
RESEARCH ARTICLE

Visualizing the structure of RNA-seq

expression data using grade of membership

models

Kushal K. Dey1, Chiaowen Joyce Hsiao2, Matthew Stephens1,2*

1 Department of Statistics, University of Chicago, Chicago, Illinois, United States of America, 2 Department of

Human Genetics, University of Chicago, Chicago, Illinois, United States of America

* mstephens@uchicago.edu

Abstract

Grade of membership models, also known as “admixture models”, “topic models” or “Latent

Dirichlet Allocation”, are a generalization of cluster models that allow each sample to have

membership in multiple clusters. These models are widely used in population genetics to

model admixed individuals who have ancestry from multiple “populations”, and in natural

language processing to model documents having words from multiple “topics”. Here we

illustrate the potential for these models to cluster samples of RNA-seq gene expression

data, measured on either bulk samples or single cells. We also provide methods to help

interpret the clusters, by identifying genes that are distinctively expressed in each cluster.

By applying these methods to several example RNA-seq applications we demonstrate their

utility in identifying and summarizing structure and heterogeneity. Applied to data from the

GTEx project on 53 human tissues, the approach highlights similarities among biologically-

related tissues and identifies distinctively-expressed genes that recapitulate known biology.

Applied to single-cell expression data from mouse preimplantation embryos, the approach

highlights both discrete and continuous variation through early embryonic development

stages, and highlights genes involved in a variety of relevant processes—from germ cell

development, through compaction and morula formation, to the formation of inner cell mass

and trophoblast at the blastocyst stage. The methods are implemented in the Bioconductor

package CountClust.

Author summary

Gene expression profile of a biological sample (either from single cells or pooled cells)

results from a complex interplay of multiple related biological processes. Consequently,

for example, distal tissue samples may share a similar gene expression profile through

some common underlying biological processes. Our goal here is to illustrate that grade of

membership (GoM) models—an approach widely used in population genetics to cluster

admixed individuals who have ancestry from multiple populations—provide an attractive

approach for clustering biological samples of RNA sequencing data. The GoM model

allows each biological sample to have partial memberships in multiple biologically-distinct
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clusters, in contrast to traditional clustering methods that partition samples into distinct

subgroups. We also provide methods for identifying genes that are distinctively expressed

in each cluster to help biologically interpret the results. Applied to a dataset of 53 human

tissues, the GoM approach highlights similarities among biologically-related tissues and

identifies distinctively-expressed genes that recapitulate known biology. Applied to gene

expression data of single cells from mouse preimplantation embryos, the approach high-

lights both discrete and continuous variation through early embryonic development

stages, and genes involved in a variety of relevant processes. Our study highlights the

potential of GoM models for elucidating biological structure in RNA-seq gene expression

data.

Introduction

Ever since large-scale gene expression measurements have been possible, clustering—of both

genes and samples—has played a major role in their analysis [1–3]. For example, clustering of

genes can identify genes that are working together or are co-regulated, and clustering of sam-

ples is useful for quality control as well as identifying biologically-distinct subgroups. A wide

range of clustering methods have therefore been employed in this context, including distance-

based hierarchical clustering, k-means clustering, and self-organizing maps (SOMs); see for

example [4, 5] for reviews.

Here we focus on cluster analysis of samples, rather than clustering of genes (although our

methods do highlight sets of genes that distinguish each cluster). Traditional clustering meth-

ods for this problem attempt to partition samples into distinct groups that show “similar”

expression patterns. While partitioning samples in this way has intuitive appeal, it seems likely

that the structure of a typical gene expression data set will be too complex to be fully captured

by such a partitioning. Motivated by this, here we analyse expression data using grade of mem-

bership (GoM) models [6], which generalize clustering models to allow each sample to have

partial membership in multiple clusters. That is, they allow that each sample has a proportion,

or “grade” of membership in each cluster. Such models are widely used in population genetics

to model admixture, where individuals can have ancestry from multiple populations [7], and

in document clustering [8, 9] where each document can have membership in multiple topics.

In these fields GoM models are often known as “admixture models”, and “topic models” or

“Latent Dirichlet Allocation” [8]. GoM models have also recently been applied to detect muta-

tion signatures in cancer samples [10].

Although we are not the first to apply GoM-like models to gene expression data, previous

applications have been primarily motivated by a specific goal, “cell type deconvolution”,

which involves using cell-type-specific expression profiles of marker genes to estimate the

proportions of different cell types in a mixture [11–13]. Specifically, the GoM model we use

here is analogous to—although different in detail from—blind deconvolution approaches

[14–16] which estimate cell type proportions and cell type signatures jointly (see also [17, 18]

for semi-supervised approaches). Our goal here is to demonstrate that GoM models can be

useful much more broadly for understanding structure in RNA-seq data—not only to decon-

volve mixtures of cell types. For example, in our analysis of human tissue samples from the

GTEX project below, the GoM model usefully captures biological heterogeneity among sam-

ples even though the inferred grades of membership are unlikely to correspond precisely to

proportions of specific cell types. And in our analyses of single-cell expression data the GoM

model highlights interesting structure, even though interpreting the grades of membership
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as “proportions of cell types” is clearly inappropriate because each sample is a single cell!

Here we are exploiting the GoM as a flexible extension of traditional cluster models, which

can capture “continuous” variation among cells as well as the more “discrete” variation cap-

tured by cluster models. Indeed, the extent to which variation among cells can be described

in terms of discrete clusters versus more continuous populations is a fundamental question

that, when combined with appropriate single-cell RNA-seq data, the GoM models used here

may ultimately help address.

Methods overview

We assume that the RNA-seq data on N samples has been summarized by a table of counts

CN×G = (cng), where cng is the number of reads from sample n mapped to gene g (or other unit,

such as transcript or exon) [19]. The GoM model is a generalization of a cluster model, which

allows that each sample has some proportion (“grade”) of membership, in each cluster. For

RNA-seq data this corresponds to assuming that each sample n has some proportion of its

reads, qnk coming from cluster k. In addition, each cluster k is characterized by a probability

vector, θk�, whose gth element represents the relative expression of gene g in cluster k. The

GoM model is then

cn1; cn2; � � � ; cnGð Þ � Multinomial cnþ; pn1; pn2; � � � ; pnG

� �
; ð1Þ

where

png ≔
XK

k¼1

qnkykg: ð2Þ

The number of clusters K is set by the analyst, and it can be helpful to explore multiple values

of K (see Discussion).

To fit this model to RNA-seq data, we exploit the fact that this GoM model is commonly

used for document clustering [8]. This is because, just as RNA-seq samples can be summarized

by counts of reads mapping to each possible gene in the genome, document data can be sum-

marized by counts of each possible word in a dictionary. Recognizing this allows existing

methods and software for document clustering to be applied directly to RNA-seq data. Here

we use the R package maptpx [20] to fit the GoM model.

Fitting the GoM model results in estimated membership proportions q for each sample,

and estimated expression values θ for each cluster. We visualize the membership propor-

tions for each sample using a “Structure plot” [21], which is named for its widespread use in

visualizing the results of the Structure software [7] in population genetics. The Structure

plot represents the estimated membership proportions of each sample as a stacked barchart,

with bars of different colors representing different clusters. Consequently, samples that

have similar membership proportions have similar amounts of each color. See Fig 1 for

example.

