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Abstract

The katanin microtubule-severing proteins are essential regulators of microtubule dynamics

in a diverse range of species. Here we have defined critical roles for the poorly characterised

katanin protein KATNAL2 in multiple aspects of spermatogenesis: the initiation of sperm tail

growth from the basal body, sperm head shaping via the manchette, acrosome attachment,

and ultimately sperm release. We present data suggesting that depending on context,

KATNAL2 can partner with the regulatory protein KATNB1 or act autonomously. Moreover,

our data indicate KATNAL2 may regulate δ- and ε-tubulin rather than classical α-β-tubulin

microtubule polymers, suggesting the katanin family has a greater diversity of function than

previously realised. Together with our previous research, showing the essential requirement

of katanin proteins KATNAL1 and KATNB1 during spermatogenesis, our data supports

the concept that in higher order species the presence of multiple katanins has allowed for

subspecialisation of function within complex cellular settings such as the seminiferous

epithelium.

Author summary

Male infertility affects one in twenty men of reproductive age in western countries.

Despite this, the biochemical basis of common defects, including reduced sperm count

and abnormal sperm structure and function, remains poorly defined. Microtubules are

cellular “scaffolds” that serve critical roles in all cells, including developing male germ

cells wherein they facilitate mitosis and meiosis (cell division), sperm head remodelling

and sperm tail formation. The precise regulation of microtubule number, length and

movement is thus, essential for male fertility. Within this manuscript, we have used sper-

matogenesis to define the function of the putative microtubule-severing protein katanin-

like 2 (KATNAL2). We show that mice with compromised KATNAL2 function are male
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sterile as a consequence of defects in the structural remodelling of germ cells. Notably, we

show the function of microtubule-based structures involved in sperm head shaping and

tail formation are disrupted. Further, we show for the first time, that KATNAL2 can func-

tion both independently or in concert with the katanin regulatory protein KATNB1 and

that it can target the poorly characterized tubulin subunits delta and epsilon. Our research

has immediate relevance to the origins of human male infertility and provides novel

insights into aspects of microtubule regulation relevant to numerous tissues and species.

Introduction

The katanins are members of the ATPases Associated with diverse cellular Activities (AAA)

superfamily, and were first identified via the microtubule severing activity of the catalytic

KATNA1 (p60) and its regulatory protein, KATNB1 (p80) [1], and their pivotal roles in

defining meiotic spindle structure in Caenorhabditis elegans [2,3]. Since then, the KATNA1-

KATNB1 complex has emerged as a critical regulator of microtubule dynamics in a range of

contexts, including mitosis, cilia biogenesis and disassembly, neurogenesis and cell migration

[4,5].

In its active ATP-bound state, KATNA1 forms hexameric rings capable of binding to and

severing microtubule polymers [1,6–8]. Typically, KATNA1 binding to KATNB1 enhances

severing, likely due to KATNB1 increasing the stability of the KATNA1 hexamer [6,9,10].

Although intrinsically destructive, microtubule severing is also used to remodel existing struc-

tures, release microtubules from nucleation sites and to generate short stable microtubule

fragments that can ‘seed’ new growth and/or be easily transported around the cell [11–14].

Reflective of their integral role in microtubule dynamics, Katna1 and Katnb1 are highly con-

served across the genomes of animals, higher order plants and protozoa. In a number of higher

order species, two paralogues of Katna1, namely Katnal1 and Katnal2, also exist [5]. KAT-

NAL1 is required for sensory neuron dendrite arborisation and pruning in Drosophila melano-
gaster [15,16] and is capable of being regulated by KATNB1 [17]. In comparison, KATNAL2 is

poorly characterised. KATNAL2 has been proposed as a risk factor for human autism [18–20]

and viral transfection studies suggest a role in dendrite arborisation in developing mouse neu-

rons [21]. In vitro studies have pointed to functions in centriole dynamics and ciliogenesis

[17,22]. An in vivo role for KATNAL2 remains untested.

Mammalian spermatogenesis is exquisitely sensitive to disturbances in microtubules. The

microtubule cytoskeleton provides an essential and dynamic scaffold that drives many of the

structural changes in mitosis, meiosis and spermatid remodelling (spermiogenesis), and the

complex interactions between developing germ cells and their supporting Sertoli cells [23].

Recently, we have shown that multiple aspects of microtubule function in the adult male germ

line depend on the action of KATNB1, including meiotic spindle structure and cytokinesis,

axoneme development and thus sperm motility, and sperm head shaping [24]. The precise sev-

ering proteins mediating each of these phenotypes however, remain to be defined. Each of the

three KATNA1-related subunits is expressed in the seminiferous epithelium [24] and towards

an understanding of the function of each within male fertility, we have shown that KATNAL1

is required for Sertoli cell function, specifically in defining germ cell positioning within the

depth of the epithelium and maintaining Sertoli-round spermatid adhesion [25].

Here we report that KATNAL2 mediates many of the post-meiotic aspects of KATNB1

function, including sperm head shaping. We provide additional evidence that KATNAL2 is

capable of acting in a KATNB1-independent manner, including in basal body extension and
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spermiation, and that KATNAL2 has the potential to interact with the poorly characterized

tubulin sub-types δ and ε. Collectively, these data paint an emerging picture of katanin sub-

specialisation to ensure the appropriate development of multiple microtubule-dependent

structures during male germ cell development.

Results

KATNAL2 is highly enriched in the testis wherein multiple isoforms are

produced

Previously we have shown that Katnal2 is highly testis-enriched [24]. To refine this analysis,

we took testes from mice at defined ages during the establishment of spermatogenesis and

assessed them by western blotting for KATNAL2 content. As the establishment of spermato-

genesis, and thus germ cell content, is tightly regulated in the mouse, age-dependent changes

in gene expression can indicate the cell of origin. Total testis expression was compared to

expression in isolated germ cell populations. The antisera used was designed to bind to the

maximum number of predicted KATNAL2 isoforms as listed in Ensembl, but not cross-react

with other katanin-like proteins. As shown in Fig 1A and 1B, several KATNAL2 isoforms were

notably enriched in particular ages and cell types. Collectively, these results indicate that the

55kDa isoform was enriched within spermatogonia, which appear at post-natal day 6, then

became progressively diluted as the testis was populated with more mature germ cells types.

The 61kDa isoform was enriched in spermatocytes and spermatids, but excluded from mature

sperm. The 46kDa isoform was only seen in testes samples >30 days of age and in mature

sperm, raising the possibility of its expression in elongated spermatids. By contrast, the 20 and

35kDa isoforms were constitutively produced in the testis, but were not detected in germ cells,

suggesting they are produced in Sertoli cells and/or other somatic cells. The 25kDa isoform

was also constitutively produced in the testis at all ages and was present in mature sperm. The

molecular weight of the 61kDa, 55kDa, 46kDa and 25kDa isoforms was consistent with four of

the six isoforms predicted in Ensembl (Fig 1D). The 31 and 10 kDa isoforms predicted in

Ensembl would not be detected by our antibody as they lack the amino acids encoded by exon

three against which our antibody was raised (Fig 1D). In addition, we detected 35 and 20kDa

proteins, suggesting that additional exon 3 containing isoforms are encoded within the testis,

but are yet to be recognized by Ensembl. The specificity of the KATNAL2 antibody was con-

firmed using western blotting (Fig 1F) and immunochemistry (S1 Fig).

Consistent with the western blotting data, immunochemistry data indicated that KATNAL2

was localised in highest concentrations in elongating and elongated spermatids, where it is

concentrated around the spermatid head (S1 Fig).

KATNAL2 plays an essential role in sperm head shaping, axoneme

initiation and sperm release

In order to test the in vivo function of KATNAL2, mice containing a tyrosine (TAC) to cyste-

ine (TGC) substitution in exon 3 of the Katnal2 gene (Fig 1C–1E) were obtained from the mis-

sense mutation library of the Australian Phenomics Network. Tyrosine 86 is conserved in all

species within which KATNAL2 orthologues are observed (Fig 1E). Following at least two

rounds of breeding with non-mutated mice, heterozygous mutant mice were inter-crossed

and the resultant wild type and Katnal2Y86C/Y86C offspring test mated with wild type females.

Katnal2Y86C/Y86C animals appeared outwardly normal, had a normal mating frequency, but

were sterile (7.5 pups per copulatory plug in Katnal2WT/WT (n = 3) vs 0.00 in Katnal2Y86C/Y86C

(n = 9) p =<0.0001).
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Fig 1. Multiple KATNAL2 isoforms are produced and differentially expressed in the testis. (a) Western blot analysis of

KATNAL2 protein expression in whole testis homogenates from Katnal2WT/WT mice of various ages. (b) Western blot analysis of

KATNAL2 protein expression in isolated germ cell populations from adult Katnal2WT/WT mice. S’cytes = spermatocytes, round

s’tids = round spermatids. Schematic representation of the Katnal2 gene (c) and the various predicted transcripts and their

corresponding proteins (d). Location of the LisH and AAA ATPase domains are shown in green and blue respectively. (e) A cross-

phyla comparison of the region containing the Y86C mutation. Red arrowheads indicate the position of the Y86C mutation. (f)

Western blot analysis of KATNAL2 protein in whole testis homogenates from Katnal2WT/WT, Katnal2WT/KO and Katnal2KO/KO mice.

(g) qPCR analysis of Katnal2 transcript levels in whole testis homogenates from Katnal2Y86C/Y86C, Katnal2Y86C/KO and Katnal2KO/KO

mice relative to Katnal2WT/WT (n = 3/group). No difference was observed in Katnal2 transcript levels within the testis between
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To confirm the essential nature of KATNAL2 for male fertility, we produced Katnal2
knockout (Katnal2KO/KO) mice using knockout first conditional-ready embryonic stem cells

produced by the International Mouse Knockout Consortium (S3 Fig). Both Katnal2KO/KO (S3

Fig) and Katnal2Y86C/KO (S2 Fig) males were sterile and contained an apparently identical male

fertility phenotype to that observed in Katnal2Y86C/Y86Cmice, thus confirming the essential

requirement for KATNAL2 in spermatogenesis and that the Y86C allele can be considered a

null (or very close to null) allele. As expected, Katnal2KO/KO produced virtually no Katnal2
mRNA (Fig 1G) and KATNAL2 protein (Fig 1F). By contrast, Katnal2Y86C/Y86C testes con-

tained comparable amounts of Katnal2 mRNA to wild type littermates (Fig 1G) but 41% of

wild type KATNAL2 levels (S2 Fig). As expected, testes from Katnal2Y86C/KO mice contained

Katnal2 mRNA levels intermediate between Katnal2Y86C/Y86C and Katnal2KO/KO (Fig 1G).

These data suggest that tyrosine 86 has an essential role in KATNAL2 function and stability.

We cannot, however, rule out the possibility that the introduction of an additional cysteine in

the Y86C mutants resulted in a catastrophic change in protein conformation. Collectively,

these data suggest that the Katnal2Y86C/Y86C phenotype was not due to a gain of function i.e. it

is equivalent to the Katnal2KO/KO phenotype. For simplicity, the bulk of data presented in the

body of the paper is from Katnal2Y86C/Y86Cmice, with confirmation from Katnal2KO/KO and

Katnal2Y86C/KO contained in the supplemental data.

