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Abstract

Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due

to mutations in the PEX genes that are responsible for peroxisome assembly and function.

These disorders lead to global defects in peroxisomal function and result in severe brain,

liver, bone and kidney disease. In order to study their pathogenesis we undertook a system-

atic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants

are short-lived with defects in locomotion and activity. Moreover these mutants exhibit

severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered

defects in multiple biochemical pathways including defects outside the canonical specialized

lipid pathways performed by peroxisomal enzymes. These included unanticipated changes

in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, car-

bohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition,

mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting

dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic

transcriptional profiling to examine gene co-regulation between peroxisomal genes and

other metabolic pathways and we observe that the expression of peroxisomal and carbohy-

drate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohy-

drate metabolism were found to be strongly co-regulated with peroxisomal genes in flies

and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism

at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link

between these two metabolic processes and suggest metabolism of carbohydrates could

be a new therapeutic target for patients with PBD.
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Author summary

Peroxisomes are organelles or component of cells that are involved in body chemistry for

a number of specialized fats. Peroxisome biogenesis disorders (PBD) are a group of rare

diseases in which patients have genetic defects in the synthesis of peroxisomes. These dis-

orders affect multiple organs including the brain and liver. We used fruitfly (Drosophila
melanogaster) to study the metabolism and genetics of peroxisomal biogenesis to gain

insight into the disease process. We generated flies with genetic defects in peroxisomes,

carefully characterized these flies finding that they are short-lived and have locomotor

problems. We then applied global metabolic profiling in these flies, measuring hundreds

of biochemical compounds. The analysis pointed to an unexpected link between peroxi-

somes and sugar metabolism. Guided by this we found our flies were sensitive to low-

sugar diet. We then used gene-expression analysis and targeted biochemical profiling in

mouse to confirm that carbohydrate alterations also occur in vertebrates. Our work sug-

gests carbohydrate metabolism may be a crucial process to study in patients with PBD.

Introduction

Peroxisomes are ubiquitous organelles present in all eukaryotic cells [1–3]. Peroxisomes per-

form specific biochemical functions in the cell including fatty acid β-oxidation of very-long-

chain fatty acids (VLCFA) [4], α-oxidation of branched chain fatty acids [5, 6], plasmalogen

biosynthesis [7, 8], and also participate in the metabolism of reactive oxygen species [9] and

glyoxylate [10, 11]. Peroxisomes are formed by the action of 14 peroxins encoded by PEX
genes, the majority of which are involved in translocation of peroxisomal enzymes into the

matrix, with others designating peroxisomal membrane [12–15]. Human diseases due to auto-

somal recessive loss of function mutations in the PEX genes comprise a group of severe disor-

ders known as peroxisome biogenesis disorders (PBD) with involvement of brain, bone,

kidney and liver and death within the first year of life [1, 2, 16, 17].

The peroxisome’s well documented role in β-oxidation of VLCFA and synthesis of ether

lipids has led to considerable focus on lipid metabolism as the key pathogenic factor in disease

pathogenesis in PBD [18]. The accumulation of VLCFA has been proposed as the primary

pathway influencing severity and as a therapeutic target [19–21]. A more general alteration of

peroxisomal lipids have been proposed as a developmental insult to the brain in PBD [22].

However, while the increases in VLCFA and loss of plasmalogens in peroxisomal metabo-

lism are likely to be a significant part of the pathogenesis of PBD, other metabolic pathways

are also likely to play a role. Indeed, patients with pathogenic variants in PEX2 [23, 24], PEX10
[25] and PEX16 [26, 27] that allow survival into childhood or adulthood have been reported

with very mild abnormalities in VLCFA metabolism, and plasmalogen biosynthesis. These

studies suggest that additional or even distinct peroxisomal functions are involved in PBD

pathogenesis.

Peroxisomal biology is highly conserved across eukaryotes which has allowed this same

genetic machinery to be studied across several model organisms [28]. In mice, studies of a

spectrum of enzymatic and biogenesis defects in global and conditional knockouts has allowed

insight into the role of peroxisomes in vertebrate tissues [29]. Severe early phenotypes affecting

brain, growth, and viability have been observed in Pex2, Pex5 and Pex13 knock-out mice [30–

32]. In addition a Pex1 knock-in for a common missense allele in human PBD produces mice

with growth failure, cholestasis and retinopathy [33]. Pex genes have been shown to have tissue
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specific effects. For example, an oligodendrocyte-specific loss of peroxisomal biogenesis pro-

duces much of the axonal loss and demyelination seen in PBD suggesting a cell autonomous

role of peroxisomes in oligodendrocytes [34]. Hepatocyte knockouts produce effects on mito-

chondrial morphology and ER stress [35–37]. Several recent studies have also explored peroxi-

somal biogenesis in Drosophila demonstrating the evolutionary conservation [38–42]. Studies

of Drosophila pex mutants demonstrated a role for VLCFA in interfering with spermatogenesis

leading to infertility [42]. In addition, fly pex16 mutants have been shown to have locomotor

defects, and shortened lifespan [41]. Collectively, the study of peroxisomes in flies and mice

have provided compelling data that the function of peroxisomes in longevity, locomotion and

metabolism are conserved from flies to man.

A key question that has not been addressed by the previous fly studies is whether the pheno-

type due to loss of peroxisomes is determined by any pathways in metabolism beyond peroxi-

somal lipids. Indeed, a comprehensive metabolic profile of peroxisomal biogenesis mutants is

lacking. Here we utilize genetics, transcriptional informatics and untargeted metabolomics to

show that Drosophila pex mutants exhibit an unanticipated defect in sugar metabolism and are

sensitive to reduced dietary sugar. We also find a strong transcriptional co-regulation between

peroxisomal genes in the fly and enzymes in glucose metabolism, and show that similar tran-

scriptional signatures are observed in mice.

Results

Genetic tools for peroxisomal biogenesis studies in Drosophila pex2 and

pex16

To perform detailed phenotypic and biochemical analysis and identify new pathways that may

be affected when peroxisomal function is lost, we studied two genes required for Drosophila
peroxisomal biogenesis. We selected pex16 and pex2 because both are conserved PBD disease

gene homologs that act in distinct steps of peroxisomal biogenesis (Fig 1) ensuring that our

results will uncover key, cell biological aspects of peroxisomes rather than gene specific ones.

While pex16 is involved in early peroxisomal membrane formation, pex2 is a component of an

ubiquitination complex that functions in matrix protein import [43]. In order to study loss-of-

function mutants for pex2 we obtained an EPg element [44], a P-element insertion in the

fourth coding exon of the pex2 gene (Fig 1A). However, this allele has not been characterized

in detail: it is not known if it corresponds to a null allele, nor have the phenotypes been rescued

with a transgene. We therefore performed imprecise excision and produced two additional

loss-of-function alleles (pex21, a 473 bp deletion and pex22, a 599 bp deletion). For pex16 we

studied a EPgy2 P-element insertion allele [45] in the 5’UTR of the pex16 gene which behaves

as a hypomorphic allele [42](Fig 1B). We also obtained a pex16 deletion mutant that lacks the

coding region of the gene [41]. For each strain we studied the mutant alleles in trans with a

genomic deficiency and used genomic rescue constructs to rescue the phenotypes and to ascer-

tain that the observed phenotypes are not due to second site hits (S1 Fig, see Materials and

Methods). To investigate the peroxisomal phenotypes we examined the mutant larval salivary

glands using the Pex3 antibody [38] and a peroxisomally localized green fluorescent protein

(GFP-SKL) (Fig 1A’). The UAS-GFP-SKL construct was driven by the ubiquitous strong

driver Act5C-GAL4. GFP-SKL produces a GFP with PTS1 targeting signal for the peroxisomal

biogenesis machinery encoded by the pex genes necessary to import the protein into the perox-

isomal matrix [46]. In Drosophila, PTS1 is the only system that allows localization into the per-

oxisomal matrix as PTS2 proteins are not present[39]. In control and rescued animals we

observed microscopic punctae in which GFP-SKL and Pex3 extensively co-localize (Fig 1A’

and 1A” rescue shown). However, pex2 mutant cells exhibited a mostly nuclear distribution of
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Fig 1. Genetic tools for studies of peroxisomal biogenesis in Drosophila. A) Genetic tools to study pex2. Two deletion alleles

were produced by imprecise excision of an EPg P-element (shown to scale, see Materials and Methods) for the pex2 gene. These

alleles were crossed to molecularly characterized deficiency strains for all experiments (shown to scale, see Materials and

Methods). (A’) Confocal microscopy image of pex22 with the P[acman] genomic rescue construct (pex22 Rescue). Salivary gland

peroxisomes were imaged under confocal microscopy. The GFP-SKL marker (green) demonstrating punctate localization, these
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GFP-SKL and severely reduced Pex3 staining (Fig 1A’ and 1A”). Similarly, in pex16 mutants

we observe diffuse localization of GFP-SKL and reduced Pex3 signal compared to rescue (Fig

1B’ and 1B”). Our data suggest that loss of either gene causes defective localization of peroxi-

somal markers and hence are likely to disrupt peroxisomal biogenesis/function. Therefore

these genetic tools permit comparison of pex2 and pex16 mutants, two mutants that represent

defects in different steps of the peroxisomal biogenesis pathway (Fig 1C).

