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Abstract

One in three people has been infected with Mycobacterium tuberculosis (MTB), and the risk

for MTB infection in HIV-infected individuals is even higher. We hypothesized that HIV-posi-

tive individuals living in tuberculosis-endemic regions who do not get infected by Mycoba-

cterium tuberculosis are genetically resistant. Using an “experiment of nature” design that

proved successful in our previous work, we performed a genome-wide association study of

tuberculin skin test positivity using 469 HIV-positive patients from prospective study cohorts

of tuberculosis from Tanzania and Uganda to identify genetic loci associated with MTB

infection in the context of HIV-infection. Among these individuals, 244 tested were tuberculin

skin test (TST) positive either at enrollment or during the >8 year follow up, while 225 were

not. We identified a genome-wide significant association between a dominant model of

rs877356 and binary TST status in the combined cohort (Odds ratio = 0.2671, p = 1.22x10-8).

Association was replicated with similar significance when examining TST induration as a con-

tinuous trait. The variant lies in the 5q31.1 region, 57kb downstream from IL9. Two-locus an-

alyses of association of variants near rs877356 showed a haplotype comprised of rs877356

and an IL9 missense variant, rs2069885, had the most significant association (p = 1.59x10-12).

We also replicated previously linked loci on chromosomes 2, 5, and 11. IL9 is a cytokine pro-

duced by mast cells and TH2 cells during inflammatory responses, providing a possible link

between airway inflammation and protection from MTB infection. Our results indicate that
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studying uninfected, HIV-positive participants with extensive exposure increases the power to

detect associations in complex infectious disease.

Author summary

Approximately one-third of the world’s population has been exposed toMycobacterium
tuberculosis, the bacterium that causes tuberculosis. A small number of those infected

develop active disease; however, there is a substantial portion of exposed people who do

not even show evidence of an immunological response. These people who appear to resist

infection, as measured by a negative tuberculin skin test, represent a subpopulation from

which we can learn about resistance. We used a genome-wide approach to study the

genetic basis of this resistance in unique cohorts of hypervulnerable, HIV-positive indi-

viduals from Uganda and Tanzania, in which exposure was virtually assured. We identi-

fied one locus that was highly significantly associated and conferred more than 70%

protection from infection. The most significant variant, rs8773656, was near IL9 and

SLC25A48, and a haplotype including this variant and a missense mutation in IL9 was

even more significantly associated with negative skin tests. Although it is impossible based

solely on our data to determine the causal variant or genes, IL9 is an attractive candidate

as its product has previously been associated with bronchial hyperresponsiveness, thereby

providing a possible link between inflammation and protection fromMycobacterium
tuberculosis infection.

Introduction

One third of the world’s population has been infected withMycobacterium tuberculosis (MTB)

[1, 2]. Subsequent tuberculosis disease (TB) occurs during the lifespan of about 10% of those

infected[1–3]. Tuberculosis is a major cause of morbidity and mortality worldwide, with 1.5

million deaths and 9.6 million new cases of active disease reported in 2014[1]. Tuberculosis is

the primary cause of death in people co-infected with the human immunodeficiency virus

(HIV), and 400,000 of the global TB deaths in 2014 occurred in this patient population [1, 4].

The immunosuppression from HIV facilitates progression to active disease directly following

infection, or by the reactivation of a latent MTB infection[5, 6]. While the clinical trajectory of

a given MTB infection has many determinants and possible outcomes, infection per se is a nec-

essary prerequisite. Of note, about 10–20% of people living in areas hyperendemic for MTB,

which virtually guarantees repeated exposure, appear to be resistant to infection[7–10].

Historically, MTB infection has been evaluated with a tuberculin skin test (TST) measuring

the induration caused by a delayed type hypersensitivity reaction to an intradermal injection

of MTB purified protein derivative (PPD)[11, 12]. In endemic areas, induration� 5mm mea-

sured between 48 and 72 hours post-injection is indicative of infection. A study of TST reactiv-

ity among siblings demonstrated high heritability, suggesting a possible genetic component to

the MTB infection resistance phenotype[13, 14]. Several studies have capitalized on this find-

ing and identified loci relevant to the MTB infection phenotype. A family-based linkage analy-

sis of TST response identified SLC6A3 and a region on chromosome 11 (p14) as linked to

infection[8]. A full genome microsatellite scan comparing persistent MTB negative patients to

those with latent infections identified an association with the SLC11A1 gene, and candidate

regions on chromosomes 2 (q14, q21-q24) and 5 (p13-q22)[15].
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Recently, novel methods for evaluating MTB infection status have been developed. Inter-

feron-gamma release assays (IGRAs) detect the concentration of IFN-γ in response to a mix-

ture of MTB-specific antigens[16, 17]. The purified protein derivative used in TST has some

antigenic overlap with the Bacille Calmette-Guérin (BCG) vaccine, although 10 years post-vac-

cination the confounding effect is minor; approximately 1% of adult subjects inoculated at

birth with BCG are TST-false positive [18]. IGRAs’ antigens have no overlap with the BCG

vaccine, and maintain excellent specificity in individuals who had childhood BCG vaccinations