A histological assessment of the male reproductive tract quickly identified that the origin of

sterility in Katnal2Y86C/Y86Cmales was the complete absence of motile sperm within the epidid-

ymides (Fig 2). Both testis weight and daily sperm production were normal in Katnal2Y86C/
Y86C males (Fig 2A and 2B), as were the numbers of apoptotic germ cells (S6 Fig). Epididymal

sperm content was, however, reduced by 96.5% compared to that seen in wild type littermates

(Fig 2C), and, of the few sperm that were found within the epididymis, all possessed abnormal

sperm head shape, short or absent tails, an abnormally formed mitochondrial sheath in their

mid-piece (Fig 2J–2L) and had no capacity for motility. The dramatic difference in the ratio of

daily sperm production and epididymal sperm content in wild type versus Katnal2Y86C/Y86C

males is indicative of a massive failure of spermiation. This failure was easily seen in stage IX

tubules of Katnal2Y86C/Y86Cmales wherein elongated spermatids were frequently observed

within the depth of the seminiferous epithelium prior to their destruction by Sertoli cells (Fig

2I). By contrast, elongated spermatids were rarely observed in stage IX tubules in wild type lit-

termates (Fig 2H). The origin of this phenotype is described in more detail below and it was

also seen in Katnal2KO/KO and Katnal2Y86C/KO males (S2 and S3 Figs).

A close examination of the testis revealed that the bulk of the abnormalities observed in

Katnal2Y86C/Y86Cmales arose during spermiogenesis (haploid germ cell development) (Fig 2).

Testis histology was relatively normal in pre-meiotic and meiotic germ cells. As meiotic abnor-

malities were abundant in the KATNB1 hypomorphic mice (Katnb1Taily/Taily )[24], these data

suggest that KATNB1 function in male meiosis was not achieved in partnership with

KATNAL2.

Several severe abnormalities were, however, seen in all haploid germ cells. These included

abnormal nuclear morphology (club-shaped, Fig 2G), the absence of sperm tail growth (see

below) and spermiation failure (Fig 2I). Microtubule abnormalities were highlighted via the

staining of testis sections for α-tubulin, as a marker of the manchette in particular (Fig 3B),

and acetylated tubulin, as a marker of the axoneme at the core of the sperm tail (Fig 4A and

Katnal2Y86C/Y86C and Katnal2WT/WT mice. However, Katnal2 mRNA transcript levels in the testis were reduced by 49% and 97% in

Katnal2WT/KO and Katnal2KO/KO mice respectively, compared to Katnal2WT/WT. Lines represent mean±SD, ** p<0.01 compared to

Katnal2WT/WT, *** p<0.001 compared to Katnal2WT/WT.

https://doi.org/10.1371/journal.pgen.1007078.g001
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Fig 2. Spermatogenic defects in Katnal2Y86C/Y86C mice. (a). Testis weight in Katnal2WT/WT (white triangles) and Katnal2Y86C/Y86C (black triangles) mice (n =

9/group). Daily sperm production (DSP) in the testes (b) and total epididymal sperm content (c) of Katnal2WT/WT (white triangles) and Katnal2Y86C/Y86C (black

triangles) mice (n = 3/group). Total epididymal sperm content was reduced by 96.5% in Katnal2Y86C/Y86C compared to Katnal2WT/WT. In a–c, lines represent

mean ±SD, ** p<0.01 compared to Katnal2WT/WT. (d–i) Periodic acid Schiff’s (PAS) stained testis sections from Katnal2WT/WT and Katnal2Y86C/Y86C mice.

Genotype is indicated in the top right-hand corner. Multinucleated symplasts (arrowheads) were frequently observed in the Katnal2Y86C/Y86C seminiferous

epithelium (e). (f–g) Elongating spermatids in Katnal2WT/WT versus Katnal2Y86C/Y86C mice. Abnormal nuclear (club-shaped) morphology of spermatids

(arrowheads) was frequently observed in Katnal2Y86C/Y86C mice. (h–i) Spermiation in Katnal2WT/WT versus Katnal2Y86C/Y86C mice. At the cessation of

spermatogenesis, retained elongated spermatids (arrowheads) were frequently observed in stage IX tubules of Katnal2Y86C/Y86C (i) but were rarely observed in

Katnal2WT/WT (h) mice. (j–l) Cauda epididymal sperm morphology in Katnal2WT/WT and Katnal2Y86C/Y86C mice. Katnal2Y86C/Y86C sperm frequently displayed

abnormal (asterisk) or absent (arrowheads) mitochondrial mid-pieces. Sperm heads were often abnormally shaped. Scale bars in d–l = 10μm.

https://doi.org/10.1371/journal.pgen.1007078.g002
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4B). Identical abnormalities were observed in Katnal2Y86C/KO and Katnal2KO/KO testes (S2 and

S3 Figs).

In relation to sperm head shaping, the loss of KATNAL2 function resulted in abnormal

manchette function and, ultimately, the constriction of elongated spermatid nuclei and abnor-

mally long manchette microtubules (Fig 3A and 3B). The manchette is a transient microtu-

bule-based structure involved in the shaping of the distal half of the sperm head and also acts

as a platform for protein transport into the developing sperm tail [26,27]. A closer analysis of

the step-by-step development of elongating spermatids at a light microscopic level indicated

Fig 3. KATNAL2 regulates the manchette, and thus spermatid head shaping, in association with KATNB1. (a) Electron microscopy showing nuclear

morphology of elongating spermatids in Katnal2WT/WT and Katnal2Y86C/Y86C mice. Excessive constriction of the perinuclear ring (arrowheads) was observed in

Katnal2Y86C/Y86C but not Katnal2WT/WT mice. Scale bars in a = 2 μm. (b) α-tubulin immunolabelling as a marker for spermatid manchettes in Katnal2WT/WT and

Katnal2Y86C/Y86C testis sections. Primary antibody negative controls are included in S7 Fig Scale bars in b = 10 μm. (c) KATNAL2 interaction with KATNB1

was indicated by co-immunoprecipitation of the pEGFP-KATNAL2 –pmCherry-KATNB1 complex using anti-GFP beads and confirmed by an in situ proximity

ligation assay (d). (c) Input: whole cell lysate from transfected cells. IP: immunoprecipitation with GFP conjugated beads. The left upper panel shows

mCherry-KATNB1 was successfully transfected into both cell populations and the left lower panel shows EGFP and EGFP-KATNAL2 are successfully

transfected into the appropriate cell populations. The right upper panel confirmed mCherry-KATNB1 can bind to EGFP-KATNAL2, but not to EGFP. Right

lower panel confirmed EGFP and EGFP-KATNAL2 proteins were successfully precipitated with GFP beads. (d) Representative images of an in situ proximity

ligation assay using antibodies directed against KATNB1 and KATNAL2 in isolated Katnal2WT/WT and Katnal2KO/KO elongating spermatids. Cells were

counterstained with DAPI to visualize DNA, with PNA to visualize the acrosome and α-tubulin immunolabeled as a marker of microtubules. Manufacturer

recommended negative controls are included in S8 Fig Scale bars in d = 2 μm.

https://doi.org/10.1371/journal.pgen.1007078.g003
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that while manchettes appeared to form at the appropriate time, the perinuclear ring failed to

migrate distally, but maintained its ability to constrict in a development-dependent manner

(Fig 3B). As a result, elongated spermatids developed a ‘knobby’ head morphology (Figs 2G

versus 2F and 3A). In addition, during the later steps of elongated spermatid development, the

microtubules of the manchette were abnormally long and took considerably longer to be disas-

sembled (Fig 3A and 3B). Specifically, and as illustrated in Fig 3B, manchette length was nor-

mal in stage VIII (step 8) elongating spermatids, was obviously longer in stage X-XII tubules,

and in contrast to the absence of manchettes in wild type stage I-II (step 14) tubules, Katna-
l2Y86C/Y86Cmanchettes were clearly still present in mutant germ cells. These microtubule and

head shaping abnormalities were confirmed in Staput isolated spermatids (S4 Fig). Notably,

these abnormalities phenocopied those seen in Katnb1 loss-of-function germs cells [24], sug-

gesting that KATNAL2 and KATNB1 act in partnership within the manchette.

Fig 4. KATNAL2 has essential roles in tail formation and centriole number regulation. Acetylated tubulin immunolabelling as a marker for sperm tails in

Katnal2WT/WT (a) and Katnal2Y86C/Y86C (b) testis sections. Sperm tail content was markedly reduced in Katnal2Y86C/Y86C versus Katnal2WT/WT. Scale bars in

a–b = 10 μm. In both Katnal2WT/WT (c) and Katnal2Y86C/Y86C (d) spermatids, normal coupling of the centriole to the nuclear membrane was observed (black

arrowheads). Docking of the centriole to the plasma membrane (white arrowhead) was frequently observed in Katnal2WT/WT spermatids (c), but was never

seen in Katnal2Y86C/Y86C spermatids (d). Supernumerary centrioles (red arrowhead) were frequently observed in the cytoplasm of Katnal2Y86C/Y86C (d) but not

Katnal2WT/WT (c) spermatids. Immunostaining of centrioles in isolated elongating spermatids of Katnal2WT/WT (e) and Katnal2Y86C/Y86C (f) mice confirmed

abnormal duplication of centrioles (red arrowhead) in Katnal2Y86C/Y86C mice. In (e-f) red represents centrioles as labelled by centrin immunostaining and blue

represents DNA as labelled by DAPI. Scale bars in c–f = 2 μm. Primary antibody negative controls for (a–b) and (e–f) are included in S7 Fig.

https://doi.org/10.1371/journal.pgen.1007078.g004
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In addition to the sperm head shaping abnormalities, Katnal2Y86C/Y86C germ cells exhibited

an almost complete absence of sperm tail growth i.e.>99% of cells (Fig 4A and 4B). At a sub-

cellular level, as revealed by electron microscopy, the origin of this abnormality appeared to be

a failure of centriole / basal body function. As shown in Fig 4C and 4D, in mutant germ cells

the centriole, that should ultimately seed the axoneme of the sperm tail, migrated normally to

the pole opposite the acrosome, matured normally into a basal body as indicated the presence

of distal and sub-distal appendages, and docked normally with the nuclear membrane (Fig

4D). By contrast, the basal bodies failed to attach to the plasma membrane and there was a

complete absence of microtubule extension, and thus axoneme development, in the over-

whelming majority of cells (Fig 4D). Of interest, in many cases, elongating spermatids con-

tained supernumerary centrioles (Fig 4D). Abnormal centriole duplication was confirmed

with immunolabelling of isolated spermatids with the centriolar marker centrin (Fig 4E and

4F). Consistent with data from cell lines wherein it has been shown that time equivalent to

approximately 1.5 cell divisions is required for centrioles to duplicate [28], very few duplicated

centrioles were seen in round spermatids. Further, and consistent with data from Schatten and

colleagues [29], who showed that centrioles in mouse elongated spermatids degrade, very few

instances of centriole duplication were observed in elongated spermatids. Notably, the duplica-

tion of centrioles did not result in multiple basal bodies docking to the nuclear membrane

indicating nuclear docking was not influenced by KATNAL2. These data do, however, indicate

a role for KATNAL2 in suppressing centriole duplication in germ cells and is consistent with

previously published data on KATNAL2 function in NIH3T3 cells and analogous to the super-

numerary centrioles seen in Katnb1 null neurons [22,30]. Despite the absence of axoneme

extension, the formation of the outer dense fibers, that normally lie adjacent and parallel to the

microtubules of the axoneme, was still initiated. These fibers were, however, massed within the

cytoplasm of retained spermatids, rather than being within the flagellar compartment (Fig

5C).

