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Abstract

We propose a novel statistical framework for integrating the result from molecular quantita-

tive trait loci (QTL) mapping into genome-wide genetic association analysis of complex

traits, with the primary objectives of quantitatively assessing the enrichment of the molecular

QTLs in complex trait-associated genetic variants and the colocalizations of the two types

of association signals. We introduce a natural Bayesian hierarchical model that treats the

latent association status of molecular QTLs as SNP-level annotations for candidate SNPs of

complex traits. We detail a computational procedure to seamlessly perform enrichment,

fine-mapping and colocalization analyses, which is a distinct feature compared to the exist-

ing colocalization analysis procedures in the literature. The proposed approach is computa-

tionally efficient and requires only summary-level statistics. We evaluate and demonstrate

the proposed computational approach through extensive simulation studies and analyses of

blood lipid data and the whole blood eQTL data from the GTEx project. In addition, a useful

utility from our proposed method enables the computation of expected colocalization signals

using simple characteristics of the association data. Using this utility, we further illustrate

the importance of enrichment analysis on the ability to discover colocalized signals and the

potential limitations of currently available molecular QTL data. The software pipeline that

implements the proposed computation procedures, enloc, is freely available at https://

github.com/xqwen/integrative.

Author summary

Genome-wide association studies (GWAS) have been tremendously successful in identify-

ing genetic variants that impact complex diseases. However, the roles of such studies in

disease etiology remain poorly understood, primarily because a large proportion of the

GWAS findings are located in the non-coding region of the genome. Recent advance-

ments in high-throughput sequencing technology enable the systematic investigation of

molecular quantitative trait loci (QTLs), which are genetic variants that directly affect

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wen X, Pique-Regi R, Luca F (2017)

Integrating molecular QTL data into genome-wide

genetic association analysis: Probabilistic

assessment of enrichment and colocalization.

PLoS Genet 13(3): e1006646. https://doi.org/

10.1371/journal.pgen.1006646

Editor: Bingshan Li, Vanderbilt University, UNITED

STATES

Received: September 29, 2016

Accepted: February 21, 2017

Published: March 9, 2017

Copyright: © 2017 Wen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

manuscript are available in public domains: GTEx

data: www.gtexportal.org/home/; Blood lipid data:

http://csg.sph.umich.edu/abecasis/public/

lipids2010/.

Funding: This work is supported by NIH Grants

HG007022 (PI G. Abecasis), MH101825 (PI M.

Stephens) and GM-10921501(PI F. Luca). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://github.com/xqwen/integrative
https://github.com/xqwen/integrative
https://doi.org/10.1371/journal.pgen.1006646
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006646&domain=pdf&date_stamp=2017-03-23
https://doi.org/10.1371/journal.pgen.1006646
https://doi.org/10.1371/journal.pgen.1006646
http://creativecommons.org/licenses/by/4.0/
http://www.gtexportal.org/home/
http://csg.sph.umich.edu/abecasis/public/lipids2010/
http://csg.sph.umich.edu/abecasis/public/lipids2010/


molecular phenotypes (e.g., gene expression, transcription factor binding and DNA meth-

ylation). Linking molecular QTLs to GWAS findings intuitively represents an important

step for interpreting the biological and clinical relevance of the GWAS results. In this

paper, we describe a rigorous and efficient computational approach that assesses the

enrichment and overlap between the GWAS findings and molecular QTLs. Importantly,

we illustrate that the accurate quantification of overlapping between molecular QTL and

GWAS signals requires reliable enrichment estimation. Our proposed approach fully

accounts for the intrinsic uncertainty embedded in the association analyses of GWAS and

molecular QTL mapping, and it outperforms the existing state-of-the-art approaches.

Applying the proposed approach to the GWAS data of blood lipid traits and the whole

blood expression QTLs (eQTLs) yields some novel biological insights and also illustrates

the potential limitations of the currently available molecular QTL data.

Introduction

Genome-wide association studies (GWAS) have successfully identified many genomic loci

that impact complex diseases and complex traits. Nevertheless, the molecular pathways that

connect genetic variants to complex traits are still poorly understood, primarily because a con-

siderable proportion of trait-associated signals are located in the non-coding region of the

genome. With recent advancements in high-throughput sequencing technology, systematic

investigations of cellular phenotypes have revealed an abundance of non-coding molecular

quantitative trait loci (QTLs) [1–4]. Integrating molecular QTL data into GWAS analyses has

shown great potential in unveiling the missing links between trait-associated genetic variants

and organismal phenotypes [5–7].

In this paper, we focus on a specific type of integrative analysis that aims to assess the over-

lapping/colocalization of causal GWAS hits and causal molecular QTLs (also known as quanti-

tative trait nucleotides, or QTNs). Following Giambartolomei et al [8], we define a GWAS hit

and a molecular QTN as being colocalized if a single genetic variant is causally associated with

both the complex and molecular traits of interest. Colocalizing genetic variants that jointly

affect both molecular and organismal phenotypes provides an intuitive starting point for

exploring the role of genetic variants in disease etiology. Taking expression quantitative trait

loci (eQTL) mapping as an example, colocalizing an eQTL signal with a GWAS hit naturally

suggests that the target gene of the eQTL may play an important role in the molecular pathway

of the complex traits. Additionally, other types of available integrative analysis approaches,

e.g., Sherlock [9], PrediXcan [5] and other similar approaches [10, 11], can also benefit from

accurate colocalization analysis, either for improved power (as in the case of Sherlock) or better

interpretation of the inference results (as in the case of PrediXcan).

Considering the most common practical setting in which GWAS and molecular QTL data

are obtained from two non-overlapping sets of samples, we propose a natural Bayesian hierar-

chical model for integrating the two types of association data. Specifically, we regard the

(latent) association status of each candidate SNP with respect to the molecular phenotype of

interest as an SNP-level annotation, and we attempt to quantify the odds of an annotated SNP

being causally associated with the complex trait of interest, which is statistically equivalent to

evaluating the enrichment level of annotated SNPs in the causal GWAS hits. Subsequently, the

resulting enrichment estimates are utilized in the downstream fine-mapping (of GWAS hits)

and colocalization analyses. Within our Bayesian hierarchical model, we show that the prob-

lems of enrichment estimation, fine-mapping and colocalization testing can be seamlessly

Probabilistic analysis of enrichment and colocalization
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solved in a unified inference framework. In addition, our approach is computationally efficient

and requires only summary-level data from both molecular QTL mapping and GWAS.

Our proposed method is most similar to the probabilistic model-based approaches coloc [8]

and eCAVIAR [12], which represent the state-of-the-art in the current literature. The advan-

tages of the model-based colocalization analysis methods over the empirical methodologies

(e.g., Nica et al [6]) have been fully demonstrated through both rigorous theoretical arguments

[8, 13] and carefully constructed simulation studies [12]. In this paper, we show that both coloc
and eCAVIAR can be viewed as special cases of the proposed approach. In particular, both

approaches bypass the enrichment analysis by making subjective assumptions on the enrich-

ment levels of molecular QTLs in GWAS signals. In comparison, our approach shares the

advantages of both existing approaches, but it enjoys additional flexibility and improved statis-

tical rigor. Most importantly, our approach provides calibrated statistical quantification on

colocalized association signals.

Method

Model and notation

Without loss of generality, we consider a GWAS of a quantitative trait and describe its associa-

tions with p candidate SNPs and n unrelated samples using a multiple linear regression model,

y ¼
Xp

i¼1

big i þ e; e � Nð0; t� 1IÞ; ð1Þ

where we assume that both the phenotype and genotypes are centered (the intercept term is

therefore exactly 0) and denote the complete collection of genotypes as G ≔ [g1, . . ., gp]. We

further denote the latent binary association status of each SNP i by dichotomizing its genetic

effect βi, i.e., γi = 1 indicates that SNP i is genuinely associated (thus, βi 6¼ 0), and γi = 0 other-

wise. It can be argued that the aim of the GWAS is to make inference of the binary vector

γ≔ (γ1, . . ., γp). In addition, we assign the standard spike-and-slab prior for each regression

coefficient βi and a flat gamma prior for the residual error variance parameter τ.

Suppose that a single quantitative annotation (categorical or continuous) is available for

each candidate genetic variant. We integrate the SNP-level annotation into the association

analysis by specifying a natural logistic prior for each candidate SNP i, i.e.,

log
Pr ðgi ¼ 1Þ

Pr ðgi ¼ 0Þ

� �

¼ a0 þ a1di: ð2Þ

In particular, we denote the complete collection of the SNP annotation data as d ≔ (d1, . . ., dp),
and we refer to α≔ (α0, α1) as the enrichment parameter: for a binary annotation, a positive α1

value indicates that SNPs with the feature have increased odds of being associated with the trait

of interest, i.e., the annotated feature is enriched in the trait-associated genetic variants.

In this paper, we consider a special setting in which the annotation is derived from the asso-

ciation analysis of molecular QTL data, namely, (Y qtl, Gqtl). Intuitively, the true association sta-

tus of each SNP with the molecular phenotype can be naturally incorporated as annotations in

Eq (2) for GWAS analysis. However, due to the intrinsic limitations in the molecular QTL

mapping, e.g., imperfect power and complication of LD among SNPs, the precise binary asso-

ciation status of each SNP with respect to the molecular phenotype of interest, d, is practically

impossible to obtain. Consequently, there is considerable uncertainty in annotating any causal

molecular QTN. To fully characterize the uncertainty of the molecular QTL annotation and

carry it over into the proposed integrative analysis, we propose embedding a latent covariate

Probabilistic analysis of enrichment and colocalization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 3 / 25

https://doi.org/10.1371/journal.pgen.1006646


model for d in the prior model (2). Specifically, we consider d to be an unobserved random

vector whose realization is drawn from the following probability distribution:

d � Pr ðd j Y qtl;GqtlÞ: ð3Þ

In particular, we obtain the desired posterior distribution Pr(d j Y qtl, Gqtl) from a Bayesian

multi-SNP association analysis of molecular QTL data [14]. Henceforth, we refer to the distri-

bution Pr(d j Y qtl, Gqtl) as the “fuzzy” annotation for molecular QTLs.

