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Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal, 3 Institute of Molecular

Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, 4 Interdisciplinary Centre

of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal, 5 Faculty of Sciences,

University of Porto, Porto, Portugal, 6 Centre of Mathematics of the University of Porto, Porto, Portugal,

7 Institute of Forensic Sciences Luis Concheiro, University of Santiago de Compostela, Santiago de

Compostela, Spain, 8 Genomics Medicine Group, CIBERER, University of Santiago de Compostela,

Santiago de Compostela, Spain

* marenas@uvigo.es (MA); aamorim@ipatimup.pt (AA); angel.carracedo@usc.es (AC)

Abstract

While traditional forensic genetics has been oriented towards using human DNA in criminal

investigation and civil court cases, it currently presents a much wider application range,

including not only legal situations sensu stricto but also and, increasingly often, to preemp-

tively avoid judicial processes. Despite some difficulties, current forensic genetics is pro-

gressively incorporating the analysis of nonhuman genetic material to a greater extent. The

analysis of this material—including other animal species, plants, or microorganisms—is

now broadly used, providing ancillary evidence in criminalistics in cases such as animal

attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent

food composition, among many others. Here, we explore how nonhuman forensic genetics

is being revolutionized by the increasing variety of genetic markers, the establishment of

faster, less error-burdened and cheaper sequencing technologies, and the emergence and

improvement of models, methods, and bioinformatics facilities.

Introduction

Forensic genetics derives from a late offshoot of the big tree resulting from the conjunction

between legal medicine and criminalistics (for the distinction between forensic genetics and

other forensic sciences, see [1–3]). Its historical evolution shows substantial theoretical and

technological developments and has, meanwhile, turned this discipline into a broad and inde-

pendent scientific area for which it is becoming more and more difficult to identify its most

remote ancestors. The evolution of modern societies substantially broadened the forensic

framework by introducing new forms of resolution of disputes, allowing space for prevention,

and regulating more restrictively the prosecution investigations. This means that a potentially

forensic situation is the one for which 2 or more sides (individual persons or institutions)

agree on the reality of the facts but do disagree on the causes or authorship (thereafter, the

term “forensic” is used for these scenarios). Thus, civil litigations (and not just criminal) are

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006960 September 21, 2017 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Arenas M, Pereira F, Oliveira M, Pinto N,

Lopes AM, Gomes V, et al. (2017) Forensic

genetics and genomics: Much more than just a

human affair. PLoS Genet 13(9): e1006960.

https://doi.org/10.1371/journal.pgen.1006960

Editor: Keith A. Crandall, George Washington

University, UNITED STATES

Published: September 21, 2017

Copyright: © 2017 Arenas et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: MA, FP, MO, NP, AML and VG are

supported by the Portuguese Foundation for

Science and Technology (FCT), European Regional

Development Fund (ERDF) and Programa

Operacional Potencial Humano, through the grants

IF/00955/2014, IF/01356/2012, SFRH/BPD/66071/

2009, SFRH/BPD/97414/2013, IF/01262/2014 and

SFRH/BPD/76207/2011, respectively. MA was also

supported by the “Ramón y Cajal” grant RYC-

2015-18241 from the Spanish Government.

IPATIMUP integrates the i3S Research Unit, which

is partially supported by FCT. The funders had no

role in the preparation of the article.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1006960
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006960&domain=pdf&date_stamp=2017-09-21
https://doi.org/10.1371/journal.pgen.1006960
http://creativecommons.org/licenses/by/4.0/


common but also conflicts (which are increasing with time) that are attempted to be solved

outside a formal court environment [4].

It is surprising that most of the life span of the discipline has been devoted to human genet-

ics [e.g., 5], since a number of disagreements on questions intrinsically related to nonhuman

materials always existed and, even when strictly human issues are at stake (such as the identifi-

cation of a murderer), evidence from nonhuman sources can be crucial or are just the sole

type of available evidence [e.g., 6]. This has been recognized by the first scientific journal

explicitly devoted to forensic genetics (Forensic Science International: Genetics), when defining

it as “The application of genetics to human and nonhuman material (in the sense of a science

with the purpose of studying inherited characteristics for the analysis of inter- and intraspecific

variations in populations) for the resolution of legal conflicts” [7]. Consequently, the division

between human and nonhuman forensic genetics (HFG and NHFG, respectively) is not just

the result of an anthropocentric historical tradition; rather, it could be derived from the differ-

ent genomic architectures of the involved organisms [8]. Importantly, a number of forensically

relevant questions are unthinkable in purely human terms (Fig 1), and in this review, we high-

light their relevance.

Below, we begin by describing the commonly used methodologies, including genotyping

and sequencing strategies, evolutionary frameworks, and statistical approaches. Next, we

broadly describe applications of NHFG based on diverse biological sources. Finally, we discuss

the future of the discipline, including needs and recommendations.

Experimental methodologies in NHFG

The techniques of forensic genetics originally developed for humans were rapidly adapted to

other sources of genetic material. The experimental pipeline used in NHFG (Fig 2) starts with

a request for a genetic testing. Next, samples are collected using a sampling kit (either commer-

cial or assembled in the laboratory) and transported to the laboratory under proper conditions.