Interestingly, the majority of elongated spermatids also displayed a detached acrosome (Fig

5B), indicating that KATNAL2, or KATNAL2-regulated structures, have a role in the deposi-

tion of ‘adhesive components’ into the acroplaxome. The acroplaxome is an electron dense

structure that overlies the anterior pole of the sperm nucleus and is thought to play a pivotal

role in acrosome formation and attachment [31,32]. This phenotype was not observed in

Katnb1 loss-of-function mice [24], suggesting acrosome attachment is KATNB1-independent.

Electron microscopy also revealed the origin of the spermiation defect in Katnal2Y86C/Y86C

mice as being in junction complexes between Sertoli cells and elongated spermatids. During

spermiogenesis, spermatids are initially tethered to Sertoli cells by a modified adherens junc-

tion called the ectoplasmic specialization [33]. As spermiation proceeds, and spermatids are

readied for their final disengagement and release from Sertoli cells, the ectoplasmic specializa-

tions are removed and replaced with a podosome-like endocytic structure called the tubulobul-

bar complex [34]. The tubulobulbar complex is proposed to be required for the removal of

sperm-Sertoli cell adhesion structures and excess spermatid cytoplasm prior to sperm release.

The removed excess cytoplasm, known as residual bodies, are phagocytosed by Sertoli cells

after the sperm are released [33]. In wild type mouse germ cells, the tubulobulbar complexes

form in stage VII and are present until sperm disengage from the seminiferous epithelium in

late stage VIII. In Katnal2Y86C/Y86C testis, the ectoplasmic specializations were formed and

removed normally (Fig 5D and 5E), however, in all Katnal2Y86C/Y86C spermatids observed by

electron microscopy there was no evidence of tubulobulbar complex formation or the removal

of excess germ cell cytoplasm i.e. no residual bodies formed and spermatids retained large

amounts of cytoplasm (Fig 5C and 5Q). This interpretation was confirmed by immunolabel-

ling of testes sections with espin, as a marker of the ectoplasmic specialization (Fig 5F–5K),
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Fig 5. Tubulobulbar complex and residual body formation requires KATNAL2. (a–e) Electron microscopy

showing elongated spermatid morphology during spermiation in Katnal2WT/WT and Katnal2Y86C/Y86C mice.

Detachment of the acrosome (red arrowheads) from the nucleus was frequently observed in Katnal2Y86C/Y86C (b)
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and dynamin-2 and ARP2 as markers for the tubulobulbar complex (Fig 5L, 5M, 5O and 5P).

Of note, in comparison to rats, which are the typical model used in tubulobulbar complex

research, the tubulobulbar complexes of mice are considerably shorter (0.8–1.6 μm in mouse

versus 3–5 μm in rat spermatids) and less numerous (6–10 in mouse versus up to 24 in rat

spermatids) [35].

Sperm formation and male fertility requires the co-ordinated action of

both germ cell and Sertoli cell KATNAL2

In order to ascertain if the origin of the spermatogenesis defects in Katnal2 mutant mice were

due to germ cell autonomous effects or reliant on interactions between germ cells and their

supporting Sertoli cells, germ cell-specific (Katnal2GCKO) knockout mice were produced. Kat-
nal2 deletion from germ cells was achieved using a Stra8-cre. Gene deletion was confirmed

using quantitative PCR on purified germ cells (S5 Fig). Katnal2GCKO/GCKO males were sterile

and presented with an identical manchette and sperm tail phenotype to that seen in Katna-
l2Y86C/Y86Cmales (Fig 6). Sperm were not released from the seminiferous epithelium i.e. Kat-
nal2GCKO/GCKO epididymides only contained 5.9% of the sperm seen in wild type littermates

(Fig 6C). However, in contrast to Katnal2Y86C/Y86Cmales, tubulobulbar complex and residual

body formation was comparable to that seen in wild type mice as evidenced at electron micro-

scopic level (Fig 6L and 6M) and following immunolabelling with the tubulobulbar complex

marker ARP2 (Fig 6N and 6O). Collectively, these data raise the possibility that tubulobulbar

complex formation, and the removal of excess germ cell cytoplasm, is dictated largely by Ser-

toli cell-derived KATNAL2.

KATNAL2 can interact with KATNB1

As noted above, the manchette phenotype observed in Katnal2Y86C/Y86C germ cells phenocop-

ied that seen in Katnb1Taily/Taily males [24] supporting the hypothesis that KATNAL2 and

KATNB1 act in concert within the manchette. To explore the possibility of a physical interac-

tion between KATNAL2 and KATNB1, we co-transfected pEGFP-Katnal2 and pmCherry-

Katnb1 into HEK293T cells and performed co-immunoprecipitation assays. These data show

that KATNAL2 and KATNB1 can interact (Fig 3C). In order to define the sites of KAT-

NAL2-KATNB1 localisation within isolated germ cells, we performed in situ proximity liga-

tion assays. Cells were post-stained with DAPI, to visualize the nucleus, for α-tubulin, to

visualize microtubules and with PNA, to visualise the acrosome (Fig 3D). The specificity of the

assay was confirmed by staining Katnal2KO/KO spermatids in parallel (Fig 3D). Consistent with

but not Katnal2WT/WT (a) spermatids. Retention of cytoplasm was frequently seen in Katnal2Y86C/Y86C spermatids

that had failed spermiation (c). Within the cytoplasm of retained spermatids, disorganised outer dense fibres (red

arrowheads) were frequently observed (c). Ectoplasmic specializations (black arrowheads) showed normal

morphology in Katnal2Y86C/Y86C (d) and Katnal2WT/WT (a) spermatids, and were absent in Katnal2Y86C/Y86C

retained spermatids (e) indicating they were disassembled normally prior to spermiation. Tubulobulbar

complexes (asterisks) were present in Katnal2WT/WT (a) spermatids but were absent in Katnal2Y86C/Y86C

spermatids (d). Scale bars in a–e = 1 μm. Immunostaining of seminiferous tubules for the ectoplasmic

specialization marker espin confirmed ectoplasmic specialisations were disassembled normally in Katnal2WT/WT

and Katnal2Y86C/Y86C spermatids (f–k). Ectoplasmic specializations were present in early step 16 (stage VII)

Katnal2WT/WT (f) and Katnal2Y86C/Y86C spermatids (i), but were absent from late step 16 (stage VIII) Katnal2WT/WT

(g) and Katnal2Y86C/Y86C spermatids (j) and from retained (stage IX) Katnal2Y86C/Y86C spermatids (k).

Immunostaining of seminiferous tubules for the tubulobulbar complex markers dynamin-2 and ARP2 confirmed

the absence of tubulobulbar complexes from Katnal2Y86C/Y86C (o–p) but not Katnal2WT/WT (l–m) spermatids.

Residual body (arrowheads) formation in Katnal2WT/WT (n) versus Katnal2Y86C/Y86C (q) mice. Residual bodies

were absent in Katnal2Y86C/Y86C (q) mice. Scale bars in f–q = 10 μm. Primary antibody negative controls for (f–m)

and (o–p) are included in S7 Fig.

https://doi.org/10.1371/journal.pgen.1007078.g005
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Fig 6. Spermatogenic defects in Katnal2GCKO/GCKO mice. (a) Testis weight in Katnal2FLOX/FLOX (white triangles) and Katnal2GCKO/GCKO

(black triangles) mice (n = 3/group). (b) Daily sperm output (DSP) in the testes of Katnal2FLOX/FLOX (white triangles; n = 3) and

Katnal2GCKO/GCKO (black triangles; n = 4) mice. (c) Total epididymal sperm content of Katnal2FLOX/FLOX (white triangles) and
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the phenotype data, in elongating spermatids the KATNAL2-KATNB1 signal co-localised with

manchette microtubules (Fig 3D), thus supporting a role for this complex in the movement

and dissolution of the manchette in the terminal steps of spermiogenesis. In contrast, there

was no evidence of KATNAL2-KATNB1 complex localization to the centriole / basal body or

tubulobulbar complexes. Consistent with this observation, while the Katnb1 mutant mice [24]

did present with sperm flagellum defects, these defects were overtly different from those seen

in the Katnal2 mutant germ cells described here. Notably, microtubules did extend from the

basal body in Katnb1 mutant spermatids, however, the resultant axonemes lacked individual

or multiple microtubules—typically the central pair within the 9+2 microtubule structure of

the motile axoneme [24,36]. In Katnal2 mutant germ cells, by contrast, there was a complete

absence of axoneme development. These data strongly suggest that KATNAL2 is required for

multiple aspects of male haploid germ cell development, and depending on the cellular con-

text, KATNAL2 may act in either a KATNB1-dependent (manchette function) and KATN-

B1-independent manner (acrosome and axoneme development).

KATNAL2 does not sever microtubules composed of α- and β-tubulin but

does interact with δ- and ε-tubulin

Aspects of the Katnal2Y86C/Y86C phenotype, including the failure of manchette movement and

delayed dissolution, are consistent with deficiencies in microtubule severing. In order to test if

KATNAL2 can sever microtubules, HEK293T cells were stably transfected with full length Kat-
nal2 cDNA and protein expression induced using a cumate-inducible promoter. We found no

evidence that KATNAL2 over-expression affected cell proliferation or survival (S6 Fig). These

data are consistent with a recently published study showing KATNAL2 overexpression did not

affect α-tubulin bulk or microtubule lattice morphology [17]. We, therefore, deduce that KAT-

NAL2 does not indiscriminately sever microtubules made of α and β-tubulin. These results do

not, however, rule out the possibility that KATNAL2 severing function may be specific to par-

ticular microtubule modifications or be co-factor-dependent.

