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Abstract

Several recent studies in a number of model systems including zebrafish, Arabidopsis, and

mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knock-

downs (e.g., antisense-treated animals). These differences have been attributed to a number

of reasons including off-target effects of the antisense reagents. An alternative explanation

was recently proposed based on a zebrafish study reporting that genetic compensation

was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first

reported in Drosophila in 1932, and genetic compensation in response to a gene knockout

was first reported in yeast in 1969. Since then, genetic compensation has been documented

many times in a number of model organisms; however, our understanding of the underlying

molecular mechanisms remains limited. In this review, we revisit studies reporting genetic

compensation in higher eukaryotes and outline possible molecular mechanisms, which may

include both transcriptional and posttranscriptional processes.

Introduction

Genetic robustness is the ability of a living organism to maintain its viability and fitness despite

genetic variations, including perturbations. Genetic perturbations play an important role in

evolution; however, organisms require buffering systems to ensure similar developmental out-

comes despite minor differences in genetic makeup or environmental conditions, a process

known as robustness or canalization [1, 2]. In 1932, dosage compensation was reported as the

first example of genetic robustness. Male fruit flies were reported to have a twofold increase in

transcription from their single X chromosome, resulting in the same gene expression levels as

females with two active X chromosomes [3, 4]. In contrast, in mammals, females undergo inac-

tivation of one of their X chromosomes through heterochromatization, allowing for similar

developmental outcomes in both sexes [5–7]. The concept of genetic robustness was further

supported by several recent studies: for example, only 20% of the protein-coding genes in yeast

were reported to be essential for growth in laboratory conditions [8], and a lack of phenotype

was reported for several mouse [9], zebrafish [10], and Arabidopsis [11] mutants.

Genetic robustness may arise from redundant genes, whereby the loss of one gene may be

compensated by another with overlapping functions and expression pattern, as reported for

several mutants in a range of model organisms [12–19] (reviewed in [20]). Another form of
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robustness arises from tightly regulated cellular networks including metabolic, signaling, and

transcriptional networks. Perturbation of a particular gene’s function in a network may alter

the expression of other genes within the same network, thereby maintaining cellular wellness

[21, 22]. Additionally, in response to a gene knockout, organisms such as yeast may accumu-

late mutations in one or more genes modulating the affected pathway, thereby partially or fully

rescuing the final outcome [23, 24].

While the above-mentioned modes of genetic robustness may occur as a result of the loss of

function of a specific protein, a number of studies suggest a different form of genetic robust-

ness, one that is triggered upstream of protein function (hereafter referred to as genetic com-

pensation or transcriptional adaptation [Table 1]) [25–27]. The increasing use of recent

advances in reverse genetic tools have revealed phenotypic differences between knockouts

(i.e., mutants) and knockdowns (e.g., antisense-, including morpholino [MO]-, treated ani-

mals) in a number of model systems including Arabidopsis [28–30], mouse [31–34], Drosophila
[35], zebrafish [10, 36], and human cell lines [37–39]. While some studies attributed these

phenotypic differences to toxicity or off-target effects of the knockdown reagents [40–43]

(reviewed in [44]), a recent study in zebrafish proposed gene expression changes and conse-

quent compensation in mutant but not knockdown animals as the reason for the observed dif-

ferences [25]. While knockdown of egfl7,an endothelial extracellular-matrix (ECM) gene,

leads to severe vascular defects, most egfl7mutants exhibit no obvious defects. This discrep-

ancy was attributed at least partly to the upregulation of other ECM proteins, specifically Emi-

lins, in egfl7mutants but not antisense-injected embryos. Moreover, the authors observed

minor or no vascular defects upon egfl7MO injections into egfl7mutants, indicating that the

phenotypic differences are not due to MO toxicity. In addition, this study reported upregula-

tion of vegfab mRNA levels in vegfaa mutant but not knockdown animals. While the mecha-

nisms triggering the transcriptional adaptation response in vegfaa mutant animals remain

unknown, the authors propose that it lies upstream of protein function, as overexpression of

dominant-negative Vegfaa, which causes a vegfaa mutant-like phenotype, did not lead to an

increase in vegfab mRNA levels. In this review, we focus on studies reporting transcriptional

adaptation and/or genetic compensation in higher eukaryotes and outline possible underlying

molecular mechanisms.