Based on the proposed Bayesian hierarchical model, we perform statistical inference to

address three related problems. First, we aim to estimate the enrichment parameter α to quan-

tify the enrichment level of molecular QTNs in the causal GWAS hits. Second, we perform

Bayesian fine-mapping analysis of GWAS hits accounting for the molecular QTL annotations,

and we summarize the results in form of the posterior probability Pr(γ j y, G, Y qtl, Gqtl). Third,

we attempt to evaluate the colocalization of the molecular QTNs and the causal GWAS hits,

i.e., for each SNP i, we examine whether γi = di = 1. Within our proposed modeling framework,

the colocalization at the single SNP-level is naturally quantified by the posterior probability

Pr(γi = 1, di = 1 j y, G, Y qtl, Gqtl).

Impact of enrichment estimation on colocalization analysis

A distinct feature of our proposed integrative analysis framework is the integration of the

enrichment estimation in the colocalization analysis. In this section, we illustrate the critical

impact of enrichment estimates on the quantitative results of colocalization analysis.

LD is one of the primary factors that complicate the colocalization analysis. This is mainly

because of the increasing difficulty in identifying causal SNPs from the association data as the

LD between candidate SNPs becomes stronger. Consider a hypothetical example of two per-

fectly correlated SNPs and assume that they are in complete linkage equilibrium with the

remaining candidate SNPs. Suppose that one of the two SNPs is genuinely associated with the

molecular phenotype. A well-powered QTL mapping analysis should identify that one of the

SNPs is a causal QTN, but there is no further information to distinguish the two. The exact

same situation arises if one of the two SNPs (not necessarily the QTN) is genuinely associated

with the complex trait. Because of the complete symmetry, the two candidate SNPs also carry

identical SNP-level colocalization probabilities and are not identifiable based only on the asso-

ciation data. Nevertheless, a statistical statement can be made regarding the genomic region

harboring these two SNPs, and the quantification of such probability can be notably different

depending on the enrichment information. If the molecular QTNs are completely irrelevant to

the causal GWAS hits, or statistically speaking, γ and d are independent (hence, α1 = 0 in our

prior model), we should conclude that there is a 50% chance that the two types of causal associ-

ations are overlapped in one of the two SNPs, i.e., the probability that the genomic region har-

boring a colocalized signal is 0.50. Conversely, if (almost) all the molecular QTNs are indeed

causal GWAS hits (hence, α1!1 in our prior model), we would conclude that, with near cer-

tainty, one of the two SNPs is responsible for both genuine associations, i.e., the probability

that the region harboring a colocalized signal is approaching 1.0. We would like to note two

points from the above hypothetical example: first, in the presence of LD, a regional colocaliza-

tion probability (RCP) has better practical interpretation than the SNP-level colocalization

probability (SCP); second, the enrichment information characterized by α1 has a profound

impact on quantifying RCPs.

Next, we show that the quantified enrichment estimate can be used to calculate the expected

number of colocalized association signals based on the proposed prior model without delving

into the detailed analysis of individual loci. We denote the marginal (prior) probabilities

Probabilistic analysis of enrichment and colocalization
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pγ≔ Pr(γi = 1) and pd≔ Pr(di = 1). Based on Eq (2), it follows that

Pr ðgi ¼ 1; di ¼ 1Þ ¼
pg

1þ
1� pd
pd

e� a1

: ð4Þ

Note that the quantity

r≔ Pr ðdi ¼ 1 j gi ¼ 1Þ ¼
1

1þ
1� pd
pd

e� a1

ð5Þ

represents the fraction of causal GWAS hits overlapping causal molecular QTNs.

The interplay of pd, pγ and α1 with respect to ρ can be intuitively understood in some

extreme scenarios. For example, if the vast majority of the genome is annotated as molecular

QTNs, i.e., if pd! 1, then ρ! 1 and Pr(γi = 1, di = 1)! pγ. This is because if every SNP in the

genome is likely a molecular QTN, then every causal GWAS SNP is also likely a molecular

QTN. More generally, the colocalization probability is affected by the enrichment level of

molecular QTNs in the GWAS hits. Specifically, if α1!1, ρ! 1 and Pr(γi = 1, di = 1)! pγ,
i.e., all GWAS hits are expected to be molecular QTNs. Alternatively, if α1 = 0, it follows that

ρ = pd and Pr(γi = 1, di = 1) = pγ pd, i.e., the two types of associations are mutually independent.

Moreover, if molecular QTLs are depleted in the GWAS hits, i.e., α1 < 0, ρ is expected to be

< pd.
Furthermore, the prior expected number of colocalized association signals can be simply

computed by

E Number of colocalized causal variants½ � ¼
M pg

1þ
1� pd
pd

e� a1

; ð6Þ

where M represents the total number of SNPs interrogated.

Background and overview of inference procedure

The exact computation to fit the proposed hierarchical model is intractable. Although approxi-

mate computation is theoretically possible using the Markov Chain Monte Carlo (MCMC)

algorithm, it does not scale well to genome-wide GWAS and molecular QTL data. Here, we

provide the necessary background on the existing computational work and outline the compu-

tational procedures to achieve our three inference goals for the integrative analysis.

Assuming that the annotation d is observed, our previous work [14] proposes a two-stage

empirical Bayes procedure to perform accurate and efficient approximate Bayesian inference

in the GWAS setting. Briefly, in the first stage, we obtain the maximum likelihood estimate of

the enrichment parameter, α̂ , using an EM algorithm by treating γ as missing data. Subse-

quently, in the second stage, we approximate the desired posterior probability Pr(γ j y, G, d) in

GWAS analysis by Pr ðγ j y;G; d; α̂Þ. In addition, and particularly for analyzing GWAS data,

we divide the genome into K roughly independent LD blocks using the approach described

in [15], i.e., γ = γ[1]� γ[2]� � � � � γ[K], and further approximate Pr ðγ j y;G; d; α̂Þ by
QK

i¼1
Pr ðγ ½i� j y;G; d; α̂Þ. Within each LD block i, Pr ðγ ½i� j y;G; d; α̂Þ is then computed using

the deterministic approximation of posteriors (DAP) algorithm. Among the two variants of

the DAP algorithm described in [14], the adaptive DAP algorithm implements a fully auto-

mated Bayesian multi-SNP analysis procedure. Conversely, the DAP-1 algorithm further

assumes at most a single causal association within the LD block of interest, but it achieves even

more efficient computation and requires only summary-level statistics from the GWAS data.

Probabilistic analysis of enrichment and colocalization
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With the added latent covariate model (3), the computational challenge becomes even

greater. We extend our existing empirical Bayes framework into a three-stage procedure to

explicitly account for the fuzzy annotation of d. The first stage focuses on finding the MLE α̂
in the presence of missing data d. In the second stage, we approximate Pr(γ j y, G, Y qtl, Gqtl)

by Pr ðγ j y;G;Y qtl;Gqtl; α̂Þ to conduct fine-mapping of GWAS signals incorporating the

annotation of molecular QTNs. The particular emphasis in this step is to construct the SNP-

level priors accounting for the uncertainties of molecular QTLs. In the last stage, we use the

results from the previous stages to approximate the SNP-level posterior probability Pr(γi = 1,

di = 1 j y, G, Y qtl, Gqtl) by Pr ðgi ¼ 1; di ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ and the corresponding RCPs

for colocalization analysis. (As a notational footnote, conditional on α̂ , the SNP-level γi and di
depend only on one relevant molecular phenotype and its corresponding genotypes rather

than the full collection of the molecular phenotypes. We keep the current notation for the con-

sistency of the presentation.) The subsequent sections provide the statistical and computa-

tional details within each stage.

We implement the computational procedure outlined above in the software package enloc
(Enrichment estimation aided colocalization analysis), which is freely available at https://

github.com/xqwen/integrative. Note that the computational procedure requires only sum-

mary-level information from both the molecular QTL data and GWAS data.

Enrichment analysis of molecular QTLs in GWAS hits

The primary objective of the enrichment analysis is to estimate the hyper-parameter α given

the observed summary statistics from GWAS and the fuzzy annotation of molecular QTLs.

Recall that if the binary molecular QTL annotation is indeed known, then the EM algorithm

that we previously described [14, 16] can be directly applied to obtain the maximum likelihood

estimate of α. With incomplete information on annotation data, we adopt a principled statisti-

cal strategy in missing data inference known as multiple imputation [17, 18]. Specifically, the

multiple imputation procedure creates m complete data sets by filling in, i.e., imputing, the

missing entries of the binary annotation data. The imputed data sets are then individually ana-

lyzed using the existing EM algorithm, and the distinct estimates of α̂ from multiple imputed

data sets are combined into a final estimate using a set of rather simple rules (section S.1 in S1

Text). The key to implementing this strategy is to impute the annotations, which, in our case,

is achieved by sampling from the posterior distribution Pr(d j Y qtl, Gqtl).