The absence of severing of α-β tubulin polymers, but the presence of phenotypes consistent

with microtubule severing, raise the hypothesis that KATNAL2 may mediate some of its func-

tions by acting upon other tubulin subunits; specifically, δ-tubulin and ε-tubulin, which are

enriched in male germ cells. As shown in Fig 7A, Tubd1 (δ-tubulin) was up-regulated during

the first wave of spermatogenesis at day 30, coinciding with the appearance of elongating sper-

matids, with a transient up-regulation at day 18 i.e. consistent with the appearance of late sper-

matocytes or early round spermatids. Tube1 (ε-tubulin), however, showed a more consistent

Katnal2GCKO/GCKO (black triangles) mice (n = 3/group). Total epididymal sperm content was reduced by 94.1% in Katnal2GCKO/GCKO mice

compared to Katnal2FLOX/FLOX mice. In a–c lines represent mean ±SD, ** p<0.01 compared to Katnal2FLOX/FLOX. Periodic acid Schiff’s

(PAS) stained testis sections from Katnal2FLOX/FLOX and Katnal2GCKO/GCKOO mice (d–i and p-q). Low magnification view of seminiferous

tubules in Katnal2FLOX/FLOX (d) and Katnal2GCKO/GCKO (e) mice. Multinucleated symplasts (arrowhead) were frequently observed in the

Katnal2GCKO/GCKO seminiferous epithelium. Elongating spermatids in Katnal2FLOX/FLOX (f) versus Katnal2GCKO/GCKO (g) mice. Abnormal

nuclear morphology of spermatids (arrowheads) was frequently observed in Katnal2GCKO/GCKO mice. Spermiation in Katnal2FLOX/FLOX (h)

versus Katnal2GCKO/GCKO (i) mice. Retained elongated spermatids (arrowheads) were often observed in stage IX tubules of Katnal2GCKO/

GCKO mice but were rarely observed in Katnal2FLOX/FLOX mice. Acetylated tubulin immunolabelling as a marker for sperm tail presence in

Katnal2FLOX/FLOX (j) and Katnal2GCKO/GCKO (k) testis sections. Sperm tail content was markedly reduced in Katnal2GCKO/GCKO (k) versus

Katnal2WT/WT (j) mice. Scale bars in d–k = 10 μm. Electron microscopy of stage VIII tubulobulbar complexes (asterisks) in Katnal2FLOX/FLOX

(l) versus Katnal2GCKO/GCKO (m) mice. Tubulobulbar complex formation was normal in Katnal2GCKO/GCKO mice. Scale bars in l–m = 2 μm.

Immunostaining of seminiferous tubules for the tubulobulbar complex marker ARP2 in Katnal2FLOX/FLOX (n) versus Katnal2GCKO/GCKO (o)

mice further confirmed the presence of tubulobulbar complexes from Katnal2GCKO/GCKO spermatids. Residual body (arrowheads) formation

in Katnal2FLOX/FLOX (p) versus Katnal2GCKO/GCKO (q) mice. Residual body formation appeared normal in Katnal2GCKO/GCKO mice. Scale bars

in n–q = 10 μm. Primary antibody negative controls for (j–k) and (n–o) are included in S7 Fig.

https://doi.org/10.1371/journal.pgen.1007078.g006
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level of expression until it was up-regulated in day 30 testes, consistent with the appearance of

elongating spermatids (Fig 7B). Immunolabelling of testis sections for δ-tubulin, showed it to

be intensely localised to a granule within the cytoplasm of meiotic and haploid germ cells, and

less intensely along the spermatid flagella (Fig 7C). Consistent with previously published

research [37,38], and as most clearly observed within isolated spermatids, δ-tubulin localized

to the perinuclear ring and microtubules of the manchette, in addition to the centrioles (Fig

7D, co-labelled with γ-tubulin). By contrast ε-tubulin had not previously been studied in the

testis, but is known to localise to the centriole and its depletion blocks centriole duplication in

Xenopus laevis egg extracts and Tetrahymena thermophile [39,40]. Additionally, ε-tubulin

mutation and silencing in Chlamydomonas reinhardtii and Paramecium tetraurelia, results in

malformed, dysfunctional centrioles [41,42]. Immunohistochemical labelling of testis sections

for ε-tubulin revealed it to be present in the cytoplasm of all germ cell types (Fig 7E). ε-tubulin

was particularly enriched in the cytoplasm of pachytene spermatocytes (stages I-X) and in the

cytoplasm of spermatids as they underwent nuclear remodelling starting from stage X (step

10). Analysis of the subcellular localisation of ε-tubulin in isolated wild-type elongated sper-

matids, revealed ε-tubulin localised to the centriolar/basal body region and the manchette (Fig

7F).

To test the hypothesis that KATNAL2 interacts with, and potentially regulates, δ- and ε-

tubulin, we separately co-transfected pEGFP-Katnal2 with pmCherry-Tubd1 (δ-tubulin) and

pmCherry-Tube1 (ε-tubulin) into HEK293T cells and performed co-immunoprecipitation

assays. As shown in Fig 8A and 8B KATNAL2 can bind to both δ- and ε-tubulin. This result

was confirmed using co-immunoprecipitation of KATNAL2-TUBD1 and KATNAL2-TUBE1

complexes from testis tissue (Fig 8C). In accordance, in situ proximity ligation assays in sper-

matids revealed the presence of KATNAL2-δ-tubulin complexes at the base of the spermatid

nucleus, and KATNAL2-ε-tubulin complexes in the manchette and pericentriolar region (Fig

8D). The specificity of these assays was confirmed by the parallel labelling of Katnal2KO/KO

spermatids (Fig 8D). Collectively, these data raise the novel possibility that KATNAL2 regu-

lates δ- and ε-tubulin to facilitate manchette and basal body function in the male germ line.

The mechanism underlying this regulation will be the subject of future studies.

Discussion

Spermiogenesis is the dramatic morphogenesis of haploid round germ cells into the structur-

ally replete sperm. This necessitates the formation of an acrosome, the condensation of the

haploid genome into its species-specific head shape, and the development of a highly complex

tail /flagellum made up of several thousand different proteins. Many of these processes are

underpinned by microtubule-based structures, for both protein transport and structural sup-

port, and involve a series of complex and dynamic interactions between the germ cell and sup-

porting Sertoli cell. Here we show that KATNAL2 is critical for numerous aspects of this

developmental process, including the initiation of the axoneme from the basal body, suppres-

sion of the spermatid centriole duplication cycle, sperm nuclear sculpting via the manchette,

Fig 7. δ- and ε-tubulin are enriched in the adult testis. qPCR analysis of Tubd1 (a) and Tube1 (b) mRNA transcript levels in

whole testis homogenates from Katnal2WT/WT mice of various ages. Data are normalised to Hprt and presented relative to

Katnal2WT/WT day 70. δ-tubulin (TUBD1) (c) and ε-tubulin (TUBE1) (e) immunolabelling (green) in Katnal2WT/WT testis sections.

Examples of key cell types are indicated: pachytene spermatocytes (white arrowheads), round spermatids (magenta arrowhead),

spermatid flagella (yellow arrowhead) and elongating spermatids (red arrowhead). Blue represents DNA as labelled by TOPRO.

Scale bars in c and e = 10 μm. TUBD1 (d) and TUBE1 (f) localisation in Katnal2WT/WT and Katnal2Y86C/Y86C isolated elongating

spermatids. Cells were counterstained with DAPI to visualise DNA, and either α-tubulin or γ-tubulin immunolabelling as markers for

microtubules and centrioles, respectively. Scale bars in d and f = 2 μm. Primary antibody negative controls for (c–f) are included in

S7 Fig.

https://doi.org/10.1371/journal.pgen.1007078.g007
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the attachment of the acrosome to the nucleus and the tethering of elongated spermatids to

Sertoli cells via the tubulobulbar complex and ultimately sperm release via spermiation. Our

data suggest that, depending on context, these functions are achieved by KATNAL2 acting in

partnership with KATNB1, a known regulator of other katanin severing proteins [6,9,17], or

via KATNB1-independent mechanisms. Our data further suggest a role for KATNAL2 in

regulating δ- and ε-tubulin over the classical α-β-tubulin polymers that make up most

microtubules.

Loss of functional KATNAL2 results in several phenotypes that are outwardly consistent

with a loss of microtubule regulation e.g. abnormal elongation and delayed disassembly of the

manchette microtubules and a failure of the manchette to move distally during elongated sper-

matid development. Some, but not all of these phenotypes, phenocopy those seen in our

Katnb1 mutant mice, notably the manchette movement and dissolution [24], thus suggesting

KATNB1 and KATNAL2 act in partnership to achieve this function. The exact mechanism by

which the manchette forms and moves during spermiogenesis is unknown, however, some

exceptional electron microscopy done by Russell and colleagues in rodents indicated that the

perinuclear ring and the inner-most microtubules of the manchette are tethered to the nuclear

membrane by short rod-like structures, of unknown composition, that progressively ‘unzip’ as

the manchette moves distally [43]. It is proposed that the progressive constriction and distal

movement of the perinuclear ring and microtubule skirt of the manchette, which occurs in

parallel with the exchange of nuclear histones for protamines ‘sets’ the species-specific shape of

the sperm nucleus. The absence of manchette movement, as shown in the azhmouse [44], and

our Katnal2 and Katnb1 mutant mice, enforces an extended association between the microtu-

bules of the manchette and the nucleus and a resultant ‘knobby’ and elongated nuclear pheno-

type (see Fig 2 and S4 Fig herein and [24]). Our data suggest that the ‘unzipping’ of the rod-

like structures is achieved by the KATNAL2-KATNB1 complex. The precise mechanism by

which this occurs remains to be determined.

Our data also indicate that other aspects of KATNAL2, notably its actions at the basal body,

are achieved in a KATNB1-independent manner. KATNAL2-KATNB1 complexes were not

localized to the basal body, despite clear regulation of the basal body by KATNAL2 in sperma-

tids. This regulation is consistent with recent data suggesting that KATNAL2 interacts with

the well-characterized centriole proteins CEP97, CEP295 and CDK5RAP2 [17].

There are three known families of microtubule severing enzymes, katanins, spastins and

fidgetins, which together with VPS4 proteins, comprise the meiotic clade of the AAA+ super-

family [45]. AAA microtubule severing proteins, including KATNA1 and spastin, typically

Fig 8. KATNAL2 interacts with δ- and ε-tubulin. KATNAL2 interaction with δ-tubulin (TUBD1) (a) and ε-tubulin (TUBE1)

(b) was indicated by co-immunoprecipitation of pEGFP-KATNAL2-pmCherry-TUBD1 and pEGFP-KATNAL2-pmCherry-

TUBE1 complexes respectively, using anti-GFP beads. (c) Interactions were confirmed by co-immunoprecipitation assays

from mouse testis lysate and (d) in situ proximity ligation assays. (a-b) Input: whole cell lysate from transfected cells; GFP

IP: immunoprecipitation with GFP conjugated beads. (a) The left upper panel shows mCherry-TUBD1 was successfully

transfected into both cell populations and the left lower panel shows EGFP and EGFP-KATNAL2 were successfully

transfected into the desired cell population. The right upper panel confirmed mCherry-TUBD1 can bind to EGFP-KATNAL2,

but not to EGFP. Right lower panel confirmed EGFP and EGFP-KATNAL2 proteins were successfully precipitated with GFP

beads. (b) The left upper panel shows mCherry-TUBE1 was successfully transfected into both cell populations and the left

lower panel shows EGFP and EGFP-KATNAL2 were successfully transfected into the desired cell population. The right

upper panel confirmed mCherry-TUBE1 can bind to EGFP-KATNAL2, but not to EGFP. Right lower panel confirmed EGFP

and EGFP-KATNAL2 proteins were successfully precipitated with GFP beads. (c) Input: whole testis lysate from adult mice;

KATNAL2 IP: immunoprecipitation (+) and negative control immunoprecipitation (-) using an antibody directed against

KATNAL2. Blots were probed with antibodies directed against KATNAL2, TUBD1 and TUBE1. (d) Representative images

of in situ proximity ligation assays using antibodies directed against KATNAL2 and TUBD1 and against KATNAL2 and

TUBE1 in Katnal2WT/WT isolated elongating spermatids. The specificity of labelling was assessed via the parallel labelling of

Katnal2KO/KO cells. Green represents the acrosome as labelled by PNA and blue represents DNA as labelled by DAPI.