An accurate description of the biological nature of the sample is usually included, and a unique

code must be assigned to each collected sample. If the request is part of a legal procedure, not

only traceability but also the strict maintenance of the chain of custody (chronological docu-

mentation of the evidence) are key issues. The procedure continues in the laboratory, where

the genetic material is extracted from the samples using an appropriate and validated protocol.

However, certain urgent situations (e.g., bioterrorism) may require the use of methods that

were not previously validated. The laboratory may have to deal with new kinds of biological

material or taxonomic groups never studied before. In such cases, the laboratory has to be able

to develop a valid strategy to extract DNA with sufficient quality and quantity for downstream

analyses.

Care must be taken when extracting and storing the genetic material to maintain integrity.

Storage of nonhuman evidence does not create any specific problem (except required space)

that is not common to HFG, and it must be handled in the same way as human material, fol-

lowing the same rules in labelling, chain of custody recording, etc. However, reproducibility in

NHFG is clearly a major issue, especially when dealing with wildlife and environmental mate-

rials, due to inherent sampling difficulties. Therefore, validation studies cannot be performed

in the same strict sense as they are in HFG (for a guideline on these problems, see [9]).

The selection of the genetic test depends on the question to be addressed (see next subsec-

tion). For instance, the sequencing of a PCR-amplified genetic region (e.g., cytochrome b

[CYTB], cytochrome c oxidase I [COI], and ribosomal RNA [rRNA] genes) is often used for

species identification. The identification of individuals can be achieved using a number of

markers sufficient to provide high power of discrimination. In any case, it is important to

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006960 September 21, 2017 2 / 28

https://doi.org/10.1371/journal.pgen.1006960


check the quality of profiles or DNA sequences before analysing the results. The genetic infor-

mation obtained is then compared with other genetic information (i.e., derived from reliable

databases [e.g., 10] or reference sample[s]) considering statistical analyses. The experimental

workflow ends with a report describing the technical procedures applied and the answers to

the question(s) of the request.

Genotyping and sequencing

Genetic identification is based on polymorphic DNA markers that can provide sufficient dis-

criminatory resolution. Traditionally, PCR-based methodologies designed to generate short

amplicons, such as Rapid Amplification of Random DNA (RAPD) [11], Inter Simple Sequence

Repeats (ISSR) [12], and Amplified Fragment Length Polymorphism (AFLP) [13], were

applied in NHFG analyses. Two relevant forensic cases applying RADP are the analysis of

Fig 1. Most relevant applications of the zoology, botany, microbiology, and food analysis and traceability sciences to NHFG. Diverse examples

for each of these applications are shown in S1 Table and S2 Table (see also S1 Text) and described in the section applications of NHFG. NHFG, nonhuman

forensic genetics.

https://doi.org/10.1371/journal.pgen.1006960.g001
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plant (seed pods) DNA in a murder case in Phoenix [14], and the analysis of the outbreak of

human anthrax occurred in Sverdlovsk (Ekaterinburg, Russia) [15].

However, due to their limitations, these techniques were rapidly replaced by Simple Sequence

Repeats (SSRs, Short Tandem Repeats [STRs], or microsatellites) and Single Nucleotide Poly-

morphisms (SNPs) [e.g., 16]. The development of reduced-size STR amplicons (miniSTRs) can

provide easy PCR amplification of degraded DNA samples, better estimation of mutation rates

and allele frequencies, and construction of allelic ladders for accurate classification of alleles.

Fig 2. Pipeline showing the main steps usually involved in processing forensic nonhuman DNA

samples. The exact procedure will depend on the conditions available at each laboratory. The process starts

with the evaluation of the case and sample collection (green boxes). The procedure continues in the laboratory,

where the DNA is extracted from the biological source material and analyzed according to an appropriate

protocol (blue boxes). The genetic information is then compared with reference databases and the results are

described in a written report (red boxes).

https://doi.org/10.1371/journal.pgen.1006960.g002
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Alternative methods to PCR include technologies such as nucleic acid sequence-based amplifica-

tion (NASBA) and loop-mediated isothermal amplification (LAMP) [17, 18]. Later, a more

advanced post-PCR technique, high-resolution DNA melting (HRM) analysis, which is based

on the detection of small differences in amplicon melting (dissociation) curves, was also consid-

ered for NHFG [e.g., 19]. On the other hand, for DNA barcoding, a technique widely used in

species identification [e.g., 20], is necessary to determine the DNA base composition by targeting

specific regions with the Sanger sequencing method. Recently, the arrival of next generation

sequencing (NGS) has also revolutionized forensic genetics [21]. These new technologies pro-

vide clear advantages regarding high-throughput due to an extensive multiplexing capacity and

parallel sequencing of millions of molecules (Multiple Parallel Sequencing, MPS), allowing a

faster and more informative analysis (i.e., characterization of allelic and copy-number variation,

CNV) of the genomic material in a sample. Concerning NHFG, MPS is particularly useful for

the analysis of samples of complex mixtures since untargeted approaches can be used without

prior knowledge about the source. MPS presents additional advantages for NHFG such as the

detection of rare polymorphisms, high resolution of genetic analysis, and informative power.