According to the missing data theory, the ideal probability distribution to impute d is

Pr(d j Y qtl, Gqtl, y, G), i.e., the imputation of d should also be conditioned on the observed

GWAS data. The proposed imputation distribution represents a simplified approximation and

essentially assumes the independence between d and GWAS data, which is because Pr(d j Y qtl,

Gqtl) = Pr(d j Y qtl, Gqtl, y, G) if and only if α1 = 0. Consequently, imputing from this simplified

distribution (or more generally, imputing without the consideration of GWAS data) leads to

conservative point estimates that are shrunk toward 0. (This is because each imputed data set

is generated as if α1 is set to 0 a priori.) In practice, the underestimation of the true α1 under

the simplified imputation distribution can be noticeable if the true α1 is much larger than 0

(which is evident in some of our simulation scenarios). Despite this shortcoming, we choose to

work with the simplified imputation distribution, Pr(d j Y qtl, Gqtl), mainly because of its attrac-

tive computational property. For example, it can be obtained by a single run of genetic associa-

tion analysis based solely on the molecular QTL data and applied in the integrative analysis of

any GWAS data. In comparison, Pr(d j Y qtl, Gqtl, y, G) is specific to each GWAS-molecular

QTL data set pair, and its computation is considerably more expensive if not practically impos-

sible. Importantly, the empirical evidence from the simulation studies suggests that the bias of

Probabilistic analysis of enrichment and colocalization
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the enrichment estimate due to the use of the simplified imputation distribution has non-sig-

nificant impacts on the results of downstream fine-mapping and colocalization analyses.

The number of imputed data sets (m) necessary for reliable estimation has been systemati-

cally studied in the missing data theory. The common consensus in the statistical literature is

that m should be determined by the percentage of missingness, and various theoretical and

empirical studies [19, 20] roughly agree that 20 imputations are required for 10% to 30% miss-

ing information and that 40 imputations are required for 50% missing information. Although

the true annotation d is completely unobserved in our context, we are certain that di = 0 for

the vast majority of the candidate SNPs based on inspection of the posterior distribution

Pr(d j Y qtl, Gqtl). In fact, by examining the analysis results of cis-eQTLs from the GTEx whole

blood data, we find that there are only * 1.5% cis candidate SNPs with a posterior inclusion

probability� 0.01. Guided by this empirical evidence, we choose to impute m = 25 QTL data

sets for each analysis. (We have also experimented with 50 and more imputed data sets in the

simulations, and the inference results are virtually unchanged.)

Additionally, we observed that detectable GWAS hits and eQTLs (with currently available

sample sizes) are both relatively sparse in practice, which can lead to large variances for the

estimated enrichment parameter α1. To illustrate this point, we consider that both γ and d are

observed; it is then trivial to estimate â1 using a 2 × 2 contingency table. Because each binary

vector contains only very few non-zero entries, the resulting contingency table is extremely

imbalanced. Consequently, the variance of â1 (approximately equal to the inverse of the small-

est cell count) can be large, and the point estimate can be unstable. To stabilize the estimate

of the enrichment parameter, we modify the original EM algorithm and apply an l2 penalty

with a shrinkage parameter λ in the M-step to shrink the estimate toward 0. This strategy is

informed by the statistical principle of “variance-bias trade-off”. Alternatively, this can be

viewed as assigning a N(0, 1/λ) prior to α1. In practice, we select λ in a data-driven manner by

assessing the degree of imbalance of the unobserved contingency table (section S.2 of S1 Text),

which assigns stronger penalties for larger degrees of imbalance.

Fine-mapping incorporating molecular QTL annotations

Given the point estimate of the enrichment parameter, we adopt an empirical Bayes proce-

dure to infer the true association status, γ, for all SNPs in GWAS. Specifically, we compute

Pr ðγ j y;G;Y qtl;Gqtl; α̂Þ as an approximation of the desired quantity Pr(γ j y, G, Y qtl, Gqtl)

[21]. In addition, we apply the same divide-and-conquer strategy described in [14] by

decomposing the genome into K non-overlapping LD blocks [15] and performing indepen-

dent Bayesian fine-mapping analysis within each LD block. Finally, we summarize the

evidence of association for each SNP by its posterior inclusion probability (PIP), i.e.,

Pr ðgi ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ.
To account for the uncertainty of the association status of molecular eQTLs, we construct a

two-component mixture prior for each SNP, i.e.,

Pr ðgi ¼ 1 j Y qtl;Gqtl; α̂Þ ¼
eâ0

1þ eâ0
� ð1 � diÞ þ

eâ0þâ1

1þ eâ0þâ1
� di; ð7Þ

where δi≔ Pr(di = 1 j Y qtl, Gqtl) denotes the PIP of SNP i being a causal molecular QTN.

Because the vast majority of the LD blocks harbor no noteworthy association signals for

any given complex trait, we follow the common practice in the GWAS analysis and adopt a

pre-screening procedure to identify LD regions that are potentially interesting for fine-map-

ping analysis. Specifically, we use a rigorous Bayesian false discovery rate (FDR) control proce-

dure [22] to screen and select LD blocks for the subsequent fine-mapping analysis. This

Probabilistic analysis of enrichment and colocalization
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procedure is typically less conservative (and hence more powerful) than the commonly applied

empirical procedures based on the combination of single-SNP testing and the Bonferroni cor-

rection. For each identified LD block, we then proceed to perform fine-mapping analysis using

the DAP algorithm.

We find that the DAP-1 algorithm is practically adequate for fine-mapping most LD blocks

in GWAS data, as we observe that the vast majority of the selected LD blocks harbor no more

than a single association signal. Even if multiple GWAS signals co-exist in a single LD block,

the DAP-1 algorithm can still be applied when aided by the conditional analysis approach pro-

posed by [23]. Alternatively, the adaptive DAP algorithm, which enables fully automated

multi-SNP analysis, can be conveniently applied in this context, even with summary-level sta-

tistics (section S.5 of S1 Text). However, there is an increased computational cost. Our simula-

tion study shows that the adaptive DAP algorithm slightly outperforms the DAP-1 algorithm,

which confirms the benefit of multi-SNP analysis. Nevertheless, we conclude that the results

obtained from the two variants of the DAP algorithm are quite comparable in our simulation

studies using realistically generated GWAS data. By default, in this paper, we apply the DAP-1

algorithm for the fine-mapping procedure, and we only re-examine the noticeable loci (e.g.,

those identified in the subsequent colocalization analysis) using the adaptive DAP algorithm.

Colocalization analysis of GWAS and molecular QTL data

Given the PIP from the fine-mapping analysis, the SNP-level colocalization probability (SCP)

for SNP i can be obtained as

Pr ðgi ¼ 1; di ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ

¼ Pr ðgi ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ 1þ
1 � di

di
�

1þ eâ0þâ1

eâ1 þ eâ0þâ1

� ��
ð8Þ

by solving a simple linear system (section S.3 of S1 Text).

Based on the discussion in the previous sections and following Gaun and Stephens [24] and

Wen et al [16], we propose computing a regional colocalization probability, or RCP, by sum-

ming up the SNP-level colocalization probabilities (SCPs) of correlated SNPs within an LD

block that harbors a single GWAS association signal. RCP is naturally interpreted as the proba-

bility of a genomic region harboring a colocalized signal. We recommend reporting both

RCPs and SCPs in colocalization analysis. In practice, we only compute RCPs for the same LD

blocks that are identified by the pre-screening step in the fine-mapping analysis. The rationale

is simple: we do not expect an LD block to harbor a colocalized signal if it is unlikely to harbor

a GWAS signal.

To demonstrate, we apply Eq (8) in our previously stated hypothetical example of two per-

fectly linked candidate SNPs. Under the assumption, it follows that at the SNP level, δ1 = δ2 =

0.5 and Pr ðg1 ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ ¼ Pr ðg2 ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ ¼ 0:50. From Eq (8),

it is evident that the SCPs of the two SNPs are also identical with the actual value depending

on â1: as â1 ! 0, both take a value of 0.25 (hence, RCP = 0.50), whereas when â1 !1, both

take a value of 0.50 (hence, RCP = 1.0). More generally, we show the functional relationship

between RCP and the α1 values in Fig 1, which illustrates the quantitative impact of the enrich-

ment estimation on the probabilistic assessment of colocalized signals.

Connection to existing probabilistic colocalization approaches. In this section, we

show that Eq (8) represents a generalization of existing probabilistic approaches for coloca-

lization analysis, namely, eCAVIAR and coloc. In particular, we argue that both of those

approaches bypass enrichment estimation by making explicit assumptions on the enrich-

ment parameters.
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If the molecular QTNs and causal GWAS hits are assumed to be independent a priori, i.e.,

α1 is restricted to 0, then the prior for each SNP in GWAS becomes irrelevant to the molecular

QTL data, and Eq (8) can be subsequently simplified to

Pr ðgi ¼ 1; di ¼ 1 j y;G;Y qtl;Gqtl; α̂Þ ¼ Pr ðgi ¼ 1 j y;G; â0Þ � Pr ðdi ¼ 1 j Y qtl;GqtlÞ; ð9Þ

which coincides with the colocalization posterior probability (CLPP) proposed in eCAVIAR.

In section S.4 of S1 Text, we provide the derivation of the coloc model as a special approxi-

mation from our generalized modeling framework given the additional simplifying assump-

tions. Noticeably, coloc assumes that at most a single GWAS hit and/or a single QTN are

located in the LD regions of interest. More importantly, it requires the user to specify the pri-

ors for p1 ≔ Pr(γi = 1, di = 0), p2 ≔ Pr(γi = 0, di = 1) and p12 ≔ Pr(γi = 1, di = 1). We show that

these quantities can be equivalently parametrized within our modeling framework. For exam-

ple,

a0 ¼ log
p1

1 � p1 � p2 � p12

� �

; a1 ¼ log
p12 ð1 � p1 � p2 � p12Þ

p1 p2

� �

: ð10Þ

Moreover, note that the set of priors required by coloc also implicitly induces the marginal fre-

quencies of causal GWAS hits (i.e., Pr(γi = 1)) and eQTNs (i.e., Pr(di = 1)). Many have reported

the sensitivity of the analysis results with respect to the subjective prior specification. We

Fig 1. Functional relationship between RCP and enrichment parameter α1 in a hypothetical example. We consider two perfectly linked SNPs: one

is causally associated with the molecular phenotype of interest, and one is causally associated with the complex trait of interest. Assuming that the two

SNPs are in complete linkage equilibrium with other SNPs, the plot shows the functional relationship of the RCP value with respect to the enrichment

parameter. Note that we should conclude that the two association signals are colocalized (RCP! 1) only if the enrichment level is sufficiently high. It is

also theoretically possible that the RCP� 0.5 if the molecular eQTLs are depleted in the GWAS hits, i.e., α1 < 0.

https://doi.org/10.1371/journal.pgen.1006646.g001
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examine the performance of coloc when the priors are misspecified using our simulated data

(section S.4 of S1 Text). In brief, we find that severe prior misspecifications can lead to inferior

performance for ranking potential colocalized signals and inflation of type I errors in the set-

ting of hypothesis testing. In comparison, our proposed approach eliminates the subjective

prior quantification and improves the overall robustness in colocalization analysis.