To help biologically interpret the clusters inferred by the GoM model we also implemented

methods to identify, for each cluster, which genes are most distinctively differentially

expressed in that cluster; that is, which genes show the biggest difference in expression com-

pared with the other most similar cluster (see Methods). Functions for fitting the GoM model,

plotting the structure plots, and identifying the distinctive (“driving”) genes in each cluster, are

included in our R package CountClust [22] available through Bioconductor [23].

Visualizing the structure of RNA-seq expression data using grade of membership models
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Fig 1. GTEx tissues Structure plot. (a): Structure plot of estimated membership proportions for GoM model with K = 20 clusters fit to 8, 555 tissue

samples from 53 tissues in GTEx data. Each horizontal bar shows the cluster membership proportions for a single sample, ordered so that samples

from the same tissue are adjacent to one another. Within each tissue, the samples are sorted by the proportional representation of the underlying
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Results

Bulk RNA-seq data of human tissue samples

We begin by illustrating the GoM model on bulk RNA expression measurements from the

GTEx project (V6 dbGaP accession phs000424.v6.p1, release date: Oct 19, 2015, http://www.

gtexportal.org/home/). These data consist of per-gene read counts from RNA-seq performed

on 8,555 samples collected from 450 human donors across 53 tissues, lymphoblastoid cell

lines, and transformed fibroblast cell-lines. We analyzed 16,069 genes that satisfied filters (e.g.

exceeding certain minimum expression levels) that were used during eQTL analyses by the

GTEx project (gene list available in http://stephenslab.github.io/count-clustering/project/

utilities/gene_names_all_gtex.txt).

We fit the GoM model to these data, with number of clusters K = 5, 10, 15, 20. For each K
we ran the fitting algorithm three times and kept the result with the highest log-likelihood.

As might be expected, increasing K highlights finer structure in the data, and for brevity we

focus discussion on results for K = 20 (Fig 1(a)), with results for other K shown in S1 Fig. For

comparison we also ran several other commonly-used methods for clustering and visualizing

gene expression data: Principal Components Analysis (PCA), Multidimensional Scaling

(MDS), t-Distributed Stochastic Neighbor Embedding (t-SNE) [24, 25], and hierarchical

clustering (Fig 2).

These data present a challenge to visualization and clustering tools, because of both the rela-

tively large number of samples and the complex structure created by the inclusion of many dif-

ferent tissues. Indeed, neither PCA nor MDS provide satisfactory summaries of the structure

in these data (Fig 2(a) and 2(b)): samples from quite different tissues are often super-imposed

on one another in plots of PC1 vs PC2, and this issue is only partly alleviated by examining

more PCs (S2 Fig). The hierarchical clustering provides perhaps better separation of tissues

(Fig 2(d)), but producing a clear (static) visualization of the tree is difficult with this many sam-

ples. By comparison t-SNE (Fig 2(b)) and the GoM model (Fig 1(a)) both show a much clearer

visual separation of samples by tissue, although they achieve this in very different ways. The t-
SNE representation produces a two-dimensional plot with 20–25 visually-distinct clusters. In

contrast, the GoM highlights similarity among samples by assigning them similar membership

proportions, resulting in groups of similarly-colored bars in the structure plot. Some tissues

are represented by essentially a single cluster/color (e.g. Pancreas, Liver), whereas other tissues

are represented as a mixture of multiple clusters (e.g. Thyroid, Spleen). Furthermore, the GoM

results highlight biological similarity among some tissues by assigning similar membership

proportions to samples from those tissues. For example, samples from several different parts of

the brain often have similar memberships, as do the arteries (aorta, tibial and coronary) and

skin samples (sun-exposed and un-exposed).

Although it is not surprising that samples cluster by tissue, other results could have

occurred. For example, samples could have clustered according to technical variables, such as

sequencing batch [26] or sample collection center. While our results do not exclude the possi-

bility that technical variables could have influenced these data, the t-SNE and GoM results

clearly demonstrate that tissue of origin is the primary source of heterogeneity, and provide a

useful initial assurance of data quality.

While in these data both the GoM model and t-SNE highlight the primary structure due to

tissue of origin, the GoM results have at least two advantages over t-SNE. First, the GoM

clusters. (b): Structure plot of estimated membership proportions for K = 4 clusters fit to only the brain tissue samples. This analysis highlights finer-

scale structure among the brain samples that is missed by the global analysis in (a).

doi:10.1371/journal.pgen.1006599.g001

Visualizing the structure of RNA-seq expression data using grade of membership models

PLOS Genetics | DOI:10.1371/journal.pgen.1006599 March 23, 2017 5 / 23

http://www.gtexportal.org/home/
http://www.gtexportal.org/home/
http://stephenslab.github.io/count-clustering/project/utilities/gene_names_all_gtex.txt
http://stephenslab.github.io/count-clustering/project/utilities/gene_names_all_gtex.txt


Fig 2. Visualization of the same GTEx data as in Fig 1. (a) across all tissues using standard and widely used approaches

—Principal Component Analysis (PCA), Multi dimensional Scaling (MDS), t-SNE and hierarchical clustering. All the analysis

are done on log CPM normalized expression data to remove library size effects. (a): Plot of PC1 vs PC2 on the log CPM

Visualizing the structure of RNA-seq expression data using grade of membership models
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model provides an explicit, quantitative, estimate of the mean expression of each gene in each

cluster, making it straightforward to assess which genes and processes drive differences among

clusters; see Table 1 (and also S1 Table). Reassuringly, many results align with known biology.

For example, the purple cluster (cluster 18), which distinguishes Pancreas from other tissues, is

enriched for genes responsible for digestion and proteolysis, (e.g. PRSS1, CPA1, PNLIP). Simi-

larly the yellow cluster (cluster 12), which primarily distinguishes Cell EBV Lymphocytes from

other tissues, is enriched with genes responsible for immune responses (e.g. IGHM, IGHG1)

and the pink cluster (cluster 19) which mainly appears in Whole Blood, is enriched with genes

related hemoglobin complex and oxygen transport (e.g. HBB, HBA1, HBA2). Further, Keratin-

related genes characterize the skin cluster (cluster 6, light denim), Myosin-related genes char-

acterize the muscle skeletal cluster (cluster 7, orange), etc. These biological annotations are

particularly helpful for understanding instances where a cluster appears in multiple tissues.

For example, the top genes in the salmon cluster (cluster 4), which is common to the Gastro-

esophageal Junction, Esophagus Muscularis and Colon Sigmoid, are related to smooth muscle.

And the top genes in the red cluster, highlighted above as common to Breast Mammary tissue,

Adipose Subcutaneous and Adipose Visceral, are all related to adipocytes and/or fatty acid

synthesis.