Drosophila pex2 and pex16 mutants exhibit peroxisomal dysfunction

consistent with PBD

To assess if peroxisomal function was altered in our mutants we examined canonical peroxi-

somal lipids using the same methods as employed for clinical diagnosis [47–49]. We used Gas

chromatograph mass spectrometry (GC-MS) to measure very long chain fatty acids in larvae

and whole adult flies [49] and observed only mildly increased levels of C30:0, C28:0, C26:0 and

C24:0 in larval pex2 mutants as well as pex16 mutants (Fig 2A). However, we observed a dra-

matic increase in these lipids in adult flies compared to larvae in the mutants (Fig 2A).

We also measured the levels of lyso-phosphatidylcholines (LPC), C16:0 to C26:0 LPCs, and

the 4 phosphatidylethanolamine plasmalogen (PlsEtn) species (16:0p/20:4, 16:0p/18:1, 18:1p/

20:4 and 18:0p/20:4) in third instar larvae and found increased 24:0 LPC levels and decreased

18:1p/20:4 PlsEtn levels by LC-MSMS [47, 48, 50] (Fig 2C and 2E, S1 Table). These assays

were conducted along with human samples from controls, and patients with PBD (Fig 2B

and 2D, S1 Table). We noted a dramatic difference between the mutant animals compared to

control and rescue (Fig 2C and 2E, S1 Table). The 24:0 LPC accumulates quite dramatically

concomitant with a severe loss of plasmalogen in both the pex2 and the pex16 mutant larvae,

consistent with a defect in VLCFA catabolism and plasmalogen synthesis, defects that are seen

in PBD. However, interestingly these biochemical defects are distinct from those observed in

patients with PBD as the C26:0 LPC was not increased in the mutant larvae whereas in humans

with PBD C26:0 LPC shows the greatest increase when compared to controls (S1 Table). In

addition, in PBD levels of all 4 PlsEtn are typically reduced. These data indicate that a funda-

mental role for peroxisomes in VLCFA catabolism and plasmalogen synthesis is conserved but

some of the specific lipids affected differ between flies and humans.

Drosophila pex2 and pex16 mutants are short lived, bang-sensitive and

have locomotor defects

We next explored the phenotypes of the pex mutant flies. Drosophila pex2 mutants have been

reported to have spermatogenesis defects without appreciable nervous system phenotypes

[42], while pex16 mutants have been noted to have shortened survival and locomotor defects

punctae co-localize with the Pex3 antibody stain (red), error bar 10 μm. (DAPI is shown in the composite) (A”) Confocal microscopy

image of the pex22 mutants. These mutants exhibit loss of the punctate staining, and some nuclear localization is observed. DAPI

labels nuclei. Scale bar 10 μm. (DAPI is shown in the composite) (B) Genetic tools to study pex16. The pex16 gene is shown in

genomic context, a deletion allele [41] and an EY P-element strain were used. In addition, a P[acman] genomic rescue strain was

used to generate rescue strains. (B’) Confocal microscopy image of pex161 with the P[acman] genomic rescue construct (pex161

Rescue). Salivary gland peroxisomes demonstrate a similar punctate localization of GFP-SKL and Pex3 with good co-localization.

(B”) pex161 mutants display a similar loss of punctae with both GFP-SKL and Pex3 antibody stain. DAPI labels nuclei. Scale bar

10 μm. (DAPI is shown in the composite) (C) The conserved peroxisomal biogenesis machinery is shown in schematic. Early

peroxisomal proteins, pex3, pex19 and pex16 (purple diamond for pex16 and blue symbols) aid in designation of an ER-derived

lipid bilayer (left). Membrane proteins are then incorporated, and enzymes (dark blue rhomboids) can subsequently be imported

into the maturing peroxisome (black block arrows). This process requires pex2, a component of the importomer complex (purple

triangle). Mature peroxisomes perform a range of biochemical functions in lipid oxidation and detoxification. Mature peroxisomes

can then undergo fission.

https://doi.org/10.1371/journal.pgen.1006825.g001
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Fig 2. Very-long chain fatty acid (VLCFA) accumulation and plasmalogen deficiency in Drosophila pex mutants. (A) Third

instar larvae and adult flies of pex22 and pex21 mutants, pex161 and pex16EY mutants, as well as each rescue were flash frozen in

liquid nitrogen and stored at -80˚C. These were analyzed by Gas chromatography mass spectrometry (see methods) for C24:0,

C26:0, C28:0 and C30:0. Ten larvae and ten flies were analyzed for each genotype. These analyses revealed different abundance

for larvae versus flies for each lipid consistent with distinct stages in development. Results of these analyses revealed a higher level
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[41]. Given the difference in reported phenotypes, we undertook an extensive phenotypic

characterization of both pex2 and pex16 mutants. We noted that the survival of both pex2 (Fig

3A) and pex161mutants (Fig 3B) is dramatically shortened to approximately 50% of controls.

For the pex16EY mutants we observed intermediate survival consistent with this being a hypo-

morphic allele (Fig 3B).We also observed that young (2–3 day) flies performed poorly in a

bang sensitivity assay in which they were subject to mechanical stress and allowed to recover

(Fig 3C, S1 Video (pex2 control at left, pex22 at center and pex22 Rescue at right; S2 Video

pex16 control at left, pex161at center, and pex161 Rescue at right). Moreover, the majority of

pex2 and pex16 mutant flies are unable to fly at 10 days of age (Fig 3D, S3 Video- pex22 flight

assay compare to S4 Video pex22 Rescue flight assay; S5 Video- pex161 flight assay compare to

S6 Video pex161 Rescue flight assay). To characterize the activity of the pex2 and pex16 mutant

flies we monitored their activity with the Drosophila Activity Monitor (DAM) assay [51]. In

this assay activity is constantly monitored by an infrared beam for a continuous 3–7 day period

in 12hrs light/dark cycles. We noted that 2-3-day-old pex2 and pex16 mutant flies had a dra-

matic reduction in activity (Fig 3E).

In addition, we assessed the function of the Drosophila photoreceptors in the pex mutant

animals with electroretinogram (ERG) recordings (S2 Fig). The amplitude of the ERG was

measured as the size of change in potential occurring during depolarization, after the synaptic

“on” transient and before the “off” transient (S2A Fig). There was no significant difference in

ERG amplitude in 2-day-old pex2 nor in 2-day-old pex16 mutants (S2A and S2C Fig, quantifi-

cation S2B and S2D). After 4 weeks of aging the animals in 12 hour light/dark cycle there was

a significant reduction in ERG amplitude by approximately one third in pex22, pex21 and

pex161 (S2E and S2G Fig, quantification S2F and S2H). Interestingly, the pex16EY allele did

not exhibit a significant functional change. In summary, pex2 and pex16 mutants exhibit simi-

lar phenotypes with respect to viability, lifespan, bang sensitivity, flight, photoreceptor func-

tion, and locomotor activity.

Pex mutants exhibit dysfunction in carbohydrate metabolism

To assess metabolomic changes in two pex mutants we undertook a comprehensive metabolo-

mic and characterization of the pex2 and pex16 mutants using untargeted metabolomics. We

tested the adult mutant flies for 347 named analytes in distinct metabolic pathways. The meta-

bolomic profiles across the 347 compounds is distinct as well as overlapping for pex2 and

pex16 mutants when compared to control and rescue genotypes (Fig 4A and 4B, S2 and S3

Tables). To determine which pathways were enriched for altered metabolites in peroxisomal

biogenesis mutants we performed a Metabolite Set Enrichment Analysis (MSEA) [52, 53].

MSEA is analogous to Gene Set Enrichment Analysis (GSEA) in which a set of metabolites is

explored for specific biochemical pathways that are enriched for alterations. We selected lists

of metabolites that were altered in pex2 mutants (both alleles) as well as pex16 null mutants

(pex161 allele) (S3 Fig). We also selected the subset of metabolites which were 1) altered consis-

tently between pex2 (both alleles) and pex16 (pex161 allele) compared to rescue (Fig 4C, S4

for all four metabolites in larvae of all the pex mutant alleles. There was a substantial increase in adult flies for the mutants for all of

these analytes, while rescue exhibited either decreased, or minimal increase in C24:0 and C26:0. (B) VLCFA analysis on individual

newborn blood spots using LC-MSMS, measurement of pmol of 24:0 LPC per blood spot is shown for control, and two PBD infants.