Bayesian hypothesis testing of colocalization. In colocalization analysis, it is occasionally

of interest to test the following hypothesis:

H0: Genomic region i does not contain a colocalized signal

vs.

H1: There is a colocalized association signal in region i

for each locus i. Here, we show that the above hypothesis testing problem can be conveniently

solved through the posterior inference within the proposed Bayesian framework.

Given a set of rejected hypotheses M, the Bayesian false discovery rate (FDR) can be intui-

tively estimated by

FDRðMÞ ¼
P

i2Mð1 � RCPiÞ

jMj
;

where |M| denotes the number of rejected hypotheses [22, 25, 26]. Therefore, at a pre-defined

FDR level α, the Bayesian FDR control procedure simply ranks all candidate loci according to

increasing values of (1 − RCPi) and rejects the null hypotheses for the largest set M, where
P

i2Mð1 � RCPiÞ

jMj
� a:

Results

Ethics statement

This study uses third party datasets and no additional ethics approval was needed.

Simulation study

First, we perform simulation studies to benchmark the performances of the proposed enrich-

ment and colocalization analysis approaches.

We design the simulation scheme to generate realistic single SNP association z-statistics

that are similar to the observed GWAS results. Specifically, we select real genotypes of 2.7 mil-

lion overlapping SNPs used by both Wood et al [27] and the GTEx project from the European

samples from the 1000 Genomes Project. For each SNP, we obtain its binary eQTL annotation

by drawing from the posterior distribution of GTEx whole blood cis-eQTLs the GTEx. This

particular posterior distribution is obtained by performing multi-SNP fine-mapping of the

GTEx whole blood data via the adaptive DAP algorithm [14]. In total, we roughly anno-

tate * 6,000 SNPs per simulation. We then simulate the association status of each SNP i (γi)
by drawing from a Bernoulli distribution whose success rate is determined by the logistic

model (2) with pre-determined α0 and α1 values. Subsequently, a quantitative trait is simulated

using a standard multiple linear regression model for which the residual error variance is set to

1, and the effect size of each causal SNP is drawn from a N(0, ϕ2) distribution. Finally, we com-

pute the single SNP association z-statistic for each SNP as the input for both the enrichment

and the colocalization analyses. Although the sample size in the 1000 Genomes Project
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European panel is limited, we are able to adjust the values of α0 (which determines the preva-

lence of the causal associations) and ϕ (which determines the signal-to-noise ratio of the

genetic effects) to roughly match the z-value distributions from the available large-scale

GWAS meta-analysis. In particular, we estimate α0 and ϕ by analyzing the height data reported

in Wood et al [27], and we set α0 = −8.4 and ϕ = 0.4. Consequently, the distributions of the

simulated z-statistics closely resemble the actual observed GWAS height data (S1 Fig). We vary

the value of α1 across simulations for different levels of enrichment.

Evaluation of enrichment analysis. We examine the performance of the proposed infer-

ence procedure in estimating the enrichment parameter α1. In particular, we vary the true α1

value in the range of 0.0 to 5.0 in the simulations. For each α1 value, we simulate 100 data sets

and estimate α1 for each simulated data set using the proposed multiple imputation approach.

To benchmark the performance of the proposed approach, we also estimate α1 using two

unrealistic approaches with added information. The first approach represents the best case sce-

nario in which the true association indicators of each SNP in GWAS and eQTL mapping, i.e.,

γi and di, are assumed to be observed. In this case, α1 is trivially estimated using a 2 × 2 contin-

gency table. The second approach assumes that the association indicator of GWAS, γi, is unob-

served but that the true eQTL annotation for each SNP, di, is known, which presents a type

of integrative analysis considered in our previous work [14]. In this scenario, we apply the

EM-DAP1 algorithm implemented in the software package TORUS [22] to estimate α1. Note

that both of these approaches require additional information that is practically unattainable.

Nevertheless, the results from these analyses highlight the intrinsic difficulty of the task and

the theoretical ceiling of any realistic computational approach.

We also include two additional ad hoc imputation strategies for enrichment estimation for

comparison. The first strategy applies “mean imputation”, i.e., for each SNP, we regard the

marginal PIP of each SNP (which is also the posterior mean of the corresponding di value) as

an observed continuous annotation. The second strategy, known as “best SNP imputation”,

annotates the best associated cis candidate SNP of each eGene (i.e., the gene identified to har-

bor at least one causal eQTL) as the causal eQTN.

We compute the root-mean-square error (RMSE) for all methods to evaluate the overall

accuracy of the corresponding point estimates, which is most relevant for the downstream

analysis. In addition, we plot the averaged point estimates and corresponding standard errors

from each simulated α1 value, which helps virtually dissect the relative variance and the bias of

the point estimates from each estimation method. The results from various approaches are

summarized in Table 1 and S2 Fig.

Importantly, we note that when the enrichment level is low, the accurate estimation of α1 is

difficult even in the best case scenario: the point estimates show large variance even when the

true values of γi and di are known. In comparison, we observe that the estimates obtained

Table 1. Evaluation of the accuracy of various enrichment estimation approaches. Using the simulated

data sets, we compute the root-mean-square errors (RMSEs) to measure the precision of the point estimates

obtained by different approaches. The methods denoted by * use added information that is unattainable in

practice. The methods denoted by † do not apply shrinkage to the enrichment estimate. The proposed multiple

imputation approach yields the best accuracy among approaches that are practically applicable.

Method RMSE

Best case*,† 0.374

True annotation* 0.812

Multiple imputation 1.041

True annotation (no shrinkage) *,† 1.153

Best SNP annotation 1.474

Mean imputation† 2.942

https://doi.org/10.1371/journal.pgen.1006646.t001
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using the proposed approach are significantly stabilized by applying the proposed adaptive

shrinkage. As α1 increases to relatively large values (> 3.0), the effects of shrinkage gradually

diminish for all approaches: in the case that the true QTL annotation is known, the estimates

become practically unbiased, although for the multiple imputation procedure, the resulting

estimates are still notably biased toward 0, largely due to the simplified imputation distribu-

tion. Nonetheless, we note that the degree of bias has minimal impact on the subsequent

colocalization analysis. The results clearly indicate that the multiple imputation procedure out-

performs the two alternative ad hoc imputation approaches. The difference in performance

between the proposed approach and the best SNP imputation is generally expected because

the latter ignores the uncertainty due to LD and the potential multiple independent eQTLs

within a gene. We observe that the mean imputation approach consistently (and occasionally

severely) overestimates α1 for large α1 values, which becomes a serious concern for the down-

stream colocalization analysis. (We provide some theoretical discussion on the potential con-

tributing factors to this phenomenon in section S.6 of S1 Text). Note that the use of mean

imputation in our scenario is different than the case of mean genotype imputation commonly

applied in GWAS. This is because in GWAS, there is generally a stringent threshold for filter-

ing out inaccurate imputation for downstream association analysis, and the resulting mean

imputations accurately resemble the true genotypes. Conversely, in our case, the PIPs are con-

siderably less accurate representations for the true eQTL association status, particularly for

QTNs (e.g., they are rarely close to 1 in general due to the widespread LD).

Furthermore, we examine the statistical performance of the proposed approach for testing

the null hypothesis

H0 : a1 ¼ 0

by inspecting the corresponding estimate of the 95% confidence interval from each simulated

data set. Our results indicate that the testing results based on the proposed multiple imputation

approach properly control type I error at the 5% level with the actual type I error rate = 0.01.

Although it achieves nearly perfect power as the true α1� 4, it only displays modest power

(53%) for α1 = 3 and little power for smaller α1 values. Furthermore, despite the point esti-

mates being downward biased, we observe that the proposed multiple imputation procedure

provides excellent 95% interval estimates in the range of the α1 values examined experimen-

tally: the coverage probability reaches 94.8%.

Finally, the benchmarked computational time indicates that the proposed multiple imputation

approach is highly efficient. We take advantage of the fact that the multiple imputation scheme is

parallelizable and analyze each simulated data set on 8 simultaneous threads. Consequently, each

enrichment analysis only takes approximately 4 to 5 minutes of real computing time.

Evaluation of colocalization analysis. To evaluate the performance of the colocalization

analysis, we focus on the simulation setting of α1 = 4, which is close to our enrichment estimate

of blood eQTLs in HDL GWAS hits from the real data. For each simulated data set, we per-

form the proposed colocalization analysis using two different fine-mapping strategies. The

first strategy utilizes the individual-level genotype data from GWAS and obtains the GWAS

PIPs by multi-SNP fine-mapping using the adaptive DAP algorithm. The second strategy

assumes at most one causal GWAS hit within each LD block and computes the PIPs using the

DAP-1 algorithm based only on the single-SNP association z-statistics. To evaluate the impact

of the (imperfect) enrichment parameter estimate, we separately use the true and estimated

(α0, α1) values (by multiple imputations) to construct the SNP-level prior Eq (7) for fine-map-

ping when applying each strategy. For comparison, we perform the colocalization analysis of

the simulated data assuming independence of molecular eQTLs and GWAS hits (i.e., set α1 = 0
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in prior model (2)), which is essentially the enrichment assumption made by eCAVIAR. In all

cases, we compute the RCPs for all the pre-defined LD blocks in each simulated dataset. Addi-

tionally, we run the software package coloc on the simulated data. Because its setup is very dif-

ferent from the aforementioned approaches, particularly in its use of eQTL data, without

diluting our main messages on the importance of enrichment estimation, we summarize its

performance in section S.4 of S1 Text.