Genetic compensation in response to gene knockout is a widespread

phenomenon

Upregulation of related genes following a gene knockout may be a direct consequence of the

loss of protein function. For example, mice lacking the ribosomal gene Rpl22 show no defects

in translation owing to the upregulation of its paralogue, Rpl22l1, the expression of which is

normally inhibited by RPL22 [46]. Upregulation of related genes due to the loss of a negative

feedback loop may be the first hypothesis to test when a mutant fails to show a phenotype, and

Table 1. Glossary.

Term Definition

knockout a genetic perturbation that aims to ablate gene function [45]

knockdown a perturbation at the DNA, RNA, or protein level that reduces the amount of

functional RNA or protein [45]

genetic compensation changes in RNA or protein levels that can functionally compensate for the loss of

function of another gene

transcriptional

adaptation

changes in RNA levels that result from a genetic mutation and not from the loss of

gene function

https://doi.org/10.1371/journal.pgen.1006780.t001
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a knockdown approach may help test it. For example, human RBL2 mutant T lymphocytes

proliferate normally and exhibit normal immune function due to RBL1 upregulation, an upre-

gulation also detected upon RBL2 knockdown in human breast cancer cell lines [47, 48], sug-

gesting a negative feedback loop. Similarly, both knockouts and knockdowns of HDAC-1 lead

to the upregulation of HDAC-2 in several human and mouse cell lines and tissues, and vice

versa [49–51].

In contrast, lack of a compensatory response in knockdown animals compared to their cor-

responding mutants indicates that a trigger upstream of protein function is at play, perhaps

the genomic lesion itself or the mutant mRNA (Table 2). For example, small interfering RNA

(siRNA)-mediated depletion of TET1, an enzyme that converts 5-methylcytosine (5mC) to

5-hydroxymethylcytosine (5hmC), in mouse embryonic stem cells (mESCs) leads to a signifi-

cant reduction in 5hmC levels and a loss of undifferentiated morphology; in contrast, Tet1
mutant mESCs exhibit only a slight decrease in 5hmC levels and maintain an undifferentiated

morphology [52], suggesting possible compensation by the closely related enzyme, TET2, in

mutant but not knockdown mESCs [53]. In addition, while knockdown of any of the three

cyclin D family members was reported to inhibit proliferation in several cell lines [54–56],

mice lacking a single isoform develop minimal defects, suggesting compensation by one of the

other genes [57–59]. Indeed, knockout of two Cyclin D genes in mouse leads to the upregula-

tion of the third Cyclin D gene. Accordingly, double knockout mice show minor phenotypes

only in tissues that fail to upregulate the third Cyclin D gene [60]. In addition, mouse Cyclin
D2 mutant B lymphocytes exhibit no obvious proliferative phenotype due to the upregulation

of Cyclin D3 [61]. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of Impor-
tinα5 was reported to inhibit neural differentiation of mESCs cells [62]; however, Importinα5

Table 2. Examples of discrepancies between mutant and knockdown phenotypes.

Model

organism

Gene Mutant phenotype Knockdown phenotype Proposed

compensating gene in

mutants

Reference

(s)

Arabidopsis Auxin binding

protein 1

(ABP1)

No obvious phenotype Decreased cell expansion and division,

causing a retardation in leaf growth

N/A [28–30]

Yeast Bem1 No profound defects Defects in cell polarity and decreased

cell viability

N/A [66]

Zebrafish egfl7 Minor or no vascular defects Severe vascular defects emilin3a [25]

Mouse Parkin No mitophagy defects in mouse liver

following acetaminophen (APAP)

treatment

Reduced mitophagy in mouse liver

following APAP treatment

N/A [67]

Aqp4 No obvious phenotype in astrocytes Rearrangement of the filamentous actin

cytoskeleton and downregulation of CX-

43 in astrocytes

N/A [68–71]

Tet1 mESCs maintain an undifferentiated

morphology

mESCs lose their undifferentiated

morphology

Tet2 [52, 53]

Sprn Sprn and Prnp double mutant mice are

viable.

Knockdown of Sprn in Prnp mutant mice

leads to embryonic lethality.