A second advantage of the GoM model is that, because it allows partial membership in each

cluster, it is better able to highlight partial similarities among distinct tissues. For example, in

Fig 1(a) the sky blue cluster (cluster 13), appears in testis, pituitary, and thyroid, reflecting

shared hormonal-related processes. At the same time, these tissues are distinguished from one

another both by their degree of membership in this cluster (testis samples have consistently

stronger membership; thyroid samples consistently weaker), and by membership in other clus-

ters. For example, pituitary samples, but not testis or thyroid samples, have membership in the

light purple cluster (cluster 2) which is driven by genes related to neurons and synapsis. In the

t-SNE results these three tissues simply cluster separately into visually distinct groups, with no

indication that their expression profiles have something in common (Fig 2(b)). Thus, although

we find the t-SNE results visually attractive, this 2-dimensional projection contains less infor-

mation than the Structure plot from the GoM (Fig 1(a)), which uses color to represent the

samples in a 20-dimensional space.

In addition to these qualitative comparisons with other methods, we also used the GTEx

data to quantitatively compare the accuracy of the GoM model with hierarchical clustering.

Specifically, for each pair of tissues in the GTEx data we assessed whether or not each method

correctly partitioned samples into the two tissue groups; see Methods. (Other methods do not

provide an explicit clustering of the samples—only a visual representation—and so are not

included in these comparisons.) The GoM model was more accurate in this test, succeeding in

88% of comparisons, compared with 79% for hierarchical clustering (S3(a) vs S3(c) Fig).

Sub-analysis of brain tissues

Although the analysis of all tissues is useful for assessing global structure, it may miss finer-

scale structure within tissues or among similar tissues. For example, here the GoM model

applied to all tissues effectively allocated only three clusters to all brain tissues (clusters 1,2 and

9 in Fig 1(a)), and we suspected that additional substructure might be uncovered by analyzing

expression data, (b): Plot of first two dimensions of the t-SNE plot, (c) Plot of first two dimensions of the Multi-Dimensional

Scaling (MDS) plot. (d) Dendrogram for the hierarchical clustering of the GTEx tissue samples based on the log CPM

expression data with average linkage and Euclidean distance.

doi:10.1371/journal.pgen.1006599.g002
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Table 1. Cluster Annotations GTEx V6 data (with GO annotations).

Cluster Top 5 Driving Genes Top significant GO terms (function)[q-value]

1. Royal purple NEAT1, IGFBP5, CCLN2,

SRSF5, PNISR

GO:0005654 (nucleoplasm)[2e-10], GO:0044822 (poly-A RNA binding)[3e-09], GO:0044428 (nuclear

part)[1e-09], GO:0043233 (organelle lumen)[2e-08]

2. Light purple SNAP25, FBXL16, NCDN,

SNCB, SLC17A7

GO:0097458 (neuron part)[2e-25], GO:0007268 (synaptic transmission)[9e-18], GO:0030182 (neuron

differentiation)[2e-14], GO:0022008 (neurogenesis)[1e-13], GO:0007267 (cell-cell signaling)[3e-13]

3. Red FABP4, PLIN1, FASN, GPX3,

LIPE

GO:0044255 (cellular lipid metabolism)[1e-09], GO:0006629 (lipid metabolism)[1e-09], GO:0006639

(acylglycerol metabolism)[3e-08], GO:0045765 (angiogenesis regulation)[4e-08]

4. Salmon ACTG2, MYH11, SYNM,

MYLK, CSRP1

GO:0043292 (contractile fiber)[3e-13], GO:0006936 (muscle contraction)[5e-12], GO:0030016

(myofibril)[5e-12], GO:0015629 (actin cytoskeleton)[2e-12], GO:0005925 (focal adhesion)[6e-11]

5. Denim RGS5, MGP, AEBP1, IGFBP7,

MFGE8

GO:0005578 (proteinaceous extracellular matrix)[4e-20], GO:0030198 (extracellular matrix)[2e-18],

GO:0007155 (cell adhesion)[4e-14], GO:0001568 (blood vessel development)[4e-13]

6. Light denim KRT10, KRT1, KRT2, LOR,

KRT14

GO:0008544 (epidermis development)[3e-12], GO:0043588 (skin development)[5e-10], GO:0042303

(molting cycle)[8e-06], GO:0042633 (hair cycle)[7e-06], GO:0048513 (organ development)[6e-05]

7. Orange NEB, MYH1, MYH2, MYBPC1,

ACTA1

GO:0043292 (contractile fiber)[6e-52], GO:0030016 (myofibril)[1e-51], GO:0030017 (sarcomere)[5e-

40], GO:0003012 (muscle system process)[2e-25], GO:0015629 (actin cytoskeleton)[1e-25]

8. Light orange FN1, COL1A1, COL1A2,

COL3A1, COL6A3

GO:0030198 (extracellular matrix)[6e-29], GO:0043062 (extracellular structure)[4e-29], GO:0032963

(collagen metabolism)[3e-16], GO:0030199 (collagen fibril organization)[1e-14], GO:0030574

(collagen catabolism)[1e-14]

9. Green MBP, GFAP, MTURN, HIPK2,

CARNS1

GO:0043209 (myelin sheath)[4e-07], GO:0007399 (nervous system development)[4e-05],

GO:0008366 (axon ensheathment)[9e-05], GO:0044430 (cytoskeletal part)[1e-04], GO:0005874

(microtubule)[3e-04]

10. Light green CYP17A1, CYP11B1, PIGR,

GKN1, STAR

GO:0006694 (steroid biosynthesis)[2e-13], GO:0008202 (steroid metabolism)[1e-12], GO:0016125

(sterol metabolism)[1e-11], GO:0042446 (hormone biosynthesis)[1e-10], GO:0008207 (C21-steroid

hormone metabolism)[3e-10]

11. Turquoise MPZ, APOD, PMP22, PRX,

NGFR

GO:0007272 (ensheathment of neurons)[4e-07], GO:0008366 (axon ensheathment)[7e-07],

GO:0042552 (myelination)[7e-06], GO:0048856 (anatomical structure development)[1e-06],

GO:0005578 (proteinaceous extracellular matrix)[1e-06]

12. Yellow IGHM, IGHG1, IGHG2, IGHG4,

CD74

GO:0006955 (immune response)[1e-18], GO:0002252 (immune effector process)[7e-18],

GO:0003823 (antigen binding)[1e-15], GO:0019724 (B-cell mediated immunity)[5e-13], GO:0002684

(positive regulation immune system)[6e-13]

13. Sky blue TG, PRL, GH1, PRM2, PRM1 GO:0019953 (sexual reproduction)[8e-10], GO:0048232 (male gamete generation)[2e-08],

GO:0035686 (sperm fibrous sheath)[4e-06], GO:0005179 (hormone activity)[6e-05], GO:0042403

(thyroid hormone metabolism)[2e-04]

14. Light pink NPPA, MYH6, TNNT2, ACTC1,

MYBPC3

GO:0045333 (cellular respiration)[2e-34], GO:0022904 (respiratory electron transport)[8e-33],

GO:0015980 (energy derivation by oxidation of organic compounds)[4e-30], GO:0031966

(mitochondrial membrane)[5e-26]