Methodologies for the evaluation of statistical evidence and for

evolutionary analysis

Advances in NHFG are also caused by the progress of bioinformatics and statistical tools. A

clear example is the emergence and evolution of the bioinformatics pipeline for the assembly

of reads generated in MPS [see for a review, 22]. We next describe 2 analytic facets of crucial

importance for NHFG: the quantitative evaluation of DNA evidence in the context of identifi-

cation kinship and population/species assignment (i.e., in shallow evolutionary timescales)

and the evolutionary analysis of genetic data (e.g., in transmission of fast evolving pathogens).

Statistical evaluation of evidence

Here, we overview the use of nonhuman genetic material (NHGM) as ancillary evidence to

solve classical forensic problems and in cases that fall outside the civil and criminal human

authorship or responsibility.

NHGM used as auxiliary evidence in litigations of human authorship

NHGM can play a crucial role in the investigation of diverse criminal disputes with the aim

of identifying the human individual(s) who committed a crime or is/are responsible for some

liability or damage. Historically, the first contributions correspond to situations in which

NHGM is used as a silent witness resulting from involuntary transfer and leading to the so-

called transfer or associative evidence. This type of NHGM usage is best illustrated in criminal-

istics where it is increasingly important, as perpetrators are progressively avoiding carefully

leaving their biological traces in the crime scene. However, they can, for example, inadver-

tently leave their pets’ hairs at the crime scene or, inversely, to carry the victims’ pet biological

material [e.g., 6]. Although pets are exceedingly common in modern households, many more

exotic situations fit with this silent witness type of NHGM use (i.e., knotgrass [23], mosses

[24], oak [25], and soil DNA [26]; see S1 Table and section applications of NHFG). Besides the

existing variety of applications, new developments are already at sight such as the genetic pro-

filing of microbiomes and microbial metagenomics [e.g., 27, 28–30], or in a not too distant

future, the identification of transmitted strains of pathogens or commensals even many years

after the crime (as it has been already done for viral transmissions [e.g., 31, 32–36]).
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NHGM used as evidence in other litigations

There are several cases for which the expert evidence is used to deal with a law/regulation

infringement, irrespectively of the human authorship or responsibility (which may be investi-

gated separately). Here, a comprehensive classification is complex, given the dynamic evolu-

tion of the applications and the diversity of ever-growing fields for which laws are constantly

being issued. Nevertheless, we must note a clear difference between the applications in which

the litigation treats the nonhuman in a framework similar to human cases (individualization

and kinship) and a plethora of other applications.

Concerning the former, both theoretical frameworks and technological platforms devel-

oped for humans can be almost directly translated. This category includes several scenarios: (i)
an individual living being (e.g., an animal) is the direct causation of an injury to another living

being or causes property damages [e.g., 37, 38]; (ii) the genetic relationship (e.g., paternity) of

a living being to another one is unsettled [e.g., 39, 40]; (iii) the identity of the donor of a sample

is under dispute (e.g., doping controls in horse races) [e.g., 41] (S2 Table).

As for the latter, a wide range of examples considering NHGM as auxiliary or direct evi-

dence in litigations are derived from diverse subdisciplines such as forensics zoology, botany,

microbiology, and food analysis (see Fig 1 and section applications of NHFG).

In any case, statistical analysis should provide likelihoods of observations, rather than cate-

gorical answers, and at least 2 alternative, mutually exclusive hypotheses should be formulated.

Broadly speaking, statistical evaluation in NHFG can be required for 3 major scenarios:

1. Individual identification or kinship. It involves cases such as “was a given dog the perpetra-

tor of the attack?” or “is a given foal the offspring of a given highly prized horse?”

2. Species identification. It involves interspecies cases such as “does the label of a processed

fish product agree with the species of origin?”

3. Subspecific assignment/identification. It involves cases related with breed, variety, or popu-

lations such as “was the attack perpetrated by a dog or by a wolf?”

Regarding scenario A, similarly to what has been established for humans, autosomal STRs

are preferentially considered and analysed with a Bayesian approach (in which prior odds

are combined with probabilities of the genotypic observations assuming the alternative

hypotheses). Nevertheless, several difficulties can arise in practice, especially when dealing

with small sized and/or poorly studied populations, as in endangered species. The lack of

knowledge in the population structure and sampling errors obviously has a serious impact on

the confidence of the parameter estimates. The software developed in HFG for kinship and

identification can be used in this scenario. For instance, the computer programs GDA [42]

and GenePop [43] can be applied to test Hardy-Weinberg Equilibrium and to estimate popula-

tion genetics parameters, while the program Familias [44] can be used to compute kinship like-

lihood ratios.

