be achieved using traditional cross-validation when there is a strong correlation structure

in a dataset [74]. We have also taken additional steps to examine the genes and criteria used by

the model to make predictions, and have presented these in S2 Table, in order to aid the
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reader’s understanding of how the model makes predictions, and what this teaches us about

the biology of this phenotype.

The use of DeltaBS output as training variables differs from current approaches by allowing

the estimation of the combined effects of variants, both common and rare, on gene function.

The weighting scheme can also combine data on gene presence/absence, indels and SNPs into

a single metric. It significantly reduces the number of association tests that need to be per-

formed to comprehensively capture much of the genetic diversity in a species, increasing

power to detect associations, and reducing the requirement for such large sample sizes. The

approach also aids in identifying genetic variants that are most likely to have a phenotypic

effect within LD blocks. The DeltaBS variant scoring approach can be readily applied to large

datasets, and could be employed in a linear mixed model (LMM) based association testing

framework [68], or used in a hybrid LMM-random forest based approach [75] to preserve the

ability of the metric to detect epistasis between genes [26].

Conclusions

In this study, we have demonstrated the insight to be gained by the layering of machine learn-

ing approaches to better understand niche adaptation in a bacterial pathogen. Firstly, profile

hidden Markov models allow us to capture information on common patterns of sequence vari-

ation in protein families in order to understand the functional significance of specific muta-

tions. Using data on the accumulation of functionally impactful mutations across the

proteome as input, random forests then allow us to identify genes that display a difference in

selective pressures between lineages with different phenotypes. Not only has this approach

proved effective at identifying biological mechanisms behind bacterial niche adaptation, it has

also allowed us to detect the emergence of new extraintestinal lineages by searching for these

recurrent patterns of mutation accumulation in a way that allows the recognition of novel

mutations as cases of the same underlying shift away from the sequence constraints a gene is

usually subjected to. We believe this general approach will be broadly applicable to any patho-

gen where multiple lineages are adapting to the same niche, and will be able to detect signa-

tures of adaptation that are missed by other methods.

Methods

Genome data and identification of orthologs

High quality genomes for 13 well-characterised Salmonella enterica serovars were retrieved

from the NCBI database (accessions and serovar information can be found in S1 Table). The

serovars were divided into gastrointestinal and extraintestinal serovars according to the classi-

fications made by Nuccio and Bäumler [17]. Ortholog calls were also taken from the Supple-

mentary Material of Nuccio and Bäumler [17]. A core gene phylogeny for the strains used to

build the model was produced using RAxML [76], based on a core gene alignment created in

Roary [77].

Measuring the divergence of genes from predicted sequence constraints

Profile hidden Markov models (HMMs) for Gammaproteobacterial proteins were retrieved

from the eggNOG database [30]. We chose this source of HMMs because it is publicly avail-

able, allowing for better reproduction of analyses, and we feel it provides a good balance

between collecting enough sequence diversity to capture typical patterns of sequence variation

in a protein, without sacrificing sensitivity in the detection of deleterious mutations, as we

have observed with Pfam HMMs [21]. Each protein sequence was searched against the HMM
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database using hmmsearch from the HMMER3.0 package (http://hmmer.org). The top scoring

model corresponding to each protein was used for analysis (N = 8,060 groups). Orthologous

groups (OGs) with no corresponding eggNOG HMM, or more than one top model hit were

excluded from further analysis (N = 1,524). If most genes in an OG had a significant hit (E-

value<0.0001) to the same eggNOG model, any genes within this OG that did not were

assigned a score of zero, reflecting a loss of the function of that protein. These cases typically

reflected a truncation that had occurred early in the protein sequence. Additionally, genes with

no variation in bitscore for the match between protein sequences and their respective eggNOG

HMM across isolates were excluded (N = 188). After this filtering process, 6,439 orthologous

groups remained for analysis. Residue-specific DeltaBS (as in Fig 2D) was calculated by align-

ing orthologous sequences, choosing a reference sequence (from S. Typhimurium), and substi-

tuting each variant match state and any accompanying insertions into the reference sequence

and calculating the difference in bitscore caused by the substitution.

Training a random forest classifier

The R package “randomForest” [78] was used to build random forest classifiers using a variety

of parameters to assess which were best for accuracy. We used out-of-bag (OOB) error rate to

measure the performance of the model [31]. Out-of-bag error is calculated automatically by

the randomForest R package as the model is built. Briefly, calculations are performed as fol-

lows: as each decision tree is trained using a bootstrap sampling of the training genomes, a

small number of samples are left aside to test the predictive accuracy of each decision tree on

previously unseen samples. For each serovar, votes are collated and accuracy is calculated from

only those decision trees that did not include the serovar in their training set. In this applica-

tion, this step tests whether the genomic signatures of invasiveness captured by the decision

trees based on some serovars are present in other serovars, and thus whether the model can

detect adaptation to an invasive lifestyle in previously unseen lineages. OOB error rate, stabi-

lised at 10,000 trees, so we chose this as a parameter for optimising the number of genes sam-

pled per node (mtry). mtry values of 1, p/10, p/5, p/3, p/2 and p (where p = the number of

predictors) were tested, and we found that at mtry = p/10, the number of genes that were either

not incorporated into trees, or did not improve the homogeneity of daughter nodes when they

were incorporated into trees (as measured by mean decrease in Gini index, [79]) stabilised at

~92%. Training the random forest classifier over five iterations took 55 seconds on a laptop

computer. In order to assess how well this method would scale, we trained another model on a

larger dataset of S. Enteritidis strains (N = 677) using the same workflow and site of isolation

as a proxy for phenotype, which took 28 minutes.

