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Abstract

By using fluorescence imaging, we provide a time-resolved single-cell view on coupled

defects in transcription, translation, and growth during expression of heterologous mem-

brane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane pro-

teins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-

expressed homologous membrane protein show membrane-proximal localization in a trans-

lation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with

cessation of cell division, which is restored once these bodies are cleared. In addition, acti-

vation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed.

We show that the presence of a native-like N-terminal domain is key to SRP-dependent

membrane localization and successful production of membrane proteins. The work pre-

sented gives new insights and detailed understanding of aberrant membrane protein bio-

genesis, which can be used for strategies to optimize membrane protein production.

Author Summary

Malfunctioning of particular membrane proteins lies at the heart of some detrimental

human diseases. The discovery and correction of bottlenecks in the cellular production of

high quantities of membrane proteins for structure/function or drug discovery studies is a

huge challenge. Single-cell studies have drastically improved our understanding of micro-

bial physiology but have not been applied yet to protein production. We have studied

transcriptional, post-transcriptional, and translational processes in single cells of the pro-

tein production host Lactococcus lactis and reveal new post-transcriptional obstructions in

the synthesis pathway of heterologous membrane proteins. Recalcitrant membrane pro-

teins do not form inclusion bodies but, instead, their transcripts accumulate at the cell

poles in severely stressed L. lactis cells. Importantly, we show that the introduction of a

new N-terminal fusion protein that improves recalcitrant membrane protein production
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coincided with a switch from polar mRNA accumulation to membrane-proximal mRNA

localization.

Introduction

Integral membrane proteins are key elements in essential cellular processes such as signal

transmission and membrane transport. Elucidation of their molecular structure is important

since their malfunctioning lies at the heart of a great number of diseases and because they con-

stitute important drug targets [1]. Cell-based expression systems are widely employed to pro-

duce convenient amounts of recombinant membrane protein for downstream biochemical

characterization. In this respect, bacterial species are considered valuable production hosts,

next to yeast and insect cells [2–4]. A significant bottleneck in the drug discovery pipeline,

however, is that overexpression of membrane proteins in bacterial hosts such as Escherichia
coli and Lactococcus lactis for structural and drug-screening studies remains a significant chal-

lenge. Therefore, ample research has aimed to elucidate the physiological responses of these

bacteria to overexpression of membrane proteins by means of, for instance, transcriptomic

and proteomic analyses in order to identify cellular constraints hampering production [5–7].

Although the ‘omics’ data give a good representation of the average state of the cells in a cul-

ture, they do not record problems in membrane protein production at the level of individual

cells. Impediments might occur anywhere along the process, from transcription to translation

to the insertion of correctly folded proteins in the cytoplasmic membrane. Functional synthe-

sis of most polytopic membrane proteins is dependent on co-translational translocation real-

ized by the signal recognition particle (SRP) pathway, which is responsible for the timely

delivery of elongating, membrane protein-producing ribosomes to the membrane [8]. With

the rise of techniques to peek inside single cells, the spatiotemporal background of processes

that underlie problematic synthesis can now be identified and examined in great detail.

Recently, it was shown in E. coli that mRNA species encoding SRP-dependent proteins

(mostly integral membrane proteins) display translation-dependent membrane localization,

including polycistronic mRNAs containing ORFs for both soluble and integral membrane pro-

teins [9–11]. All other mRNAs, including those of the SecB-dependent periplasmic and outer

membrane proteins, were maintained throughout the cytoplasm [9]. The SRP-dependent

pathway is conserved among all kingdoms of life, but the subset of molecular components

deviate between species [12]. The notion that mRNAs of SRP-dependent proteins have a

defined spatial organization in bacteria is extremely important in this context. Since codon

choice and tRNA-availability differ between cells of prokaryotic or eukaryotic origin, the signal

that is responsible for SRP interaction may be unavailable when trying to express a non-

optimized gene in an evolutionarily distinct host. It is therefore tempting to speculate that

mRNAs, and the heterologous membrane proteins they encode, might not be properly tar-

geted to the membrane due to a lack of the correct bacterial ZIP-code for balanced SRP-depen-

dent membrane delivery.

To address the impact and effect of mRNA targeting on heterologous production of mem-

brane proteins, we investigated the spatial organization of membrane protein-encoding

mRNAs in L. lactis at the single cell level. In contrast to mRNAs of well-expressed membrane

proteins that localize at the membrane in agreement with previous studies, our results indicate

that poorly expressed membrane proteins experience obstacles during translation, which even-

tually leads to accumulation of mRNA transcripts at the cell poles. These immobile mRNA

clusters are spatially distinct from the location of protein aggregation seeds and from the site
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where the mRNAs are transcribed. They are also formed when translation is obstructed. Once

their disassembly is initiated, a synchronized restoration of translation and growth takes place.

Our findings add an empirical understanding of why heterologous membrane proteins are

poorly expressed in bacterial hosts, and provide a time-resolved single-cell view on coupled

defects in transcription, translation, and growth during aberrant synthesis.