Regarding scenario B, the traditional procedure consists of comparing sequences that are

highly variable among species but highly conserved within species, in the so-called DNA bar-

coding [45]. An alternative approach relies on comparing lengths of insertion and deletion

polymorphisms without requiring DNA sequencing [46, 47]. Importantly, these approaches

are only possible due to the existence and maintenance of reliable and public databases such

as GenBank, EMBL, and Bold. Note that the increasing number and length of sequences exist-

ing in databases and the development of automated mechanisms to prevent misclassified

sequences would allow more confidence in species identification. Finally, the statistical signifi-

cance of sequence comparison should be computed [48] and reported.
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Regarding scenario C, the selection of the genetic marker depends on the investigated spe-

cies. For metazoan, the most used markers are regions of the mitochondrial genome (and plas-

tid for Plantae) that can provide accurate distinction between subspecies [e.g., 49] and

autosomal regions of nuclear DNA [e.g., 50]. The program STRUCTURE [51] is widely used

for the Bayesian assignment of an individual to a population (or subspecies). Again, the statis-

tical evaluation should be performed and reported.

Evolutionary analysis of genetic data in forensic genetics

Diverse organisms involved in forensic studies present short generation times and belong to

large populations (as most pathogens). Therefore, relationships between queried and control

samples are usually obtained under the light of evolutionary analyses since those samples most

likely belong to distant generations [52]. The evolutionary analysis not only provides the iden-

tification of genetic relationships (dealing with questions like, “is the suspect the cause of the

studied transmission or outbreak?” or “which individuals were infected by the suspect and

which individuals were infected or coinfected from other sources?”) [e.g., 31–36, 53, 54, 55],

but also allows the estimation of the timing of transmission events (i.e., infection date of each

individual, including the individual that generated the outbreak) [e.g., 53, 54].

The computational pipeline for the evolutionary analysis of genetic data in NHFG follows

well-established methodologies (Fig 3); however, several steps must be carefully performed.

First, query, control (from local and background regions), and external (i.e., from reliable data-

bases) sequences must be aligned. Next, population genetics statistics such as genetic diversity

and genetic differentiation (i.e., between query and control sequences) can be estimated [e.g.,

54, 55, 56]. The alignment can also be used to infer a phylogenetic history that depicts genetic

relationships between the sample sequences and provides the timing of common ancestors

(i.e., transmission events). A large number of pathogens (including those involved in most of

NHFG cases, Human Immunodeficiency Virus [HIV] and Hepatitis C Virus [HCV]) evolve

with processes of exchange of genetic material such as recombination [57, 58] and horizontal

gene transfer [59]. Importantly, ignoring these processes can bias phylogenetic tree inferences

by generating incorrect branch lengths and topologies [60, 61]. Therefore, under the presence

of these processes, a phylogenetic network, which may have embedded a phylogenetic tree

for each exchanged fragment [62], should be inferred [35, 61, 63, 64]. Indeed, a substitution

model of evolution that fits the data best should be selected and considered in sophisticated

phylogenetic inferences (i.e., based on maximum-likelihood or Bayesian approaches) [61, 65].

Importantly, phylogenetic approaches usually implement statistical confidence of the inferred

evolutionary relationships through a bootstrap analysis [66]. In NHFG, this statistical parame-

ter can provide a measure of the reliability of relationships between the pathogen genetic

sequences of the investigated individuals. For example, a number of forensic studies based on

phylogenetic inferences showed a classification of all control individuals in significantly sepa-

rated clades, whereas individuals related with the studied outbreak or transmission clustered

in a unique clade [e.g., 31, 32, 34, 35, 53, 54, 55]. Likelihood ratio tests can also be useful for

hypothesis testing (i.e., testing if control sequences group or not with the studied outbreak)

[e.g., 54].

As noted above, the estimated time of internal nodes of the inferred phylogeny can be useful

in forensic litigations by revealing the timing of infections [52]. These times can be estimated

with Bayesian approaches [e.g., 67] accounting for longitudinal sampling (the tips are dated

with the corresponding sampling times) to calibrate the (often relaxed) molecular clock and

can provide accurate confidence intervals [e.g., 54].
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Applications of NHFG

NHFG is expanding to more and more biological areas due to the increasing emergence of

forensic cases based on NHGM. In this section, we revise the most relevant areas of NHFG,

including zoology, botany, microbiology, and food analysis and traceability.

Zoology

The relevance and close presence of animals in a variety of human activities explain why they

are among the first targets of NHFG [6, 68–70]. The number of animal species studied from a

Fig 3. Pipeline showing the evolutionary analysis of genetic data oriented to NHFG. Data and tasks are shown in boxes, and databases and

computer frameworks are shown in circles. Population genetic parameters include measures of genetic diversity, genetic differentiation, and

demographics. The phylogenetic analysis requires the previous identification of recombination and can be performed ignoring or considering a

substitution model of evolution. NHFG, nonhuman forensic genetics.

https://doi.org/10.1371/journal.pgen.1006960.g003
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forensic genetics perspective has increased significantly, and different testing protocols have

been developed for determining the identity of a sample at different biological levels such as

individual, population, breed, species, or higher taxonomic classifications.