[16, 17]. However, in people with compromised immune systems and previously exposed

to MTB, anergy due to immunodeficiency may prevent detection of a positive TST and/or

IGRAs. Inclusion of negative and positive assay controls allows us to better assess this potential

confounder.

We used a genome-wide approach to evaluate common variants for association with TST

response in a patient population that hypothetically allows us to identify extreme genetic

effects. Namely, we hypothesized that HIV-positive individuals who live in areas endemic

for tuberculosis but who do not get infected, are strongly genetically resistant to MTB. Using

two recently concluded prospective cohorts of tuberculosis disease from Tanzania and

Uganda, with available TST and IFN-γ results, we identified a variant on chromosome 5q31.1,

near SLC25A48 and IL9 that imparts resistance to MTB infection in immunocompromised

individuals.

Results

Sex was significantly associated with TST status in the combined Ugandan and Tanzanian

cohorts (Odds Ratio (OR) for males 1.91, 95% confidence interval (CI) 1.27–2.86, p = 0.002;

Table 1), but it did not associate when studied in Uganda (p = 0.762; Table 2) or Tanzania

(p = 0.349; Table 3) alone. Age was not significantly associated with TST status in the

Table 1. Summary statistics of study participants in the combined Ugandan and Tanzanian cohorts. Odds ratio result is from univariate logistic

regression.

Combined Data TST+ TST- Odds Ratio 95% Confidence Interval p value

n 244 225

Age (st. dev.) 32.43 (8.02) 34.49 (7.96) 0.108

Sex Male 89 52

Female 155 173 1.91 (1.27, 2.86) 0.002

CD4* (st. dev) 430.17 (262.45) 430.12 (234.67) 0.99

*CD4 data available for 151 TST+ patients and 198 TST- patients in the combined cohort

https://doi.org/10.1371/journal.pgen.1006710.t001

Table 2. Summary statistics of study participants in the household contact study in Uganda. Odds ratio result is from univariate logistic regression.

Uganda HHC Data TST+ TST- Odds Ratio 95% Confidence Interval p value

n 150 49

Age (st. dev.) 32.72 (7.78) 31.57 (8.76) 0.384

Sex Male 68 21

Female 82 28 1.11 (0.58, 2.12) 0.762

CD4* (st. dev; range) 504.76

(250.47;

15–906)

463.19 (215.82;

1–673)

0.16

*CD4 data available for 57 TST+ patients and 22 TST- patients in the Uganda cohort

https://doi.org/10.1371/journal.pgen.1006710.t002
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combined cohort (p = 0.108; Table 1), nor in Uganda (p = 0.384; Table 2) or Tanzania

(p = 0.153; Table 3) alone. Therefore, all analyses below were adjusted for sex, 10 principal

components, and cohort of origin when Tanzanian and Ugandan datasets were combined.

In logistic regression analysis adjusted for covariates, we observed a genome-wide signifi-

cant association between a dominant genetic effect of rs877356 on chromosome 5q31.1 and

binary TST status in the combined cohort (OR = 0.27, 95% CI 0.17–0.42, p = 1.22x10-8,

Table 4, S1–S3 Figs). The variant had consistent effects in Uganda (OR = 0.17, 95% CI 0.08–

0.37, p = 9.18x10-6; Table 5; S4 Fig) and Tanzania (OR = 0.33, 95% CI 0.18–0.59, p = 1.81x10-4;

Table 6, S5 Fig). Linear regression analyses of continuous size of TST induration under a dom-

inant genetic model produced similar results (combined cohort beta = -4.14, 95% CI -5.55 to

-2.74, p = 1.45x10-8; S1 Table). Variant rs877356 met the multiple testing-adjusted threshold

for this study (3.08x10-7) and was nearly genome-wide significant in an additive model using

binary TST status (OR = 0.33, 95% CI 0.222–0.493, p = 5.45x10-8; S2 Table), and continuous

size of TST induration (combined cohort beta = -3.34, 95% CI -4.53 to -2.14, p = 6.95x10-8; S3

Table). This SNP was in Hardy Weinberg equilibrium in Tanzania (p = 0.68) and Uganda

(p = 0.21). No other unimputed SNPs were significant at the multiple testing corrected thresh-

old in any of the genetic models tested (Tables 4–6, S1–S5 Tables).