Results

Transcripts of poorly expressing membrane proteins accumulate in

immobile polar foci

Differential localization of bacterial mRNAs of SRP-dependent proteins has thus far only been

shown to exist in E. coli [9–11]. Therefore, we first tested, by widefield fluorescence micros-

copy, whether mRNAs specifying either integral membrane proteins or cytoplasmic proteins

adopt different subcellular sites in the Gram-positive bacterium L. lactis. L. lactis bcaP mRNA

was chosen as a model encoding a well-expressed endogenous amino acid transporter [7,13].

L. lactis codY mRNA, coding for a central regulator of nitrogen metabolism [13], and gfp
mRNA were utilized as representatives specifying cytoplasmic proteins. Fluorescence in situ
hybridization (FISH) was adapted in order to be able to image transcripts with the same probe

(ms2) by appending the transcripts with repetitive MS2 binding sites (12bs) (For validation of

the method see S1 Text) [14,15]. The MS2 binding sites were chosen because these also allow

for live cell imaging of the transcripts, as discussed below. Since we were specifically interested

in the fate of various membrane-protein-mRNAs upon their overproduction, the nisin-induc-

tion system for overexpression (NICE) was used to produce recombinant mRNA and cognate

proteins [16]. The successful production of STREPII-tagged BcaP and CodY proteins was con-

firmed by immunoblotting (S1A Fig). After 1 hr of induction with 5 ng/ml nisin, starting at

mid-exponential phase, codY12bs and gfp12bs mRNAs were mainly detected in the cytoplasm

outside the area occupied by the chromosome (Fig 1A and S1B Fig), while the bcaP12bs tran-

scripts appeared as fluorescent patches along the inside of the cytoplasmic membrane (Fig 1B).

We realize that pinpointing the location of overexpressed transcripts does not reflect the native

situation. However, the production of recombinant membrane proteins traditionally uses

multi-copy number expression vectors. Hence, we wanted to study the temporal and subcellu-

lar factors of membrane protein biogenesis in a malfunctioning scenario to understand (over)

expression bottlenecks.

Next, we employed FISH to examine the localization of mRNAs encoding two poorly

expressed heterologous membrane proteins: A sucrose transporter from Solanum tuberosum
(SUT1) and the human γ-secretase component, Presenilin 1 missing exon 9 (PS1Δ9). Both

proteins are only produced to levels less than 10% of that of BcaP [7,17]. In contrast to bcaP12bs,
SUT112bs and PS1Δ912bs transcripts appeared as single bright fluorescent foci in one or both

poles in the majority of cells (Fig 1C and 1D). We ruled out that the polar mRNA foci were

methodological artifacts by visualizing untagged PS1Δ9 and bcaP mRNA with gene-specific

FISH probes (S1 Text). In order to get a population-wide view of the subcellular distribution

of the overexpressed transcripts, >600 randomly chosen cells expressing either bcaP12bs,
SUT112bs, bcaP12bs, or codY12bs were further examined. Fluorescent spots inside the cells, as

well as spot coordinates relative to the cell contour, were obtained using a Gaussian fitting

algorithm in the ImageJ ISBatch plug-in [18]. The peak coordinates were normalized, and all

spots were jointly projected in one half of a model cell (dimensions: 800×900 nm, based on the

average length and width of L. lactis cells grown in GCDM�; S1C Fig). Location maps of sub-

cellular fluorescence and intensity profiles thereof enabled further discriminating mRNA

encoding CodY, BcaP, PS1Δ9, and SUT1 (Fig 1A–1E). bcaP12bs mRNA is localized along the

mRNA Localization during Membrane Protein Production

PLOS Genetics | DOI:10.1371/journal.pgen.1006523 December 15, 2016 3 / 27



Fig 1. Transcripts of poorly expressing membrane proteins accumulate in immobile polar foci. (A-D)

Left panels: Localization of codY12bs, bcaP12bs, PS1Δ912bs or SUT112bs transcripts in L. lactis NZ9000 cells.

Center panels: Corresponding phase contrast images. Scale bar = 2 μm. Colored panels: Location maps

constructed from fluorescent TAMRA spots observed in 1185, 877, 765, and 661 cells, respectively,

highlighting the preferential localization of each overexpressed mRNA in one half of a model cell. Thick
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cytoplasmic membrane, codY12bs mRNA molecules tend to accumulate at the periphery of the

chromosome, while SUT112bs and PS1Δ912bs mRNA foci are mostly confined to the cell poles.

Approximately half of the imaged cells expressing PS1Δ9 or SUT1 contained densely packed,

polar mRNA clusters (Fig 1F) marked by spatially confined, yet bright fluorescence (S1D Fig).

This type of mRNA-dense spots was far less pronounced or absent in cells expressing bcaP12bs
or codY12bs, respectively (S1D Fig).