(C) VLCFA analysis on individual Drosophila larvae (pooled sample of 10 larvae each) using the LC-MSMS, measurements of pmol

of 24:0LPC for 10 larvae are shown. (D) LC-MSMS measurements of 18:1p/20:4 ethanolamine plasmalogen, (PlsEtn), in newborn

blood spots. As expected the samples from infants with PBD have dramatic loss of plasmalogen resulting in low level compared to

controls. (E) LC-MSMS measurements of 18:1p/20:4 ethanolamine plasmalogen, (PlsEtn) with individual measurements of 10

Drosophila larvae from each genotype. The peroxisomal mutant flies exhibit a dramatic reduction in the level suggesting

plasmalogen loss.

https://doi.org/10.1371/journal.pgen.1006825.g002
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Fig 3. Reduced survival and locomotion defects in pex2 and pex16 mutants. (A) Survival curves on standard media at

room temperature for pex2 mutant, control and rescue strains. Color codes show the genotypes with y w flies (yellow), pex22

Rescue (solid blue), and pex2EP rescue (blue dotted) living up to 80 days, and pex21/Df,(dark green) pex22/Df (red) and

pex2EP/Df (green) with shortened lifespan. (B) Survival curves on standard media at room temperature for pex16 mutant,

control and rescue strains. Color codes show the genotypes with y w flies (yellow), pex161/Df (red) and pex161rescue (blue).

Peroxisomal biogenesis is linked to carbohydrate metabolism

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006825 June 22, 2017 8 / 33

https://doi.org/10.1371/journal.pgen.1006825


Table). The pathways implicated by MSEA included a broad range of processes. For example,

pathways such as RNA transcription were identified owing to abnormal levels of adenosine

monophosphate and uridine 5’ monophosphate in the pex mutant flies (Fig 4C, S4 Table).

The examination of biochemical pathways verified several known peroxisomal pathways

(Fig 5). For example, Omega oxidation of fatty acids can be affected by loss of β-oxidation in

peroxisome[54] (Fig 5A), and synthesis of ether lipids (plasmalogens) (Fig 5B) were perturbed

in the pex2 and pex16 mutants. Strikingly, dicarboxylic fatty acids of different chain lengths

were among the most severely (5–10 fold increased from mutant to rescue lines) and consis-

tently deregulated metabolites (Fig 5A). Moreover, defects in purine catabolism were also

consistent in the pex2 and pex16 mutants [55](Fig 5C). Therefore, the untargeted metabolic

profiling identified defects in a number of pathways already implicated in peroxisomal

biochemistry.

Our data also revealed an increase in precursors for phospholipids such as cytidine 5’-dipho-

sphocholine and phosphoethanolamine, while observing decreases in the degradation products

of phospholipids such as glycerophosphorylcholine and glycerophosphorylethanolamine in the

pex2 and pex16 mutants (Fig 5D). This suggests a defect in synthesis and a reduction in the

breakdown of membrane lipids such as phosphatidylcholine and phosphatidylethanolamine.

Pex mutants are hypersensitive to lack of sugar

Interestingly, the results of MSEA in the group of metabolites consistently altered in both pex2
and pex16 mutants pointed to a number of analytes in carbohydrate metabolism (Pentose

phosphate pathway, glycolysis, and starch and sucrose metabolism). Indeed a number of com-

pounds in these pathways were altered in the pex mutant flies (Fig 6A).Since mitochondrial

function could underly changes in carbohydrate metabolism and peroxisomes and mitochon-

dria have a number of functional links[56], we examined mitochondria in the pex mutant flies

(S4 Fig). We performed Transmission electron microscopy (TEM) on aged photoreceptors of

the hypomorphic pex16EY flies at 2 weeks (S4A–S4F Fig). We observed a statistically signifi-

cant increase in the number of mitochondria per photoreceptor (S4B and S4E Fig compared

to S4A and S4D). In addition we observed electron dense inclusions in the photoreceptors of

the pex16EY animals (S4E Fig white arrows, S4F). These data demonstrate an increase in mito-

chondrial numbers in pex16EY photoreceptors. In addition we examined the function of mito-

chondrial complexes in purified mitochondria from pex22 compared to y w, and pex22 Rescue

(S4G Fig). While some minor differences in individual complexes, there were importantly no

dramatic reductions in the ETC complexes in the pex2 mutant flies (S4G Fig). While there was

a statistically significant reduction in pex2 mutant flies in complex IV, this was a small, 20%

reduction in activity (S5 Table). Taken together we did not observe dramatic differences in

mitochondrial function in the pex mutant flies.

(C) Bang sensitivity assay in pex mutant flies. Flies of the 10 indicated genotypes were subjected in vials to vortex for 10

seconds and timed to how long they took to recover. Shown is the proportion failing to recover after 10 seconds. For the data

shown the number of flies for each trial was pex2 Ctrl (26), pex22/Df (8), pex21/Df (6), pex22 Rescue (14), pex21 Rescue (18)

pex16 Ctrl (34) pex161/Df (16) pex16EY/Df (25) pex161 Rescue (18) pex16EY Rescue (39) (D) Flight assay was performed in

10 day old flies. Flies of the 10 indicated genotypes were lightly tapped into a clear column made of PVC marked at each

centimeter. The average height of their landing position on the column is shown. For the data shown the number of flies for

each trial was pex2 Ctrl (97), pex22/Df (65), pex21/Df (58), pex22 Rescue (21), pex21 Rescue (86) pex16 Ctrl (131) pex161/Df

(143) pex16EY/Df (101) pex161 Rescue (95) pex16EY Rescue (13) (E) Drosophila activity monitor with reduced activity in 1–2

day old pex2 and pex16 mutant flies. The Drosophila activity monitoring actograms are shown with 12 hour light/dark cycles

depicted by yellow/dark bars across the top of each actogram. Representative actograms for single flies for each indicated

genotype are shown. The y-axis of each actrogram shows the number of beam breaks per minute and the total activity in

beam breaks per fly per minute is shown at right.

https://doi.org/10.1371/journal.pgen.1006825.g003
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Fig 4. Global metabolomic profiling in pex2 and pex16 mutants. (A) Heat map for global metabolomic profiling for the pex2

deletion alleles are shown. Super pathways for amino acids, carbohydrates, cofactors, energy, lipids, nucleotides, peptides and

xenobiotics are shown. (B) Heat map for the pex16 deletion allele. (C) Metabolite set enrichment enrichment was performed on

the subset of metabolites that were consistently altered in pex2 and pex16 deletion alleles. The fold enrichment values are shown,

the fold enrichment is highest for RNA transcription, Pentose-phosphate pathway, Nicotinate and Nicotinamide metabolism, Beta

oxidation of VLCFA and starch and sucrose metabolism.

https://doi.org/10.1371/journal.pgen.1006825.g004
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Fig 5. Key pathways with metabolic alterations in pex mutant flies. (A) Omega oxidation of medium chain fatty acids can

be affected by the Beta-oxidation systems in peroxisomes and we observe numerous fatty dicarboxylic acids accumulating in

the pex mutant flies. Red indicates analytes in the pathway with increased levels in the mutant versus the genomic rescue line

for that mutation. The green indicates decreased levels in the mutant versus the genomic rescue line for that mutant. In

the table shown are ratios of analyte levels for each pex allele (pex21/Df, pex22/Df, pex161/Df, pex16EY/Df) compared to the
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Based on this finding, we examined the carbohydrate metabolism pathways themselves

more carefully in our pex mutant flies and noted a pattern of reduced glycolytic intermediates

such as glucose-6 phosphate (ratio of 0.33–0.43 in pex2 mutants compared to rescue (p<0.05),

0.27–0.38 in pex16 mutants compared to rescue (p<0.05)). We also noted a reduction in gly-

cogen intermediates such as maltose, maltotriose, maltotetraose, maltopentaose and maltohex-

aose (Fig 6A). Given these changes we sought to test whether the peroxisomal mutants would

be sensitive to reduced glucose intake. We tested flies for lifespan and locomotor activity on a

low-sugar food providing 21 kcal/100 mL with 0% of calories from sugar, compared to a stan-

dard sugar food with 55 kcal/100 mL and 88% of calories from sugar. The standard sugar food

was most closely related in composition to standard media but is providing nearly 90% of calo-

ries from carbohydrate (S5A and S5B Fig) (see Materials and Methods).

We noted that the lifespan of both pex mutants was dramatically reduced when the flies are

raised on low-sugar food (Fig 6B and 6C, S5C Fig). We also tested the pex2 and pex16 mutants

on low-sugar in the DAM assay to score their activity level in these conditions. We observed

that control and rescue flies reduce their activity level on low-sugar food. Interestingly, we

noted an increase in activity of the mutant flies in the low-sugar food suggesting an altered

behavior on low-sugar food (Fig 6D). This increased activity was a somewhat surprising

response given the evidence for depletion of glycolytic intermediates and glycogen in the pex

mutants. Taken together these results suggest a strong physiological carbohydrate dependence

in pex2 and pex16 mutants in vivo which is consistent with the metabolomic analyses.