15. Light gray KRT13, KRT4, MUC7, CRNN,

KRT6A

GO:0070062 (extracellular exosome)[2e-23], GO:0043230 (extracellular organelle)[3e-23],

GO:0031982 (vesicle)[3e-20], GO:0008544 (epidermis development)[2e-18], GO:0043588 (skin

development)[1e-13]

16. Gray SFTPBβ, SFTPA1, SFTPA2,

SFTPC, A2M

GO:0001525 (angiogenesis)[5e-08], GO:0001944 (vasculature development)[2e-07], GO:0048514

(blood vessel morphogenesis)[2e-07], GO:0040012 (locomotion regulation)[4e-06], GO:2000145 (cell

motility)[1e-05]

17. Brown CSF3R, MMP25, IL1R2, SELL,

VNN2

GO:0006955 (immune response)[8e-22], GO:0006952 (defense response)[9e-16], GO:0071944 (cell

periphery)[7e-15], GO:0005886 (plasma membrane)[7e-15], GO:0050776 (regulation of immune

response)[2e-12]

18. Purple PRSS1, CPA1, PNLIP,

CELA3A, GP2

GO:0007586 (digestion)[3e-14], GO:0004252 (serine-type endopeptidase activity)[4e-08],

GO:0006508 (proteolysis)[6e-06], GO:0016787 (hydrolase activity)[6e-05], GO:0044241 (lipid

digestion)[1e-04]

19. Pink HBB, HBA2, HBA1, FKBP8,

HBD

GO:0005833 (hemoglobin complex)[1e-13], GO:0015669 (gas transport)[4e-11], GO:0020037 (heme

binding)[3e-07], GO:0031720 (haptoglobin binding)[3e-06], GO:0006950 (response to stress)[6e-04]

20. Dark gray ALB, HP, FGB, FGA, ORM1 GO:0072562 (blood microparticle)[1e-27], GO:0043230 (extracellular organelle)[1e-24], GO:0044710

(single organism metabolism)[7e-20], GO:0019752 (carboxylic acid metabolism)[1e-18], GO:0034364

(high density lipoprotein)[3e-16]

doi:10.1371/journal.pgen.1006599.t001
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the brain samples separately and using more clusters. Fig 1(b) shows the Structure plot for

K = 6 on only the Brain samples. The results highlight much finer-scale structure compared

with the global analysis; see Table 2. Brain Cerebellum and Cerebellar hemisphere are essen-

tially assigned to a separate cluster (lime green), which is enriched with genes related to cell

periphery and communication (e.g. PKD1, CBLN3) as well as genes expressed largely in neuro-

nal cells and playing a role in neuron differentiation (e.g. CHGB). The spinal cord samples also

show consistently strong membership in a single cluster (yellow-orange), the top defining gene

for the cluster being MBP which is involved in myelination of nerves in the nervous system

[27]. Another driving gene, GFAP, participates in system development by acting as a marker to

distinguish astrocytes during development [28].

The remaining samples all show membership in multiple clusters. Samples from the puta-

men, caudate and nucleus accumbens show similar profiles, and are distinguished by strong

membership in a cluster (cluster 4, bright red) whose top driving gene is PPP1R1B, a target for

dopamine. And cortex samples are distinguished from others by stronger membership in a

cluster (cluster 2, turquoise in Fig 1(b)) whose distinctive genes include ENC1, which interacts

with actin and contributes to the organisation of the cytoskeleton during the specification of

neural fate [29].

In comparison, applying PCA, MDS, hierarchical clustering and t-SNE to these brain sam-

ples reveals less of this finer-scale structure (S4 Fig). Both PCA and MDS effectively cluster the

samples into two groups—those related to the cerebellum vs everything else. Hierarchical clus-

tering also separates out the cerebellum-related tissues from the others, but again the format

seems ill-suited to static visualization of more than one thousand samples. For reasons that we

do not understand t-SNE performs poorly for these data: many samples are allocated to essen-

tially identical locations, and so overplotting obscures them.

Single-cell RNA-seq data

Recently RNA-sequencing has become viable for single cells [30], and this technology has the

promise to revolutionize understanding of intra-cellular variation in expression, and regula-

tion more generally [31]. Although it is traditional to describe and categorize cells in terms of

Table 2. Cluster Annotations for GTEx V6 Brain data.

Cluster Top 5 Driving Genes Top significant GO terms

1. Royal blue CLU, OXT, GLUL, NDRG2, CST3 GO:0043230 (extracellular organelle)[5e-11], GO:1903561 (extracellular vesicle)[6e-11], GO:0070062

(extracellular exosome)[2e-09], GO:0006950 (response to stress)[3e-10], GO:0031988 (membrane

bound vesicle)[1e-10]

2. Turquoise ENC1, NCALD, YWHAH, KIF5A,

NPTXR

GO:0097458 (neuron part)[3e-11], GO:0008092 (cytoskeletal protein binding)[7e-11], GO:0031175

(neuron projection development)[7e-09], GO:0030182 (neuron differentiation)[4e-08], GO:0007268

(synaptic transmission)[1e-08]

3. Lime green PKD1, CBLN3, CHGB,

COL27A1, ABLIM1

GO:0005089 (Rho guanyl-nucleotide exchange factor activity)[1e-03], GO:0016604 (nuclear body)

[0.002], GO:0022008 (neurogenesis)[0.02], GO:0035239 (tube morphogenesis)[0.08], GO:0007269

(neurotransmitter secretion)[0.10]

4. Red PPP1R1B, RGS14, NCDN,

PDE1B, RAP1GAP

GO:0065009 (regulation of molecular function)[2e-06], GO:0036477 (somatodendritic compartment)

[6e-05], GO:0007268 (synaptic transmission)[1e-03], GO:0023051 (signaling regulation)[2e-03],

GO:0010646 (cell communication regulation)[1e-03]

5. Yellow

orange

MBP, GFAP, TF, MTURN, SCD GO:0043209 (myelin sheath)[2e-09], GO:0007399 (nervous system development)[1e-04],

GO:0005737 (cytoplasm)[1e-04], GO:0048471 (perinuclear region of cytoplasm)[5e-04], GO:0007272

(ensheathment of neurons)[1e-02]

6. Yellow IQGAP1, A2M, C3, MYH7, TG GO:0072562 (blood microparticle)[1e-10], GO:0044449 (contractile fiber part)[1e-10], GO:0043230

(extracellular organelle)[7e-10], GO:0030017 (sarcomere)[1e-08], GO:0072376 (protein activation

cascade)[1e-08]

doi:10.1371/journal.pgen.1006599.t002
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distinct cell-types, the actual architecture of cell heterogeneity may be more complex, and in

some cases perhaps better captured by the more “continuous” GoM model. In this section we

illustrate the potential for the GoM model to be applied to single cell data.