In a previous study, no clear differences in the population-averaged levels of transcripts

were observed when producing different membrane proteins in L. lactis [17]. FISH analysis

revealed that the population averages of bcaP12bs and PS1Δ912bs transcript levels were roughly

similar, but that the distribution of mRNA levels per cell differed quite considerably between

the two populations (Fig 1G). After induction, an increase in bcaP12bs transcript levels was evi-

dent when compared to non-induced cells, but this was less so in cells expressing PS1Δ912bs
mRNA (Fig 1G). Instead, 50% of the latter cells contained very little, or no PS1Δ912bs mRNA.

In cells with detectable levels of PS1Δ912bs mRNA, 90% had polar mRNA clusters (Fig 1G). A

small fraction of these cells contained extremely high levels of PS1Δ912bs mRNA; cells with

high levels of overexpressed mRNA were absent in the bcaP12bs-expressing population. In the

remaining ~10% of cells, the PS1Δ912bs mRNA localized in a manner similar to that of overex-

pressed bcaP12bs transcripts. Higher intracellular levels of PS1Δ912bs mRNA correlated with a

greater disposition for a cell to carry polar mRNA clusters (Fig 1H). This suggests that there is

an expression window for this particular transcript above which cluster formation prevails

(mRNA level >10 AU).

Live cell imaging reveals spatiotemporal aberration of heterologous-

membrane-protein mRNA and a decline in transcription

FISH only provides a static view on mRNA localization. We implemented the MS2 system to

label mRNAs in living cells to examine mRNA dynamics (For validation of the method see S1

Text) [11,19,20]. In this approach, transcripts extended with MS2 binding sites are specifically

recognized by MS2 phage coat proteins fused to GFP. To detect the MS2 binding site-extended

transcripts, L. lactis LG010 was created in which the MS2-GFP protein (MG4: optimized for

use in L. lactis; see S1 Text) can be expressed from the chromosomal pseudo10 locus [21] using

the inducible nisA promoter. Importantly, GFP in this study refers to a monomeric superfolder

GFP optimized for L. lactis ([22]; see Materials and Methods). The spatial distribution of the

different MS2-GFP-tagged mRNAs was similar to that observed with FISH (S2 Fig). Time-

lapse movies revealed that many bcaP12bs mRNA foci were relatively slow-moving clusters that

seemed to be associated with the membrane (S1 Movie). codY12bs mRNAs diffused as highly

dynamic moieties; slow-moving foci similar to those present in bcaP12bs-expressing cells were

transparent lines: Cell boundaries including the portion occupied by cell wall and membrane as approximated

using BcaP-GFP expressing cells (See S1C Fig). Thin transparent lines: Boundaries of chromosomal areas

as approximated using DAPI staining in living cells (See S1C Fig). Scale bars depict the relative density of

each mRNA species. (E) Intensity profiles drawn along the center of the X-axis of the location maps ((A-D),

colored panels) of cells expressing bcaP12bs (solid black line), codY12bs (dotted black line), PS1Δ912bs (solid

red line) or SUT112bs (dotted red line). (F) The percentage of cells with bcaP12bs, PS1Δ912bs, or SUT112bs

polar mRNA clusters. Error bars: Standard errors. (G) The population-wide distribution of bcaP12bs or

PS1Δ912bs mRNA content obtained from single-cell measurements depicted in box plots and histograms

(lower panels). Red bars (right panel): The fraction of cells with polar PS1Δ912b mRNA clusters. Blue lines:

Gamma distributions fitted to expression data. Fluor = fluorescence. (H) The percentage of cells containing

polar bcaP12bs (black) or PS1Δ912bs (red) mRNA clusters plotted as a function of intracellular TAMRA levels

(corresponding to bcaP12bs or PS1Δ912bs mRNA levels).

doi:10.1371/journal.pgen.1006523.g001
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absent (S2 Movie). PS1Δ912bs and SUT112bs mRNA formed static and long-lived clusters (>1

hr) at the cell pole (S3 and S4 Movies).

Growth of, and mRNA localization in PS1Δ912bs-expressing cells were followed over time

using MS2-GFP (MG4). One-third of the cells did not grow and polar foci remained visible

for up to 4 hrs (S5 Movie and Fig 2A and 2B). In another population tertile, polar foci redis-

tributed into multiple smaller foci synchronously with a switch from prolonged (~3 hrs)

growth arrest to cell expansion with disturbed division (S6 Movie and Fig 2A and 2B). The

last fraction contained less intense fluorescent foci, an indication that PnisA-induced expres-

sion had been relatively low in these cells, that disappeared within 1 hr, after which growth

continued as normal (S7 Movie and Fig 2A and 2B). Hence, only mild expression at the initi-

ation of the time-lapse experiment led to microcolony formation after removal of polar

mRNA clusters (Fig 2C). We identified a clear sequence of post-transfer PS1Δ912bs mRNA

patterns (S5 and S6 Movies and Fig 2D). First, mRNA formed crescent patches at the poles.