Manufacturer recommended negative controls are included in S8 Fig. Scale bars in d = 2 μm.

https://doi.org/10.1371/journal.pgen.1007078.g008
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function by oligomerising into hexamers to form a central pore that is believed to attach to the

acidic C-terminal tails of α- or β-tubulin subunits within the microtubule polymer [8,46]. Fol-

lowing ATP hydrolysis, and a resultant conformational change, the hexamer is believed to ‘tug’

on the tubulin tail thus destabilizing it from the associated polymer, leading to microtubule

severing [46].

Katnal2 is a paralogue of the microtubule severing enzymes Katna1 and Katnal1, and as

such, had been presumed to have microtubule-severing capacity. Despite several attempts,

including herein, to test if KATNAL2 severs α-β tubulin polymers in a manner consist with its

microtubule severing paralogues, such activity has not been demonstrated [17,22]. KATNAL2

is thus, not an indiscriminate microtubule severing protein. KATNAL2 does, however, possess

a highly conserved AAA domain, compatible with microtubule-severing activity in other AAA

microtubule severing proteins. Outside this domain, however, KATNAL2 shows marked

divergence in sequence, raising the possibility of an alternate mechanism to achieve microtu-

bule severing or a different function [5].

Towards the goal of revealing this function, our data shows that KATNAL2 can bind to the

non-classical tubulin subunits δ- and ε-tubulin, and that such interactions occur in both the

manchette and the basal body region of haploid male germ cells. In support of this being a

functionally meaningful interaction, studies done in Chlamydamonas show that loss of ε-tubu-

lin function results in the mislocalization of PF15 (the orthologue of KATNB1), and by exten-

sion KAT1, the ancestral homologue of all of the p60 severing subunits, including KATNAL2,

from the basal body [47]. As shown here, and consistent with previous publications [37,38], δ-

tubulin is a component of both the manchette perinuclear ring and microtubule ‘skirt’. Both δ-

and ε-tubulin are localized to the basal body (Fig 7), and we provide the first evidence that ε-

tubulin localises to the manchette. Thus, we propose that KATNAL2 acts within the manchette

and basal body to modify δ- and/or ε-tubulin function and that the absence of such modifica-

tions underpin the Katnal2 mutant germ cell phenotypes described here. In further support of

this hypothesis, ε-tubulin has been shown to be a critical regulator of the centriole duplication

cycle in Xenopus [39] and Tetrahymena [40]. How this would be achieved remains to be deter-

mined. δ- and ε-tubulin are presumed not to form polymers independently, although struc-

tural analysis suggests they may bind to the minus and plus end of α-β microtubules

respectively, and that they both may be involved in lateral interactions between microtubules

[48].

Mouse KATNAL2 is produced in multiple isoforms (Fig 1), some of which lack the AAA

domain and are thus likely to lack any form of severing activity. Such forms may act in a

dominant-negative manner and are consistent with the perhaps obvious statement that any

form of tubulin severing activity must be tightly regulated. Several of these isoforms are highly

enriched within particular germ cell types, further suggesting that their activity may be beyond

simply switching on and off tubulin modifications. Notably, all KATNAL2 isoforms lack an

overt VPS4 domain and the Microtubule-Interacting and Trafficking (MIT) domain seen in

other AAA microtubule-severing enzymes. As exemplified in recent research in Drosophila,

the MIT domain enhances katanin p60 severing activity (and negatively regulates its abun-

dance), however it is dispensable for severing [10]. Interestingly, several of the KATNAL2 iso-

forms contain a LisH motif, which is not observed in other microtubule severing type proteins

(Fig 1). LisH motifs have been implicated in protein localization and the regulation of microtu-

bule dynamics [49,50] and, as such may substitute for the lack of the MIT domain. Defining

the function of individual subunits will necessitate the production of isoform-specific antibod-

ies and the identification of cell lines containing the context specific binding partners.

KATNAL2 is also an essential component of the mysterious process of spermiation and is

required for tubulobulbar complex formation. The tubulobulbar complex is a podosome-like
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projection, between the maturing germ cells and the supporting Sertoli cells in the final steps

of development, that is proposed to be involved in the removal of excess cytoplasm, thus

ensuring the stream lined nature of the final sperm [33]. Our data strongly suggests that this

interpretation is valid. Other publications have also suggested that the tubulobulbar complex is

necessary for the removal of an earlier germ-Sertoli adhesion complex, the ectoplasmic special-

ization (reviewed in [34]). Intriguingly, our data, suggests ectoplasmic specialization removal

can occur normally in the absence of tubulobulbar complexes.

Collectively, our data establish KATNAL2 as a critical regulator of multiple aspects of hap-

loid male germ cell development including sperm head shaping, acrosome attachment, tail

growth and Sertoli-germ cell adhesion. These data, and germ cells in particular, provide an

ideal model within which to elucidate key elements of the biochemistry and cell biology

around KATNAL2 of relevance to all KATNAL2 containing cells including neurons and cili-

ated cells [18–21]. This study, and our previous research, also provides a dramatic example of

the sub-specialisation of katanin function with increasing cellular complexity. While in plants,

all functions are achieved by a single katanin severing protein, mammals, and notably sper-

matogenesis, requires the co-ordinated action of multiple katanin severing proteins during

meiosis, in haploid germ cells and in the supporting Sertoli cells.

Materials and methods

Ethics statement

All animal procedures were approved by the Monash Animal Experimentation Ethics Com-

mittee and conducted in accordance with Australian NHMRC Guidelines on Ethics in Animal

Experimentation.

Mouse model production and phenotypic analysis

Mice containing a Y86C mutation in the Katnal2 gene were obtained from the Australian Phe-

nomics Network missense mutation library (https://databases.apf.edu.au/mutations/). These

mice were produced using N-ethyl-nitrosourea (ENU) mutagenesis and then the resultant

mutations identified using a massively parallel sequencing method as outlined previously [51].

Mice were maintained on a C57BL/6J background and potential passenger mutations elimi-

nated via breeding onto wild type mice from a pure C57BL/6J colony. The effect of the Y86C

mutation on Katnal2 mRNA and protein stability was determined by qPCR and western blot-

ting as described below.

The Katnal2 knockout mouse line was generated at the Australian Phenomics Network

(APN) Monash University Node using a EUCOMM knockout first conditional-ready ES

clone (EPD0656_4_A03). To disrupt the Katnal2 gene (ENSMUSG00000025420), the

FRT-LacZ-loxP-Neo-FRT-loxP-Katnal2-exon3-loxP cassette was inserted in intron 2 of the Kat-
nal2 gene. The straight knockout allele resulted in truncated mRNA containing exons 1–2

(ENSMUSE00000700583 and ENSMUSE00001233754), which encoded the first 40 N-terminal

amino acids of the protein. Mice were maintained on a C57BL/6N background. The veracity of

the Katnal2 null model was confirmed by qPCR, western blotting and immunohistochemistry

as described below. To generate a germ cell-specific Katnal2 knockout line, a three step breed-

ing strategy was used: (i) Katnal2KO/WT mice were crossed with a transgenic line carrying the

Flp recombinase gene to produce the Katnal2 Flox allele i.e. exon 3 (ENSMUSE00001268471)

flanked by loxP sites, (ii) Katnal2Flox/Flox females were mated with a Stra8-Cre male [52] to

produce Katnal2WT/Del,Stra8-Cre+ males, (iii) Katnal2WT/Del,Stra8-Cre+ males were mated with Kat-
nal2Flox/Flox females to produce germ cell-specific knockout (Katnal2Del/Del, Stra8-Cre+) progeny.

Excision of exon 3 in this manner resulted in a translational frameshift and a premature stop

KATNAL2 regulates multiple aspects of spermatogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007078 November 14, 2017 19 / 28

https://databases.apf.edu.au/mutations/
https://doi.org/10.1371/journal.pgen.1007078


codon in exon 4 (ENSMUSE00000098115). Efficiency of excision was determined by qPCR of

isolated cell populations as described below (S5 Fig).

Mouse genotypes were determined from tail biopsies using real time PCR with specific

probes designed for each allele (Transnetyx, Cordova, TN). Primer and probe sequences were

as listed in S1 Table.

Quantitative qPCR

Total RNA was extracted using Trizol reagent (Invitrogen) and converted to cDNA using

SuperScript III (Invitrogen). A PCR primer set was designed spanning part of exon 5 and exon

6 of the Katnal2 gene to allow detection of the four Katnal2 splice variants affected by the

Y86C mutation and Katnal2 gene trap cassette. To verify excision of exon 3 in the germ cell

specific Katnal2 knockout line, a PCR primer set was designed spanning part of exon 2 and

exon 3 of Katnal2. All Katnal2 qPCRs were performed using Brilliant Fast SYBR Green qPCR

master mix (Stratagene), in the Agilent Mx3000P qPCR system. Gapdh andHprt expression

were used as references for gene expression analysis. SYBR Green qPCR primer sequences and

cycling parameters were as listed in S2 Table. The relative expression of Tubd1 and Tube1 was

defined using TaqMan Assays (Applied Biosystems) Mm00444851_m1 and Mm01179881_m1

respectively, and normalised againstHprt (Mm00446968_m1). TaqMan qPCRs were per-

formed in the Agilent Mx3000P qPCR system: 1cycle, 95ºC, 10 min; 40 cycles, 95ºC, 15 sec,

60ºC, 1 min. Differential expression for all qPCRs was analysed using the 2ΔΔCT method [53].

Infertility characterization

The male infertility phenotypes in the Katnal2 mutant mouse lines were defined as outlined in

[54]. Fertility testing was conducted in male and female mice of� 7 and� 8 weeks-of-age

respectively, wherein mutant males were mated with wild type females, or vice versa, over a

period of 3 months. Plugging was monitored as an indication of normal mating behaviour.