To be applicable to single-cell RNA-seq data, methods must be able to deal with lower

sequencing depth than in bulk RNA experiments: single-cell RNA-seq data typically involve

substantially lower effective sequencing depth compared with bulk experiments, due to the rel-

atively small number of molecules available to sequence in a single cell. Therefore, as a first

step towards demonstrating its potential for single cell analysis, we checked robustness of the

GoM model to sequencing depth. Specifically, we repeated the analyses above after thinning

the GTEx data by a factor of 100 and 10,000 to mimic the lower sequencing depth of a typical

single cell experiment. For the thinned GTEx data the Structure plot for K = 20 preserves most

of the major features of the original analysis on unthinned data (S5 Fig). For the accuracy com-

parisons with hierarchical clustering, both methods suffer reduced accuracy in thinned data,

but the GoM model remains superior (S6 Fig). For example, when thinning by a factor of

10,000, the success rate in separating pairs of tissues is 0.32 for the GoM model vs 0.10 for hier-

archical clustering.

Having established its robustness to sequencing depth, we now illustrate the GoM model

on two single cell RNA-seq datasets: data on mouse spleen from Jaitin et al [32] and data on

mouse preimplantation embryos from Deng et al [33].

Mouse spleen data from Jaitin et al, 2014. Jaitin et al sequenced over 4,000 single cells

from mouse spleen. Here we analyze 1,041 of these cells that were categorized as CD11c+ in

the sorting markers column of their data (http://compgenomics.weizmann.ac.il/tanay/?page_

id=519), and which had total number of reads mapping to non-ERCC genes greater than 600.

Our hope was that applying the GoM model to these data would identify, and perhaps refine,

the cluster structure evident in [32] (their Fig 2A and 2B). However, the GoM model yielded

rather different results (Fig 3), where most cells were assigned to have membership in several

clusters. Further, the cluster membership vectors showed systematic differences among ampli-

fication batches (which in these data is also strongly correlated with sequencing batch). For

example, cells in batch 1 are characterized by strong membership in the orange cluster (cluster

5) while those in batch 4 are characterized by strong membership in both the blue and yellow

clusters (2 and 6). Some adjacent batches show similar patterns—for example batches 28 and

29 have a similar visual “palette”, as do batches 32–45. And, more generally, these later batches

are collectively more similar to one another than they are to the earlier batches (0–4).

The fact that batch effects are detectable in these data is not particularly surprising: there is

a growing recognition of the importance of batch effects in high-throughput data generally

[34, 35] and in single cell data specifically [26, 36]. And indeed, both clustering methods and

the GoM model can be viewed as dimension reduction methods, and such methods can be

helpful in controlling for batch effects [37, 38]. However, why these batch effects are not evi-

dent in Fig 2A and 2B of [32] is unclear.

Mouse preimplantation embryo data from Deng et al, 2014. Deng et al collected single-

cell expression data of mouse preimplantation embryos from the zygote to blastocyst stage

[33], with cells from four different embryos sequenced at each stage. The original analysis [33]

focuses on trends of allele-specific expression in early embryonic development. Here we use

the GoM model to assess the primary structure in these data without regard to allele-specific

effects (i.e. combining counts of the two alleles). Visual inspection of the Principal Compo-

nents Analysis in [33] suggested perhaps 6–7 clusters, and we focus here on results with K = 6.

The results from the GoM model (Fig 4) clearly highlight changes in expression profiles

that occur through early embryonic development stages, and enrichment analysis of the
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Fig 3. Structure plot of estimated membership proportions for GoM model with K = 7 clusters fit to

1,041 single cells from [33]. The samples (cells) are ordered so that samples from the same amplification

batch are adjacent and within each batch, the samples are sorted by the proportional representation of the

underlying clusters. In this analysis the samples do not appear to form clearly-defined clusters, with each

sample being allocated membership in several “clusters”. Membership proportions are correlated with batch,

and some groups of batches (e.g. 28–29; 32–45) show similar palettes. These results suggest that batch

effects are likely influencing the inferred structure in these data.

doi:10.1371/journal.pgen.1006599.g003
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Fig 4. Structure plot of estimated membership proportions for GoM model with K = 6 clusters fit to 259 single cells from [33]. The cells are ordered

by their preimplantation development phase (and within each phase, sorted by the proportional representation of the clusters). While the very earliest

developmental phases (zygote and early 2-cell) are essentially assigned to a single cluster, others have membership in multiple clusters. Each cluster is
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driving genes in each cluster (Table 3, S4 Table) indicate that many of these expression changes

reflect important biological processes during embryonic preimplantation development.

In more detail: Initially, at the zygote and early 2-cell stages, the embryos are represented by

a single cluster (blue in Fig 4) that is enriched with genes responsible for germ cell develop-

ment (e.g., Bcl2l10 [39], Spin1 [40]). Moving through subsequent stages the grades of member-

ship evolve to a mixture of blue and magenta clusters (mid 2-cell), a mixture of magenta and

yellow clusters (late 2-cell) and a mixture of yellow and green (4-cell stage). The green cluster

then becomes more prominent in the 8-cell and 16-cell stages, before dropping substantially in

the early and mid-blastocyst stages. That is, we see a progression in the importance of different

clusters through these stages, from the blue cluster, moving through magenta and yellow to

green. Examining the genes distinguishing each cluster reveals that this progression (blue-

magenta-yellow-green) reflects the changing relative importance of several fundamental bio-

logical processes. The magenta cluster is driven by genes responsible for the beginning of tran-

scription of zygotic genes (e.g., Zscan4c-f show up in the list of top 100 driving genes: see

https://stephenslab.github.io/count-clustering/project/src/deng_cluster_annotations.html),

which takes place in the late 2-cell stage of early mouse embryonic development [41]. The yel-

low cluster is enriched for genes responsible for heterochromation Smarcc1 [42] and chromo-

some stability Cenpe [43] (see S4 Table). And the green cluster is enriched for cytoskeletal

genes (e.g., Fbxo15) and cytoplasm genes (e.g., Tceb1, Hsp90ab1), all of which are essential for

compaction at the 8-cell stage and morula formation at the 16-cell stage.

Finally, during the blastocyst stages two new clusters (purple and orange in Fig 4) dominate.

The orange cluster is enriched with genes involved in the formation of trophectoderm (TE)

annotated by the genes that are most distinctively expressed in that cluster, and by the gene ontology categories for which these distinctive genes are most

enriched (see Table 1 for more extensive annotation results). See text for discussion of biological processes driving these results.

doi:10.1371/journal.pgen.1006599.g004

Table 3. Cluster Annotations for Deng et al (2014) data.

Cluster Top 10 Driving Genes Top significant GO terms

1. Blue Bcl2l10, E330034G19Rik, Tcl1, LOC100502936, Oas1d,

AU022751, Spin1, Khdc1b, D6Ertd527e, Btg4

GO:0007276 (gamete generation)[7e-06], GO:0032504 (multicellular organism

reproduction)[3e-06], GO:0044702 (single organism reproduction)[2e-05],

GO:0048477 (oogenesis)[5e-04], GO:0048599 (oocyte development)[1e-03],

GO:0009994 (oocyte differentiation)[1e-03]

2.