To improve the performance of the model, we performed five model building and sparsity

pruning cycles. For the first cycle, we built a random forest model using all genes that met the

inclusion criteria, and performed sparsity pruning by eliminating all variables that had a mean

Gini index (variable importance) of zero or lower (meaning the gene was either not included

in the model or did not improve model accuracy when it was). Four successive rounds of

model building and sparsity pruning involved building a new model with the pruned dataset,

then pruning the genes with the lowest 50% of variable importances. The resulting model had

100% out-of-bag classification accuracy. We also tested the accuracy of the full model on a col-

lection of alternative strains related to the training dataset (see S1 Table). Orthologs to the top

genes identified by our model were identified using phmmer from the HMMER3.0 package

(http://hmmer.org). Additional notes on model building and testing are provided in S1 File.

We tested the top 196 genes for the presence of independent mutations in each serovar by

aligning each sequence to the profile HMM representing that protein family. Variation in each

Machine learning identifies signatures of bacterial host adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007333 May 8, 2018 13 / 20

http://hmmer.org/
http://hmmer.org/
https://doi.org/10.1371/journal.pgen.1007333


sequence with respect to a designated reference sequence from the set (as selected by Nuccio

and Bäumler, 2014) at each site in the HMM was identified and classified as either a mutation

unique to a single serovar, or one shared among multiple serovars. Consecutive deletions or

insertions with respect to the HMM consensus sequence were collapsed into single mutational

events.

Invasive non-typhoidal Salmonella analysis

Read data from Feasey et al. [48] and Klemm et al [10] was mapped to the reference genome S.

Enteritidis P125109. Reads from Okoro et al. [51] and Ashton et al. [58] were mapped to the

reference genome S. Typhimurium LT2. For samples in the Okoro study, if an isolate was

sequenced using multiple runs, the most recent run was chosen for analysis. All reads were

mapped using BWA mem [80] and regions near indels were realigned using GATK [81].

Picard (http://broadinstitute.github.io/picard) was used to identify and flag optical duplicates

generated during library preparation. SNPs and indels were called using samtools v1.2 mpileup

[82], and were filtered to exclude those variants with coverage <10 or quality <30. For tree

building, a pseudogenome was constructed by substituting high confidence (coverage >4,

quality >50) variant sites in the reference genome, and masking any sites with low confidence

with an “N”. Insertions relative to the reference genome were ignored, and deletions were filled

with an “N”. Pseudogenome alignments were then used as input to produce trees using Gub-

bins [83] to exclude recombination events, and RAxML v8.2.8 [76] to build maximum likeli-

hood trees using a GTR + Gamma model. Samples with>10% missing base calls were

excluded from the analysis.

Sequences for the 196 genes of interest used in the random forest model were retrieved for

each isolate and translated. These were then scored using their respective profile HMMs. Score

data was collated, and any missing values were marked as ‘NA’ and imputed using the na.

roughfix function from the randomForest R package [78]. This is a different approach used to

that of the training dataset, due to the potentially lower quality of the sequenced genomes lead-

ing to gene absence due to low coverage rather than true deletion or severe truncation. The

relationship between invasiveness ranking and phylogeny were visualised using Phandango

[84].

Supporting information

S1 Fig. Invasiveness index assigned to validation strains of Salmonella.

(TIF)

S2 Fig. Bitscore values from the genes from the genes fimD and fimH combined are better

predictors of phenotype than either gene individually.

(TIF)

S3 Fig. Phylogeny of the Salmonella serovars used in this study. The tree was constructed in

RAxML using a core gene alignment produced by Roary. Invasive serovars are highlighted in

red.

(TIF)

S4 Fig. Invasiveness scores for S. Typhimurium ST313 isolates. A: RAxML tree of all ST313

isolates included in the study, annotated with invasiveness ranking and lineage. B: Invasiveness

index for all ST313 isolates. C: Proportion of isolates carrying HACs in ST313 compared to

other sequence types.

(TIF)
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S5 Fig. Genes in S. Typhimurium ST313 above (intact, purple) or below (attenuated,

green) bitscore threshold defined by random forest model for detecting gene degradation

associated with invasive isolates. Genes for which homology to the reference sequence was

not detected (usually due to extreme truncation) are marked in orange.

(TIF)
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