First, we construct receiver operating characteristic (ROC) curves to simultaneously evalu-

ate the sensitivity and specificity of various colocalization analysis approaches. Specifically, we

classify an LD block as harboring a colocalized signal if the corresponding RCP is greater than

a pre-defined threshold. We vary the threshold from 1 to 0 to construct the ROC curve for

each analysis scheme. The results are presented in Fig 2, which highlights the performance of

each examined approach as the corresponding false positive rates (FPR)�0.20. In summary,

we find that all approaches yield reasonably decent results in identifying true colocalized sig-

nals while controlling for false positives (i.e., they are all well above the 45 degree diagonal

line). In particular, we note that i) the ability to identify multiple independent GWAS hits

within an LD block (i.e., in the adaptive DAP algorithm) slightly improves the performance of

colocalization analysis, but the DAP-1 algorithm performs adequately; ii) the downward bias

in the enrichment parameter estimates from the proposed multiple imputation approach has

very little impact on the colocalization analysis at any given FPR threshold; and iii) neglecting

the enrichment analysis only yields slightly worse colocalization results.

Note that the ROC curves rely only on the ranking of the corresponding RCPs and are

invariant under the rank-preserving transformations. To investigate the calibration of the

RCPs reported by various analysis schemes, we further examine the Bayesian FDR control of

colocalization analysis based on RCPs. Fig 3 shows the comparison of the estimated FDRs and

the realized FDRs for all analysis schemes in the simulations. All approaches (conservatively)

control the desired FDR levels; however, the scheme assuming α1 = 0 is extremely conservative,

where the realized FDRs are nearly 0 and the power is significantly lower than all the other

competing schemes. We therefore conclude that the accurate enrichment estimation has a crit-

ical impact on the quantification of the colocalized signals. In general, we find that the power

to detect colocalized association signals is low across different schemes, i.e., < 40% at the 20%

FDR level (Fig 3). Because our simulated data closely mimic the reality of the currently avail-

able GWAS and eQTL data, we attribute the lack of power reflected by these simulations to the

limitations of the currently available genetic association data. (This point will be further dem-

onstrated by the power calculation in the real data applications.)

Our benchmark also indicates that the proposed procedure is highly efficient. The com-

bined computational time for the fine-mapping and colocalization procedure is typically 10 to

20 minutes, depending on the abundance of the GWAS signals.

Taken together, we conclude that the estimation of the enrichment parameters embedded

in the prior model (2) impacts both the ranking and calibration of locus-level posterior proba-

bilities for colocalization. According to the ROC curves, the impact on the ranking can be rela-

tively insignificant with respect to non-trivial deviation from the truth for the enrichment

parameter. However, the calibration of the colocalization probabilities is considerably more

sensitive to such deviation, as evidenced by the power and the realized FDRs in the hypothesis

testing of colocalization.

Integrative analysis of blood eQTL and lipid GWAS data

To demonstrate the proposed computational approach in a practical setting, we perform an

integrative analysis of the eQTL data from the GTEx project [1] and the blood lipid data
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originally reported in Teslovich et al [7]. The blood lipid data consist of meta-analysis results

of four quantitative traits, namely, low-density lipoprotein (LDL) cholesterol, high-density

lipoprotein (HDL) cholesterol, triglycerides (TG) and total cholesterol (TC), with an aggre-

gated sample size of * 100,000. We obtain the version of single-SNP association z-statistics

for the four traits re-analyzed by Pickrell [28], where additional z-statistics for untyped SNPs

Fig 2. ROC curves for various colocalization analysis schemes in simulation studies. ROC curves evaluate the ranking of the LD blocks that

potentially harbor colocalized association signals. The dotted green line represents the 45 degree diagonal line. All schemes perform decently in the

simulations. Notably, the inaccuracy of the estimated enrichment parameters from the proposed multiple imputation procedure does not appear to have a

significant impact on the overall performance of the colocalization analysis. However, the difference becomes highly visible for the case where α1 is set to

0. In addition, multi-SNP analysis in GWAS also improves the performance of the colocalization analysis.

https://doi.org/10.1371/journal.pgen.1006646.g002
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are imputed according to the 1000 Genomes Project phase I panel. In total, the complete data

set contains z-scores of * 6.1 million SNPs per trait. For most of our analysis, we focus on the

cis-eQTL data from the whole blood in the recent release (version 6) of the GTEx project. The

selection of the whole blood is informed by the consensus of multiple independent enrichment

analysis approaches (GTEx consortium, manuscript in prep.) to determine the relevant tissues

for the blood lipid traits. In addition to biological relevance, we suspect that one of the driving

factors is that the whole blood is one of the GTEx tissues with the largest sample size (338) in

the current release of the data; it therefore has better power to detect cis-eQTLs with small to

modest effects. The SNPs that are not directly genotyped are also imputed according to the

same 1000 Genomes panel by the GTEx consortium. We perform the Bayesian multi-SNP

fine-mapping analysis for the GTEx whole blood data using the adaptive DAP algorithm and

generate the joint posterior distribution Pr(d j Y qtl, Gqtl) while controlling for the SNP distance

to the transcription start site (TSS) of the corresponding target gene. As shown in our previous

results [14, 22], this approach significantly improves the eQTL discovery.

Expected colocalized signals in lipid GWAS. Before conducting the proposed integrative

analysis, we first compute the expected fraction of the GWAS hits of blood lipid traits that

overlap blood cis-eQTLs using the approach described in the Method section. This calculation

only requires an approximate estimate of the genome-wide prevalence of causal eQTLs. Here,

we show two different approaches for obtaining this estimate.

The first approach utilizes the pre-computed posterior distribution of cis-eQTLs and calcu-

lates the expected fraction of eQTNs from the posterior distribution by

pd ¼
EðNumber of eQTNsÞ

p
;

where the expected number of eQTNs can be conveniently obtained by summing up PIPs for

all gene-SNP pairs. For the GTEx whole blood data, we calculate the posterior expected num-

ber of eQTNs as 8945.9, and hence, pd� 1.47 × 10−3.

Alternatively, we use a conservative ad hoc approach to estimate pd without a Bayesian

analysis of the cis-eQTLs. In particular, we note that the GTEx portal reports 6,784 eGenes

Fig 3. Evaluation of type I error rate and power for various colocalization analysis schemes in

simulation studies. This exercise helps to evaluate the calibration of the reported RCPs from various analysis

schemes. Better calibrated RCPs result in less conservative control of the type I errors and improved power.

Note that the underestimation of â1 results in noticeable, but not substantial, power loss. The results indicate

that the RCPs are better calibrated for more accurate enrichment estimates and/or the use of multi-SNP

analysis in GWAS.

https://doi.org/10.1371/journal.pgen.1006646.g003
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(i.e., genes harboring cis-eQTLs) discovered in the whole blood samples at the 5% FDR level.

Assuming that each eGene contains exactly one causal variant, we then estimate pd� 6,784/

6.1 × 106 = 1.11 × 10−3. Compared to the previous approach, which is more statistically rigor-

ous, this estimate ignores potential multiple independent eQTNs within an eGene and the

uncertainty embedded in the process of eGene discovery (e.g., a non-eGene could be mis-clas-

sified and indeed harbor eQTNs). Nevertheless, the two estimates have the same order of mag-

nitude: we observe a causal cis-eQTL in approximately 1 out of 1,000 SNPs.

We then calculate the expected fraction of GWAS hits overlapping causal eQTLs as a func-

tion of enrichment parameter α1 using the formula (5) for both estimates of pd. The result

(shown in Fig 4) indicates that the expected fraction of overlapped signals is largely determined

by the level of enrichment. With the current level of eQTL discovery (reflected by pd), we

should not expect a large fraction of the GWAS hits to overlap with the annotated cis-eQTLs

unless the enrichment level is reasonably high. For example, even at α1 * 5, which corre-

sponds to a fold-change at *150, the expected fraction of colocalized GWAS signals is still less

than 20%—in the case of the genetic variants associated with HDL, the expected number of

colocalized signals is *10.

Enrichment analysis. Next, we apply the proposed multiple imputation procedure to esti-

mate the enrichment level of whole blood cis-eQTLs in the GWAS hits of the four lipid traits.

As in the analysis of the simulated data sets, we apply the multiple imputation approach for

each lipid trait by imputing 25 independent binary eQTL annotations from the joint posterior

distribution of the blood cis-eQTL data.

Fig 4. Expected fraction of colocalized GWAS hits in GTEx whole blood cis-eQTLs. The red and green curves are computed using the pd estimates

from a model-based and an ad hoc approach, respectively. Qualitatively, the two curves are similar. The expected fraction of GWAS hits overlapping cis-

eQTLs is largely determined by the enrichment parameter α1: if α1! 0, we should expect few colocalization signals, whereas if α1 is large, a large

proportion of GWAS hits are expected to overlap with eQTLs.

https://doi.org/10.1371/journal.pgen.1006646.g004
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We show the enrichment estimates of blood cis-eQTLs in lipid traits and their correspond-

ing 95% confidence intervals in Fig 5. We find that the blood eQTLs are most enriched in

the GWAS hits of HDL with point estimate â1 ¼ 4:98, followed by TC (â1 ¼ 3:73), LDL

(â1 ¼ 2:95) and finally TG (â1 ¼ 0:38). The behavior of the proposed enrichment analysis

method is very consistent with what we observed in the simulation studies, i.e., imperfect

power for enrichment estimates� 4 as we observe that the corresponding 95% confidence

intervals cross 0. We further inspect the individual enrichment estimate from each imputed

eQTL annotation for each trait (S3 Fig). We find that the enrichment estimates for HDL and

TG are quite consistent across all imputed annotation data sets, whereas the estimates for LDL

and TC show relatively large variations across imputed annotations. Nevertheless, we observe

that all point estimates across all imputed annotations for all 4 traits are positive.