To evaluate SNPs in the region not included on our genotyping array, we imputed SNPs

within 0.5 megabases of rs877356. One SNP, rs17169187, in high linkage disequilibrium (LD)

with rs877356 (D’ = 1 in both cohorts, r2 = 0.99 in Tanzania, 0.98 in Uganda) and 2,340 bases

away, is the variant with the most significant association to binary TST status using a dominant

model (combined cohort OR = 0.26, 95% CI 0.16–0.40, p = 4.57x10-9; Fig 1, S6A Table). The

results were consistent with those from linear regression on continuous size of TST induration

(combined cohort beta = -4.29, 95% CI -5.69 to -2.88, p = 4.58x10-9; S7A Table). This variant is

also genome-wide significant in additive modeling of both a binary TST designation (com-

bined cohort OR = 0.320, 95% CI 0.214–0.478, p = 2.56x10-8; Fig 1, S6B Table) and continuous

Table 3. Summary statistics of study participants in the extended follow up of the DarDar vaccine trial in Tanzania. Odds ratio result is from univari-

ate logistic regression.

Tanzania, DarDar Data

Vaccine

TST+ TST- Odds Ratio 95% Confidence Interval p value

n 94 176

Age (st. dev.) 33.50 (8.56) 34.95 (7.61) 0.153

Sex Male 21 31

Female 73 145 1.35 (0.72, 2.50) 0.349

CD4* (st. dev; range) 307.18

(235.77;

204–1490)

165.56 (214.49; 204–1390) 0.024

*CD4 data available for all patients in the Tanzania cohort

https://doi.org/10.1371/journal.pgen.1006710.t003

Table 4. Single nucleotide polymorphisms associating with dichotomous tuberculin skin test status below a 5x10-5 p-value using a dominant

genetic model in the combined cohort* (n = 469).

SNP Chr. Minor Allele MAF Odds Ratio 95% Confidence Interval p value Nearest gene

rs877356 5 T 0.2292 0.267 (0.170, 0.422) 1.22E-08 SLC25A48/IL9

rs7808481 7 A 0.2164 2.523 (1.630, 3.910) 3.33E-05 Loc340268

rs1880386 10 A 0.2132 2.462 (1.594, 3.801) 4.85E-05 GRID1

* adjusted for 10 principal components, sex, and cohort of origin

https://doi.org/10.1371/journal.pgen.1006710.t004
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size of TST induration (combined cohort beta = -3.43, 95% CI -4.62 to -2.24, p = 2.84x10-8;

S7B Table). Adjustment for CD4 count did not significantly affect our results (S8 Table).

In the Tanzanian cohort, IFN-γ responses to positive control (PHA) and negative control

(medium) antigens did not differ by TST results, but were significantly higher in TST cases for

all mycobacterial antigens (S9A Table). In Uganda, we observed the same trends; however, due

to smaller sample sizes, the comparisons were not statistically significant (S9B Table). Sepa-

rately, we examined the prevalence of TST-positivity in the entire Ugandan household contact

study cohort, and found that although the prevalence of TST+ in HIV+ is significantly lower, it

is still very high (71% in HIV- versus 62% in HIV+, p = 0.003; S10 Table). Furthermore, the dis-

tribution of TST induration examined as a continuous variable did not differ by HIV status

(p = 0.06). In the GWAS analysis, removing either potentially false negative subjects (n = 16),

potentially false positive subjects (n = 20), or both did not affect the results substantially (S11–

S14 Tables). The variant was also genome-wide significant when we included patients with

prior tuberculosis in the analyses (S15 Table).

We found the strongest single variant association using a dominant model of rs877356;

therefore, we used dominant coding of the SNP in 2-variant haplotype in the SLC25A48 region

while using additive models of all other SNPs. An rs877356-rs2069885 haplotype had the

strongest association in this analysis (omnibus p = 1.59x10-12 in the combined cohort;

Table 7). The haplotypes had similar association in the Ugandan (p = 2.51x10-8; Table 8) and

Tanzanian cohorts (p = 1.37x10-11; Table 9), with the T-G haplotype frequencies being 0.32/

0.60 and 0.20/0.45 in TST+/TST- subjects, representing a similar enrichment in both cohorts

(Tables 8 and 9). The haplotype, C-G, also had a consistent distribution between the cohorts,

with a TST+/TST- frequency of 0.58/0.33 in Uganda and 0.68/0.48 in Tanzania (Tables 8 and

9). The results were consistent in additive modeling of both SNPs (p = 2.59x10-9 in the com-

bined cohort; S16 Table). The haplotype had similar association in the Ugandan (p = 1.03x10-5;

S16B Table) and Tanzanian cohorts (p = 6.35x10-5; S16C Table). In addition, patterns of linkage

Table 5. Single nucleotide polymorphisms associating with dichotomous tuberculin skin test status below a 5x10-5 p-value using a dominant

genetic model in the Ugandan cohort* (n = 199).