N/A [31, 33]

Ppara Mutant mice do not develop

hypoglycemia or hypertriglyceridemia

under normal feeding conditions

Knockdown mice develop hypoglycemia

and hypertriglyceridemia under normal

feeding conditions

N/A [32]

Azi1 No obvious phenotype in MEFs Decreased ciliogenesis in MEFs N/A [26]

Human MELK No proliferation defects in several breast

cancer cell lines

Decreased proliferation in several breast

cancer cell lines

N/A [72–76]

Abbreviations: MEFs, mouse embryonic fibroblasts; mESCs, mouse embryonic stem cells; N/A, non-applicable

https://doi.org/10.1371/journal.pgen.1006780.t002
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mutant mice display normal brain development, possibly due to the upregulation of IMPOR-

TINα4 expression [63]. siRNA-mediated knockdown of Kindlin-2, which encodes an integrin

coactivator, in mouse embryonic fibroblasts (MEFs) was reported to decrease INTEGRIN β1

activation and prevent INTERLEUKIN 1β–mediated increase in focal adhesion number [64].

However, Kindlin-2 mutant cells were able to form focal adhesions due to the upregulation of

KINDLIN-1 [65].

In another example, antisense-mediated knockdown of Tau was reported to inhibit axonal

elongation in cultured neuronal cells [77, 78]. However, axonal elongation was not affected in

cultured neurons from Tau mutants, possibly due to the upregulation of microtubule-associ-

ated protein 1A (MAP1A) [79]. Interestingly, such upregulation was not detected upon Tau
knockdown in mouse oligodendrocytes [80]. Dystrophin mutant mice have been reported not

to develop a severe muscular dystrophy phenotype due to the upregulation of a number of

genes including that encoding the dystrophin-related protein UTROPHIN [81, 82]. Interest-

ingly, UTROPHIN upregulation was not detected in Dystrophin knockdown mice [83].

Furthermore, β-Actin mutant mice were reported to display transcriptional upregulation of

several other Actin genes, including γ-Actin and α-Actin [27, 84, 85]. Interestingly, restoration

of β-Actin expression in β-Actin mutant MEFs did not lead to a reduction in the γ-Actin tran-

scriptional upregulation response, implying that this transcriptional adaptation response is

triggered upstream of β-ACTIN function [27]. In addition, γ-Actin knockout, but not knock-

down, in MEFs leads to αsm-ACTIN upregulation [85]. Moreover, while siRNA-mediated

depletion of the centrosomal protein AZI1 in MEFs leads to a significant decrease in ciliogen-

esis, MEFs derived from Azi1 mutant mice display no defects in ciliogenesis [26]. The authors

also reported that Azi1 mutant MEFs were resistant to Azi1 siRNA, ruling out off-target effects

of the siRNA and leading them to hypothesize the existence of a compensatory response in the

mutant MEFs. Interestingly, this potential compensation is not observed during sperm flagella

formation. This approach of testing the antisense reagent in mutant cells was subsequently

used by Rossi et al. in zebrafish [25] and can be a powerful tool to identify cases of compensa-

tion in mutants versus nonspecific effects of the knockdown reagents.

Global versus conditional loss-of-function studies

Reduction or absence of a phenotype in several germline mutants compared to their conditional

counterparts has been reported in a number of studies in mouse. For example, germline mutants

for Pkm2 are viable and fertile [86]; however, conditional deletion of Pkm2 in MEFs limits nucle-

otide synthesis, leading to cell-cycle arrest [87]. Similarly, Sirt1 mutant mice have no obvious

liver defects, while hepatocyte-specific Sirt1 mutant mice develop fatty liver [88]. Mice with con-

ditional Fgfr3deletion in chondrocytes exhibit more severe (and a higher incidence of) chon-

drona-like lesions compared to global mutant mice [89]. Moreover, conditional loss of the

RETINOBLASTOMA (RB1) tumor suppressor enables cell-cycle reentry of quiescent primary

MEFs, while quiescent MEFs derived from global Rb1 mutant animals are unable to reenter the

cell cycle, due at least in part to the compensatory upregulation of p107 [90]. In addition, while

Cd44 global mutant mice display only mild phenotypes [91, 92], keratinocyte-specific mutant

mice display reduced epidermal stiffness and delayed wound healing, as well as reduced kerati-

nocyte proliferation in response to 12-O-tetradecanoylphorbol-13-acetate [93]. While cell non-

autonomous effects may underlie some of these discrepancies, an alternative hypothesis is that a

compensatory network becomes established during germline maturation or embryonic develop-

ment, allowing the organism to adapt to the mutation. Recent data in zebrafish, however, suggest

that a mutation does not need to go through the germ line to induce a compensatory response

[25], indicating that multiple mechanisms may underlie this process.
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Mechanisms underlying the transcriptional adaptation response

Based on the observations reported thus far, one can identify at least two possible triggers of

the transcriptional adaptation response: (1) the DNA lesion and (2) the mutant mRNA. We

will first speculate about how each of these potential triggers might lead to transcriptional

adaptation and then briefly review other potential triggers including some that might induce

posttranscriptional adaptation.