We then plug in the enrichment estimates and calculate the expected fraction of colocalized

GWAS hits for each trait from the previously constructed power curves. In summary, we

expect that 18%, 3%, 6% and 0.2% of GWAS hits in HDL, LDL, TC and TG overlap with causal

cis-eQTLs in whole blood. Although the true fractions of overlaps may have large variations

due to the uncertainty embedded in the enrichment estimates (as indicated by their large CIs),

these estimated expected fractions should reflect the relative difficulty in finding colocalized

signals in each lipid trait.

Colocalization analysis. Given the enrichment estimates, we proceed to perform the colo-

calization analysis. Specifically, we apply the Bayesian FDR control procedure [22] imple-

mented in TORUS to identify the LD blocks (defined in Berisa and Pickrell [15]) that harbor at

least a single association signal at the 5% FDR level. Ultimately, we identify 72, 64, 78 and 52

genomic loci for HDL, LDL, TC and TG, respectively. Because Teslovich et al [7] controlled for

the family-wise error rate (FWER) and used a stringent SNP-level genome-wide significance

Fig 5. The enrichment estimate of GTEx whole blood and liver cis-eQTLs in the GWAS hits of four

blood lipid traits. For each trait, the point estimate and the corresponding 95% confidence interval are

plotted.

https://doi.org/10.1371/journal.pgen.1006646.g005
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threshold (i.e., 5 × 10−8), their reported loci consist of a subset of ours. We further conduct the

multi-SNP fine-mapping analysis on each identified GWAS locus, but we find no strong evi-

dence that any of the loci harbors more than one association signal.

Another practical issue arising in the eQTL analysis is that a single SNP can locate in the cis
regions of multiple genes. Our solution to this problem is to compute an RCP for each LD

block with respect to each gene that has at least one cis candidate SNP residing in the block. In

particular, we construct the SNP prior Eq (7) that is specific to each gene. Consequently, the

resulting RCP of the target LD block is also gene specific, which provides a natural way to link

the SNP-level GWAS association signals to specific genes. In total, 4,824 genomic region-gene

pairs are analyzed across 4 traits.

For comparison, we also perform the colocalization analysis using the existing approaches

eCAVIAR and coloc, and we show the comparisons of the RCPs computed using the different

approaches in S4 and S5 Figs. Consistent with what we observe in the simulation studies, eCA-
VIAR yields a highly concordant ranking of potential colocalized signals with enloc. However,

the numerical values of the RCPs from eCAVIAR are generally smaller because of its assump-

tion α1 = 0. The exception is in the case of TG, where the estimated â1ð¼ 0:38Þ is indeed close

to 0. The coloc analysis is conducted using its default subjective priors for all 4 lipid traits, i.e.,

p1 = 10−4, p2 = 10−4 and p12 = 10−6. Overall, there is a larger degree of discrepancy in ranking

colocalized signals compared to eCAVIAR and enloc. One of the reasons is that the default pri-

ors imply α1 = 4.6 for all 4 traits, which appear to be inappropriate for LDL, TC and TG. In

addition, these priors also indicate a much higher marginal frequency of causal GWAS hits

and a much lower marginal frequency of eQTNs compared to our estimations from the data.

Although there is generally good concordance of probability quantification for very strong

colocalization signals, we find that the severely misspecified priors make the colocalization

analysis results less reliable.

In summary, our analysis identifies 21 unique genomic region-gene pairs with an

RCP� 0.50. We summarize the results in Table 2. In the context of hypothesis testing, we

reject 4 (RCP cutoff of 0.902), 7 (RCP cutoff of 0.832) and 16 (RCP cutoff of 0.639) top-ranked

RCP regions at the Bayesian FDR levels of 5%, 10% and 20%, respectively. Within an LD

block, we regard an SNP as a contributing colocalized signal if its SCP is� 0.001.

For a small proportion of the identified loci, we find that the colocalized signals can be

effectively narrowed down to only a few SNPs. For example, SNP rs103294, a cis-eQTL for

gene LILRA3, has an SCP value of 0.979, showing a strong SNP-level colocalization signal with

the GWAS hit of HDL. (Interestingly, our multi-SNP analysis identifies two independent cis-
eQTLs for LILRA3, and the colocalization analysis confidently asserts only one of the eQTLs

overlapping with the GWAS hit.) However, the majority of the loci still carry many candidate

SNPs due to common LD patterns present in the genetic data of both complex traits and

molecular phenotypes. Fig 6 illustrates a colocalized association signal for HDL and the expres-

sion of UBASH3B in a 52 kb genomic region on chromosome 11. Our analysis identifies 54

SNPs with a joint RCP = 0.645; however, the strongest individual SCP is merely 0.036. Addi-

tionally, the SNP-level PIPs for GWAS and cis-eQTL associations also exhibit a similar pattern:

although there is not a single SNP taking high PIP values, the cumulative PIPs of the region are

close to 1 for both GWAS and cis-eQTLs. We further compute the pair-wise LD of the 54

member SNPs based on the genotype data from the GTEx samples and confirm that all SNPs

are indeed highly correlated.

For the significant loci reported by Teslovich et al [7] (labeled by ? in Table 2), we compare

the genes suggested by our analysis and the reported genes therein. For 8 out of 14 cases, the

implicated genes are consistent (labeled by † in Table 2). Among the other 6 inconsistent

cases, 3 involve the genomic region anchored by SNP rs629301, for which our analysis links to
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Table 2. Identified genomic regions that potentially harbor colocalized association signals of whole blood cis-eQTLs and GWAS hits of blood lipid

traits. A region is listed if its RCP is� 0.5. We denote the region by ? if it is also identified in Teslovich et al [7]. The symbol † indicates that the same gene is

linked to the same GWAS hit region in Teslovich et al [7].

Trait Region Gene RCP # of SNPs Lead SNP Max SCP

HDL chr1:109817192-109818530? PSRC1 0.962 5 rs629301 0.439

HDL chr2:85537312-85555478 AC093162.5 0.845 22 rs10460586 0.340

TCF7L1 0.828 27 rs10460586 0.208

ELMOD3 0.800 22 rs3184780 0.099

HDL chr3:49971514-50146094 RBM6 0.712 22 rs7613875 0.380

HDL chr6:34548206-34800435? C6orf106† 0.814 35 rs6907508 0.623

HDL chr9:15303583-15304782? TTC39B† 0.627 2 rs686030 0.580

HDL chr11:61557803-61623140? TMEM258 0.832 15 rs102275 0.584

HDL chr11:122500846-122553139? UBASH3B† 0.639 54 rs60494825 0.036

HDL chr12:109893156-110042348? MVK† 0.603 45 rs7964021 0.051

HDL chr19:54796630-54799083? LILRA3† 0.990 3 rs103294 0.979

HDL chr22:21917450-21980894? UBE2L3† 0.554 39 rs181360 0.052

LDL chr1:109818306-109818530? PSRC1 0.901 2 rs629301 0.879

LDL chr9:136141870-136155000? ABO† 0.582 5 rs550057 0.430

LDL chr17:8107979-8161149 C17orf44 0.708 6 rs8078338 0.637

TC chr1:109817590-109818530? PSRC1 0.942 4 rs629301 0.858

TC chr9:136141870-136155000? ABO† 0.509 4 rs635634 0.327

TC chr17:8107979-8161149 C17orf44 0.745 5 rs8078338 0.671

TC chr19:49206108-49219459? NTN5 0.662 7 rs492602 0.177

TC chr20:34124336-34160840? RPL36P4 0.745 15 rs2277862 0.494

https://doi.org/10.1371/journal.pgen.1006646.t002

Fig 6. An example of an identified colocalization signal in a high LD region. The region, containing 54 candidate cis-

eQTL SNPs for gene UBASH3B, harbors a GWAS hit for HDL. Panels A, B and C plot the SCPs, eQTL PIPs and GWAS

PIPs for each individual SNP, respectively. No single SNP shows a particular high posterior probability in any of the three

plots, but the cumulative regional probabilities from all the SNPs are all high. Panel D plots the pairwise LD pattern,

measured by r2, for the 54 SNPs and indicates that all SNPs are tightly linked.

https://doi.org/10.1371/journal.pgen.1006646.g006
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PSRC1 and Teslovich et al [7] links to SORT1 by the more comprehensive molecular evidence

presented in Musunuru et al [29]. Our examination of the current GTEx analysis results (ver-

sion 6) reveals that rs629301 shows little to no evidence of association with SORT1 but very

strong evidence of association with PSRC1 in whole blood; however, in liver, rs629301 shows

strong associations with both genes with evidence for SORT1 being stronger (source: GTEx

portal eQTL browser). In addition, the same SNP also shows a strong association with CELSR2
in liver. We repeat the colocalization analysis using the GTEx liver eQTL data. Not surpris-

ingly, we find that the same genomic region presents the strongest colocalization signals with

all 3 genes among all liver-expressed genes, with RCPs = 0.691, 0.684 and 0.675 for SORT1,

PSRC1 and CELSR2, respectively. The decrease of the RCP values is attributed to the lower

eQTL enrichment estimate in liver (â1 ¼ 2:567 with 95% CI [−1.849, 6.984]), which exhibits a

considerably larger degree of uncertainty than the whole blood estimate and is likely caused by

the insufficient sample size in the current GTEx liver data (sample size of 97 compared to 338

for whole blood). Additionally, we find that the other 3 inconsistent cases can be similarly

explained: the blood eQTLs for genes RPL36P4, NTN5 and TMEM258 all display different

association patterns in different types of tissues.