SNP Chr. Minor Allele MAF Odds Ratio 95% Confidence Interval p value Nearest gene

rs877356 5 T 0.2337 0.171 (0.078, 0.373) 9.18E-06 SLC25A48/IL9

rs654718 11 G 0.2136 0.190 (0.089, 0.406) 1.81E-05 MRE11A

rs7944514 11 C 0.4121 5.284 (2.457, 11.360) 2.03E-05 POLD3

rs7837658 8 T 0.4472 4.842 (2.319, 10.110) 2.67E-05 RNF19A

* adjusted for 10 principal components and sex

https://doi.org/10.1371/journal.pgen.1006710.t005

Table 6. Single nucleotide polymorphisms associating with dichotomous tuberculin skin test status below a 5x10-5 p-value using a dominant

genetic model in the Tanzanian cohort* (n = 270).

SNP Chr. Minor Allele MAF Odds Ratio 95% Confidence Interval p value Nearest gene

rs17062122 6 C 0.3259 0.280 (0.161, 0.487) 6.20E-06 Loc285735

rs8142256 22 C 0.35 0.312 (0.181, 0.539) 2.87E-05 FAM19A5

rs10998959 10 T 0.2537 0.306 (0.173, 0.540) 4.33E-05 Loc100129281

rs11736841 4 T 0.2556 3.091 (1.792, 5.332) 4.96E-05 ODZ3

. . . . . . . . . . . . . . . . . . . . . . . .

rs877356 5 T 0.2259 0.330 (0.184, 0.589) 1.81E-04 SLC25A48/IL9

* adjusted for 10 principal components and sex

https://doi.org/10.1371/journal.pgen.1006710.t006
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disequilibrium (LD) were strikingly similar across the whole region in both Ugandan and Tan-

zanian cohorts (S6 and S7 Figs), an unexpected result given the greater variation (and reduced

extent) of LD among African populations. Remarkably, in the same cohorts, high similarity in

LD structure was previously found near IL12B, encompassing a variant associated with resis-

tance to active TB in HIV+ individuals and displaying signals of strong selection[19].

We also determined whether previously associated or linked loci were significant in our

results. Several regions previously shown to be linked to TST response were nominally signifi-

cant in our study (10−3 > p> 10−4), including ones on chromosomes 2, 5 and 11 (S17 Table)

[8, 15, 20]. Chromosome 11p14-15 associated with TST response in our analyses as it did pre-

viously[21]. Although our most significant region on chromosome 11 was distal to the linkage

peak, the region directly under the peak was almost as significant (p~10−3) (S18 Table).

Fig 1. Locus zoom plot of results from a logistic regression association of dichotomous tuberculin skin

test status with a dominant genetic model of imputed SNPs in the SLC25A48/IL9 region in the combined

cohort, adjusted for 10 principal components, sex, and cohort of origin; SNP with the most significant

association of a genotyped SNP in the Exome Beadchip analysis in purple.

https://doi.org/10.1371/journal.pgen.1006710.g001

Table 7. Association of the 2-variant haplotype using a dominant model of rs877356 with an additive model of rs2069885 with dichotomous TST

induration status in the SLC25A48/IL9 region in the combined cohort.

Haplotype TST+ TST- TST+ Freq TST-

Freq

C-A 33 12 0.0679 0.02667

C-G 301 202 0.6193 0.4489

T-A 17 17 0.0350 0.0378

T-G 135 219 0.2778 0.4867

Likelihood ratio χ2 = 57.97 df = 3 p-value = 1.59E-12*

* adjusted for principal components, sex, and cohort of origin

https://doi.org/10.1371/journal.pgen.1006710.t007
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Another previous association signal, IL-10, did not show signs of replication in our study

(S17F Table). These results overall support the validity of our study design as most previous

regions replicated.

Discussion

In this study we examined the association of common genetic variants withMycobacterium
tuberculosis infection in HIV+ patients from the extended follow-up of the DarDar vaccine

trial in Tanzania and the Household Contact study in Uganda. By applying the “experiment of

nature” strategy outlined in a genetic study of tuberculosis disease with the same cohorts [19],

we hypothesized that these immunosuppressed patients who live in MTB endemic areas but

do not get infected have strong innate resistance. This hypothesis and approach were validated

as we identified a novel association between protection from MTB infection and rs877356

with a large effect size. This variant is 9,119 bases upstream of the coding region of SLC25A48
[22], aHomo sapiens solute carrier family 25, member 48. SLC25A48 is a mitochondrial carrier

of amino acids[23, 24]. This SNP is also 57,662 bases downstream from IL9, which we think is

a particularly compelling candidate.