Then, a redistribution to spots with Gaussian distributions occurred. These spots eventually

fell apart into multiple smaller foci and ultimately disappeared. Under identical conditions,

bcaP12bs-expressing cells did not cease to grow, and PnisA-driven expression continued for

60–90 min after transfer from liquid medium to microscopy slides lacking the inducer nisin

(S8 Movie and Fig 2E).

Using MS2-GFP, we consistently observed that there are at least two deviant subpopula-

tions of PS1Δ912bs-expressing cells: Non-growing cells with mRNA clusters and dividing cells

without any visible PS1Δ912bs mRNA. Presumably, the latter cells grew because they were

either not (yet) induced or already had terminated PnisA-controlled transcription. PnisA-driven

co-expression of MS2-GFP with PS1Δ9, but not with BcaP, decreased without affecting the

population-wide growth (Fig 2F). Hence, either transcription from at least the nisA promoter

or translation in general is abrogated in L. lactis cells producing recalcitrant membrane pro-

teins. In any case, both scenarios create a negative feedback that contributes to reduced pro-

duction yields.

Polar mRNA clusters are spatially unrelated to protein aggregation

seeds

To examine if polar mRNA clusters correspond to sites of protein aggregation, BcaP and

PS1Δ9 were fused to GFP. Even though GFP fused to the extra-cytoplasmic PS1Δ9 C-terminus

likely interferes with its membrane insertion, information can still be gained on completion of

translation, protein targeting, and protein-mRNA co-localization. The cells were induced to

express BcaP-GFP or PS1Δ9-GFP for 1 hr, after which the level and subcellular localization of

each of the GFP-tagged proteins and their respective mRNAs were examined using FISH.

Cells with polar bcaP-gfp12bs mRNA clusters (<1% of the population) contained the highest

amount of bcaP-gfp12bs transcripts, and held relatively high levels of BcaP-GFP (Fig 3A). The

production window for bcaP12bs, defined as the range of mRNA levels that do not lead to

mRNA clusters, was significantly wider than that of PS1Δ912bs mRNA (Fig 3B). PS1Δ9-GFP

was clearly detected albeit at levels at least an order of magnitude lower than BcaP-GFP (Fig

3A–3C). No reports on inclusion bodies in L. lactis exist, but misfolded membrane proteins

are known to co-fractionate with the membrane proteome [23]. In agreement, we occasionally

observed membrane-proximal fluorescent protein aggregates, even in BcaP-GFP-expressing

cells (S3A Fig). The protein aggregates did not typically co-occur with polar clusters of bcaP-
gfp12bs mRNA. When present in the same cell, they did not co-localize (S3A Fig). No signs of

PS1Δ9-GFP membrane insertion were detected. Rather, PS1Δ9-GFP was present as aggrega-

tion seeds [24] at the membrane (Fig 3C and S3B Fig). Of the larger PS1Δ9-GFP aggregates,

mRNA Localization during Membrane Protein Production
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the majority (90%) did not co-localize with, but was often found in the proximity of polar

mRNA foci (Fig 3C).

We attempted to indirectly detect (aggregates of) truncated or incompletely translated

fusion proteins by localizing the molecular chaperone DnaK. DnaK associates with protein

aggregates and inclusion bodies in E. coli [24,25]. Levels of DnaK-GFP were significantly ele-

vated 15 min after initiation of PS1Δ912bs expression (Fig 3D). The cellular distribution of

Fig 2. Time-resolved analysis of PS1Δ912bs mRNA abundance and localization using time-lapse

microscopy. (A) PS1Δ912bs mRNA expression in L. lactis LG010 cells was induced following a standard

regime after which the cells were transferred to a microscopy slide carrying a thin layer of 1.5% agarose

dissolved in GCDM* lacking nisin, for time-lapse fluorescence microscopy analysis. Shown are the portions of

100 tracked cells that contain polar PS1Δ912bs mRNA clusters that do not divide after transfer (ND), that grow

very poorly and adopt swollen and deviating cell shapes (-), that grow at a moderate rate (+/-) and that grow at

a normal rate (+). (B) Histogram displaying the time it takes for 100 individual cells to remove MS2-GFP-

tagged PS1Δ912bs mRNA clusters from their poles, as visualized with time-lapse microscopy. (C) Box plots

displaying the initial MS2-GFP expression levels, which is directly correlated to the mRNA level, in PS1Δ912bs-

expressing cells that either resumed growth (+) or remained in a non-growing state (-). A Students t-test was

performed to test for significance (p<0.005). (D) Schematic representation of the post-transfer sequence of

patterns adopted by MS2-GFP-tagged PS1Δ912bs mRNA (colored red). (E) Histogram displaying the time it

takes for 100 individual cells to stop nisin A-driven transcription of bcaP12bs mRNA upon transfer of induced

liquid cultures to agarose pads with growth medium lacking nisin A, as determined from MS2-GFP

distributions in cells using time-lapse microscopy. (F) MS2-GFP expression (right axis) monitored in L. lactis

LG010 cells after standard induction, expressing nothing (empty vector control; grey), BcaP (black), or PS1Δ9

(red) and their averaged growth (blue line, left axis). The MS2-GFP fluorescence values are normalized for

OD600.

doi:10.1371/journal.pgen.1006523.g002
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DnaK-GFP was examined in combination with FISH to visualize PS1Δ912bs or bcaP12bs mRNA.