Magenta

Obox3, Zfp352, Gm8300, Usp17l5, BB287469, Rfpl4b,

Gm2022, Gm5662, Gm11544, Gm4850

GO:0016604 (nuclear body)[1e-04], GO:0005814 (centriole)[4e-03], GO:0044450

(microtubule organizing center part) [8e-03]

3. Yellow Rtn2, Ebna1bp2, Zfp259, Nasp, Cenpe, Rnf216, Ctsl,

Tor1b, Ankrd10, Lamp2

GO:0044428 (nuclear part)[1e-08], GO:0031981 (nuclear lumen)[3e-08],

GO:0070013 (intracellular organelle lumen)[9e-08], GO:0005730 (nucleolus)[5e-

07], GO:0005654 (nucleoplasm)[4e-05], GO:0003723 (RNA binding)[1e-04]

4. Green Timd2, Isyna1, Alppl2, Prame15, Fbxo15, Tceb1, Gpd1l,

Pemt, Hsp90aa1, Hsp90ab1

GO:0005829 (cytosol)[4e-10], GO:0044444 (cytoplasmic part)[2e-05],

GO:1901575 (organic substance catabolic process)[9e-04], GO:0000151

(ubiquitin ligase com- plex)[1e-04], GO:0009056 (catabolic process)[1e-03],

GO:0044265 (cellular macromolecule catabolic process)[1e-03], GO:0051082

(unfolded protein binding)[9e-04]

5. Purple Upp1, Tdgf1, Aqp8, Fabp5, Tat, Pdgfra, Pyy, Prdx1,

Col4a1, Spp1

GO:0044710 (single-organism metabolic process) [1e-05], GO:0006950

(response to stress) [1e-05], GO:0070062 (extracellular exosome)[1e-05],

GO:0043230 (extracellular organelle)[2e-05], GO:1903561 (extracellular vesicle)

[1e-05], GO:0006979 (response to oxidative stress)[7e-04], GO:0048514 (blood

vessel morphogenesis)[7e-04], GO:0001944 (vasculature development)[3e-03]

6.

Orange

Actb, Krt18, Fabp3, Id2, Tspan8, Gm2a, Lgals1, Adh1,

Lrp2, BC051665

GO:0065010 (extracellular membrane-bounded organelle), GO:0070062

(extracellular exosome)[4e-23], GO:0043230 (extracellular organelle)[5e-23],

GO:1903561 (extracellular vesicle)[3e-23], GO:0031982 (vesicle)[4e-18],

GO:0030036 (actin cytoskeleton and organization)[4e-12], GO:0032432 (actin

filament bundle)[2e-09], GO:0005912 (adherens junction)[2e-09]

doi:10.1371/journal.pgen.1006599.t003
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(e.g., Tspan8, Krt8, Id2 [44]), while the purple cluster is enriched with genes responsible for the

formation of inner cell mass (ICM) (e.g., Pdgfra, Pyy [45]).

For comparison, results for PCA, MDS, t-SNE and hierarchical clustering are shown in S7

Fig. All these methods show some clustering structure by pre-implantation stage; however

only PCA and MDS seem to capture the developmental trajectory from zygote to blastocyst,

exhibiting a “horse-shoe” pattern that is expected when similarities among samples approxi-

mately reflect an underlying latent ordering [46, 47]. And none of them provide any direct

indication of the ICM vs TE structure in the blastocyst samples.

Although the GoM model results clearly highlight some of the key biological processes

underlying embryonic preimplantation development, there are also some expected patterns

that do not appear. Specifically, just prior to implantation the embryo consists of three differ-

ent cell types, the trophectoderm (TE), the primitive endoderm (PE), and the epiblast (EPI)

[48], with the PE and EPI being formed from the ICM. Thus one might expect the late blasto-

cyst cells to show a clear division into three distinct groups, and for some of the earlier blasto-

cyst cells to show partial membership in one of these groups as they begin to differentiate

towards these cell types. Indeed, the GoM model seems well suited to capture this process in

principle. However, this is not the result we obtained in practice. In particular, although the

two clusters identified by the GoM model in the blastocyst stages appear to correspond roughly

to the TE and ICM, even the late blastocyst cells tend to show a gradient of memberships in

both these clusters, rather than a clear division into distinct groups. Our results contrast with

those from the single-cell mouse preimplantation data of [44], measured by qPCR, where the

late blastocyst cells showed a clear visual division into three groups using PCA (their Fig 1).

To better understand the differences between our results for RNA-seq data from [33] and

the qPCR results from [44] we applied the GoM model with K = 3 to a small subset of the

RNA-seq data: the blastocyst cell data at the 48 genes assayed by [44]. These genes were specifi-

cally chosen by them to help elucidate cell-fate decisions during early development of the

mouse embryo. Still, the GoM model results (S8 Fig) do not support a clear division of these

data into three distinct groups (and neither do PCA or t-SNE; S9 Fig). Rather, the GoM model

highlights one cluster (Green in figure), whose membership proportions essentially reflect

expression at the Actb gene, and two other clusters (Orange and Purple in figure) whose driv-

ing genes correspond to genes identified in [44] as being distinctive to TE and EPI cell types

respectively. The Actb gene is a “housekeeping gene”, used by [44] to normalize their qPCR

data, and its prominence in the GoM results likely reflects its very high expression levels rela-

tive to other genes. However, excluding Actb from the analysis still does not lead to a clear sep-

aration into three groups (S8 Fig). Thus, although there are clear commonalities in the

structure of these RNA-seq and qPCR data sets, the structure of the single-cell RNA-seq data

from [33] is fundamentally more complex (or, perhaps, muddied), and consequently more dif-

ficult to interpret.

In addition to trends across development stages, the GoM results also highlight some

embryo-level effects in the early stages (Fig 4). Specifically, cells from the same embryo some-

times show greater similarity than cells from different embryos. For example, while all cells

from the 16-cell stage have high memberships in the green cluster, cells from two of the

embryos at this stage have memberships in both the purple and yellow clusters, while the other

two embryos have memberships only in the yellow cluster.

The GoM results also highlight a few single cells as outliers. For example, a cell from a

16-cell embryo is represented by the blue cluster—a cluster that represents cells at the zygote

and early 2-cell stage. Also, a cell from an 8-stage embryo has strong membership in the purple

cluster—a cluster that represents cells from the blastocyst stage. This illustrates the potential
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for the GoM model to help in quality control: it would seem prudent to consider excluding

these outlier cells from subsequent analyses of these data.

Discussion

Our goal here is to highlight the potential for GoM models to elucidate structure in RNA-seq

data from both single cell sequencing and bulk sequencing of pooled cells. We also provide

tools to identify which genes are most distinctively expressed in each cluster, to aid interpreta-

tion of results. As our applications illustrate, the results can provide a richer summary of the

structure in RNA-seq data than existing widely-used visualization methods such as PCA and

hierarchical clustering. While it could be argued that the GoM model results sometimes raise

more questions than they answer, this is exactly the point of an exploratory analysis tool: to

highlight issues for investigation, identify anomalies, and generate hypotheses for future

testing.

Our results from different methods also highlight another important point: different meth-

ods have different strengths and weaknesses, and can compliment one another as well as com-

peting. For example, t-SNE seems to provide a much clearer indication of the cluster structure

in the full GTEx data than does PCA, but does a poorer job of capturing the ordering of the

developmental samples from mouse pre-implantation embryos. While we believe the GoM

model often provides a richer summary of the sample structure, we would expect to use it in

addition to t-SNE and PCA when performing exploratory analyses. (Indeed the methods can

be used in combination: both PCA and t-SNE can be used to visualize the results of the GoM

model, as an alternative or complement to the Structure plot.)