DNA lesion as the trigger for the transcriptional adaptation response. This section will

focus on the DNA lesion being the trigger for the transcriptional adaptation response and will

mostly explore the potential role of epigenetic changes following DNA damage.

Following DNA damage, global chromatin reorganization and decondensation are detected

[94, 95], actions mediated by several chromatin remodelers and histone-modifying enzymes

(reviewed in [96]). One possibility is that in response to a mutation, global chromatin reorga-

nization may positively affect chromatin accessibility around the compensating gene(s),

thereby leading to increased expression levels (Fig 1A). Part of such a model is consistent with

the process of dosage compensation in Drosophila where the male-specific lethal (MSL)

Fig 1. Proposed models of transcriptional adaptation. (A) DNA damage response can induce chromatin reorganization,

increasing chromatin accessibility at the compensatory genes’ regulatory regions. (B) Mutations can lead to transcripts that are

targeted for degradation through mRNA surveillance pathways. The resulting RNA fragments may trigger the compensatory

response. As a secondary effect of the mutated gene’s mRNA degradation, RBPs or miRNAs normally acting on the mutated as

well as the compensating genes’ mRNAs become more available to exert their stabilizing effects on the compensating genes’

mRNAs. Abbreviations: miRNAs, microRNAs; RBPs, RNA-binding proteins; TFs, transcription factors.

https://doi.org/10.1371/journal.pgen.1006780.g001
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proteins, together with other proteins, form a complex on the male X chromosome leading to

H4K16 acetylation and subsequent induction of an open chromatin configuration, which is

more accessible for transcription [97]. Along these lines, a Caenorhabditis elegans study attrib-

uted the incomplete penetrance of intestinal phenotypes in skn-1 mutants [98] to the high vari-

ability in expression of the compensating gene end-1 [99]. Interestingly, this variability in end-
1 expression was attributed to differences in chromatin remodeling at loci controlling end-1
expression. It will thus be interesting to compare chromatin accessibility at the upregulated

genes’ regulatory regions in wild-type, mutant, and knockdown samples.

Chromatin reorganization may be accompanied by changes in DNA looping and nuclear

organization [100], which may also affect gene expression. Interchromosomal interactions are

well documented (reviewed in [101]), and different kinds of stress, such as temperature, have

been shown to increase interchromosomal interactions in Drosophila [102]. DNA damage-

induced stress could similarly lead to modifications in interchromosomal interactions, includ-

ing those between the mutated gene and certain other loci leading to specific gene upregula-

tion. Chromosome-capture studies in wild-type and mutant samples to identify changes in

interchromosomal interactions may help test this model.

Leading to a different potential model, a number of studies have reported the generation of

small non-coding RNAs (ncRNAs) from regions spanning a double-stranded break (DSB),

termed DSB-induced RNAs (diRNAs) [103, 104] (reviewed in [105]). The authors proposed

that such diRNAs are essential for DNA-damage repair (DDR), possibly by acting as guides for

chromatin remodelers or proteins important for DDR. Thus, diRNAs might also guide specific

transcription factors (TFs) or chromatin remodelers to regulatory regions of compensating

genes through homology-based interactions, leading to increased transcription. Such a model

of small ncRNAs guiding specific transcription factors or chromatin remodelers to modulate

gene expression is consistent with publications describing that roX1 and roX2 RNAs are essen-

tial for the dosage-compensation response in Drosophila males by guiding the assembly of the

MSL protein complex on the X chromosome and subsequent histone modifications [106–108]

(reviewed in [97]).

One question for these models that involve chromatin remodeling concerns the transmis-

sion of the transcriptional adaptation response to the next generation. Genomic imprinting via

histone modification [109–111] (reviewed in [112]) is a possible mechanism.