The preferential DNA markers used for individual identification in animals are autosomal

STRs, as established in HFG. For example, STR kits have been developed for individual identi-

fication and kinship testing in dogs [71–78], cats [79–81], horses [40, 82, 83], cattle [39, 84],

bears [85], deer [86, 87], badgers [88], birds [89, 90], and koi carps [91]. They have also been

employed in resolving criminal and civil cases, such as dog or bear attacks [37, 38, 92], silent

witnesses of crimes [6], identification of samples from sport horses [41, 93], and in wildlife

crime investigations (wildlife forensics), including big cats [94], mouflons [95, 96], wild boars

[97, 98], and elephants [99], among others. Concerning the latter, we want to highlight the

application of forensic genetics to the illegal wildlife trade (IWT), since this is one of the big-

gest threats to a variety of species and habitats, with a consequent loss of biodiversity [100,

101]. In addition, IWT is a large-scale business estimated in billions of euros that generate neg-

ative socioeconomic impacts [100, 101]. Importantly, forensic genetics plays a crucial role in

wildlife law enforcement [101].

Pioneer works endured tremendous efforts trying to reach the quality standards of human

genetic testing. Difficulties in developing a new genotyping system for animals are various, includ-

ing the collection of representative samples (especially problematic in wild species), the access to

high-quality genomic sequences (not available for several species) and obtaining funding for the

experiments (often focused on human research). Therefore, some of these STR kits are still a few

steps behind those developed for human identification. For example, dinucleotide repeats are still

used in nonhuman DNA testing [e.g., 37, 88, 91, 94], making it difficult to interpret sample mix-

tures and heterozygotes due to stutter product formation [102]. The most advanced nonhuman

profiling kits are those developed for domesticated animals, including several STRs with tetranu-

cleotide repeats [e.g., 72, 80, 81, 103]. Indeed, sex chromosome STR markers can also be useful for

NHFG, however they still remain uncharacterized for many animal species. The mammalian Y-

chromosome is used for gender identification, resolving paternity and family structures with

application in forensic investigations [e.g., 104, 105, 106]. The development of an X-chromosome

STR kit for dogs in 2010 [107] was a promising step in this field but, unfortunately, it was not fol-

lowed by similar works in other species. The determination of the sex in birds has been possible

using markers located in the W and Z chromosomes [e.g., 108, 109, 110].

A few panels of autosomal SNPs have also been developed for individual identification in

different animal species [111–117]. These genetic markers may have some technical advan-

tages over STRs [e.g., 102, 118] and can provide information about physical traits.

Forensic zoology often has to deal with degraded samples. In such cases, mtDNA may be

the only source of genetic information that can be used. The high copy number of mtDNA in

cells increases the probability of obtaining results from degraded/low-copy DNA samples such

as hair, bones, and scat [119, 120]. Importantly, the same mtDNA sequence can be found in

many individuals of a population and therefore cannot be used for individual identification.

However, it can be used to exclude an individual as a source of a casework sample, and its util-

ity has been demonstrated for a variety of animal species [e.g., 70, 121, 122–124]. Nevertheless,

the most successful use of mtDNA in forensic zoology has been in species identification. Dif-

ferent mtDNA regions have been tested and validated for use in a forensic context, including

CYTB [125–127], COI [128–130], and rRNA genes [131, 132]. The procedure usually involves

the sequencing of a variable region amplified with conserved PCR primers followed by data-

base searches and phylogenetic analyses. This strategy was applied in different forensic in-

vestigations such as identification of rhinoceros horns [133], ivory [134], turtle shells [135],

endangered snake species [136], tigers [137], forensically important insect species [138–140],
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illegally smuggled eggs [141], or fish and fish products [142–144]. A few multiplex PCR/primer

extension assays to genotype mtDNA SNPs have also been developed for species and subspe-

cies identification (i.e., tiger [49], elephant [145], and other animals [146, 147]).

While the genetic identification of an individual or a species is not problematic in most situ-

ations, defining animal breeds or geographical populations has been considerably more diffi-

cult. Most breeds had a recent origin and are often defined by a few morphological features

arbitrarily defined. For instance, cat breeds are defined by phenotypic characteristics (e.g., hair

length, coat patterning, and colours) that are single-gene traits. Nevertheless, most cats can be

assigned to their proper breed or population of origin using genetic data [148].

A crucial aspect for some forensic cases (i.e., poaching or illegal logging) is the identification

of the origin of the sample. This identification depends on the existence of genetic data in dif-

ferent regions (including the region of the “real” origin), enough genetic differentiation

among regions and the quality of the analytical method. The recent origin, intensive inbreed-

ing, and genetic drift make difficult-to-use neutral genetic markers for rigorous identification

of breed or populations. In such ambiguous cases, genetic tests should assess the genetic vari-

ants of the morphological traits that define the breed. However, our understanding of the

genetics underlying such complex traits is still very limited, although significant progress is

expected [149]. A famous case of origin identification was the mad cow disease between the

United States and Canada [details in 150, 151], where a novel parentage testing was developed

by combining prions and kinship [151].