Daily sperm production and total epididymal sperm content were determined using the Triton

X-100 nuclear solubilisation method as described previously (n�3/genotype) [55]. Tissue his-

tology was assessed in Bouin’s fixed tissue. Tissues were processed into paraffin blocks using

standard methods. Periodic acid-Schiff’s staining was used to examine overall testis histology

(n�5/genotype). Ultra-structure was analysed using electron microscopy as outlined previ-

ously [56,57] (n = 3/genotype) and caudal epididymal sperm morphology was examined by

haematoxylin and eosin staining of air-dried sperm smears. Germ cell apoptosis was evaluated

by immunostaining for cleaved Caspase 3 and 9. The number of Caspase-positive cells in 100

seminiferous tubules per mouse was counted and averaged (n = 3/genotype).

Germ cell isolation

Germ cells were isolated using the Staput method [24,58]. Spermatocytes, round spermatids

and elongating spermatids were all at least 90% pure. For immunofluorescence, cells were

fixed with either 4% paraformaldehyde or methanol (-20˚C) for 10 minutes.

Antibody production and use

A KATNAL2-specific polyclonal antibody was produced by immunising goats with a synthetic

peptide (YYFVKFQKYPKVVKKAPDP) encoding amino acids 74–96 of the mouse KATNAL2

(Antibodies Australia, Werribee, Australia). Specific immunoglobulins were purified using the

immunizing peptide as described previously [59]. Specificity was confirmed by immunohis-

tochemistry and western blotting on wild type versus Katnal2KO/KO testis.
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Other primary antibodies used included those against acetylated-tubulin (T6793, Sigma, 1

in 4,000), α-tubulin (T5168, Sigma, 1 in 5,000), centrin (04–1624, Millipore, 1 μg ml-1), ARP2

(ab49674, Abcam, 0.23 μg ml-1), cleaved-caspase 3 (9664, Cell Signaling, 0.5 μg ml-1), cleaved-

caspase 9 (9509, Cell Signalling, 1 μg ml-1), δ-tubulin (HPA023980, Sigma Aldrich, 4 μg ml-1;

ab214216, Abcam, 5 μg ml-1), dynamin 2 (ab3457, Abcam, 0.08 μg ml-1), espin (611656, BD

Transduction Laboratories, 1.25 μg ml-1), ε-tubulin (ab98833, Abcam, 8 μg ml-1), GFP

(11814460001, Roche, 0.2 μg ml-1), γ-tubulin (ab27074, Abcam, 1 μg ml-1), katanin p80

(HPA041165, Sigma Aldrich, 2.4 μg ml-1), KATNAL2 N-terminus (SC-84855, Santa Cruz Bio-

technology [24]), mCherry (ab167453, Abcam, 0.5 μg ml-1). Secondary antibodies included

Alexa Fluor 488 donkey anti-goat (A11055, Invitrogen), Alexa Fluor 555 donkey anti-goat

(A21432, Invitrogen), Alexa Fluor 488 donkey anti-mouse (A21202, Invitrogen), Alexa Fluor

555 donkey anti-mouse (A31570, Invitrogen), Alexa Fluor 647 donkey anti-mouse (A31571,

Invitrogen), Alexa Fluor 488 donkey anti-rabbit (A21206, Invitrogen), Alexa Fluor 647 donkey

anti-rabbit (A31573, Invitrogen), a goat anti-rabbit immunoglobulin horseradish peroxidase

conjugate (Dako) and a rabbit anti-mouse immunoglobulin horseradish peroxidase conjugate

(Dako). The specificity of immunolabelling was determined by staining parallel samples in the

absence of primary antibody (S7 Fig) or where available knockout mouse tissue.

Immunochemistry

Testis immunohistochemistry was conducted as previously described [59] for a minimum of

three times per antibody. For KATNAL2 immunolabelling, an alternative antigen retrieval

method was performed by microwaving sections in 50mM glycine (pH 3.5) for 10 minutes. To

define protein localisation in isolated germ cells, cells were permeabilized in 0.2% Triton X-

100 (PBS) for one hour at room temperature. Non-specific binding was minimized by block-

ing with CAS-Block (Invitrogen) for 30 minutes. Primary antibodies were diluted in DAKO

antibody diluent and incubated overnight at 4˚C. Secondary antibodies were diluted 1 in 500

and incubated at room temperature for one hour. DNA was visualized using 1 µg ml-1 4’,6-dia-

midino-2-phenylindole (DAPI, Invitrogen) or 4 µM TO-PRO-3 Iodide (TOPRO, Thermo Sci-

entific). Acrosomes were visualized using 0.5 µg ml-1 lectin peanut agglutinin (PNA), Alexa

Fluor 488 conjugate (L21409, Life Technologies).

Duolink in situ proximity ligation assays were carried as per the manufacturer’s instructions

(OLINK Biosciences). Briefly, isolated germ cells were permeabilized as described for immu-

nofluorescence, followed by blocking with Duolink blocking solution (OLINK) for 30 minutes

at 37˚C. Primary antibodies were diluted in Duolink antibody diluent (OLINK) and incubated

overnight at 4˚C. Appropriate secondary antibodies conjugated to synthetic oligonucleotides

(goat PLA probe PLUS, mouse PLA probe MINUS, rabbit PLA probe MINUS) were applied

for one hour at 37˚C. A ligation reaction was performed using the Duolink ligation solution

and ligase (30 minutes at 37˚C), which results in binding of the two PLA probes if they are less

than 40 nanometres from one another. Rolling circle amplification and hybridisation with

fluorescently labelled nucleotides was achieved using the Duolink amplification solution and

polymerase (100 minutes at 37˚C). The specificity of the assay was determined by staining par-

allel samples in the absence of either both or one of the primary antibodies (S8 Fig). To coun-

terstain samples for microtubules, DNA and acrosomes, immunofluorescent staining was then

conducted as described above.

Immunofluorescent images were taken with an SP8 confocal microscope (Leica Microsys-

tems) in the Monash University Microimaging Facility. Z-stacks of isolated cells were collected

at 0.3 μm or 0.5 μm intervals and assembled into flattened images using ImageJ 1.47N. Images

were adjusted uniformly across the image and between groups.
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Western blotting

Proteins were extracted from whole testis homogenates and isolated germ cell populations

using RIPA buffer (50mM Tris-HCL; 1% NP-40; 0.1% SDS; 0.5% sodium deoxycholate; 0.9%

NaCl; 5mM EDTA ph 7.4) plus protease inhibitor cocktail (Calbiochem). Extracted protein

was separated on a 12% SDS-PAGE gel, transferred to PVDF membranes and probed using

primary antibodies. Bound antibody was detected using donkey anti-goat IgG HRP and don-

key anti-rabbit IgG HRP (Dako) secondary antibodies with enhanced chemiluminescence

ECL Plus detection kit (Thermo Scientific) or Clarity Max ECL substrate (BioRad).

Co-immunoprecipitation

Full length mouse Katnal2, Katnb1, Tubd1 and Tube1 were amplified from mouse testis using

the following primers: Katnal2 GGCGTGCTACTCTTCTCTCT and CTGCTGACATCCATG

ACACG; Katnb1 GTCCAAGCCTGACATTCCAT and GGAGTTGCCCTGAGCAGTAA;
Tubd1 GAAAGCTAAGGCGGGAGTTTGGG and AGCTTTTCCTCTTGGCTTAGGG; Tube1
GAAAGCTAAGGCGGGAGTTTGGG and CACTTGTGTAACACCATGTTGGGTTCTC.

Katnal2 was then cloned into the pEGFP-C1 expression vector (Clontech), whereas Katnb1,

Tubd1 and Tube1 were cloned into pmCherry-C1 expression vectors (Clontech). pEGFP-Kat-
nal2 was co-transfected with either pmCherry-Katnb1, pmCherry-Tubd1 or pmCherry-Tube1
into HEK293T cells (ATCC-CRL-3216) using Lipofectamine 3000 Reagent (L3000008, Life

Technologies). Empty pEGFP-C1 vector was used as a negative control. After extracting protein

from the transfected cells, co-immunoprecipitation was carried out using anti-GFP-Trap-A

beads as per the manufacturer’s instructions (gta-100, Chromotek). The presence of recombi-

nant KATNAL2, KATNB1, TUBD1 and TUBE1 proteins within the immunoprecipitate were

determined using antibodies against GFP and mCherry.

An antibody targeted against the N-terminus of KATNAL2 (SC-84855, Santa Cruz Biotech-

nology), which is a region highly divergent from paralogues KATNA1 and KATNAL1, was

used to co-immunoprecipitate KATNAL2, TUBD1 and TUBE1 from adult mouse testis lysates

using the Pierce Co-Immunoprecipitation Kit (26149, Thermo Scientific), as per the manufac-

turer’s instructions. The presence of KATNAL2, TUBD1 and TUBE1 proteins within the

immunoprecipitate was determined using western blotting and antibodies directed against

KATNAL2, TUBD1 and TUBE1.

KATNAL2 transfection into HEK293 cells

Over-expression of the full length KATNAL2 protein (61 kDa) was performed using the PiggyBac

Transposon System according to the manufacturer’s instruction (SBI System Biosciences). The

full-length mouse Katnal2 cDNA was sub-cloned into the NheI and XhoI restrictions sites of the

PBQM812A-1 PiggyBac cumate inducible plasmid using primers mKatnal2-NheI-Fw: ACACTT

GCTAGCATGGAGCTTTCTTACCAGAC and mKatnal2-NotI-Rev: AAACAAGCGGCCGCT

TATACAGACTCAAACTTCT. The Katnal2/PBQM812A-1 PiggyBac plasmid was co-transfected

with a transposase vector to enable stable integration of the Katnal2 cDNA into the HEK293T cell

line (ATCC-CRL-3216). KATNAL2 expression was induced by the addition of cumate into cul-

ture media at 0.24 mg/ml. To determine the success of KATNAL2 expression, cells were collected

72 hours after the addition of induction media for RNA extraction and qPCR.

Cell proliferation assay

To evaluate the effect of KATNAL2 overexpression on the cell cycle, a MTS assay was per-

formed using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega). For
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each time point to be measured, a 96-well plate was seeded with 5x103 cells per well. After a

forty-eight hour incubation period at 37˚C, media was supplemented with 0.24 mg/ml cumic

acid and 0.25mM mg ATP, and controls were supplemented with 0.25mM mg ATP only. To

conduct the MTS assay, CellTiter 96 AQueous One Solution Reagent was added directly to

each well and the plate incubated for one hour at 37˚C. Absorbance was measured at 490 nm.

Statistics and reproducibility

Statistical significance was determined using an unpaired student’s T-tests in Graphpad Prism

6.0 with significance defined as a P value<0.05. For each animal experiment, including immu-

nostaining, 3–9 animals were assessed per genotype.

Supporting information

S1 Table. Primer sequences for mouse genotyping.

(DOCX)

S2 Table. Primer sequences for SYBR Green qPCR.

(DOCX)

S1 Fig. Validation of the KATNAL2 antibody. Immunochemistry of KATNAL2 in Kat-
nal2WT/WT and Katnal2KO/KO testis sections confirmed the specificity of the KATNAL2 anti-

body. Green represents KATNAL2 and blue represents DNA as labeled by DAPI. Scale

bars = 10 μm.