In addition, induction of GADD45A expression following DNA damage has been reported

to induce global DNA demethylation in HEK293T cells, leading to increased activation of

methylation-silenced promoters [113]. Thus, one should also assess the methylation status of

regulatory regions of the upregulated genes. However, to our knowledge, no links have been

established to date between DNA lesions and changes in DNA methylation patterns at specific

(i.e., compensating) loci.

Since all these models are based on DNA lesions, it will be important to assess transcrip-

tional adaptation after inducing different types of mutations. One would expect the upregula-

tion of the same genes following all types of mutations, including non-deleterious ones.

Mutant mRNA as the trigger for the transcriptional adaptation response. This section

will focus on the mutant mRNA being the trigger for the transcriptional adaptation response.

After reviewing a few examples, we will focus specifically on how RNA fragmentation by dif-

ferent mRNA surveillance pathways could trigger such a response.

Mutations often lead to mRNAs with a premature termination codon (PTC), secondary

structures that stall ribosomal translocation, or, less frequently, mRNAs that lack a stop codon.

The presence of such mRNAs triggers the nonsense-mediated decay (NMD), no-go decay, or

no-stop decay pathways, respectively, which results in mRNA degradation (reviewed in [114–

116]). A recent study in zebrafish reported that two different mutations in the same exon of
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mt2 cause different degrees of phenotypic severity. Surprisingly, the mutant allele with the

milder phenotype exhibited a higher degree of NMD. Antisense-mediated knockdown of the

NMD pathway and consequent decrease in mutant mRNA degradation led to a more severe

phenotype, consistent with the possibility that NMD triggers a compensatory response that

decreases the severity of the mutant phenotype [117]. One hypothesis is that the RNA frag-

ments resulting from the mRNA surveillance pathways function to regulate gene expression.

While the current understanding in the field is that the mRNA surveillance pathways lead to

processive mRNA degradation [114, 118], it is possible that short-lived and relatively rare deg-

radation intermediates are present.

If the fragments are long enough, one can hypothesize that they act in a fashion similar to

long noncoding RNAs (reviewed in [119]) and, for example, guide specific transcription fac-

tors or chromatin remodelers to the regulatory regions of compensating genes through homol-

ogy-mediated base pairing (Fig 1B). Other studies have reported that injection of short (20–22

nt) RNA fragments from a specific mRNA leads to increased transcription of the corresponding

locus [120, 121]. Mechanistically, the authors report that the injected sense RNA fragments can

form double-stranded RNA (dsRNA) duplexes with short antisense transcripts normally pro-

duced from the locus. The resulting dsRNAs may then be utilized by the RNA interference

(RNAi) machinery in an ARGONAUTE-dependent manner to induce chromatin modifications

at the locus and increase euchromatin histone marks or decrease heterochromatin histone

marks. Although the exact machinery underlying such dsRNA-induced epigenetic changes

remains unknown, this model is consistent with several other studies reporting transcriptional

activation through histone modification following targeting of dsRNA to the promoter region

of various genes [122–125]. Previous analyses of the mouse and human transcriptome have

identified several antisense transcripts that can participate in forming sense/antisense pairs

[126–130]. Thus, one could hypothesize that RNA fragments act in a similar fashion and form

dsRNA duplexes with antisense transcripts from the compensating loci, leading to transcrip-

tional upregulation.

RNA-binding proteins (RBPs) can also regulate gene expression in a number of ways

(reviewed in [131]), one of which is by increasing gene expression through stabilizing mRNAs

[132]. The highly dynamic binding of RBPs is regulated by cellular conditions; therefore, regu-

lating RBP interactions following genotoxic stress may be a mechanism for the cell to compen-

sate for a lost gene. Along these lines, mRNAs that encode functionally related proteins tend to

be coregulated by specific RBPs, forming what is known as RNA operons or RNA regulons

[133–135] (reviewed in [136]). Thus, the mutant and compensating genes might be regulated

by the same RBPs, and if the mutant mRNA is subjected to degradation or if its secondary

structure is affected by the mutation (thereby affecting RBP binding), RBPs would become

available to stabilize the compensatory genes’ mRNAs (Fig 1B).