Botany

Plant evidence can provide crucial information for the reconstruction of forensically relevant

events or in cases where the crime scene and autopsy reports are not compelling [152].

Conventional taxonomic identification (using morphological methods) has a reduced

application since botanical forensic evidences are often very fragmented (e.g., pieces of leaves

or seeds) limiting the use of dichotomous keys. However, molecular markers can be applied to

identify samples, regardless of their state, morphology, and development phase. In this con-

cern, in the last couple of decades, diverse molecular markers have been applied for the foren-

sic identification of species and individuals (i.e., HRM coupled with specific barcodes or real-

time PCR to analyze chloroplast DNA regions) [e.g., 153, 154]. Importantly, second- and

third-generation sequencing methodologies are providing affordable analysis of complex and

degraded plant samples [155, 156].

Forensic botany presents numerous applications such as the identification of the origin of

seized illegal drugs (marijuana [157], kratom [158], or opium [159]), detection of illegal logging

[160, 161], importation and commercialization of endangered and exotic species [162, 163], or

bioterrorism (abrin and ricin attacks [164]). It can also provide useful supporting evidence in

crime scene investigations, allowing us to establish a link between the victim and the suspect,

placing the suspect at a crime scene or estimating the time of death [e.g., 23, 25, 165–167].

Microbiology

Although microbes have long been recognized as important players in our daily life, present in

areas such as medicine and public health, ecology, and in industrial applications, microbial

forensics (MF) is still a relatively recent scientific field [168, 169].

MF aims to identify a target microorganism and its source. Although culture in selective

growth media remains as the preferred standard for characterization of microbial agents at the

resolution of genus/species level, complementary detection methods based on diverse molecu-

lar markers are increasingly applied [170]. Indeed, NGS technologies profoundly improved
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the ability to detect microorganisms, even when present in low abundance or in degraded or

mixture samples, and to differentiate at strain/isolate level, using diagnostic genomic signa-

tures [171].

Applications of MF involve diverse areas such as biocrimes, bioterrorism, frauds, outbreaks

and transmission of pathogens, or accidental release of a biological agent or a toxin [e.g., 54,

172]. Additionally, the recent breakthroughs derived from NGS technologies allowed the anal-

ysis of microbial evidence to be expanded to cases related with geolocation, body fluid charac-

terization, or postmortem interval estimation [168].

Some biological agents can be used as weapons or threats. The best well-known example is

the Amerithrax case (2001), where letters laden with Bacillus anthracis spores were sent through

the U.S. Postal Service to several media offices in New York and Florida and to U.S. senators in

Washington [173, 174]. In this case, DNA evidence was found in the suspect’s laboratory.

Under the scope of epidemiological investigation, MF also helps to determine whether a

pathogen outbreak was natural or human-driven. Therefore, MF is intimately associated with

epidemiological surveys, allowing studying and following disease outbreak dynamics, mainly

concerning the identification of the agent or toxin, origin and natural reservoirs, genetic diver-

sity and evolution, and possible transmission routes. Some well-known cases of the epidemio-

logical studies are the swine-origin influenza A virus (H1N1; 2009) [175], the Haitian cholera

(2010) [176], the haemolytic-uremic syndrome (Escherichia coli O104:H4; 2011) [177], the

Coronavirus Middle East respiratory syndrome (2012) [178], the avian-origin Influenza A

virus (H7N9; 2013) [179], the West African Ebola virus (2013/2015) [180], the Middle Eastern

poliomyelitis (2014) [181], the Portuguese Legionnaires’ disease (2014) [182], and the Zika

virus outbreaks [183]. Note that most of the cases indicated above applied NGS approaches to

identify and study the different biological agents.

Applications of MF in biocrimes also include the tracking of sexually transmitted diseases

and healthcare malpractice linked to the transmission of HIV [e.g., 31–36, 53, 184] and HCV

[e.g., 54, 55]. Moreover, this discipline is also used to determine responsibilities in cases of hos-

pital-acquired infections [e.g., 185, 186] or sudden death syndrome [e.g., 187, 188].

The human microbiome is starting to be a focus of interest for identification purposes. The

rational is to trace human microbiomes on our skin on the surfaces and objects we interact

with the potential to supplement the use of human DNA for associating people with evidence

and environments. The Human Microbiome Project has significantly improved the scientific

knowledge in the field [189, 190]. Note that there are 10 times more bacteria than human cells

in our body [191], and a number of them appears to be unique to each person [192], offering

an opportunity for new identification biomarkers [193]. Thus, the human microbiome could

be used to identify suspects [e.g., 27, 28, 29] and to estimate the postmortem interval [194]. For

example, the origin of human remains from the Second World War was ascertained with the

parvovirus B19V [195]. Although these are promising findings, we consider that we are still far

from a foundational validation of this approach to be used in legal cases.

One of the main constraints associated with the use of MF is the lack of standards and

guidelines, although phylogenetic analyses have supported associations and have successfully

been admitted as evidence in legal criminal cases [196]. Another limitation is the insufficiency

of reference databases lacking endemic data or microorganism source tracing, reference

genome sequences, metadata, and representative genetic diversity coverage [197].