(TIF)

S2 Fig. Assessment and validation of the KATNAL2Y86C mutation. (a–b) KATNAL2 protein

expression in whole testis homogenates of Katnal2Y86C/Y86C mice. (a) Western blot analysis of

KATNAL2 protein expression in whole adult testis homogenates from Katnal2WT/WT and Kat-
nal2Y86C/Y86C mice. (b) Densitometry of the western blot analysis of the 46 kDa KATNAL2 iso-

form expression in whole testis homogenates from Katnal2Y86C/Y86C mice (black triangles;

n = 3) relative to Katnal2WT/WT (white triangles; n = 3). Lines represent mean ± SD, ���� P<

0.0001. (c–k) Genotype-phenotype confirmation of Katnal2Y86C/Y86C mice. (c) Testis weight in

Katnal2WT/WT (white triangles; n = 3) and Katnal2Y86C/KO (black triangles; n = 4) mice. (d)

Daily sperm output (DSP) in the testes of Katnal2WT/WT (white triangles; n = 3) and Katna-
l2Y86C/KO (black triangles, n = 5) mice. (e) Total epididymal sperm content of Katnal2WT/WT

(white triangles; n = 3) and Katnal2Y86C/KO (black triangles, n = 7) mice. Total epididymal

sperm content was reduced by 94.5% in Katnal2Y86C/KO mice compared to Katnal2WT/WT

mice. Lines represent mean ± SD, ���� p<0.0001 compared to Katnal2WT/WT. Periodic acid

Schiff’s (PAS) stained testis sections from Katnal2WT/WT and Katnal2Y86C/KO mice (f–k). Low

magnification view of seminiferous tubules in Katnal2WT/WT (f) and Katnal2Y86C/KO (g) mice.

Multinucleated symplasts (arrowhead) were frequently observed in the Katnal2Y86C/KO semi-

niferous epithelium. Elongating spermatids in Katnal2WT/WT (h) versus Katnal2Y86C/KO (i)

mice. Abnormal nuclear (club shaped) morphology of spermatids (arrowheads) was frequently

observed in Katnal2Y86C/KO mice. Spermiation in Katnal2WT/WT (i) versus Katnal2Y86C/KO (k)

mice. Retained elongated spermatids (arrowheads) were often observed in stage IX tubules of

Katnal2Y86C/KO but were rarely observed in Katnal2WT/WT mice. Scale bars in f–k = 10 μm.

(TIF)

S3 Fig. Spermatogenic defects in Katnal2KO/KO mice. (a). The Katnal2 knockout first, condi-

tional-ready allele. The FRT-LacZ-loxP-Neo-FRT-loxP-Katnal2-exon3-loxP cassette was

inserted into intron 2 of the Katnal2 gene. (b) Testis weight in Katnal2WT/WT (white triangles;
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n = 5) and Katnal2KO/KO (black triangles; n = 6) mice. (c) Daily sperm output (DSP) in the tes-

tes of Katnal2WT/WT (white triangles) and Katnal2KO/KO (black triangles) mice (n = 4/group).

(d) Total epididymal sperm content of Katnal2WT/WT (white triangles) and Katnal2KO/KO

(black triangles) mice (n = 5/group). Total epididymal sperm content was reduced by 96.8% in

Katnal2KO/KO mice compared to Katnal2WT/WT mice. Lines represent mean ± SD, ���� p< 0.0001

compared to Katnal2WT/WT. Periodic acid Schiff’s (PAS) stained testis sections from Kat-
nal2WT/WT and Katnal2KO/KO mice (e–j). Low magnification view of seminiferous tubules in

Katnal2WT/WT (e) and Katnal2KO/KO (f) mice. Multinucleated symplasts (arrowhead) were

frequently observed in the Katnal2KO/KO seminiferous epithelium. Elongating spermatids in

Katnal2WT/WT (g) versus Katnal2KO/KO (h) mice. Abnormal nuclear morphology of spermatids

(arrowheads) was frequently observed in Katnal2KO/KO mice. Spermiation in Katnal2WT/WT (i)

versus Katnal2KO/KO (j) mice. Retained elongated spermatids (arrowheads) were often observed

in stage IX tubules of Katnal2KO/KO but were rarely observed in Katnal2WT/WT mice. Scale bars

in e–j = 10 μm.

(TIF)

S4 Fig. Manchette structure in Katnal2Y86C/Y86C mice. α-tubulin immunolabelling (green) as

a marker for manchettes in Katnal2WT/WT and Katnal2Y86C/Y86C isolated spermatids. Elongat-

ing spermatids are shown in progressive steps of manchette development and spermatid elon-

gation from left to right. Cells were counterstained with DAPI (blue) to visualize DNA. Scale

bars = 2 μm.

(TIF)

S5 Fig. Efficiency of Katnal2 exon 3 excision in Katnal2 GCKO mice. qPCR analysis of Kat-
nal2 transcript levels in isolated round spermatids from Katnal2GCKO/GCKO mice relative to

Katnal2FLOX/FLOX (n = 3/genotype). Katnal2 transcript levels in isolated round spermatids

were reduced by 99.9% in Katnal2GCKO/GCKO mice compared to Katnal2FLOX/FLOX mice. Lines

represent mean ± SD, ��� p<0.001 compared to Katnal2FLOX/FLOX.

(TIF)

S6 Fig. KATNAL2 is not essential for cell cycle progression. (a) Germ cell apoptosis in Kat-
nal2Y86C/Y86C mice. The average number of germ cells per seminiferous tubules positive for

either cleaved-caspase 3 or cleaved-caspase 9 showed no difference between Katnal2WT/WT

and Katnal2Y86C/Y86C mice (n = 3/genotype). Lines represent mean ± SD. (b) KATNAL2 over-

expression has no influence cell cycle progression. HEK293T cells stably transfected with a

cumate inducible Katnal2 plasmid showed no difference in relative cell density using an MTS

assay when cultured either in the absence (white triangles) or presence (black triangles) of

cumate induction media at 24 hours, 48 hours, 72 hours and 96 hours after addition of media

(n = 3/genotype). Lines represent mean ± SD.

(TIF)

S7 Fig. Validation of immunolabelling specificity. The specificity of immunolabelling as

shown by the staining of parallel samples in the absence of primary antibody. α-tubulin (a)

and acetylated tubulin (b) testis immunohistochemistry and corresponding primary antibody

negative controls. (c) Centrin immunolabelling (red) on isolated germ cells and corresponding

primary antibody negative control. Espin (d), dynamin-2 (e) and ARP2 (f) testis immunohis-

tochemistry and corresponding primary antibody negative controls. TUBD1 (g) and TUBE1

(h) testis immunolabelling and corresponding primary antibody negative controls. TUBD1

(green) and α-tubulin (red) (i), TUBD1 (green) and γ-tubulin (red) (j), TUBE1 (green) and α-

tubulin (red) (k), and TUBE1 (green) and γ-tubulin (red) (l) immunolabelling on isolated

germ cells and corresponding primary antibody negative controls. In (a–b) and (d–f) nuclei
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are counterstained with haematoxylin. In (c) and (i–l) blue represents DNA as labeled by

DAPI. In (g–h) blue represents DNA as labeled by TOPRO. In (a–b) and (d–h) scale

bars = 10 μm and in (c) and (i–l) scale bars = 2 μm.

(TIF)

S8 Fig. Validation of in situ proximity ligation assay specificity. The specificity of the in situ
proximity ligation assays as shown by the staining of parallel samples in the absence of either

both or one of the primary antibodies. In situ proximity ligation assays using antibodies

directed against KATNB1 and KATNAL2 (a), TUBD1 and KATNAL2 (b), and TUBE1 and

KATNAL2 (c) in isolated Katnal2WT/WT spermatids. (a–c) Single antibody control 1: Assay

was conducted with only KATNAL2 antibody. Single antibody control 2: Assay was conducted

with only (a) KATNB1 antibody, (b) TUBD1 antibody and (c) TUBE1 antibody. (a–c) Nega-

tive control: Assay was conducted in the absence of all primary antibodies. (a) Cells were coun-

terstained for α-tubulin (cyan) as a marker of microtubules. (a–c) Blue represents DNA as

labeled by DAPI and green represents the acrosome as labeled by PNA. Scale bars = 2 μm.

(TIF)

Acknowledgments

We thank Kate Loveland and Julia Young for the Stra8-cre mouse line. We thank Danielle

Rhodes for technical assistance at the start of the project.

Author Contributions

Conceptualization: Jessica E. M. Dunleavy, Hidenobu Okuda, Duangporn Jamsai, Moira K.

O’Bryan.

Data curation: Jessica E. M. Dunleavy, Anne E. O’Connor.

Formal analysis: Jessica E. M. Dunleavy, Hidenobu Okuda, Anne E. O’Connor, D. Jo Merri-

ner, Liza O’Donnell, Duangporn Jamsai, Martin Bergmann, Moira K. O’Bryan.

Funding acquisition: Moira K. O’Bryan.

Investigation: Jessica E. M. Dunleavy, Hidenobu Okuda, Anne E. O’Connor, D. Jo Merriner,

Duangporn Jamsai, Martin Bergmann, Moira K. O’Bryan.

Project administration: Moira K. O’Bryan.

Supervision: Moira K. O’Bryan.

Visualization: Jessica E. M. Dunleavy.

Writing – original draft: Jessica E. M. Dunleavy, Moira K. O’Bryan.

Writing – review & editing: Hidenobu Okuda, Anne E. O’Connor, D. Jo Merriner, Liza

O’Donnell, Duangporn Jamsai, Martin Bergmann.

References
1. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable

microtubules. Cell 75: 419–429. PMID: 8221885

2. Mains P, Kemphues K, Sprunger S, Sulston I, Wood W (1990) Mutations affecting the meiotic and

mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126: 593–605. PMID: 2249759

3. Clark-Maguire S, Mains PE (1994) mei-1, a gene required for meiotic spindle formation in Caenorhabdi-

tis elegans, is a member of a family of ATPases. Genetics 136: 533–546. PMID: 8150281

KATNAL2 regulates multiple aspects of spermatogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007078 November 14, 2017 25 / 28

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007078.s010
http://www.ncbi.nlm.nih.gov/pubmed/8221885
http://www.ncbi.nlm.nih.gov/pubmed/2249759
http://www.ncbi.nlm.nih.gov/pubmed/8150281
https://doi.org/10.1371/journal.pgen.1007078


4. Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. Journal of Cell Science

125: 2561–2569. https://doi.org/10.1242/jcs.101139 PMID: 22595526

5. Roll-Mecak A, McNally FJ (2010) Microtubule-severing enzymes. Current Opinion in Cell Biology 22:

96–103. https://doi.org/10.1016/j.ceb.2009.11.001 PMID: 19963362

6. Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, et al. (1998) Katanin, a microtubule-severing

protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell

93: 277–287. PMID: 9568719

7. Johjima A, Noi K, Nishikori S, Ogi H, Esaki M, et al. (2015) Microtubule severing by katanin p60 AAA+

ATPase requires the C-terminal acidic tails of both α-and β-tubulins and basic amino acid residues in

the AAA+ ring pore. Journal of Biological Chemistry 290: 11762–11770. https://doi.org/10.1074/jbc.