Besides their well-known function in silencing gene expression [137], micro-RNAs (miR-

NAs) can enhance gene expression through several mechanisms. Although miRNAs normally

target mRNAs, miRNA-373 was reported to bind promoter regions of CDH1 and CSDC2 in

PC3 (a human prostate cancer cell line) cells and induce their expression through an unknown

mechanism [138]. miRNAs can also increase the translation of certain mRNAs; for example,

under amino acid starvation conditions, miRNA10a was reported to bind the 50UTR of ribo-

somal protein mRNAs and enhance their translation [139]. miRNAs have multiple target

mRNAs [140, 141], and, thus, if a mutation leads to mRNA degradation, the miRNAs targeting

the affected gene will become available to modulate other targets (Fig 1B).

Since these models rely on the generation and potential degradation of mRNAs from the

mutated locus, one would not expect upregulation of potentially compensating genes in the
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absence of active transcription of the mutant mRNA. It will thus be important to assess tran-

scriptional adaptation in alleles where an mRNA is not produced.

Other potential mechanisms for the compensatory response. This brief section will

focus on increased translational response following the mutational loss of specific genes and

will evoke processes such as mRNA modifications and upstream open reading frames.

In response to stress (such as heat shock), pseudouridylation or N6-methylation of adeno-

sines (m6A) was reported to be enriched on certain mRNAs, thereby increasing their stability

or promoting their translation [142, 143] (reviewed in [144]). However, as is the case for DNA

methylation, there has been no report thus far about mRNAs from selective loci being modi-

fied in this manner.

Upstream open reading frames (uORFs) are regulatory elements present in the 5’UTRs of

around 50% of vertebrate mRNAs [145, 146]. They may act as translational repressors, as the

translation of the uORFs can occur at the expense of that of the mRNA’s coding sequence

[147, 148]. Under cellular stress conditions, there is a tendency to inhibit global translation by

phosphorylating eIF2α, which then acts as a competitive inhibitor of the translation initiation

factor eIF2B, thereby reducing translation reinitiation rates [149]. This mechanism may allow

the increased translation of certain mRNAs under cellular stress. For example, the yeast tran-

scription factor gene GCN4 has 4 uORFs and under normal conditions, the 4 uORFs are trans-

lated with less reinitiation at the main ORF. Under nutritional stress, the first uORF is translated

efficiently; however, due to eIF2α phosphorylation, the remaining uORFs are poorly translated,

and reinitiation only occurs at the main ORF, thereby increasing GCN4 production [150]. It is

thus possible that certain gene mutations induce cellular stress, allowing for uORF skipping and

increased translation of compensating genes. However, as is the case for the DNA and RNA

methylation modifications mentioned above, it is not clear how specificity, in terms of selective

proteins being upregulated, would arise.

Conclusion

Despite its role in maintaining an organism’s robustness, the molecular mechanisms underly-

ing genetic compensation remain poorly understood. Here, we reviewed studies reporting

genetic compensation in several higher eukaryotes, outlined potential underlying mechanisms,

and proposed experiments that should help test these potential mechanisms. Studying epige-

netic changes following DNA damage, a major difference between mutants and knockdowns,

should allow a better understanding of why a compensatory response is triggered by knockout

but not knockdown approaches. Moreover, we also proposed mRNA surveillance pathways,

ncRNAs, uORFs, RBPs, and miRNAs as potential players in the compensatory response.

Recently, a study of more than 500,000 human genomes identified 13 individuals harboring

disease-causing mutations in 8 different genes, with no reported clinical manifestation of the

disease [151]. Other studies on Icelandic and British people identified complete gene knock-

outs in several apparently healthy individuals [152, 153]. While functional characterization of

the identified alleles still remains to be completed, it is likely that genetic compensation under-

lies the lack of phenotype in individuals with severe mutant alleles. Moreover, several factors

have been proposed to explain the concept of incomplete penetrance, including environmental

factors, different genetic backgrounds, and different expression levels of modifier genes [154,

155]; however, this concept remains poorly understood, as a recent study reported that incom-

plete penetrance is even common in mice with the same genetic background [156]. We pro-

pose that incomplete penetrance may be due to compensatory responses being triggered in

some individuals but not in others. Investigating the molecular mechanisms underlying

genetic compensation may help us understand why some mutations cause disease while others
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do not. It might also lead to the development of more effective therapies that enhance an

organism’s robustness to a mutation rather than correct its effect, e.g., increase the expression

of the compensating gene(s) rather than correct the function of the defective gene.
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