A key feature of the GoM model is that it allows that each sample has a proportion of mem-

bership in each cluster, rather than a discrete cluster structure. Consequently it can provide

insights into how well a particular dataset really fits a “discrete cluster” model. For example,

consider the results for the data from Jaitin et al [32] and Deng et al [33]: in both cases most

samples are assigned to multiple clusters, although the results are closer to “discrete” for the

latter than the former. The GoM model is also better able to represent the situation where

there is not really a single clustering of the samples, but where samples may cluster differently

at different genes. For example, in the GTEx data, the stomach samples share memberships in

common with both the pancreas (purple) and the adrenal gland (light green). This pattern can

be seen in the Structure plot (S4 Fig) but not from other methods like PCA, t-SNE or hierar-

chical clustering (Fig 2).

Fitting GoM models can be computationally-intensive for large data sets. For the datasets

we considered here the computation time ranged from 12 minutes for the data from [33]

(n = 259;K = 6), through 33 minutes for the data from [32] (n = 1,041;K = 7) to 3,370 minutes

for the GTEx data (n = 8,555;K = 20). Computation time can be reduced by fitting the model

to only the most highly expressed genes, and we often use this strategy to get quick initial

results for a dataset. Because these methods are widely used for clustering very large document

datasets there is considerable ongoing interest in computational speed-ups for very large data-

sets, with “on-line” (sequential) approaches capable of dealing with millions of documents [49]

that could be useful in the future for very large RNA-seq datasets.

A thorny issue that arises when fitting clustering models is how to select the number of

clusters, K. Like many software packages for fitting these models, the maptpx package imple-

ments a measure of model fit that provides one useful guide. However, it is worth remember-

ing that in practice there is unlikely to be a “true” value of K, and results from different values

of K may complement one another rather than merely competing with one another. For exam-

ple, seeing how the fitted model evolves as K increases is one way to capture some notion of
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hierarchy in the clusters identified [21]. More generally it is often fruitful to analyse data in

multiple ways using the same tool: for example our GTEx analyses illustrate how analysis of

subsets of the data (in this case the brain samples) can complement analyses of the entire data.

Finally, as a practical matter, we note that Structure plots can be difficult to read for large K
(e.g. K = 30) because of the difficulties of choosing a palette with K distinguishable colors.

The version of the GoM model fitted here is relatively simple, and could certainly be embel-

lished. For example, the model allows the expression of each gene in each cluster to be a free

parameter, whereas we might expect expression of most genes to be “similar” across clusters.

This is analogous to the idea in population genetics applications that allele frequencies in dif-

ferent populations may be similar to one another [50], or in document clustering applications

that most words may not differ appreciably in frequency in different topics. In population

genetics applications incorporating this idea into the model, by using a correlated prior distri-

bution on these frequencies, can help improve identification of subtle structure [50] and we

would expect the same to happen here for RNA-seq data.

Finally, GoM models can be viewed as one of a larger class of “matrix factorization”

approaches to understanding structure in data, which also includes PCA, non-negative matrix

factorization (NMF), and sparse factor analysis (SFA); see [51]. This observation raises the

question of whether methods like SFA might be useful for the kinds of analyses we performed

here. (NMF is so closely related to the GoM model that we do not discuss it further; indeed,

the GoM model is a type of NMF, because both grades of membership and expression levels

within each cluster are required to be non-negative.) Informally, SFA can be thought of as a

generalization of the GoM model that allows samples to have negative memberships in some

“clusters” (actually, “factors”). This additional flexibility should allow SFA to capture certain

patterns more easily than the GoM model. For example, a small subset of genes that are over-

expressed in some samples and under-expressed in other samples could be captured by a single

sparse factor, with positive loadings in the over-expressed samples and negative loadings in the

other samples. However, this additional flexibility also comes at a cost of additional complexity

in visualizing the results. For example, S10, S11 and S12 Figs show results of SFA (the version

from [51]) for the GTEx data and the mouse preimplantation data: in our opinion, these do

not have the simplicity and immediate visual appeal of the GoM model results. Also, applying

SFA to RNA-seq data requires several decisions to be made that can greatly impact the results:

what transformation of the data to use; what method to induce sparsity (there are many; e.g.

[51–54]); whether to induce sparsity in loadings, factors, or both; etc. Nonetheless, we certainly

view SFA as complementing the GoM model as a promising tool for investigating the structure

of RNA-seq data, and as a promising area for further work.

Materials and methods

Model fitting

We use the maptpxR package [20] to fit the GoM models (1 and 2), which is also known as

“Latent Dirichlet Allocation” (LDA). The maptpx package fits this model using an EM algo-

rithm to perform Maximum a posteriori (MAP) estimation of the parameters q and θ. See [20]

for details.

Visualizing results

In addition to the Structure plot, we have also found it useful to visualize results using t-distrib-

uted Stochastic Neighbor Embedding (t-SNE), which is a method for visualizing high dimen-

sional datasets by placing them in a two dimensional space, attempting to preserve the relative

distance between nearby samples [24, 25]. Compared with the Structure plot our t-SNE plots
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contain less information, but can better emphasize clustering of samples that have similar

membership proportions in many clusters. Specifically, t-SNE tends to place samples with sim-

ilar membership proportions together in the two-dimensional plot, forming visual “clusters”

that can be identified by eye (e.g. http://stephenslab.github.io/count-clustering/project/src/

tissues_tSNE_2.html). This may be particularly helpful in settings where no external informa-

tion is available to aid in making an informative Structure plot.

Cluster annotation

To help biologically interpret the clusters, we developed a method to identify which genes are

most distinctively differentially expressed in each cluster. (This is analogous to identifying

“ancestry informative markers” in population genetics applications [55].) Specifically, for each

cluster k we measure the distinctiveness of gene g with respect to any other cluster l using

KLg ½k; l� :¼ ykg log
ykg

ylg
þ ylg � ykg ; ð3Þ

which is the Kullback–Leibler divergence of the Poisson distribution with parameter θkg to the

Poisson distribution with parameter θlg. For each cluster k, we then define the distinctiveness

of gene g as

Dg ½k� ¼ min
l6¼k

KLg ½k; l�: ð4Þ

The higher Dg[k], the larger the role of gene g in distinguishing cluster k from all other clusters.

Thus, for each cluster k we identify the genes with highest Dg[k] as the genes driving the cluster

k. We annotate the biological functions of these individual genes using the mygeneR Biocon-

ductor package [56].

For each cluster k, we filter out a number of genes (top 100 for the Deng et al data [33] and

GTEx V6 data [57]) with highest Dg[k] value and perform a gene set over-representation analy-

sis of these genes against all the other genes in the data representing the background. To do

this, we used ConsensusPathDB database (http://cpdb.molgen.mpg.de/) [58] [59]. See Tables

1, 2 and 3 for the top significant gene ontologies driving each cluster in the GTEx V6 data and

the Deng et al data respectively.