We also grew adult flies on agar media without nutrients to determine their sensitivity to

starvation and measured their activity in the DAM assay during starvation (Fig 7). We noted

that both pex2 and pex16 mutants are sensitive to starvation (Fig 7A and 7B). In the DAM

assay (Fig 7C–7F) the pex2 and pex16 mutants, although still severely impaired, display a

doubling of their activity under starvation (Fig 7C and 7E). These data show an increase in

activity during starvation for the pex mutants that is more pronounced than in controls. Taken

together these data suggest that the pex mutants respond differently than controls to changes

in carbohydrate supply. In addition, pex mutant flies are sensitive to reduced glucose in the

media and to starvation, and under both conditions these flies have a an increase in their activ-

ity level consistent with foraging behavior.

Expression profile of peroxisomal biogenesis and carbohydrate

metabolism genes are correlated in flies and mice

The enzymes of glycolysis, glycogen catabolism and pentose phosphate pathway are not pres-

ent in peroxisomes [57]. We therefore sought to explore the relationship between genes related

to peroxisomal function and carbohydrate metabolism. We first assembled a list of peroxi-

somal genes in the fly [1, 39, 58] and examined their expression profile in existing databases to

corresponding rescue for each allele. Red background with yellow text indicates significant increase while pink background and

blue text indicates a value narrowly missing statistical cutoffs. Green background with yellow text indicates significant decrease

while light green background with blue text indicates a value narrowly missing statistical cutoffs. Four analytes representing fatty

dicarboxylates are shown with significant increases in the pex mutants over the corresponding rescue line for each mutation

(see also S1 Table). (B) Ether lipid biosynthesis of plasmalogens relies on two enzymes in peroxisomes and fatty alcohols

conjugate with 1-acyl-dihydroxyacetone phosphate. The same color code as (A) is applied, the two fatty alcohol species are

shown for the pex mutants over the corresponding rescue line for each mutation. Fatty alcohols appear to accumulate in pex

mutant flies. (C) Purine catabolism relies on peroxisomal enzymes and purine metabolites are altered in the pex mutants. The

same color code as (A) is applied, hypoxanthine, xanthine, urate and allantoin are shown for the pex mutants over the

corresponding rescue line for each mutation. Hypoxanthine and xanthine appear to be reduced while urate and allantoin appear

to accumulate in the pex mutants. (D) Phospholipid metabolism is altered in pex mutant flies. The same color code as (A) is

applied for the pex mutants over the corresponding rescue line for each mutation.

https://doi.org/10.1371/journal.pgen.1006825.g005
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Fig 6. Glucose metabolism defects in pex mutant flies. (A) Glucose metabolism alterations in the pex mutant flies. Red

indicates analytes in the pathway with increased levels in the mutant versus the genomic rescue line for that mutation. The green

indicates decreased levels in the mutant versus the genomic rescue line for that mutant. In the table shown are ratios of analyte

levels for each pex allele (pex21/Df, pex22/Df, pex161/Df, pex16EY/Df) compared to the corresponding rescue for each allele.

Green background with yellow text indicates significant decrease while light green background with blue text indicates a trend
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find genes whose expression correlates with the expression of these peroxisomal genes using g:

Profiler tools [59, 60] (Fig 8; S6 Table). This approach revealed five distinct gene clusters con-

taining peroxisomal genes in Drosophila (Fig 8A). These gene clusters were used to create

ranked lists from the Drosophila genome of genes whose expression most closely correlated

with these gene clusters (S6 Table). Next we examined the specific genes encoding enzymes in

the glycolysis and glycogen metabolism pathways. Interestingly, for nearly every step of glyco-

gen synthesis and glycolysis the gene encoding the enzyme is co-regulated with one or more of

these peroxisomal transcriptional clusters (Fig 8B). Taken together these results suggest exten-

sive co-regulation of transcription between peroxisomal genes and carbohydrate metabolism

genes in Drosophila.

Next we sought to explore the conservation of this metabolic control in vertebrates. We

undertook an analysis using the g:Profiler starting with a manually curated list of mouse perox-

isomal genes which we analyzed informatically in liver transcriptional datasets in mouse (S5

Fig, S7 Table) [59]. We observed four distinct clusters of genes that are closely co-regulated.

Since we noted a multiple genes implicated in glycolysis, pentose phosphate and glycogen

metabolism in the Drosophila peroxisomal cluster, we tested whether carbohydrate metabolism

genes were enriched in the peroxisomal gene cluster for murine liver and performed a Gene-

set enrichment analysis (GSEA) for enzymes in carbohydrate metabolism to test whether there

is a statistically significant enrichment in vertebrates for glucose metabolism within the peroxi-

somal gene clusters. We found a dramatic enrichment for glycolysis (enrichment score 0.60,

P<0.0001), and TCA cycle (enrichment score 0.59, P<0.0001) there is a dramatic enrichment

(Fig 9A and 9B). For genes in gluconeogenesis (enrichment score 0.70 P = 0.022), pentose

phosphate pathway (enrichment score 0.67, P = 0.016) and glucose regulation (enrichment

score 0.67, P = 0.039) there was a less striking enrichment but still a statistically significant dif-

ference. Interestingly, the genes in glycogen metabolism were not significantly enriched (Syn-

thesis, enrichment score 0.72, P = 0.086, Regulation, enrichment score 0.46, P = 0.61) possibly

reflecting a smaller number of genes. Therefore, in murine liver there is significant co-regula-

tion of peroxisomal genes and genes involved in carbohydrate metabolism. Based on this pat-

tern of similar co-regulation between peroxisomal genes and carbohydrate metabolism we

hypothesized that there may be similarities between the carbohydrate metabolism defect we

observed in Drosophila pex2 and pex16 mutants and those observed in the Pex5 liver condi-

tional mouse [36]. Pex5 conditional liver knockout leads to altered glycolysis, glycogen pro-

duction and pentose phosphate pathway. In addition, the Pex5 conditional liver knockout

exhibits activation of AMP-activated protein kinase (AMPK) pathway and suppression of

PPAR-γ and PGC-1α [36]. Of note, Drosophila do not have a PPAR-γ homolog but indeed

we observe that the Drosophila gene clusters included several target genes for AMPK and

PGC-1α with many AMPK targets appearing in Cluster 1 (S8 Table)[61, 62]. In addition,

amongst the top 1000 genes from each gene cluster we selected genes that are 1) involved in

towards significance, additional analytes in S1 Table. Glycolysis, glycogen synthesis and pentose phosphate pathways exhibit

altered metabolites with reduced glucose 6-phosphate and fructose 1,6-bisphosphate. Glycogen intermediates are also reduced

in the pex mutant flies (with the exception of maltohexaose in the pex16 mutants). A number of pentose phosphate intermediates

such as ribulose 5- phosphate, xylulose 5-phosphate and mannose 6-phosphate are also reduced. (B) Survival analysis in pex2

mutants grown on low-sugar versus standard sugar. Survival experiments were run at the same time at room temperature on low-

sugar or standard sugar (see Materials and Methods). (C) Survival analysis in pex16 mutants grown on low-sugar versus standard

sugar. Survival experiments were run at the same time at room temperature on low-sugar or standard sugar (see Materials and

Methods). (D) Total activity was monitored by the DAM assay and the ratio of activity on low-sugar versus regular media was

determined for 6 genotypes. While control and rescue genotypes display reduced total activity in low-sugar media, the pex

mutants increase their activity relative to moderate amounts of sugar. The 100% line refers to average activity on standard sugar

media.

https://doi.org/10.1371/journal.pgen.1006825.g006

Peroxisomal biogenesis is linked to carbohydrate metabolism

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006825 June 22, 2017 14 / 33

https://doi.org/10.1371/journal.pgen.1006825.g006
https://doi.org/10.1371/journal.pgen.1006825


Fig 7. Lifespan and activity during starvation in pex2 and pex16 mutants. (A) Survival assay during starvation in pex2 mutant flies.