Both genes have supporting evidence that may implicate them. With respect to SLC25A48,

there is evidence from GTEX that this SNP is an eQTL for a lncRNA closer to it than IL9
(http://gtexportal.org/home/eqtls/bySnp?snpId=rs877356&tissueName=All). In contrast, the

involvement of IL9 as the potentially causal gene in our association study was supported by

our haplotype analyses. The rs877356-rs2069885 haplotype had the most significant associa-

tion in this region. The SNP, rs2069885, is 66kb away from rs877356, and is a missense variant

in IL9 (Threonine (ACG) ->Methionine (ATG))[22]. While rs2069885 was not significant in

univariate analyses (p = 0.091 in the combined cohort for TST as a binary outcome and with

Table 8. Association of the 2-variant haplotype using a dominant model of rs877356 with an additive

model of rs2069885 with dichotomous TST induration status in the SLC25A48/IL9 region in the Ugan-

dan cohort.

Haplotype TST+ TST- TST+ Freq TST- Freq

C-A 19 2 0.0633 0.0204

C-G 175 32 0.5833 0.3265

T-A 9 5 0.0300 0.0510

T-G 97 59 0.3233 0.6020

Likelihood ratio χ2 = 38.25 df = 3 p-value = 2.51E-08*

* adjusted for principal components and sex

https://doi.org/10.1371/journal.pgen.1006710.t008

Table 9. Association of the 2-variant haplotype using a dominant model of rs877356 with an additive

model of rs2069885 with dichotomous TST induration status in the SLC25A48/IL9 region in the Tanza-

nian cohort.

Haplotype TST+ TST- TST+ Freq TST- Freq

C-A 14 10 0.0753 0.0284

C-G 126 170 0.6774 0.4830

T-A 8 12 0.0430 0.0341

T-G 38 160 0.2043 0.4545

Likelihood ratio χ2 = 53.59 df = 3 p-value = 1.37E-11*

* adjusted for principal components and sex

https://doi.org/10.1371/journal.pgen.1006710.t009
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an additive model), the association of the haplotype was several orders of magnitude more sig-

nificant than that of rs877356 alone.

Although we cannot at the present distinguish which of these two genes, if either, is the

truly associating one, IL9 is an attractive candidate for resistance to MTB infection because of

its association with bronchial hyperresponsiveness [25], which is hereditary and a risk factor

for asthma[25–27]. Of note, the prevalence of asthma in East Africa is high, especially in urban

settings[28], childhood MTB infection protects from asthma, and an inverse relationship

between incidence of active TB and asthma has been reported [29, 30]. IL9 was originally

described as a T cell and mast cell growth factor, but has since been found to have pleiotropic

effects on the immune system[31–33]. IL9 promotes IL4-mediated production of IgE and IgG

antibodies[34, 35], and bronchial hyper-responsiveness is associated with elevated serum IgE

levels[25, 36]. IL9 also promotes proliferation of hematopoietic progenitor cells[37, 38], and it

has specific effects on lungs. In airway smooth muscle cells, IL9 induces the expression of che-

mokine CCL11, thereby inducing eosinophil chemotaxis and allergic reactions, and in airway

epithelial cells, IL9 directly induces mucous production and stimulates IL13, which leads to

further airway inflammation and perhaps reduced risk of MTB infection [31, 32, 39–41].

The TST phenotype can be studied both as a binary variable, < versus� 5mm induration,

or as a continuous outcome. Our single-SNP association results were consistent using both

outcomes. Variant rs877356 was genome-wide significant in both logistic and linear regression

models in the combined cohort using a dominant genetic model as well as at a multiple testing

corrected level in an additive model. The most significant imputed variant in the region,

rs17169187, was genome-wide significant for both outcomes in additive and dominant

modeling.

One possible limiting factor of these conclusions is immune anergy, which is a potential

confounder in studies of TST reactivity, especially in an HIV+ context. TST responses can

be< 5mm because a patient has not been infected with MTB, or in case of anergy, is unable to

mount a hypersensitivity reaction to PPD even if infected. However, we believe our results are

unlikely to be confounded by anergy for several reasons. First, if anergy existed, it would result

in misclassifying cases as controls, which would decrease power and underestimate effect sizes.