Finally, we note that a single GWAS association can be colocalized to eQTL signals of mul-

tiple genes. For example, our analysis indicates that the likely causal HDL variant in the geno-

mic region chr2:85537312-85555478 is possibly associated with the expression levels of 3

different genes (AC093162.5, TCF7L1 and ELMOD3). The case of SNP rs629301 in liver dis-

cussed previously is also an example of this type. Although this phenomenon is relatively well

known in studies of molecular phenotypes, it certainly makes elucidating the molecular mech-

anism of causal GWAS variants more challenging.

Discussion

In this paper, we have proposed a statistically rigorous and computationally efficient analytic

framework for performing integrative analyses of GWAS and molecular QTL data and provid-

ing quantitative assessments of enrichment and colocalization of their association signals. One

of the intrinsic challenges in genetic association analysis is that the resolution of identified

association signals is always limited by LD. Consequently, it is generally impossible to pinpoint

the causal variants based solely on genetic association analysis, and it imposes a formidable

challenge for assessing enrichment and colocalization in the integrative analysis. To address

this problem, we formulate a missing data problem and adopt a well-established statistical

strategy, i.e., multiple imputation, to fully account for the uncertainty in identifying causal

genetic variants for complex traits and molecular phenotypes due to LD. These efforts result in

not only more accurate point estimates but also appropriate characterizations of uncertainties

of our inference results in the enrichment and colocalization analyses. Particularly, in the colo-

calization analysis, our theoretical demonstration and the real data example both clearly illus-

trate that individual SCPs can be unimpressive in high LD regions even if we are confident

that the region does harbor a colocalized signal. In light of these findings, we propose and rec-

ommend reporting RCPs rather than placing emphasis on colocalization probabilities of indi-

vidual SNPs.

Compared to the existing methods for colocalization analysis, the most important distinc-

tion of our proposed approach is the natural integration of the enrichment estimation.

Throughout the paper, we have illustrated the importance of obtaining accurate enrichment

estimates on the downstream quantitative evaluations of colocalization. Our main conclusion

is that the accurate enrichment estimates based on currently available data may not have an

overall large effect on altering the ranking of potential colocalization signals; however, it is
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critically important for the calibration of the corresponding colocalization probabilities and

has a profound impact on the outcome of formal statistical testing procedures. Existing proba-

bilistic model-based approaches typically make explicit assumptions on the enrichment levels

of molecular QTLs in the causal GWAS hits (although they may not be presented in the form

of enrichment parameters), as we have shown for the cases of coloc and eCAVIAR. We further

hypothesize that all approaches, including empirical methodologies, make implicit assump-

tions on the enrichment parameters, which can be understood by the hypothetical example of

two perfectly linked SNPs discussed in the Method section. For example, if a method deter-

mines that the association signals are colocalized in the hypothetical example (without enrich-

ment estimation), it seemingly assumes that the enrichment level is very high (recall that most

molecular QTLs are sparse, i.e., pd� 1, and the RCP! 1 if and only if α1!1), which is a

strong assumption. In summary, we have demonstrated that the enrichment parameter plays a

critical role in the colocalization analysis, and we believe that the best strategy to deal with this

parameter is to learn it from the observed data, as we have demonstrated throughout.

Importantly, our simulation and real data analyses apparently illustrate the limitations of

currently available association data: we have shown that the confidence intervals of enrichment

estimates are typically large and the expected fractions of colocalized GWAS signals are only

modest, which are consistent with our observations from practice in the field. In particular, we

note that most current molecular QTL (e.g., eQTL) studies are conducted with only modest

sample sizes due to cost considerations. Although many of these studies successfully identified

an abundance of trait-associated genomic loci with large effects, the power required to uncover

molecular QTLs with small to modest effects is lacking. Many molecular QTL studies have

started scaling up their sample sizes, and novel analytic approaches, e.g., joint eQTL and alle-

lic-specific expression (ASE) analysis [30], have shown great potential in boosting the power

of eQTL discovery. Consequently, we expect an elevated estimate of pd in the near future.

Accordingly, based on Eq (5), we anticipate that a higher fraction of GWAS hits overlapping

molecular QTLs can be revealed. Similarly, improving the power of GWAS should also help

improve discoveries of colocalized signals, which is evident from Eq (6).

Our proposed statistical model and inference procedure are completely general for analyz-

ing two sources of genetic association data. Note that it is statistically equivalent to treating

GWAS data as annotations for eQTL mapping. Our choice of presenting eQTL as an annota-

tion is simply motivated by better biological interpretation of the model and our enrichment

analysis. It can be shown that when individual-level data are available for both eQTL mapping

and GWAS analysis, the choice of annotation should not alter the inference results under the

proposed model. More generally, the proposed statistical framework is applicable for analyzing

any pair of phenotypes to colocalize the association signals, as in applications demonstrated by

Pickrell et al [31].

Note that caution should be exercised when attempting to interpret the biological relevance

of the identified colocalization signals. In colocalizing an eQTL and a GWAS hit, a seemingly

obvious implication is the relevance of the target gene of the eQTL in the disease process.

However, as we demonstrated in the analysis of the blood lipid data, there are cases in which

other important biological factors should be considered: for example, the relevance of the tis-

sue where the eQTLs are derived from. Although it is generally possible to statistically evaluate

the biological relevance of eQTLs from different tissues for a specific complex trait through

enrichment analysis, the currently available GTEx data are not satisfactory for this purpose

because of the significant variations in sample size across tissues. (We anticipate that this issue

will likely be resolved by the end of the GTEx project, and we should re-visit the problem

then.) A more elegant solution is to utilize eQTL annotations generated from joint multi-tissue

eQTL mapping approaches [32, 33], which enables simultaneous colocalization analysis across
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multiple tissues. Although conceptually straightforward, the difficulty in implementing a com-

putationally efficient procedure incorporating multi-tissue eQTL data should not be underesti-

mated. We will address this challenge in our future work.

In Testlovich et al [7], the authors went to great lengths to establish the biological, clinical

and population relevance of genomic loci uncovered in the GWAS, in which integrative

genetic association analysis is only a part of the overall process. Despite its own importance,

we should acknowledge that integrative analysis of genetic association data is merely a starting

point for uncovering the molecular pathway from genetic variants to complex traits.

Supporting information

S1 Text. Supplementary methods and results.

(PDF)

S1 Fig. Comparison of the simulated summary Z-statistics and the observed data from the

height GWAS [27]. The overall distributional patterns of z-statistics are quite similar. The

boxplot indicates that the extreme values from the two distributions are very much compara-

ble; the density plot suggests that the simulated z-statistics are more concentrated around 0

and are hence slightly conservative.

(EPS)

S2 Fig. Enrichment parameter estimates in simulation studies. The proposed multiple

imputation approach is compared to three methods utilizing added information that is unat-

tainable in practice and two ad hoc imputation methods. The “best case” uses the true associa-

tion status for both complex traits and molecular QTLs, whereas the “true annotation” utilizes

the true association status from molecular QTLs only. The “best snp imputation” annotates

the SNP showing the strongest association evidence in an eGene as its sole eQTN. The “mean

imputation” annotates each SNP by its PIP. This figure highlights the difficulty in estimating

â1 even when additional information is available. It shows the necessity of applying shrinkage

to stabilize the point estimates in our simulation setting. It is also evident that the multiple

imputation approach outperforms the two ad hoc imputation alternatives.

(EPS)

S3 Fig. Individual estimates and their corresponding 95% confidence intervals from each

imputed eQTL annotation data set in the enrichment analysis of the four blood lipid traits.

(EPS)

S4 Fig. Comparison of colocalization results by enloc and eCAVIAR in the analysis of

blood lipid traits and GTEx whole blood eQTL data. For each trait, we compute the RCPs

for each identified locus-gene pair using eCAVIAR and enloc. The comparison indicates that

the two approaches rank candidate loci with high concordance. However, the RCPs computed

by eCAVIAR are much more conservative because of the assumption α1 = 0.

(EPS)

S5 Fig. Comparison of colocalization results by enloc and coloc in the analysis of blood

lipid traits and GTEx whole blood eQTL data. For each trait, we compute the RCPs for each

identified locus-gene pair using coloc and enloc. Although the two approaches generally agree

on the very strong signals, there is considerable discrepancy in both ranking and quantification

of the signals.

(EPS)

Probabilistic analysis of enrichment and colocalization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 22 / 25

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006646.s006
https://doi.org/10.1371/journal.pgen.1006646


Acknowledgments

We thank the GTEx Consortium and the Global Lipids Genetics Consortium for collecting

and timely sharing valuable scientific data. We thank three anonymous reviewers for their

insightful comments.

Author Contributions

Conceptualization: XW.

Formal analysis: XW.

Funding acquisition: XW.

Investigation: XW.

Methodology: XW.

Project administration: XW.

Resources: XW.

Supervision: XW.

Validation: XW.

Visualization: XW.

Writing – original draft: XW.

Writing – review & editing: XW RPR FL.

References
1. Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET, et al. The Genotype-Tissue

Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015; 348

(6235):648–660. https://doi.org/10.1126/science.1262110 PMID: 25954001

2. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al. Identification of genetic

variants that affect histone modifications in human cells. Science. 2013; 342(6159):747–749. https://

doi.org/10.1126/science.1242429 PMID: 24136359

3. Banovich NE, Lan X, McVicker G, Van de Geijn B, Degner JF, Blischak JD, et al. Methylation QTLs are

associated with coordinated changes in transcription factor binding, histone modifications, and gene

expression levels. PLOS Genetics. 2014; 10(9):e1004663. https://doi.org/10.1371/journal.pgen.