Color codes show the genotypes with control flies (yellow)(n = 60), pex22 (red)(n = 60), and pex21 rescue (blue)(n = 80) and pex21,

(brown)(n = 80). (B) Survival assay during starvation in pex16 mutant flies. Color codes show the genotypes with control flies (yellow)

(n = 60), pex161 Rescue(n = 60), and pex16EY rescue (solid blue)(n = 60), and pex16EY (brown)(n = 40) and pex161,(red) (n = 60). (C)

Actograms in the DAM assay in control and starvation conditions showing increased activity level particularly in the pex22 mutants. (D)

Quantification of total activity in the DAM assay in control and starvation conditions (bars indicate SEM). (E) Actograms in the DAM

assay in control and starvation conditions showing increased activity level particularly in the pex161 mutants. (F) Quantification of total

activity in the DAM assay in control and starvation conditions (bars indicate SEM).

https://doi.org/10.1371/journal.pgen.1006825.g007
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Fig 8. Drosophila peroxisomal gene networks. (A) Drosophila peroxisomal genes were manually selected and assembled

into a correlation matrix using the g:Profiler tool. These Drosophila peroxisomal genes are clustered in 5 co-regulated gene

clusters that were subsequently used to identify the top 1000 genes for each cluster that has a similar expression pattern from

Drosophila gene expression data-sets. (B) Co-regulated genes within the top 1000 genes in each cluster include multiple

pathways in carbohydrate metabolism including glycogen metaboliwsm and glycolysis The metabolomics results from Fig 6 with
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glucose metabolism and 2) represented in the top 1000 of more than one peroxisomal gene

cluster in both fly and mouse. This selection identified 10 fly genes, corresponding to 12

mouse homologs in glucose metabolism that are strongly co-regulated with peroxisomal genes

in both flies and mice. These genes catalyze 10 steps in glucose metabolism (Fig 9C and 9D), 4

steps in glycogen metabolism and six steps in the TCA cycle.

Pex5 mice livers exhibit altered carbohydrate metabolism

We hypothesized that this co-regulation in these key steps of carbohydrate metabolism might

relate to the peroxisome’s dependence on other pathways such as the citric acid cycle to metab-

olize the end products of peroxisomal catabolism[63]. This would lead to the prediction of

altered citric acid cycle metabolites in peroxisomal biogenesis mutants. We therefore under-

took additional metabolomic studies in Pex5 mice [32, 36]. Adult mouse liver was examined in

the liver conditional Pex5 mice (L-Pex5 mice) [36]. The global Pex5 knockout mice were also

examined but we could only test fetal liver because these mice usually die at P1 [32]. We used

LC-MS to assess a targeted panel of glucose and TCA cycle metabolites in fetal and adult Pex5
liver tissue and found that for both fetal and adult Pex5 liver, the targeted platform could dis-

tinguish the mutants as exhibiting a distinct signature of TCA cycle metabolites (S7 Fig) Inter-

estingly, we noted a clear correspondence between the significantly altered metabolites in the

adult conditional Pex5 liver and the strongly co-regulated steps in glucose metabolism (Fig

9D, purple analytes). For the fetal liver the only significantly altered metabolites, malate and

citrate/isocitrate also corresponded to strongly co-regulated steps (S7 Fig). Taken together

these data indicated consistency between the transcriptional evidence for co-regulation of per-

oxisomes with the TCA cycle and metabolic abnormalities in PBD models. The genes are all

enriched in multiple peroxisomal gene clusters in fly and mouse. In conclusion, the most

strongly co-regulated steps of carbohydate metabolism with peroxisomal genes between fly

and mouse correspond to metabolomic changes seen in liver from the Pex5knockout mice.

Discussion

Peroxisomes are subcellular organelles tasked with a discrete subset of metabolic reactions

principally involving peroxisomal lipids. While a role for lipid metabolism in peroxisomal dis-

orders is well established, carbohydrate metabolism is thought to be a more central energy-

producing process utilizing cytosolic and mitochondrial enzymes crucial for energy produc-

tion and is not generally implicated in PBD. We have uncovered a previously unappreciated

metabolic, phenotypic and gene-expression link between peroxisomes and carbohydrate

metabolism. We identified co-regulation of peroxisomal genes and carbohydrate metabolic

genes along with a carbohydrate dependence phenotype in peroxisomal biogenesis mutants

with metabolomic studies in Drosophila. In addition, we link this defect to that observed in

mouse liver tissue suggesting these pathways are conserved.

Our studies in Drosophila represent a new approach to the studies of Drosophila pex
mutants. We studied pex2 and pex16 mutant flies in order to compare different biogenesis

defects in the fly. Previous studies did not report similar phenotypes in pex2 and pex16 mutants

which was surprising given their strong conservation and similarities in yeast and vertebrates

[41, 42]. However, our study rigorously compared different genetic backgrounds by utilizing

two alleles for each gene, studying mutants in trans with genomic deficiencies and creating

green indicating a consistent decrease in metabolite levels in the pex mutants, are overlaid with the genes responsible for the

relevant steps in metabolism and their representation within the gene cluster (C1 = Cluster 1, C2 = Cluster 2 etc.).

https://doi.org/10.1371/journal.pgen.1006825.g008
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Fig 9. Gene network and metabolomic enrichment of carbohydrate metabolism in peroxisomal gene networks. (A)

Gene set enrichment analysis (GSEA) of peroxisomal genes in mouse liver networks showing a strong enrichment for

glycolysis. The y-axis shows the enrichment score or Kolmogorov-Smirnov-like statistic representing to what degree genes are

over-represented in the ranked list of genes across the murine genome. (B) Gene set enrichment analysis (GSEA) of

peroxisomal genes in mouse liver networks showing a strong enrichment for TCA cycle. The y-axis shows the enrichment score
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genomic rescue strains for each mutation. We determined that peroxisomes are similarly func-

tionally and morphologically defective in both pex2 and pex16 mutants. Our functional analy-

sis of the peroxisomal lipids allowed a more comprehensive study of VLCFA metabolites in

different stages of development. We also analyzed plasmalogens which had not been character-

ized previously in Drosophila. We observed a dramatic loss of PlsEtn 18:1/20:4 plasmalogen in

pex2 and pex16 mutant flies which confirmed a conserved role for the peroxisome in plasmalo-

gen biosynthesis pathway. We note that pex2 and pex16 mutants display very similar pheno-

types including short lifespan, increased bang sensitivity, lack of flight and reduced activity.

The consistency of our results could stem from our use of rigorous controls for genetic back-

ground, and allowed us to provide downstream metabolomic studies.

Consistent with a shared peroxisomal biogenesis phenotype in Drosophila, metabolomic

studies of pex2 and pex16 mutants revealed numerous shared metabolic abnormalities that are

due to global peroxisomal dysfunction in Drosophila. Many of these were expected to result

from peroxisomal dysfunction and had been seen in other organisms from previous targeted

methods including fatty alcohols and purine metabolites[1]. However, our metabolomics anal-

ysis also revealed new insights indicating that the use of untargeted metabolomics in peroxi-

somal studies could uncover unsuspected metabolic pathways involved in peroxisomal

biochemistry. Specifically we observed accumulations of phospholipid precursors and reduc-

tion in phospholipid degradation products. More importantly, we found that Drosophila per-

oxisomal biogenesis mutants have global reductions in glycolytic intermediates and glycogen

with abnormalities in the pentose phosphate pathway. These unanticipated data allowed us to

hypothesize that pex2 and pex16 mutants are starvation sensitive and sensitive to glucose dep-

rivation in their diet which we experimentally verified. Of note they exhibit an increase in

basal activity under both starvation and low glucose diet, while control flies exhibit starvation-

related hyperactivity but seem to reduce their activity in low-sugar. These data demonstrate a

particular sensitivity of peroxisomal mutants to glucose deprivation, suggesting that the meta-

bolomics changes we observed in carbohydrate metabolism impact the physiology and behav-

ior of peroxisomal mutant flies. This pathological hyperactivity is to some extent consistent

with a starvation hyperactivity that has been observed in flies with altered adipokinetic hor-

mones and octopamine levels [64, 65].

There are several possible explanations for how peroxisomal biogenesis mutations can per-

turb carbohydrate metabolism. One is that some enzymatic components of glycolysis or glu-

cose metabolism are in the peroxisome. Indeed, Trypanosomes have the entire glycolytic

machinery within a peroxisome-like organelle called the glycosome[66]. While this is not

supported by the current inventory of peroxisomal proteins in Drosophila [39], mechanisms

such as read-through at stop codons can lead to peroxisomal localization of some metabolic

enzymes in yeast[67]. Another possibility is a secondary effect on metabolism, such as alter-

ation in mitochondria. While we did not observe dramatic mitochondrial phenotypes in the

mutant flies (S5 Fig), we cannot rule out this possibility. In addition, we observe many meta-

bolic abnormalities in our flies that are observed in Pex5 conditional liver knock-out mice

[36]. Pex5 conditional liver knockout mice exhibit altered glycolysis, glycogen production and

or Kolmogorov-Smirnov-like statistic representing to what degree genes are over-represented in the ranked list of genes across

the murine genome. (C) Overlap of the Drosophila and mouse liver peroxisomal gene clusters. Several genes in carbohydrate

metabolism were represented in the top 1000 genes within the Drosophila peroxisomal gene cluster and the top 1000 genes

within the Drosophila murine liver clusters. These genes represent 9 steps in carbohydrate metabolism including glycogen

metabolism, and several steps in the TCA cycle. (D) Overlap of the co-regulated steps in carbohydrate metabolism with the

altered metabolites seen in Pex5 mouse liver. In purple are altered metabolites in the liver specific Pex5 mouse, and in bold

purple are those altered in both the liver specific Pex5 mouse as well as the fetal Pex5 knockout mouse.