M114.614768 PMID: 25805498

8. Hartman JJ, Vale RD (1999) Microtubule disassembly by ATP-dependent oligomerization of the AAA

enzyme katanin. Science 286: 782–785. PMID: 10531065

9. McNally KP, Bazirgan OA, McNally FJ (2000) Two domains of p80 katanin regulate microtubule sever-

ing and spindle pole targeting by p60 katanin. Journal of Cell Science 113: 1623–1633. PMID:

10751153

10. Grode KD, Rogers SL (2015) The Non-Catalytic Domains of Drosophila Katanin Regulate Its Abun-

dance and Microtubule-Disassembly Activity. PLoS ONE 10: e0123912. https://doi.org/10.1371/

journal.pone.0123912 PMID: 25886649

11. McNally K, Audhya A, Oegema K, McNally FJ (2006) Katanin controls mitotic and meiotic spindle

length. Journal of Cell Biology 175: 881–891. https://doi.org/10.1083/jcb.200608117 PMID: 17178907

12. Srayko M, O’Toole ET, Hyman AA, Müller-Reichert T (2006) Katanin disrupts the microtubule lattice

and increases polymer number in C. elegans meiosis. Current Biology 16: 1944–1949. https://doi.org/

10.1016/j.cub.2006.08.029 PMID: 17027492

13. Nakamura M, Ehrhardt DW, Hashimoto T (2010) Microtubule and katanin-dependent dynamics of

microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nature Cell Biology

12: 1064–1070. https://doi.org/10.1038/ncb2110 PMID: 20935636

14. Ahmad FJ, Yu W, McNally FJ, Baas PW (1999) An essential role for katanin in severing microtubules in

the neuron. Journal of Cell Biology 145: 305–315. PMID: 10209026

15. Stewart A, Tsubouchi A, Rolls MM, Tracey WD, Sherwood NT (2012) Katanin p60-like1 promotes

microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila.

Journal of Neuroscience 32: 11631–11642. https://doi.org/10.1523/JNEUROSCI.0729-12.2012 PMID:

22915107

16. Lee H-H, Jan LY, Jan Y-N (2009) Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate

dendrite pruning of sensory neuron during metamorphosis. Proceedings of the National Academy of

Sciences, USA 106: 6363–6368.

17. Cheung K, Senese S, Kuang J, Bui N, Ongpipattanakul C, et al. (2016) Proteomic Analysis of the Mam-

malian Katanin Family of Microtubule-severing Enzymes Defines KATNBL1 as a Regulator of Mamma-

lian Katanin Microtubule-severing. Molecular and Cellular Proteomics 15: 1658–1669. https://doi.org/

10.1074/mcp.M115.056465 PMID: 26929214

18. Neale BM, Kou Y, Liu L, Ma’Ayan A, Samocha KE, et al. (2012) Patterns and rates of exonic de novo

mutations in autism spectrum disorders. Nature 485: 242–245. https://doi.org/10.1038/nature11011

PMID: 22495311

19. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, et al. (2014) Synaptic, transcriptional and

chromatin genes disrupted in autism. Nature 515: 209–215. https://doi.org/10.1038/nature13772

PMID: 25363760

20. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, et al. (2012) De novo mutations

revealed by whole-exome sequencing are strongly associated with autism. Nature 485: 237–241.

https://doi.org/10.1038/nature10945 PMID: 22495306

21. Williams MR, Fricano-Kugler CJ, Getz SA, Skelton PD, Lee J, et al. (2016) A Retroviral CRISPR-Cas9

System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons. Scientific Reports

6: 25611. https://doi.org/10.1038/srep25611 PMID: 27161796

22. Ververis A, Christodoulou A, Christoforou M, Kamilari C, Lederer CW, et al. (2016) A novel family of

katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and

Nubp2, are key regulators of different MT-based processes in mammalian cells. Cellular and Molecular

Life Sciences 73: 163–184. https://doi.org/10.1007/s00018-015-1980-5 PMID: 26153462

23. O’Donnell L O’Bryan MK (2014) Microtubules and spermatogenesis. Seminars in Cell and Developmen-

tal Biology 30: 45–54. https://doi.org/10.1016/j.semcdb.2014.01.003 PMID: 24440897

KATNAL2 regulates multiple aspects of spermatogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007078 November 14, 2017 26 / 28

https://doi.org/10.1242/jcs.101139
http://www.ncbi.nlm.nih.gov/pubmed/22595526
https://doi.org/10.1016/j.ceb.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19963362
http://www.ncbi.nlm.nih.gov/pubmed/9568719
https://doi.org/10.1074/jbc.M114.614768
https://doi.org/10.1074/jbc.M114.614768
http://www.ncbi.nlm.nih.gov/pubmed/25805498
http://www.ncbi.nlm.nih.gov/pubmed/10531065
http://www.ncbi.nlm.nih.gov/pubmed/10751153
https://doi.org/10.1371/journal.pone.0123912
https://doi.org/10.1371/journal.pone.0123912
http://www.ncbi.nlm.nih.gov/pubmed/25886649
https://doi.org/10.1083/jcb.200608117
http://www.ncbi.nlm.nih.gov/pubmed/17178907
https://doi.org/10.1016/j.cub.2006.08.029
https://doi.org/10.1016/j.cub.2006.08.029
http://www.ncbi.nlm.nih.gov/pubmed/17027492
https://doi.org/10.1038/ncb2110
http://www.ncbi.nlm.nih.gov/pubmed/20935636
http://www.ncbi.nlm.nih.gov/pubmed/10209026
https://doi.org/10.1523/JNEUROSCI.0729-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22915107
https://doi.org/10.1074/mcp.M115.056465
https://doi.org/10.1074/mcp.M115.056465
http://www.ncbi.nlm.nih.gov/pubmed/26929214
https://doi.org/10.1038/nature11011
http://www.ncbi.nlm.nih.gov/pubmed/22495311
https://doi.org/10.1038/nature13772
http://www.ncbi.nlm.nih.gov/pubmed/25363760
https://doi.org/10.1038/nature10945
http://www.ncbi.nlm.nih.gov/pubmed/22495306
https://doi.org/10.1038/srep25611
http://www.ncbi.nlm.nih.gov/pubmed/27161796
https://doi.org/10.1007/s00018-015-1980-5
http://www.ncbi.nlm.nih.gov/pubmed/26153462
https://doi.org/10.1016/j.semcdb.2014.01.003
http://www.ncbi.nlm.nih.gov/pubmed/24440897
https://doi.org/10.1371/journal.pgen.1007078


24. O’Donnell L, Rhodes D, Smith SJ, Merriner DJ, Clark BJ, et al. (2012) An essential role for katanin p80

and microtubule severing in male gamete production. PLoS Genetics 8: e1002698. https://doi.org/10.

1371/journal.pgen.1002698 PMID: 22654669

25. Smith LB, Milne L, Nelson N, Eddie S, Brown P, et al. (2012) KATNAL1 regulation of sertoli cell microtu-

bule dynamics is essential for spermiogenesis and male fertility. PLoS Genetics 8: e1002697. https://

doi.org/10.1371/journal.pgen.1002697 PMID: 22654668

26. Lehti MS, Sironen A (2016) Formation and function of manchette and flagellum during spermatogene-

sis. Reproduction 106: 1683–1690.

27. Kierszenbaum AL, Rivkin E, Tres LL (2007) Molecular biology of sperm head shaping. Society of Repro-

duction and Fertility Supplement 65: 33. PMID: 17644953

28. Brito DA, Gouveia SM, Bettencourt-Dias M (2012) Deconstructing the centriole: structure and number

control. Current Opinion in Cell Biology 24: 4–13. https://doi.org/10.1016/j.ceb.2012.01.003 PMID:

22321829

29. Manandhar G, Sutovsky P, Joshi H, Stearns T, Schatten G (1998) Centrosome reduction during mouse

spermiogenesis. Developmental Biology 203: 424–434. https://doi.org/10.1006/dbio.1998.8947 PMID:

9808791

30. Hu WF, Pomp O, Ben-Omran T, Kodani A, Henke K, et al. (2014) Katanin p80 regulates human cortical

development by limiting centriole and cilia number. Neuron 84: 1240–1257. https://doi.org/10.1016/j.

neuron.2014.12.017 PMID: 25521379

31. Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of

the spermatid head. Archives of Histology and Cytology 67: 271–284. PMID: 15700535

32. Liu Y, DeBoer K, de Kretser DM, O’Donnell L, O’Connor AE, et al. (2015) LRGUK-1 is required for basal

body and manchette function during spermatogenesis and male fertility. PLoS Genetics 11: e1005090.

https://doi.org/10.1371/journal.pgen.1005090 PMID: 25781171

33. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: the process of

sperm release. Spermatogenesis 1: 14–35. https://doi.org/10.4161/spmg.1.1.14525 PMID: 21866274

34. Vogl AW, Du M, Wang XY, J’Nelle SY (2014) Novel clathrin/actin-based endocytic machinery associ-

ated with junction turnover in the seminiferous epithelium. Seminars in Cell and Developmental Biology

30: 55–64. https://doi.org/10.1016/j.semcdb.2013.11.002 PMID: 24280271

35. Russell LD, Malone JP (1980) A study of Sertoli-spermatid tubulobulbar complexes in selected mam-

mals. Tissue and Cell 12: 263–285. PMID: 6998046

36. Dymek EE, Lefebvre PA, Smith EF (2004) PF15p is the Chlamydomonas homologue of the Katanin

p80 subunit and is required for assembly of flagellar central microtubules. Eukaryotic Cell 3: 870–879.

https://doi.org/10.1128/EC.3.4.870-879.2004 PMID: 15302820

37. Kato A, Nagata Y, Todokoro K (2004) δ-Tubulin is a component of intercellular bridges and both the

early and mature perinuclear rings during spermatogenesis. Developmental Biology 269: 196–205.

https://doi.org/10.1016/j.ydbio.2004.01.026 PMID: 15081367

38. Smrzka OW, Delgehyr N, Bornens M (2000) Tissue-specific expression and subcellular localisation of

mammalian δ-tubulin. Current Biology 10: 413–416. PMID: 10753753

39. Chang P, Giddings TH, Winey M, Stearns T (2003) ε-Tubulin is required for centriole duplication and

microtubule organization. Nature Cell Biology 5: 71–76. https://doi.org/10.1038/ncb900 PMID:

12510196

40. Ross I, Clarissa C, Giddings TH, Winey M (2013) ε-tubulin is essential in Tetrahymena thermophila for

the assembly and stability of basal bodies. Journal of Cell Science 126: 3441–3451. https://doi.org/10.

1242/jcs.128694 PMID: 23704354

41. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J (2002) ε-Tubulin is an essential compo-

nent of the centriole. Molecular Biology of the Cell 13: 3859–3869. https://doi.org/10.1091/mbc.E02-04-

0205 PMID: 12429830

42. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG, Geoffroy H, Vayssié L, et al. (2002) Func-
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