Since we observed significant effects, this was not the case in our data. Second, we leveraged

existing interferon-γ response data in both cohorts to evaluate confounding by immunosup-

pression. We removed all patients suspected of immune anergy prior to analysis, and further

adjustment for a missing response variable did not affect the association of our variant, demon-

strating the robustness of our findings. Particularly in the Tanzania data, where the reported

rate of TST-positivity in HIV-infected is lower than in HIV-uninfected individuals[42], the

PHA responses were quite high and did not differ by TST status, demonstrating that individuals

do indeed mount immune responses. Analyses utilizing these immunologic data, where avail-

able, showed significant effects for the same SNP, suggesting our results are robust to immuno-

logical differences between subjects. Third, data from the entire household contact study in

Uganda indicates that anergy is not an issue in that cohort: the prevalence of TST-positivity in

HIV-infected individuals is 62%, compared to 71% in HIV-uninfected individuals and ~34% in

HIV-uninfected community controls (S10 Table and [43]). This high rate of TST-positivity in

the HIV-infected subjects is inconsistent with anergy being a major confounder in this popula-

tion. Furthermore, since we see similar genetic effects in the Ugandan and Tanzanian cohort, it

is unlikely that anergy is a problem in Tanzania and not in Uganda. Lastly, we replicated loci

that had been previously associated with TST in independent HIV- cohorts, further validating

our design. Unfortunately, data on PHA and CD4+ count were unavailable for some of the sub-

jects in this study, so we were unable to fully explore some of these potential explanations. In

summary, the aforementioned sensitivity analyses and other factors make anergy an unlikely
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cause of the observed association in these data, though we cannot absolutely exclude this possi-

bility. Future studies should examine this locus as a candidate for association with TST.

As we have previously shown for tuberculosis disease[19], the present study confirms that

the choice of an extreme phenotype, HIV+ patients who live in MTB endemic areas but do not

get infected, enriches for major, homogeneous genetic effects. This design permits the use of

relatively small sample size even in a genome-wide association study. Although the small sam-

ple size is the biggest weakness in this study, the large and replicated effect size observed in this

unique study design and populations allowed us to find significant associations in an appar-

ently relevant region of the genome. The variant with the most significant association is near

IL9, a gene with a substantial role in airway inflammation, bronchial asthma, and other respi-

ratory infections[44, 45]. This, along with observational studies of the inverse incidence of

asthma and tuberculosis, leads to the conclusion that the same gene whose over-expression

plays a significant role in the pathogenesis of asthma, could also prevent MTB infection by the

same mechanism.

Material and methods

Study populations

HIV+ subjects from a cohort in Tanzania and one in Uganda were included in this study. A

complete description of the study cohorts and genetic analysis methods is provided in our pre-

vious work [19].

Tanzania. Patients from the extended follow-up cohort of the DarDar vaccine trial in Dar

es Salaam, Tanzania were recruited for this study. The full cohort has been described elsewhere

[46]. Briefly, the DarDar trial was a phase III randomized trial of SRL 172, an inactivated whole

cell mycobacterial vaccine booster to a childhood Bacille Calmette-Guérin (BCG) vaccination.

Subjects were enrolled between 2001 and 2005. Follow-up continued until the study was con-

cluded in 2008. Recruited patients were HIV+-positive adults (�18 years old) with a BCG scar,

a CD4 count>200 cells/μl and were TB-negative at the time of enrollment. TST reactivity was

measured at enrollment, preventing any confounding by the effects of the vaccine. A saline pla-

cebo was administered to 1007 patients, while 1006 patients received 5 doses of the vaccine. A

routine follow-up for active TB (physical examination, chest radiograph, sputum samples for

culture and acid fast bacilli (AFB) stain, and phlebotomy for an automated mycobacterial blood

culture) was performed every 3 months for the duration of the study. Upon conclusion of the

trial, an extended follow-up cohort of 800 participants from both the placebo and vaccine arm

was selected for annual evaluation for active TB. Between September and December of 2013,

304 patients from the extended follow-up were recruited during their routine visits.

Uganda. We obtained 263 samples from HIV-positive participants from the Household

Contact Study (HHC), conducted in Kampala, Uganda. This cohort has been previously

described in detail[47, 48]. Briefly, the Uganda National Tuberculosis and Leprosy Programme

referred patients diagnosed with new active tuberculosis to the study, and patients who con-

sented were enrolled as index cases. Household contacts were defined as individuals living in

the same household as the index case for at least 7 consecutive days in the 3 month period lead-

ing up to the diagnosis of the index case[10]. Household contacts were subsequently enrolled

and evaluated for active TB, latent TB, and HIV. Recommended therapy was administered to

all cases of active TB[49]. In contrast to the cohort from Tanzania, CD4 counts were not avail-

able until 2004 when antiretroviral drugs became available in Uganda. In subjects enrolled

prior to 2004, antiretrovirals were not given to HIV-positive subjects. In subjects enrolled

when antiretrovirals were available in Uganda, these drugs were administered after the diagno-

sis of HIV, which occurred after basic clinical data, including TST, and blood samples were
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obtained. Of note, the HHC study design guarantees exposure of the controls to MTB during

the follow up[47]. We only analyzed adult participants (�18 years old) of the HHC.