https://doi.org/10.1371/journal.pgen.1006825.g009
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pentose phosphate pathway and these livers exhibit altered glucose regulation with AMP-acti-

vated protein kinase (AMPK) activation and PGC-1α suppression [36]. Indeed, we observed

that target genes in the AMPK and PGC-1α pathway are represented in the gene clusters we

identified in flies (S8 Table). While we did observe more dramatic changes to the TCA cycle

in the mice, and more dramatic changes in glycolysis in the flies, we see that in both fly and

mouse liver peroxisomal biogenesis and carbohydrate metabolism interplay in the same tran-

scriptional gene networks. These also allow us to identify additional pathways as the significant

co-regulation may suggest that additional pathways beyond AMPK and PGC-1α may be

involved in coordinating peroxisomes and carbohydrate metabolism. Recent studies have

identified that the activation of the mTORC1 pathway in response to ROS occurs on the perox-

isomal membrane, a process dependent on ATM [68, 69]. Interestingly, some mTOR target

genes such as eIF-4E and Cbp80 were also strongly co-regulated with peroxisomes in Drosoph-
ila (S6 Table). We find that both flies and mice strongly co-regulate peroxisomal genes and

carbohydrate metabolizing genes, and noticed that twelve vertebrate genes are co-regulated

with the corresponding ten fly genes. Similarly, the metabolites corresponding to those steps

in carbohydrate metabolism are altered in both species when pex/Pex genes are mutated.

These data suggest evolutionary conservation of the link between carbohydrate metabolism

and peroxisomal biogenesis genes.

Our work adds to a growing realization that peroxisomal function is a process that inter-

plays with other metabolic pathways, and suggests that PBD pathogenesis may extend into

other metabolic pathways beyond peroxisomal enzymes [29, 70]. Evolutionarily, ancestral per-

oxisomes were crucial in allowing ancient eukaryotes to detoxify the byproducts of oxygen and

performing β-oxidation [56]. In higher eukaryotes β-oxidation occurs in the mitochondria

with the exception of peroxisomal oxidation of VLCFA and some other carboxylates. Peroxi-

somes in these higher eukaryotes are responsible for steps in oxidative metabolism of lipids

but they ultimately depend on the TCA cycle to fully metabolize the lipids [63]. Thus, the co-

regulation of genes involved in carbohydrate and fat metabolism may have evolved through

this interdependence of peroxisomes and mitochondria and maybe the basis of the strong

inter-relationship we observed between peroxisomes and carbohydrate metabolism. Hence,

examination of the latter pathways in humans may provide additional mechanistic insights

and therapeutic targets for PBD. This dataset will provide valuable entry points for those

studies.

We have utilized Drosophila to identify a key role for glucose metabolism in pex2 and pex16
mutants. We find that the same key phenotypes observed in pex2 and pex16, namely their lon-

gevity and their locomotor activity, were modifiable by diet and specifically were exquisitely

sensitive to starvation stress and reduced glucose media. Interestingly, the Drosophila mutants

are somewhat comparable to the findings in Pex5 conditional liver knockout mice which also

have reduced glycolytic and glycogen intermediates, and diminished body weight despite

increased food intake and carbohydrate dependence [36].

Finally, our work points to the importance of peroxisomal gene regulation in understand-

ing not only peroxisomal biology but also in understanding PBD. We observed closely co-reg-

ulated groups of genes in flies and mice. These gene networks were seeded with bona fide

peroxisomal genes, but the data suggested close co-regulation between these peroxisomal

genes and enzymes in other pathways of metabolism in other cellular organelles. This suggests

that the fundamental link in metabolism between peroxisomes and other organelles is regu-

lated. Because peroxisomes lack a TCA cycle but they ultimately rely on mitochondrial

TCA cycle for complete oxidation of their metabolites, it seems likely that common transcrip-

tional programs activate peroxisomes and TCA cycle components. Our work suggests that
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delineating these gene regulatory programs, and how they are altered in PBD is important to

our understanding of how defective peroxisomal biogenesis impacts human health.

Materials and methods

Fly strains and maintenance

All flies were maintained at room temperature (21˚C) and except where otherwise noted

experiments were conducted at room temperature. The pex21, and pex22 lines were derived

from imprecise excision of (w[1118]; P{w[+mC] = EPg}pex2[HP35039]/TM3, Sb[1], see

below) these were then backcrossed 5 generations with y w: FRT80B and studied as:

y w; FRT80B

y w; FRT80B- pex21

y w; FRT80B- pex22

w[1118];PBac{y[+mDint2]w[+mC] = 53M21}VK00037;FRT80B- pex22

w[1118];PBac{y[+mDint2]w[+mC] = 53M21}VK00037;FRT80B- pex21

Except where otherwise indicated the 5 strains above each crossed to a genomic deficiency

uncovering pex2 locus w1118; Df(3L)BSC376/TM6C,Sb1 cu1 are labeled as pex2 Ctrl, pex22 pex21

pex22 Rescue and pex21 Rescue respectively.

The y w: pe161 line [41] was obtained from Kenji Matsuno, derived from: y1 w67c23; P

{GSV6}pex16GS14106/TM3, Sb1 Ser1.

The y w: pex16EY strain was obtained from Bloominton Stock center y[1] w[67c23]; P{w
[+mC] y[+mDint2] = EPgy2}Pex16[EY05323].

y w; FRT80B

y w; pex161

y[1] w[67c23]; P{w[+mC] y[+mDint2] = EPgy2}pex16[EY05323]

w[1118];PBac{y[+mDint2]w[+mC] = 115M13}VK00037;pex161

w[1118];PBac{y[+mDint2]w[+mC] = 115M13}VK00037;P{w[+mC]

Except where otherwise indicated the 5 strains above each crossed to a genomic deficiency

uncovering the pex16 locus w1118; Df(3L)BSC563/TM6C,cu1 Sb1 are labeled as pex16 Ctrl,
pex161 pex16EY pex161 Rescue and pex16EY Rescue respectively.

pex2 excisions

w[1118]; P{w[+mC] = EPg}pex2[HP35039]/TM3,Sb[1] was crossed to y w; CyO, delta2-3/Egfr
and progeny crossed to y w; D/TM6B, Tb. Progeny were screened for loss of w+ marker. 461

independent excision lines were screened by PCR. pex2-1 a 7bp insertion within a 606 bp dele-

tion; and pex2-2 a 11bp insertion within a 473 bp deletion were selected.

Peroxisomal marker strains

y[1] w[�]; P{w[+mC] = Act5C-GAL4}25FO1/CyO, y[+] second chromosome Actin GAL4 was

recombined with a 2nd chromosome UAS-GFP-SKL transgenic (courtesy of Hamed Jefar-

Nejad). Recombinants were scored by GFP expression and balanced over CyO. These strains

were crossed into deficiency strains for pex2 and pex16 marker experiments.
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P[acman] rescue strains

For pex2 a genomic clone, CH322-53M21 from the CHORI-322_BAC collection was obtained.

For pex16 a genomic clone, CH322-115M13 from the CHORI-322_BAC was obtained. These

plasmids were amplified and grown, then purified and injected into y[1] w[1118]; PBac{y
[+]-attP}VK00037 embryos (VK00037 contains an attP on 2L at 22A3). Transformants were

selected based on the w+ marker and these strains were balanced to generate:

y[1] w[�]; Dp(3;2)CH322-53M21,PBac{y[+mDint2] w[+mC] = CH322-53M21}VK00037

y[1] w[�]; Dp(3;2)CH322-115M13,PBac{y[+mDint2] w[+mC] = CH322-115M13}VK00037

These lines were crossed into the mutant strains listed above.

Drosophila peroxisomal lipid studies

Very long chain fatty acid levels were measured as described by GC/MS [49, 71]. lysophospha-

tidyl choline (26:0 LPC, and 24:0 LPC) and individual ethanolamine and plasmalogen species

by LC-MSMS [47, 48, 50].

Dissection and immunostaining

For salivary gland staining, dissection of third instar larvae was performed and larvae were

fixed in 3.7% formaldehyde for 20 min at room temperature and washed in PBS containing

0.4% Triton X-100. The primary antibody were used at the following dilution: chicken anti-

GFP 1:1000 (AB13970, Abcam, Cambridge, MA), rabbit anti-pex3 1:500 (From McNew lab,

Rice U). Donkey anti Chicken Alexa 488 conjugated (#703-545-155, Jackson ImmunoRe-

search, PA) and Goat anti-rabbit Cy3 conjugated secondary antibodies (#111-165-003, Jackson

ImmunoResearch, PA) were used at 1:250. DAPI (D1306, ThermoFisher) was used at 300nM.