Comparison with hierarchical clustering

We compared the GoM model with a distance-based hierarchical clustering algorithm by

applying both methods to samples from pairs of tissues from the GTEx project, and assessed

their accuracy in separating samples according to tissue. For each pair of tissues we randomly

selected 50 samples from the pool of all samples coming from these tissues. For the hierarchical

clustering approach we cut the dendrogram at K = 2, and checked whether or not this cut par-

titions the samples into the two tissue groups. (We applied hierarchical clustering using

Euclidean distance, with both complete and average linkage; results were similar and so we

showed results only for complete linkage.)

For the GoM model we analysed the data with K = 2, and sorted the samples by their mem-

bership in cluster 1. We then partitioned the samples at the point of the steepest fall in this

membership, and again we checked whether this cut partitions the samples into the two tissue

groups. S3 Fig shows, for each pair of tissues, whether each method successfully partitioned

the samples into the two tissue groups.
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Thinning

We used “thinning” to simulate lower-coverage data from the original higher-coverage data.

Specifically, if cng is the counts of number of reads mapping to gene g for sample n for the origi-

nal data, we simulated thinned counts tng using

tng � Binðcng ; pthinÞ ð5Þ

where pthin is a specified thinning parameter.

Code availability

Our methods are implemented in an R package CountClust, available as part of the Biocon-

ductor project at https://www.bioconductor.org/packages/3.3/bioc/html/CountClust.html.

The development version of the package is also available at https://github.com/kkdey/

CountClust.

Code for reproducing results reported here is available at http://stephenslab.github.io/

count-clustering/.

Supporting information

S1 Fig. Structure plot of GTEx V6 tissue samples for (a) K = 5, (b) K = 10, (c) K = 15, (d)

K = 20. Some tissues form a separate cluster from the other tissues from K = 5 onwards (for

example: Whole Blood, Skin), whereas some tissue only form a distinctive subgroup at K = 20

(for example: Arteries).

(PDF)

S2 Fig. Top five principal components (PC) for GTEx V6 tissue samples. Scatter plot repre-

sentation of the top five PCs of the GTEx tissue samples. Data was transformed to log2 counts

per million (CPM).

(PDF)

S3 Fig. Comparison between GoM model and hierarchical clustering under different sce-

narios of data transformation. We used GTEx V6 data for model performance comparisons.

Specifically, for every pair of the 53 tissues, we assessed the ability of the methods to separate

samples according to their tissue of origin. The subplots of heatmaps show the results of evalu-

ation under different scenarios. Filled squares in the heatmap indicate successful separation of

the samples in corresponding tissue pair comparison. (a) Hierarchical clustering on log2

counts per million (CPM) transformed data using Euclidean distance. (b) Hierarchical cluster-

ing on the standardized log2-CPM transformed data (transformed values for each gene was

mean and scale transformed) using the Euclidean distance. (c) GoM model of K = 2 applied to

counts. (d) Hierarchical clustering on counts data with the assumption that, for each gene the

sample read count cng has a variance �cg þ 1 that is constant across samples. And, the the gene-

specific variance �cg þ 1 was used to scale the distance matrix for clustering. (e) Hierarchical

clustering applied to adjusted count data. Each gene has a mean expression value of 0 and vari-

ance of 1. Taken together, these results suggest that regardless of the different data transforma-

tion scenarios, the GoM model with K = 2 is able to separate samples of different tissue of

origin, better than hierarchical cluster methods.

(PDF)

S4 Fig. GTEx brain PCA, t-SNE and MDS.

(PDF)
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S5 Fig. Structure plot of GTEx V6 tissue samples for K = 20 in two runs under different

thinning parameter settings. (a) pthin = 0.01 and (B) pthin = 0.0001. The structure in these two

plots closely resemble the pattern observed in Fig 1(a), though there are a few differences from

the unthinned version.

(PDF)

S6 Fig. A comparison of accuracy of hierarchical clustering vs GoM on thinned GTEx data,

with thinning parameters of pthin = 0.01 and pthin = 0.001. For each pair of tissue samples

from the GTEx V6 data we assessed whether or not each clustering method (with K = 2 clus-

ters) separated the samples according to their tissue of origin, with successful separation indi-

cated by a filled square. Thinning deteriorates accuracy compared with the unthinned data

(Fig 2), but even then the model-based method remains more successful than the hierarchical

clustering in separating the samples by tissue or origin.

(PDF)

S7 Fig. Deng et al (2014) PCA, tSNE, MDS and dendrogram plots for hierarchical cluster-

ing.

(PDF)

S8 Fig. Additional GoM analysis of Deng et al (2014) data including blastocyst samples

and 48 blastocyst marker genes. We considered 48 blastocyst marker genes (as chosen by

Guo et al., 2010) and fitted GoM model with K = 3 to 133 blastocyst samples. In the Struc-

ture plot, blastocyst samples are arranged in order of estimated membership proportion in

the Green cluster. The panel located above the Structure plot shows the corresponding pre-

implantation stage from which blastocyst samples were collected. The heatmap located

below the Structure plot represents expression levels of the 48 blastocyst marker genes (log2

CPM), and the corresponding dendrogram shows results of hierarchical clustering (com-

plete linkage). The table on the right of the expression heatmap displays gene information,

showing, from left to right, 1) whether or not the gene is a transcription factor, 2) the driving

GoM cluster if the gene was among the top five driving genes, and 3) the featured cell type

(TE: trophecoderm, EPI: epiblast, PE: primitive endoderm) that was found in Guo et al.,

2010.

(PDF)

S9 Fig. Visualization of PCA and t-SNE results of mouse pre-implantation embryos data

from Deng et al (2014) using 48 blastocyst marker genes.

(PDF)

S10 Fig. Sparse Factor Analysis loadings visualization of GTEx V6 tissue samples. The col-

ors represent the 20 different factors. The factor loadings are presented in a stacked bar for

each sample. We performed SFA under the scenarios of when the loadings are sparse (left

panel) and when the factors are sparse (right panel).

(PDF)

S11 Fig. Sparse Factor Analysis loadings visualization of GTEx brain tissue samples. The

colors represent the 6 different factors. The factor loadings are presented in a stacked bar for

each sample. We performed SFA under the scenarios of when the loadings are sparse (left

panel) and when the factors are sparse (right panel).

(PDF)

S12 Fig. Sparse Factor Analysis loadings visualization of mouse pre-implantation embryos

from Deng et al., (2014). The colors represent the 6 different factors. The factor loadings are
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presented in a stacked bar for each sample. We performed SFA under the scenarios of when

the loadings are sparse (left panel) and when the factors are sparse (right panel).

(PDF)

S1 Table. Cluster Annotations of GTEx V6 data with top driving gene summaries.

(PDF)

S2 Table. Cluster Annotations of GTEx V6 Brain data with top driving gene summaries.

(PDF)

S3 Table. Cluster Annotations of Deng data with top driving genes.

(PDF)

S4 Table. Cluster Annotation of Deng data analysis using 48 genes with top driving gene

summaries.

(PDF)
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