Immune assays

Tanzania. Intradermal injections of purified protein derivative (0.1 ml, RT-23, Staten

Serum Institute, Copenhagen) on the forearm were administered to all enrolled patients prior

to vaccination, and resultant skin induration size was measured by trained personnel after 48–

72 hours. Preventative isoniazid treatment (300 mg daily for 6 months) was offered to subjects

with a positive TST using the criterion for HIV+ patients (�5 mm as positive) as recom-

mended by a consensus statement [50].

Immune response toMycobacterial antigens was assessed with an interferon gamma (IFN-

γ) enzyme linked immunosorbent assay (ELISA), a tritiated thymidine lymphocyte prolifera-

tion assay (LPA) and an ELISA for antibodies to the glycolipid lipoarabinomannan of MTB

(LAM). The assays used in this study have been described in detail elsewhere[51]. Briefly, phle-

botomy was performed prior to vaccination and at the conclusion of the study, and peripheral

blood mononuclear cells (PBMCs) were isolated by ficoll density gradient centrifugation for

IFN-γ and LPA assays, performed on site. Centrifuged, frozen serum was sent to Dartmouth

College for LAM assays.

IFN-γ and LPA assays used four different antigens:Mycobacterium Vaccae sonicate (2 mcg/

ml),MTBAntigen 85 (Ag85; 1 mcg/ml),MTB early secretory antigenic target 6 (ESAT-6; 2

mcg/ml), andMTBwhole cell lysate (WCL; 1 mcg/ml)[51]. Importantly, ESAT-6 is not present

in the childhood Bacille Calmette-Guérin (BCG) vaccine that is commonplace in East Africa;

therefore, confounding by BCG status can be controlled with this additional data. Media alone

was used as a negative control and phytohemagglutinin (PHA, 2.5 mcg/mL; Sigma, St. Louis,

MO) was used as a positive control[51].

Uganda. Intradermal injections of purified protein derivative (5 tuberculin units) on the

forearm were administered to study participants at enrollment, and 3, 6, 12, and 24 months

post-enrollment, if the tests were negative at earlier time points[10]; PPD was also obtained

from Serum Staten Institute as in Tanzania. The size of skin induration was measured by

trained personnel 48–72 hours after each injection. For patients measured at multiple time

points, the largest TST reaction was used in the analysis, and a 5 mm cutoff was used to define

TST+, as recommended by a consensus statement[50]. In this phase of the HHC study, daily

isoniazid preventative treatment was offered to all HIV+ subjects for 6–9 months [10, 15].

Briefly, phlebotomy was performed at enrollment. Whole blood was stimulated with MTB

antigens: MTB culture filtrate CXFT, ESAT-6, and CFP10[10, 52], and the IFN-γ response was

measured by ELISA (Thermo Scientific, Rockford, IL). Whole blood cultured without antigen

stimulation served as a negative control. Phytohemagglutinin (PHA; Sigma, St. Louis, MO)

was used as a positive control, while the IFN-γ response to media was subtracted from anti-

gen-stimulated readings[10, 52]. Negative differences were considered a 0.

DNA isolation and genotyping

For participants from the extended follow-up of the DarDar vaccine trial, 5ml of whole blood

was drawn upon enrollment, and DNA was extracted the day of the phlebotomy using the

Gentra Puregene Blood kit (QIAGEN) in accordance with the manufacturer’s recommenda-

tions. For participants of the Household Contact Study, buffy coats were isolated on site and

shipped to Dartmouth College for DNA extraction. The QIAamp DNA Blood Mini Kit (QIA-

GEN) was used to isolate DNA from the buffy coats. DNA samples were stored at -80˚C before

genotyping. DNA quality was evaluated with the 260/280 ratio using a NanoDrop 2000
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spectrophotometer at Dartmouth College (Thermo Scientific) and an Electrophoresis Quality

Score at the University of Miami.