Samples were mounted in Vectashield (Vector Labs, Burlingame, CA).

Lifespan determination

Flies were collected under CO2 between 1 and 24 hours after eclosion. Male and female flies

were separated and flies were kept 10 flies per vial at room temperature and the fly food was

changed every 3 days. A tally of number of live flies was kept, and the number of live flies was

checked every 3 days until the last fly had died. Data was analyzed with a Kaplan-Meier sur-

vival curve.

Bang sensitivity

Flies were kept without exposure to C02 for at least 48 hours prior to the assay. Flies were vor-

texed for 10 seconds in a vial, and a video recording was made of each trial. Video recordings

were analyzed separately and blinded to genotype for recovery time for each fly.

Flight assay

Flies were kept without exposure to C02 for at least 48 hours prior to the assay. Flight assay

was performed in 10 day old flies. Flies of the 10 indicated genotypes were lightly tapped

into a clear column made of PVC marked at each centimeter. Video recordings of each trial

were made and analyzed separately and blinded to genotype for the landing height of each

fly.
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Drosophila activity monitoring assay

A Drosophila activity monitoring system was used to study activity as described[51]. Briefly,

adult flies were placed in small tubes with food, and kept at 25˚C in a 12 hour light/dark cycle

for 24–48 hours before being placed in the monitor. The monitor was temperature-controlled

at 25˚C in a 12 hour light dark cycle. Flies were kept in the monitor for 3–7 days for the various

experiments described.

Electroretinograms

Flies of the indicated genotypes were aged for either 2 days or 4 weeks after eclosure in a 12

hour light dark cycle. Electroretinograms were performed as described[72]. Briefly, adult flies

were glued to glass slides. A recording electrode was placed onto the surface of the eye while

another reference electrode was inserted into the cuticle in the posterior portion of the head.

The eyes were then exposed to controlled sudden flashes of white light and the response was

recorded and analyzed using AXON-pCLAMP8.

Transmission electron microscopy

TEM of photoreceptor terminal were performed on 2 week aged flies as described[73]. Briefly,

fly heads or third instar larva were dissected and fixed at 4˚C in 4% paraformaldehyde, 2% glu-

taraldehyde, 0.1 M sodium cacodylate, and 0.005% CaCl2 (PH 7.2) overnight, post-fixed in 1%

OsO4, dehydrated in ethanol and propylene oxide, and then embedded in Embed-812 resin

(Electron Microscopy Sciences, Hatfield, PA). Photoreceptors were then sectioned and stained

in 4% uranyl acetate and 2.5% lead nitrate. TEM images of PR sections were taken using a

JEOL JEM 1010 transmission electron microscope with an AMT XR-16 mid-mount 16 mega-

pixel digital camera.

Mitochondrial electron transport chain

Mitochondrial Electron transport chain activity was measured on isolated mitochondria

extracted as previously described[74, 75] Each ETC complex activity was quantified as nmoles/

min/mg protein, normalized to citrate synthase activity, and expressed as %control activity.”

(S5 Table).

Untargeted metabolomics

We used an untargeted metabolomics platform through Metabolon. This platform uses ultra-

high performance liquid chromatography/electrospray ionization tandem mass spectrometery

[76]. The raw analyte values in this platform are analyzed by performing a z-score calculation

compared to mean and standard deviation in other clinical samples. Welch’s two sample t-

tests are used to determine significant alterations and multiple comparisons are accounted for

with the false discovery rate method.

Food conditions

In all experiments except where otherwise indicated, flies were grown on a standard media

comprised of Agar, molasses, corn meal, dried yeast, proprionic acid, methyl p-hydroxybenzo-

ate. Food for starvation was comprised of 2% agar only. The conditional food conditions (Figs

6 and 7) consist of agar, cornmeal, yeast (Sigma), dextrose (Sigma), sucrose (Sigma), methyl

para-hydroxybenzoate and propionic acid (Fisher Scientific). Recipe for every 100ml has 0.6

grams agar, 0.5ml methyl para-hydroxybenzoate, and 0.75ml propionic acid in common.

For other ingredients, low-sugar food has 7.5 grams yeast; standard sugar food has 6 grams
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cornmeal, 1.5 grams yeast, 5 grams dextrose, and 2.5 grams sucrose. Ingredients including

agar, cornmeal, yeast, dextrose, and sucrose were added to a cooking vessel, mixed then

brought to a boil then immediately covered, mixed and cooled under 70˚C at which time

methyl para-hydroxybenzoate and propionic acid were added. The food was then poured into

vials for experiments.

Gene network analysis

Drosophila and murine liver gene network analysis was performed using g:Profiler essentially

as described [59, 60].

Targeted TCA metabolites in mouse liver with mass spectrometry

Mouse liver samples were provided by Myrian Baes. All animal work was conducted according

to the guidelines for humane treatment of animals.

Reagents and internal standards. High-performance liquid chromatography (HPLC)

grade acetonitrile, methanol and water were purchased from Burdick & Jackson (Morristown,

NJ). Mass spectrometry grade formic acid and internal standards namely, Tryptophan-15N2,

Glutamic acid-d5, Thymine-d4, Gibberellic acid, Trans-Zeatin, Jasmonic acid, Anthranilic

acid, and Testosterone-d3 were purchased from Sigma- Aldrich (St.Louis, MO). The calibra-

tion solution containing multiple calibrants in acetonitrile/trifluroacetic acid /water was pur-

chased from Agilent Technologies (Santa Clara, CA).

Sample preparation for mass spectrometric analysis. The metabolome extraction

method described earlier was used for the liver tissue in this study. Briefly, cells were thawed at

4 oC and subjected to freeze-thaw cycle in liquid nitrogen and over the ice three times to rup-

ture the cell membrane. Following this, an 750 μL of ice cold methanol: water (4:1) containing

20 μL of spiked internal standards (8) was added to each tissue sample. The cells were homoge-

nized for 1 min (30 sec pulse twice) and mixed with 450 μl of ice cold chloroform and vortex

mixed in a Multi-Tube Vortexer for 10 min. The resulting homogenate was mixed with 150 μl

of ice cold water and vortexed again for 2 min. The homogenate was incubated at -20 oC for 20

min and centrifuged at 4˚C for 10 min to partition the aqueous and organic layers. The aque-

ous and organic layers were separated and dried at 37˚C for 45 min in an Automatic Environ-

mental Speed Vac1 system (Thermo Fisher Scientific, Rockford, IL). The aqueous extract was

reconstituted in 500 μl of ice cold methanol:water (50:50) and filtered through 3 kDa molecular

filter (Amicon Ultracel -3K Membrane, Millipore Corporation, Billerica, MA) at 4 oC for 90

min to remove proteins. The filtrate was dried at 37o C for 45 min in speed vac and stored at

-80˚C until mass spectrometry analysis. Prior to mass spectrometry analysis, the dried extract

was resuspended in 100 μL of methanol:water (50:50) containing 0.1% formic acid and ana-

lyzed using MRM.

The tissues were stored at −140˚C in liquid nitrogen until analysis. For extraction of the

metabolome, 25 mg of tissue was homogenized in 1:4 ice-cold water:methanol mixture con-

taining an equimolar mixture of 8 internal standard compounds. This was followed by meta-

bolic extraction using sequential application of ice-cold organic and aqueous solvents (water:

methanol:chloroform:water; ratio 1:4:3:1), deproteinization and drying of the extract as men-

tioned above.

Liquid Chromatography- Mass spectrometry HPLC analysis was performed using an Agi-

lent 1290 series HPLC system equipped with a degasser, binary pump, thermostatted autosam-

pler and column oven (all from Agilent Technologies, Santa Clara, CA). The Multiple

Reaction Monitoring (MRM)-based measurement of relative metabolite levels, used either
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reverse phase or normal phase chromatographic separation. All samples were kept at 4 C and

5 μl was used for analysis.

Separation of TCA metabolites. Targeting the metabolites, the normal phase chro-

matographic separation was also used for targeted identification of metabolites. This employed

solvents containing water (solvent A), with solvent A modified by the addition of 5mM Ammo-

nium acetate (pH 9.9), and 100% acetonitrile (ACN) solvent B). The binary pump flow rate was

0.2 ml/min with a gradient spanning 80% B to 2% B over a 20 minute period followed by 2% B

to 80% B for a 5 min period and followed by 80% B for 13 minute time period. The flow rate

was gradually increased during the separation from 0.2 mL/min (0–20 mins), 0.3 mL/min

(20.1–25 min), 0.35 mL/min (25–30 min), 0.4 mL/min (30–37.99 min) and finally set at 0.2 mL/

min (5 min). Metabolites were separated on a Luna Amino (NH2) column (4um, 100A 2.1x

150mm, Phenominex), that was maintained in a temperature controlled chamber (37˚C). All

the columns used in this study were washed and reconditioned after every 50 injections.