The distribution of DnaK-GFP inside bcaP12bs expressing cells was similar to that of DnaK-

GFP in control cells (Fig 3E and S3C Fig). Clusters of DnaK-GFP only formed in PS1Δ9-ex-

pressing cells, but hardly ever at the pole(s), where PS1Δ912bs mRNA gathers (Fig 3E and S3C

Fig). Rather, DnaK-GFP localized to the most intense PS1Δ9-GFP protein foci: DnaK foci are

on average a similar distance away from polar PS1Δ912bs mRNA clusters as were the PS1Δ9-

GFP foci (S3D Fig). Location maps of PS1Δ9-GFP and DnaK-GFP foci show that they have

very comparable intracellular distributions, which are quite different from that of PS1Δ912bs
mRNA (S3E Fig). Although no overlap in localization between polar PS1Δ912bs mRNA clusters

and DnaK-GFP was observed, elevated levels of DnaK-GFP are correlated with the presence of

polar PS1Δ912bs mRNA clusters, indicating that those cells are, or have been, under severe

stress (Fig 3F).

Plasmids predominantly co-localize with the nucleoid, not with mRNA-

dense polar clusters

We entertained the possibility that pNZ8048 plasmids are predominantly present in the cell

pole(s) like other multi-copy number plasmids, which might seed the formation of foci for

mRNAs of poorly expressed membrane proteins due to high local transcription [26–28]. Plas-

mid pNZ8048 was visualized using a Gram-positive ParB/parS system (M. Kjos, J. Siebring, J.

W. Veening, personal communication) and DNA FISH. A parS site was introduced in

pNZ8048, pLG-BcaP and pLG-PS1Δ9, and L. lactis LG045a was constructed, a strain that con-

stitutively produces low levels of ParB-GFP (the parS binding protein fused to GFP). The L.

lactisNZ9000 genome does not contain a ParA homolog [29], allowing visualization of the

subcellular location of parS-labeled pNZ8048 derivatives (Fig 4 and S4 Fig).

Fig 3. Polar mRNA clusters are spatially unrelated to protein aggregation seeds. (A) Single-cell bcaP-gfp12bs mRNA content plotted as a function

of intracellular BcaP-GFP protein abundance. Red encircled dots: Cells with polar bcaP-gfp12bs clusters. (B) Single-cell PS1Δ9-gfp12bs mRNA content

plotted as a function of intracellular PS1Δ9-GFP protein abundance. Red encircled dots: Cells with polar PS1Δ9-gfp12bs clusters. (C) Co-visualization

of bcaP-gfp12bs or PS1Δ9-gfp12bs mRNA (FISH) with their protein products. Bottom panels: false-colored overlays of mRNA (red) and protein (cyan).

Images were subjected to deconvolution to enhance the contrast. (D) Time course of fold changes (FC) of DnaK-GFP expression in L. lactis LG029, a

strain in which dnaK was replaced with dnaK-gfp, after induction of expression of PS1Δ9 (red squares) or BcaP (black squares) compared to control

cells (dashed grey line). (E) Co-visualization of DnaK-GFP and overexpressed PS1Δ912bs or bcaP12bs mRNA in L. lactis LG029. Right panels: False

colored-overlays of DnaK-GFP (cyan) and mRNA (red). (F) DnaK-GFP levels in single L. lactis LG029 cells displayed as a function of levels of

bcaP12bs mRNA (grey filled circles) or PS1Δ912bs mRNA (black dots). Black dots encircled in red: Cells with polar PS1Δ912bs clusters. Scale

bar = 2 μm. Yellow lines indicate cell contours.

doi:10.1371/journal.pgen.1006523.g003
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Fig 4. pNZ8048 plasmids predominantly localize in the chromosomal area, not with mRNA-dense

polar clusters. Plasmids tagged with parS/ParB-GFP were co-visualized with overexpressed bcaP12bs

mRNA (A) or PS1Δ912bs mRNA (B) using FISH. Right panels show false-colored images in which mRNA and

plasmids are represented in red and cyan, respectively. Images were subjected to deconvolution to enhance

the contrast. Scale bar = 2 μm. Yellow lines indicate cell contours. (C) ParB-GFP in all of the captured cells

(± 200 cells per experiment) were traced with the ImageJ PeakFinder plug-in and jointly projected into one half

of a model cell as described earlier. The intracellular distribution of ParB-GFP foci under various gene

expression scenarios (empty vector control (-), BcaP or PS1Δ9 expression) is represented as location maps

to highlight the predominant sites of plasmid localization averaged over all cells. (D) Intensity profiles of

overexpressed mRNA and co-visualized plasmids created from the location maps to illustrate differences in

distribution of pLG-BcaP (black solid line), pLG-PS1Δ9 (red solid line), bcaP12bs (black dotted line), and