Samples from the DarDar vaccine trial (n = 304) and the Household Contact Study

(n = 263) were submitted for genotyping at the Hussman Institute for Human Genomics,

Miami, Florida. A total of 567 samples passed quality control measures and were genotyped

using the Illumina Human Core Exome Beadchip (542,585 SNPs). SNPs with a genotyping call

rate< 0.95 and a Hardy-Weinberg equilibrium p-value < 1x10-4 were excluded. Participants

with a per individual genotyping call rate< 0.95 were excluded. Concordance of reported and

genotypic sex was verified. In case of relatedness among study participants (pi-hat > 0.20), one

individual was randomly removed. The final study population included 270 participants from

the extended follow up of the DarDar vaccine trial and 199 participants from the Household

Contact Study. All quality control analyses were performed in PLINK(v1.07)[53]. Results for

the most significant SNP are shown in S8 Fig.

Statistical analyses

Statistical genetics methods. To adjust for possible admixture within each cohort, princi-

pal components were calculated using SNPs with r2 < 0.1 and MAF > 0.2 using the SNPRelate

package in R[54, 55]. The qqman package in R was used to generate Manhattan and qq plots

[56]. Locus zoom was used to plot the regions with the strongest association[57].

TST data were evaluated using additive, dominant, and recessive genetic models both as a

continuous variable using linear regression, and as a binary variable (TST positive,� 5mm vs.

TST negative, < 5mm) with logistic regression in PLINK(v1.07)[53]. A total of 162,228 SNPs

passed the inclusion criteria at a MAF> 0.20 (chosen to provide adequate power in our studies

using QUANTO[58], S19 Table), corresponding to a Bonferroni corrected multiple testing

threshold of 3.08x10-7. Summary statistics and univariate logistic regression models of TST+/

TST- status with available covariates were calculated in STATA(v11.2)[59]. Covariates associ-

ating with TST positivity (0.05 level) were included in final models.

All analyses were adjusted for 10 principal components to account for possible population

structure, and analyses of the cohorts combined were adjusted for a cohort variable. SNPs in

the regions of interest were imputed with IMPUTE2 (v2.3.1), using one phased reference

panel from the 1000 Genomes project[60–62]. We used UNPHASED(v3.1.7)[63] to perform 2

SNP haplotype association analyses, adjusting for the same covariates as in the single SNP

association analyses above. We studied all pairwise haplotypes that included the most signifi-

cantly associating SNP in the combined cohort and an additional 30 available SNPs within 250

kb of this SNP that had a minor allele frequency >0.05. Haplotype plots were generated using

Haploview[64].

Additional analyses to account for potential anergy. To help mitigate the confounding

influence of anergy, we utilized available IFN-γ data. Subjects can remain TST-negative given

an exposure toM. tuberculosis in multiple ways that may need to be accounted for analytically.

MTB infection can be of an insufficient dose, inhaled but mechanically prevented from seeding

the lungs, seed the lungs but be cleared before immune memory is invoked, potentially local-

ized without a systemic response, and importantly for our analyses MTB can establish a latent

infection but host immunosuppression and an inability to mount a delayed type hypersensitiv-

ity response can prevent a positive TST test, i.e. anergy[65]. To adjust for possible anergy in

Tanzania, we removed all patients who had negative IFN-γ responses to the positive control

antigen, PHA (defined as a PHA< 300pg/mL), which indicates low T cell counts or activity

and lymphocyte proliferation assays (LPA) (defined as a proliferative index < 3), indicating

few T cells exist in the individual. LPA data was not available for the Ugandan cohort;
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therefore, we removed all patients who had negative responses to all available antigens and to

PHA (PHA < 300pg/mL). Patients who were PHA positive but negative for all other antigens

remained in the study. ELISA assays were not performed on 102 patients from the HHC

cohort and 33 patients from the DarDar vaccine trial extended follow up. Of the patients with

missing assays, 71 had TST measurements� 5mm, and 31 < 5mm in Uganda, and 10 had

TST� 5mm, and 23< 5mm in Tanzania. Logistic regression models of TST status adjusting

for missing ELISA data were performed to prevent confounding by missing data. Patients who

stated that they had previous active TB, but had a TST of 0mm were excluded from the analy-

ses presented below.

To evaluate possible false negative TST responses on our association results, additional

logistic regression analyses were performed removing individuals with a 0mm TST induration

who had a substantial IFN-γ response (> mean in TST positives) to any of the tested antigens

at the time of the TST induration measurement (S20 Table). The effect of possible false positive

TST results due to BCG vaccination was evaluated by performing logistic regression analyses

removing individuals with positive TST scores but low ELISA response (< mean of TST nega-

tives) to any of the tested antigens. Numbers of individuals excluded from the analyses and the

criteria are presented in S21 Table.

Functional annotation. The ENCODE Project[66] was accessed via the UCSC Genome

Browser[22] and used for functional annotation.
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