Supporting information

S1 Fig. Genomic rescue strains for peroxisomal biogenesis factors pex2 and pex16.

(A) The pex2 gene is shown in genomic context, the blue bar represents the specific genomic

rescue construct which was used to produce a transgenic line for rescue experiments. A red

box indicates the exons shown in Fig 1A.

(B) The pex16 gene is shown in genomic context, the blue bar represents the specific genomic

rescue construct which was used to produce a transgenic line for rescue experiments. A red

box indicates the exons shown in Fig 1B.

(TIF)

S2 Fig. Electroretinograms in young and aged pex2 and pex16 mutants.

(A) Electroretingrams demonstrate the field potential after light exposure in photoreceptors,

the amplitude of depolarization (red bracket) was assessed after the “on” and before the

“off” transient indicating synaptic activity. The pex2 tracings show no differences between

mutant and rescue animal for the indicated genotypes

(B) Quantification of the amplitude for 2-day pex2 flies student’s t-test, P>0.05 = ns, P< 0.05

= �, P<0.01 = ��, P<0.001 = ���.

(C) The pex16 tracings show no differences between mutant and rescue animal for the indi-

cated genotypes

(D) Quantification of the amplitude for 2-day pex16 flies student’s t-test, P>0.05 = ns, P< 0.05

= �, P<0.01 = ��, P<0.001 = ���.

(E) The pex2 tracings show reduced amplitude in the mutants between mutant and rescue ani-

mals at 4 weeks after 12 hour light-dark cycle.

(F) Quantification of the amplitude for 4-week pex2 flies showing a statistically significant

reduction in amplitude in the mutants.

(G) The pex16 tracings show reduced amplitude in the mutants between mutant and rescue

animals at 4 weeks for the pex161 allele but not for the pex16EY.

(H) Quantification of the amplitude for 4-week pex16-1 flies showing a statistically significant

reduction in amplitude in the mutants.

(TIF)
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S3 Fig. Altered metabolic pathways in pex2 and pex16 mutants.

(A) Metabolite set enrichment fold enrichment was performed on the subset of metabolites

that were consistently altered in pex2 both deletion alleles. The fold enrichment values are

shown.

(B) Metabolite set enrichment fold enrichment was performed on the subset of metabolites

that were consistently altered in pex16 deletion allele. The fold enrichment values are

shown.

(TIF)

S4 Fig. Mitochondrial phenotypes in the pex mutant flies.

(A) Transmission electron microscopy (TEM) of Drosophila photoreceptors. Normal ultra-

structure of the photoreceptors in the retina in 2 week old pex16EY Rescue animals with

seven photoreceptors, the dark rhabdomeres and the mitochondria which often cluster in

the cell body of the photoreceptor.

(B) TEM of pex16EY animals showing apparent increase in the number of mitochondria per

photoreceptor terminal.

(C) Quantification of mitochondria per photoreceptor.

(D) Inset of A showing mitochondria in the photoreceptor

(E) Inset of B showing mitochondria and electron dense inclusions.

(F) Quantification of E.

(G) Mitochondrial electron transport chain activity in the pex2 mutants. Stars indicate activi-

ties with statistically significant differences from the control activity.

(TIF)

S5 Fig. Altered mouse liver TCA metabolites in targeted metabolomics.

(A) Composition of the food for the conditional food experiments. Total calories per 100 mL

of food is shown.

(B) Percent of calories for conditional food.

(C) Kaplan-Meier curves for the quantification shown in Fig 8B and 8C.

(TIF)

S6 Fig. Mouse liver peroxisomal gene network clusters. Mouse liver peroxisomal gene clus-

ters, mouse liver peroxisomal genes are grouped into 4 closely co-regulated clusters.

(TIF)

S7 Fig. Altered mouse liver TCA metabolites in targeted metabolomics.

(A) Heat map of Pex5 knockout mice versus controls showing some alterations in citrate and

malate

(B) Heat map of Pex5 liver conditional mice versus controls showing a number of altered ana-

lytes including G6P/F6P, citrate, ketoglutarate, glutamate, fumarate and malate.

(C) Abundance of Citrate/Isocitrate in Targeted metabolomics in adult and fetal mouse liver

showing increased abundance in both global and conditional Pex5 murine liver compared

to controls.
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(D) Abundance of Malate in Targeted metabolomics in adult and fetal mouse liver showing

increased abundance in both global and conditional Pex5 murine liver compared to con-

trols.

(TIF)

S1 Video. Bang sensitivity of pex2 mutant flies. Bang sensitivity assay in pex mutant flies.

Flies were assayed in graduated vials with pex2 control at left, pex22 at center and pex22 Rescue

at right. All flies were at 3 days of age were subjected in vials to vortex for 10 seconds immedi-

ately prior to the video shown.

(MOV)

S2 Video. Bang sensitivity of pex16 mutant flies. Bang sensitivity assay in pex mutant flies.

Flies were assayed in graduated vials with pex2 control at left, pex22 at center and pex22 Rescue

at right. All flies were at 3 days of age were were subjected in vials to vortex for 10 seconds

immediately prior to the video shown.

(MOV)

S3 Video. Flight assay of pex2 mutant flies. Flies at 10 days of age were tapped gently into a

clear column with a funnel at the top as shown. The flies have to fly from the center of the col-

umn to an edge and land. The pex22 mutant flies almost all land at the bottom of the column,

effectively flightless.

(MOV)

S4 Video. Flight assay of pex2 Rescue flies. Flies at 10 days of age were tapped gently into a

clear column with a funnel at the top as shown. The flies have to fly from the center of the col-

umn to an edge and land. The pex22 Rescue flies in contrast to the mutants almost all land at

the top of the column.

(MOV)

S5 Video. Flight assay of pex16 mutant flies. Flies at 10 days of age were tapped gently into a

clear column with a funnel at the top as shown. The flies have to fly from the center of the col-

umn to an edge and land. The pex161 mutant flies with one exception almost all land at the

bottom of the column, effectively flightless.

(MOV)

S6 Video. Flight assay of pex16 Rescue flies. Flies at 10 days of age were tapped gently into a

clear column with a funnel at the top as shown. The flies have to fly from the center of the col-

umn to an edge and land. The pex161 Rescue flies in contrast to the mutants almost all land at

the top of the column.

(MOV)

S1 Table. Analysis of peroxisomal lipids in fly and human samples. Source data from the

GC MS analysis on fly and human samples for peroxisomal lipids as well as source data of

LC-MSMS analysis

(XLSX)

S2 Table. Metabolomic heat map of Drosophila pex mutants. Metabolite Heat Map a heat

map comprised of ratios of analytes is shown for 347 individual metabolites. Columns include

Pathway sort order, Super pathway, Sub pathway, Biochemical Name, Human Metabolome

Database (HMDB) identifier, each genotype ratio, mutant/control or mutant to rescue is

shown with indicators for significantly altered analytes, analytes narrowly missing statistical

cutoffs with color codes for increased or decreased as indicated.

(XLSX)
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S3 Table. Metabolomic raw data of Drosophila pex mutants. Raw data from metabolomics

measurements used to generate the ratios in S1 Table. Metabolites the metabolite measure-

ments for each analyte and each pool (5 replicates of 100 flies each) are shown.

(XLSX)

S4 Table. Consistently altered metabolites in Drosophila pex mutants. Altered Metabolites

includes lists of consistently altered metabolites when considering significant or marginally

significant changes (only considered if significant in the same direction). Lists were compiled

for the pex2 signature metabolites-common to pex22/pex22 Rescue and pex21/pex21 Rescue, the

pex16 signature metabolites-common to pex161/pex161 Rescue and pex16EY/pex16EY Rescue,

and the null alleles-common to pex22/pex22 Rescue, pex21/pex21 Rescue, and pex161/pex161

Rescue.

(XLSX)

S5 Table. Mitochondrial electron transport chain activity in Drosophila pex2 mutants.

Mitochondrial electron transport chain activity in isolated mitochondrial from adult flies.

Source data is shown.

(XLSX)

S6 Table. Drosophila peroxisomal gene clusters. The gene clusters for Drosophila peroxi-

somal genes- the top 1000 co-regulated genes in the fly genome are shown for each of the clus-

ters 5 clusters for Drosophila data (See Materials and Methods).

(XLSX)

S7 Table. Mouse peroxisomal gene clusters. The gene clusters for mouse peroxisomal genes-

the top 1000 co-regulated genes in the fly genome are shown for each of the clusters,4 clusters

for mouse liver. (See Materials and Methods)

(XLSX)

S8 Table. Overview of representation of PGC and AMPK regulated genes in peroxisomal

gene clusters. PGC and AMPK- highlight genes represented in the top 1000 co-regulated

genes from the AMPK pathway and PGC pathway showing those which are common between

mouse liver and Drosophila.

(XLSX)
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