PS1Δ912bs (red dotted line) along the X-axis of the model cells. Scale bars in microscopy images represent

2 μm.

doi:10.1371/journal.pgen.1006523.g004
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ParB-GFP expressed in cells carrying pNZ8048 without a parS sequence distributed homo-

geneously (S4A Fig). Unlike some high-copy plasmids in other bacterial species [26–28],

pNZ8048 primarily populates the area occupied by the chromosome in L. lactis (S4 Fig). Co-

visualization of the plasmids and the full-length transcripts they specify shows that they are

spatially separated (Fig 4A, 4B and 4D). Since our plasmid imaging approach does not have

the time-resolution required to monitor rapid spatiotemporal changes, we cannot rule out the

possibility that transertion, the coupled transcription, translation and translocation of mem-

brane proteins, does not occur here [30]. Adding nisin to induce expression of bcaP12bs or

PS1Δ912bs transcripts did not severely affect the location of pNZ8048-derived plasmids, but

location maps of plasmids show that induction of PS1Δ9 caused the area occupied by plasmids

to slightly shrink compared to control cells (Fig 4C and 4D).

Because polar clustering of PS1Δ912bs transcripts cannot be explained by the spatial distribu-

tion of pNZ8048, we reasoned that downstream processes, including targeting of mRNA for

degradation or complications in synthesis of PS1Δ9 might be involved. The shrinkage of the

area occupied by the plasmids (and nucleoid) suggests that transertion of PS1Δ9 is inhibited

under these conditions.

The relationship between mRNA cluster formation, translation activity,

and mRNA degradation

What is the effect of translation on the localization and degradation of the studied mRNAs?

Are polar mRNA clusters still available for translation or could they correspond to bacterial

analogs of dedicated mRNA degradation hubs that are found in eukaryotic cells during stress?

In E. coli, treatment with translation-inhibiting kasugamycin results in a loss of membrane-

localized mRNAs [9]. We observed the same with overexpressed MS2-GFP-visualized bcaP12bs
mRNAs when L. lactis cells were treated with translation-inhibiting antibiotics erythromycin

(Ery) and chloramphenicol (Cm) (Fig 5A). The bulky MS2-labeled mRNAs did not enter the

nucleoid region due to chromosome condensation induced by Ery/Cm treatment [31–33]

(S5A Fig). In contrast to bcaP12bs, PS1Δ912bs mRNA remained visible in the poles after antibiot-

ics treatment. These structures apparently do not readily release transcripts upon inhibition of

translation. To further investigate the effect of translation on mRNA localization, we mutated

the aaggagg ribosomal binding site (RBS) on gfp12bs transcripts by changing it to aattcgg (S5B

Fig), and employed the same strategy to disrupt the RBS on bcaP12bs and PS1Δ912bs. Using

FISH, we observed that a high percentage of the cells expressing RBS-less bcaP12bs or PS1Δ912bs
mRNA contained transcript clusters (Fig 5B and 5C). This suggests that the punctuate foci cor-

respond to mRNAs that are blocked from translation. Closer examination (Fig 5D) of the pop-

ulation-wide localization of the RBS-less mRNAs revealed that they cluster more closely to the

nucleoid (and thus also to the expression plasmids), while the RBS-containing PS1Δ912bs
mRNA clusters are predominantly present at the cell poles (see also Fig 1C).

The localization of ribosomes in L. lactis is similar to that in other bacteria: The major frac-

tion of the S2-eYFP protein—and therefore ribosomes—localizes outside the nucleoid

[32,34,35] (Fig 5E and S5C Fig). Time-lapse movies similar to those described above reveal

that non-growing cells expressing PS1Δ9 undergo a reorganization of S2-eYFP localization

from typically nucleoid-occluded to highly homogeneously distributed (Fig 5E). Since 70S

ribosomes are not able to freely diffuse into the nucleoid [32,34,35], a homogenous distribu-

tion indicates a loss of 70S ribosomes, and thus of translation. Non-induced cells transferred

to agarose slides lacking nutrients showed a similar phenotype, suggesting that the loss of 70S

ribosomes overlaps with entry into a stationary-like growth phase (S5C Fig). Surprisingly,

S2-eYFP is excluded from the poles in PS1Δ9-expressing cells (Fig 5F), which indirectly
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suggests that polar PS1Δ912bs mRNA clusters are not accessible for ribosomes. The finding that

Ery/Cm treatment does not lead to a release of mRNA from polar clusters strengthens this sup-

position. Under similar conditions, in about the same time required for cells to get rid of polar

MS2-labeled PS1Δ912bs clusters (Fig 2B), S2-eYFP localization and growth were restored to

wild-type (Fig 5G).