Food analysis and traceability

The investigation of the biological composition of food products regarding the species, variety

or cultivar, and geographic origin is of major forensic interest. Such investigations are relevant
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for guaranteeing consumer choices according to health concerns (e.g., sensitivities or aller-

gies), dietary preferences (e.g., vegetarian, nongenetically modified organisms), religious

beliefs (e.g., halal and kosher specifications), and to detect fraudulent substitution of a given

species by a similar one with lower economic value [198, 199]. Labelling is indispensable for

producers, retailers, and consumers to recognize and validate components of foodstuffs [200].

Unfortunately, labels of products often provide insufficient and erroneous information con-

cerning the exact contents.

The methodology used in food forensics is similar to that used in classical crime investiga-

tions, facing the same demands of dealing with potentially degraded DNA samples [201]. Sev-

eral DNA-based methods have become remarkably valuable for protecting and certifying the

quality and source of food [202, 203]. The first studies performed in the 90’s resorted to classi-

cal techniques (i.e., RADP and ISSR) but nowadays, real-time PCR [204], HRM [205–207],

and MPS [208] are widely applied for food traceability with the advantage of quantifying each

particular component in a faster and affordable procedure.

These genetic markers have been applied to perform identification in a variety of food

products such as olive oil [e.g., 209, 210], grapevine cultivars [e.g., 211, 212, 213], composition

of honey [e.g., 214, 215, 216], mushrooms [e.g., 217, 218, 219], dairy products [e.g., 220, 221,

222], seafood products [20], or meat species adulteration [223]. Additional documented cases

include: i) identification of cultivars of basmati rice [224], pome [225] and stone fruits [226],

leguminosae [227, 228], coffee [229], and tea and infusions [230]; ii) patent misappropriation

of strawberry cultivars [231]; iii) confirmation of Protected Designation of Origin (PDO), Pro-

tected Geographical Indication (PGI), or Traditional Speciality Guaranteed (TSG) in olive

[232] and grape [213, 233] products; iv) adulteration of traditional medicines [234, 235] and

herbs or spices [236]; v) insufficient and erroneous food labelling, including the presence of

some hidden allergens [237, 238] or genetically modified organisms [239] (GMOs; see section

Genetically modified organisms).

Food microbiology

Over the last 2 decades, the prevalence of foodborne diseases has drastically increased, becoming a

worldwide major public health concern. Foodborne diseases are often triggered by the consump-

tion of food or water contaminated either by pathogens (bacteria, viruses, fungi, and parasites) or

derived toxins. The most common pathogens responsible for foodborne disease outbreaks are Lis-
teria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, Salmonella enterica, Bacillus
cereus, Vibrio spp., Campylobacter jejuni, Clostridium perfringens, and Shigella dysenteriae. These

pathogens are often associated with consumption of raw (e.g., fruits and vegetables) or under-

cooked foods (e.g., seafood, meat, and poultry) [240]. To overcome the limitations of the tradi-

tional culture of microorganisms (e.g., may disallow the cultivation of the major foodborne

pathogen or may present a slow growth leading to long periods of time cultivation), DNA/RNA-

based methods (i.e., STR, NASBA, LAMP, and NGS) are usually applied [e.g., 241].

Genetically modified organisms

An area of growing interest is the detection of GMOs. The number of genetically modified

plants has been growing in recent years despite the intense discussion about the benefits or

damage that these organisms may have on humans and ecosystems. The detection of a GMO

is carried out by targeting the genetic elements (promotors, protein-coding regions or termi-

nators) that have been introduced artificially in the genome of the transgenic organism in

order to improve a particular trait [242]. A curated list of transgenic reference sequences has

been recently made available and is expected to facilitate the development of methods for
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testing GMOs and the implementation of regulatory policies [243]. The labelling and traceabil-

ity of GMOs are important issues that are highly regulated. If the content exceeds a certain

threshold, the product must be labeled accordingly. The most commonly used DNA-based

methodology for GMO testing is PCR, although other techniques have been proposed [244–

246]. The quantification of DNA targets is usually done by real-time PCR, where the copy

number of the transgenic element detected is correlated to a common plant marker, allowing

the determination of the GMO proportion in the sample [247, 248]. The correct detection of

genetically modified materials is of forensic relevance not only due to strict legislation regard-

ing the labelling of food products but also due to the type of materials from which DNA has to

be extracted. For example, transgenic constructs have to be identified in DNA extracted from

products like corn germ, flour, pasta, corn flakes, cookies, baked products, sugars derived

from corn starch, soy cream or milk (liquid or lyophilized), tofu, meat products, lecithin, and

even oil. Although most of the currently available GMOs are plants, the picture is expected to

change soon. The first genetically modified animal (AquAdvantage salmon) is on the verge of

being approved for human consumption in different countries [249]. New methods are being

developed to detect the genetically modified salmon in food products [250, 251]. Strong legis-

lation is expected to regulate the presence of this transgenic animal in foods and environmen-

tal samples [252, 253] and, consequently, reliable and sensitive methods for its detection will

be required by regulatory and scientific agencies worldwide [245, 254].