1004663 PMID: 25233095

4. Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al. DNase [thinsp] I sensitiv-

ity QTLs are a major determinant of human expression variation. Nature. 2012; 482(7385):390–394.

https://doi.org/10.1038/nature10808 PMID: 22307276

5. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-

based association method for mapping traits using reference transcriptome data. Nature genetics.

2015; 47(9):1091–1098. https://doi.org/10.1038/ng.3367 PMID: 26258848

6. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, et al. Candidate causal regu-

latory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet.

2010; 6(4):e1000895. https://doi.org/10.1371/journal.pgen.1000895 PMID: 20369022

7. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical

and population relevance of 95 loci for blood lipids. Nature. 2010; 466(7307):707–713. https://doi.org/

10.1038/nature09270 PMID: 20686565

8. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for

colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet.

2014; 10(5):e1004383. https://doi.org/10.1371/journal.pgen.1004383 PMID: 24830394

Probabilistic analysis of enrichment and colocalization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 23 / 25

https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.1126/science.1242429
https://doi.org/10.1126/science.1242429
http://www.ncbi.nlm.nih.gov/pubmed/24136359
https://doi.org/10.1371/journal.pgen.1004663
https://doi.org/10.1371/journal.pgen.1004663
http://www.ncbi.nlm.nih.gov/pubmed/25233095
https://doi.org/10.1038/nature10808
http://www.ncbi.nlm.nih.gov/pubmed/22307276
https://doi.org/10.1038/ng.3367
http://www.ncbi.nlm.nih.gov/pubmed/26258848
https://doi.org/10.1371/journal.pgen.1000895
http://www.ncbi.nlm.nih.gov/pubmed/20369022
https://doi.org/10.1038/nature09270
https://doi.org/10.1038/nature09270
http://www.ncbi.nlm.nih.gov/pubmed/20686565
https://doi.org/10.1371/journal.pgen.1004383
http://www.ncbi.nlm.nih.gov/pubmed/24830394
https://doi.org/10.1371/journal.pgen.1006646


9. He X, Fuller CK, Song Y, Meng Q, Zhang B, Yang X, et al. Sherlock: detecting gene-disease associa-

tions by matching patterns of expression QTL and GWAS. The American Journal of Human Genetics.

2013; 92(5):667–680. https://doi.org/10.1016/j.ajhg.2013.03.022 PMID: 23643380

10. Gusev A, Ko A, Shi H,Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale

transcriptome-wide association studies. Nature genetics. 2016;. https://doi.org/10.1038/ng.3506 PMID:

26854917

11. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets. Nature genetics. 2016;. https://doi.org/10.

1038/ng.3538 PMID: 27019110

12. Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and

eQTL Signals Detects Target Genes. The American Journal of Human Genetics. 2016; 99(6):1245–

1260. https://doi.org/10.1016/j.ajhg.2016.10.003 PMID: 27866706

13. Wallace C. Statistical testing of shared genetic control for potentially related traits. Genetic epidemiol-

ogy. 2013; 37(8):802–813. https://doi.org/10.1002/gepi.21765 PMID: 24227294

14. Wen X, Lee Y, Luca F, Pique-Regi R. Efficient Integrative Multi-SNP Association Analysis via Determin-

istic Approximation of Posteriors. The American Journal of Human Genetics. 2016; 98(6):1114–1129.

https://doi.org/10.1016/j.ajhg.2016.03.029 PMID: 27236919

15. Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human populations.

Bioinformatics. 2016; 32(2):283–285. https://doi.org/10.1093/bioinformatics/btv546 PMID: 26395773

16. Wen X, Luca F, Pique-Regi R. Cross-population Joint Analysis of eQTLs: Fine Mapping and Functional

Annotation. PLOS Genetics. 2015; 11(4):e1005176. https://doi.org/10.1371/journal.pgen.1005176

PMID: 25906321

17. Rubin DB. Multiple imputation for nonresponse in surveys; 1987.

18. Little RJ, Rubin DB. Statistical analysis with missing data. J. Wiley; 2002.

19. Schafer JL. Multiple imputation: a primer. Statistical methods in medical research. 1999; 8(1):3–15.

https://doi.org/10.1177/096228029900800102 PMID: 10347857

20. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical

clarifications of multiple imputation theory. Prevention Science. 2007; 8(3):206–213. https://doi.org/10.

1007/s11121-007-0070-9 PMID: 17549635

21. Kass RE, Steffey D. Approximate Bayesian inference in conditionally independent hierarchical models

(parametric empirical Bayes models). Journal of the American Statistical Association. 1989; 84

(407):717–726. https://doi.org/10.1080/01621459.1989.10478825

22. Wen X. Molecular QTL Discovert Incorporating Genomic Annotations using Bayesian False Discovery

Rate Control. Annals of Applied Statistics. 2016;((In press)). https://doi.org/10.1214/16-AOAS952

23. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, et al. Conditional and joint multiple-

SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.

Nature genetics. 2012; 44(4):369–375. https://doi.org/10.1038/ng.2213 PMID: 22426310

24. Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies and

other large-scale problems. The Annals of Applied Statistics. 2011; p. 1780–1815. https://doi.org/10.

1214/11-AOAS455

25. Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semipara-

metric hierarchical mixture method. Biostatistics. 2004; 5(2):155–76. https://doi.org/10.1093/

biostatistics/5.2.155 PMID: 15054023

26. Müller P, Parmigiani G, Robert C, Rousseau J. Optimal Sample Size for Multiple Testing: The Case of

Gene Expression Microarrays. Journal of the American Statistical Association. 2004; 99(468):990–

1001. https://doi.org/10.1198/016214504000001646

27. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common var-

iation in the genomic and biological architecture of adult human height. Nature genetics. 2014; 46

(11):1173–1186. https://doi.org/10.1038/ng.3097 PMID: 25282103

28. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18

human traits. The American Journal of Human Genetics. 2014; 94(4):559–573. https://doi.org/10.1016/

j.ajhg.2014.03.004 PMID: 24702953

29. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding vari-

ant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010; 466(7307):714–719. https://

doi.org/10.1038/nature09266 PMID: 20686566

30. Van De Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for robust molecular

quantitative trait locus discovery. Nature methods. 2015; 12(11):1061–1063. https://doi.org/10.1038/

nmeth.3582 PMID: 26366987

Probabilistic analysis of enrichment and colocalization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 24 / 25

https://doi.org/10.1016/j.ajhg.2013.03.022
http://www.ncbi.nlm.nih.gov/pubmed/23643380
https://doi.org/10.1038/ng.3506
http://www.ncbi.nlm.nih.gov/pubmed/26854917
https://doi.org/10.1038/ng.3538
https://doi.org/10.1038/ng.3538
http://www.ncbi.nlm.nih.gov/pubmed/27019110
https://doi.org/10.1016/j.ajhg.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27866706
https://doi.org/10.1002/gepi.21765
http://www.ncbi.nlm.nih.gov/pubmed/24227294
https://doi.org/10.1016/j.ajhg.2016.03.029
http://www.ncbi.nlm.nih.gov/pubmed/27236919
https://doi.org/10.1093/bioinformatics/btv546
http://www.ncbi.nlm.nih.gov/pubmed/26395773
https://doi.org/10.1371/journal.pgen.1005176
http://www.ncbi.nlm.nih.gov/pubmed/25906321
https://doi.org/10.1177/096228029900800102
http://www.ncbi.nlm.nih.gov/pubmed/10347857
https://doi.org/10.1007/s11121-007-0070-9
https://doi.org/10.1007/s11121-007-0070-9
http://www.ncbi.nlm.nih.gov/pubmed/17549635
https://doi.org/10.1080/01621459.1989.10478825
https://doi.org/10.1214/16-AOAS952
https://doi.org/10.1038/ng.2213
http://www.ncbi.nlm.nih.gov/pubmed/22426310
https://doi.org/10.1214/11-AOAS455
https://doi.org/10.1214/11-AOAS455
https://doi.org/10.1093/biostatistics/5.2.155
https://doi.org/10.1093/biostatistics/5.2.155
http://www.ncbi.nlm.nih.gov/pubmed/15054023
https://doi.org/10.1198/016214504000001646
https://doi.org/10.1038/ng.3097
http://www.ncbi.nlm.nih.gov/pubmed/25282103
https://doi.org/10.1016/j.ajhg.2014.03.004
https://doi.org/10.1016/j.ajhg.2014.03.004
http://www.ncbi.nlm.nih.gov/pubmed/24702953
https://doi.org/10.1038/nature09266
https://doi.org/10.1038/nature09266
http://www.ncbi.nlm.nih.gov/pubmed/20686566
https://doi.org/10.1038/nmeth.3582
https://doi.org/10.1038/nmeth.3582
http://www.ncbi.nlm.nih.gov/pubmed/26366987
https://doi.org/10.1371/journal.pgen.1006646


31. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared

genetic influences on 42 human traits. Nature genetics. 2016;. https://doi.org/10.1038/ng.3570 PMID:

27182965

32. Flutre T, Wen X, Pritchard J, Stephens M. A statistical framework for joint eQTL analysis in multiple tis-

sues. PLOS Genetics. 2013; 9(5):e1003486. https://doi.org/10.1371/journal.pgen.1003486 PMID:

23671422

33. Li G, Shabalin AA, Rusyn I, Wright FA, Nobel AB. An empirical Bayes approach for multiple tissue

eQTL analysis. arXiv preprint arXiv:13112948. 2013;.

Probabilistic analysis of enrichment and colocalization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006646 March 9, 2017 25 / 25

https://doi.org/10.1038/ng.3570
http://www.ncbi.nlm.nih.gov/pubmed/27182965
https://doi.org/10.1371/journal.pgen.1003486
http://www.ncbi.nlm.nih.gov/pubmed/23671422
https://doi.org/10.1371/journal.pgen.1006646