Determining the lifetimes of mRNAs might help understanding the cause of the polar

mRNA accumulation observed here. We treated cells expressing different transcripts and cog-

nate proteins with rifampicin to stop translation, and used FISH to follow the level of each

mRNA at several time points after rifampicin addition. We used FISH instead of Northern

hybridization to obtain a population-wide quantifiable view on mRNA degradation. Thus, we

were able to distinguish subpopulations of cells with significantly altered mRNA degradation

parameters (see below). Considerable amounts of PS1Δ912bs (t½ = 10.9 min) and SUT112bs
(t½ = 19.7) transcripts were still present after a 32-min treatment with rifampicin, in contrast

to codY12bs (t½ = 7.1 min) and bcaP12bs (t½ = 6.2 min) (Fig 5H and S5D Fig). The degradation

rate of codY12bs and bcaP12bs were in agreement with those reported previously (S5E Fig) [36],

which shows that mRNA degradation rates in L. lactis are generally lower than those measured

in other fast-growing bacterial species such as E. coli and B. subtilis [37–39]. Despite consider-

able deviations between experimental replicates, the half-lives of PS1Δ912bs and SUT112bs tran-

scripts did not differ substantially from the estimated median half-life of all mRNAs in L. lactis
(t½ = 10.9 min; S5E Fig). Separation of cells into populations that did or did not contain polar

mRNA clusters, and recalculation of their half-lives, revealed that, in cells without polar

Fig 5. Effect of polar clustering and ribosome binding on degradation and localization of overexpressed mRNAs. (A) L. lactis LG010 cells with

MS2-GFP-tagged bcaP12bs or PS1Δ912bs mRNA treated or not with Cm and Ery. (B) FISH images of L. lactis NZ9000 cells expressing bcaP12bs or

PS1Δ912bs mRNAs with or without functional RBS, and visualized by ms2 probe hybridization. (C) The percentage of cells (n = 500) expressing bcaP12bs

or PS1Δ912bs with (+) or without (-) RBS and containing mRNA clusters. Error bars = standard errors. (D) Location maps constructed from FISH images

of 500 cells showing the predominant distribution of bcaP12bs or PS1Δ912bs with or without RBS. (E) Snap shots of time-lapse microscopy of L. lactis

(rpsB::rpsB-eYFP) cells expressing bcaP12bs or PS1Δ912bs. (F) Boxplots of the ratio between the S2-eYFP protein spread along the long cell axis and

total cell length obtained from 100 cells expressing BcaP or PS1Δ9, as well as representative pictures of the corresponding S2-eYFP distributions. ***: A

Student’s t-test was performed to test for significance (p<0.005). (G) Time (hr) required for individual PS1Δ912bs-expressing cells (n = 100) to restore

growth after transfer to agarose pads lacking nisin, as determined by time-lapse microscopy. (H) Examples of PS1Δ912bs and SUT112bs transcripts

remaining in cells after 32 min treatment with rifampicin. (I) RnY-GFP localization in fixed L. lactis LG024a cells expressing nothing (-), bcaP12bs, or

PS1Δ912bs. Strain LG024a constitutively expresses rnY-gfp ectopically from its own promoter. The fusion gene was introduced additional to rnY to not

interfere with essential mRNA breakdown.

doi:10.1371/journal.pgen.1006523.g005

mRNA Localization during Membrane Protein Production

PLOS Genetics | DOI:10.1371/journal.pgen.1006523 December 15, 2016 11 / 27



mRNA clusters, PS1Δ912bs and SUT112bs mRNA is degraded at much higher rates than similar

mRNA trapped inside polar mRNA clusters (PS1Δ912bs: t½ = 4.6 min and t½ (cluster) = 16.1 min;

SUT112bs: t½ = 6.2 min and t½ (cluster) = 22.4 min; S5F Fig). Degradation of overexpressed

PS1Δ912bs or bcaP12bs mRNA lacking an RBS takes place at a higher rate (t½ = ~2.5 and ~1.7

min, respectively) than the original transcripts (t½ = ~10.9 and ~ 6.2 min, respectively; S5G

Fig). The fact that the RBS-less PS1Δ912bs and bcaP12bs mRNAs yielded nearly identical degra-

dation curves indicates that the mRNA half-life of at least these two mRNA species is mainly

influenced by ribosome occupancy in L. lactis. These results also imply that the observed slow

degradation of PS1Δ9mRNA does not originate from intrinsic signals in the alien mRNA

sequence, but depends on binding of ribosomes and/or downstream processes. Importantly,

the positioning of the major ribonuclease in Gram-positive bacteria, membrane-tethered

RNase Y [40], remains unaffected by PS1Δ912bs or bcaP12bs overexpression (Fig 5I).