The future of NHFG

Within the enormous variety of applications, methods, and sources of NHFG, the forensic use

of NHGM is still limited and faces enormous difficulties due to diverse causes. Among them,

and perhaps the most important, is the sheer amount of biodiversity and the current poor

knowledge about it, with an impact not only on the species identification problem but also at

the intraspecific level where, for most wildlife organisms, population genetics data are nonexis-

tent or extremely poor. This makes relevant parameters difficult to estimate with acceptable

accuracy and thus inhibits solid statistical evaluation of the evidence [255]. In this concern,

the impact of the International Barcode of Life project (iBOL, http://www.ibol.org/) on forensics

has been much less than desired and several difficulties have been raised on its power, limita-

tions, and governance [256, 257]. In fact, most biodiversity studies do not meet classical forensic

standards (demanded in forensic routine casework), due to the inherently limited sampling, ref-

erences and controls. Moreover, there is a lack of agreement and concerted actions between the

scientific societies aiming at the forensic use of NHGM (ISAG, International Society for Animal

Genetics; ISFG, International Society for Forensic Genetics; SWSF, The Society for Wildlife

Forensic Science; ISEF, International Society of Environmental Forensics) that is reflected in

nonreconcilable or even contradictory recommendations and guidelines (particularly between

ISFG [9] and ISAG/FAO [258]). Given the increasing use of NHFG, we do hope for some prog-

ress in joining efforts between scientific communities for a mutual benefit.

On the other hand, less error-burdened, cheaper, and faster MPS, together with progress in

bioinformatics frameworks and computational resources, now allow the analysis of complex

samples (i.e., commingled samples with DNA from more than one contributor/species) with

more accurate and reliable results [e.g., 177, 186]. With third generation sequencing technolo-

gies, single DNA molecules can be analyzed individually [e.g., 259] and, therefore, haplotypes

can be determined. These advances are expected to revolutionize NHFG. Among other

examples, MPS was already applied to the identification of species for quality control in the

development and authentication of herbal and traditional medicines [260] and for the discrim-

ination of soils and other detritus from alternative environments and locations, based on the
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composition of the microflora, plants, metazoan, and protozoa DNA sequences [21, 261–265].

As noted in MF, the implementation of MPS is particularly useful for epidemiological studies.

However, more research is necessary for the improvement of libraries (i.e., reference sequences

reflecting the coverage of the entire genome of diverse organisms), development of bioinfor-

matics platforms (i.e., for decreasing memory requirements and implementing algorithms for

parallel computing) and for reproducibility and assignment of general quality of the results.

Moreover, current MPS technologies still present relatively high sequencing errors [e.g., 266]

which, although could be assumed for other disciplines, may not meet forensic standards

[267]. Therefore, strict MPS validation studies are mandatory but they are still very scarce,

even in human applications.

In this regard, it is clear that genetic analyses based on very large datasets (ideally, whole

genomes) can provide high statistical confidence that can be useful for forensic cases [268].

However, systematic biases in methods applied to the analysis of large data can lead to precise

but incorrect results [269–271]. Therefore, not only are large datasets required, less biased state-

of-the-art methodologies should also be applied [272]. An example of this situation is the evolu-

tionary analysis of genetic data. This analysis can be improved with the consideration of more

complex substitution models of evolution (i.e., nonreversible and nonstationary) that can better

fit the data [65, 273]. However, these models were not implemented yet into the traditional

frameworks of the phylogenetic pipeline and, to our knowledge, all existing NHFG studies have

ignored them. In addition, as noted above, evolutionary processes that exchange genetic mate-

rial (e.g., recombination) can bias phylogenetic tree inferences [60]. However, to our knowl-

edge, all existing NHFG studies including phylogenetic tree inferences from pathogens that

usually evolve with high recombination rates (i.e., HIV and HCV) ignored recombination [e.g.,

31–36, 53, 54, 55]. We strongly recommend considering these aspects in future NHFG studies.

The future of NHFG is dependent on the progress in removing current limitations (i.e.,

funding, adapting scientific methods into court [274], taking away from HFG and dealing with

much smaller documented biodiversity being more complex to achieve forensic standards),

but this is an emerging field of increasing importance. The number of papers in the top foren-

sic journals on nonhuman DNA typing topics is increasing at a rate of 15% per year, especially

on IWT [275]. As mentioned by Ogden and Linacre [101], perhaps the main difficulty in this

field is the large proportion of traded products originated from underdeveloped countries

where wildlife trade monitoring and the ability of the enforcement agencies to act are limited.

That difficulty is caused by the lack of funding since the priorities of the majority of law

enforcement agencies are crimes against humans and their properties.

The continuous incorporation of genomic data in reliable databases together with progress

of experimental methodologies and analytical software are expected to further increase the

application of NHFG. Assuming this direction, we believe that, in the future, NHFG could

even overpass HFG in number of cases investigated, since the number of informative organ-

isms is extremely large.
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