The presence of an endogenous N-terminal domain is key to SRP-

dependent membrane localization

Could a defect in proper targeting of mRNA-ribosome complexes to the membrane play a role

the mislocalization of the recombinant mRNAs? It is well known that SRP-dependent target-

ing is important for co-translational translocation, and that recognition of a membrane pro-

tein emerging from the ribosomes by SRP is dependent on signals located on the N-terminal

domain of SRP-dependent proteins [9,41]. Optimization strategies by which slow codons are

incorporated at specific sites might stimulate timely SRP recognition [42], and fusion tags can

improve the guiding or initial insertion of heterologous RNC-ribosome-mRNA complexes to

the membrane [43–45]. To test if the N-terminal domain of PS1Δ9 (PS1Δ9N) is less adequate

for membrane-targeting in L. lactis than that of BcaP (BcaPN), we swapped both regions,

including the first two transmembrane domains, and re-examined their mRNA localization

(Fig 6A and 6B). Indeed, a high number of bcaPN-PS1Δ912bs transcripts was now localized

at the membrane instead of in polar clusters (Fig 6B and 6C). Vice versa, PS1Δ9N-bcaP12bs
mRNAs were mainly found in polar clusters (Fig 6B and 6C). Overexpression of the corre-

sponding proteins was monitored using quantitative blotting, in which the membrane protein

fractions of L. lactis cells were collected and directly spotted onto nitrocellulose membranes. In

agreement, the replacement of the N-terminal domain of PS1Δ9 with that of BcaP dramatically

elevated production yields, while the presence of the N-terminal PS1Δ9 domain lowered BcaP

production (Fig 6E and 6F).

The finding that polar mRNA accumulation of PS1Δ9N-bcaP12bs had decreased while the

corresponding protein production had improved prompted us to design a general optimiza-

tion strategy for improved production of recalcitrant membrane proteins. The same N-termi-

nal domain of BcaP was now fused to the N-terminus of PS1Δ9 via a flexible linker that

included a TEV protease cleavage site (Fig 6D). We coined this new fusion partner BcaP lead-

ing segment (BLS). To test the effectiveness of BLS on PS1Δ9 production, the various L. lactis
NZ9000 strains were grown in two types of media: GCDM� and GCDM� supplemented with

extra peptides through the addition of casitone. The latter has been shown to positively affect

the production of membrane proteins [46]. Induction was performed according to the stan-

dard regime, after which the quantity of original and chimeric membrane proteins in the

membrane fraction was examined as described above. In both types of media an increased

signal of BLS-PS1Δ9 over PS1Δ9 was observed, indicating that production of PS1Δ9 had

improved (Fig 6E and 6F). Moreover, mRNA of BLS-PS1Δ9 was more often observed at the

membrane than clustered in the cell poles (Fig 6G). Although follow-up studies are required to

address the quality of overexpressed BLS-PS1Δ9, we conclude that the BLS-tag has great
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potential as a fusion partner to elevate the levels of recalcitrant (heterologous) membrane pro-

teins in L. lactis by guiding their insertion in the cytoplasmic membrane.

Membrane protein mRNAs of the AT-rich L. lactis contain an increased

U-density over other mRNAs

Thus far, we were able to show a subset of cellular consequences of polar mRNA clusters, and

excluded the localization of plasmids, protein aggregates, the chaperone DnaK, and the main

Fig 6. N-terminal domain of membrane proteins influences mRNA localization and protein

production. (A) Schematic representation of the transmembrane domains, as predicted by TMHMM, of BcaP

(1) and PS1Δ9 (2) and chimeric proteins in which a portion of N-terminal domains of PS1Δ9 (PS1Δ9N) is

replaced by those of BcaP (3) and vice versa (4). (B) mRNA localization in representative cells expressing

bcaPN-PS1Δ912bs (3) or PS1Δ9N-bcaP12bs (4) transcripts. (C) The percentage of cells (n = 400) without polar

mRNA of the proteins depicted in A. (D) Schematic representation of PS1Δ9 (red bars) fused via its N-

terminal domain and a flexible linker containing a TEV protease site (blue dot) to the newly developed fusion

partner BLS (for BcaP Leading Segment; grey bars). (E) Dotblots of cytoplasmic fractions (C) and membrane

fractions (M) of L. lactis NZ9000 cells grown in GCDM* or GCDM* supplemented with 1.5% casitone, and

expressing the proteins shown in A and D. (F) Quantification of dotblot signals. Averaged signals are

displayed as percentages of the signals obtained for BcaP expression. (G) Representative image of cells

expressing PS1Δ912bs or BLS-PS1Δ912bs mRNA as visualized by FISH. Numbers in B, C, E, and F refer to the

construct numbers in A and D.

doi:10.1371/journal.pgen.1006523.g006
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constituent of the RNA degradosome, RNase Y, as a direct cause for cluster formation. What

then, besides ribosome exclusion, could drive the predisposition of mRNAs of recalcitrant

membrane proteins at the poles? Codons for hydrophobic amino acid residues that constitute

the transmembrane domains of membrane proteins have a strong uracil (U) bias [47]. This is

more pronounced in bacteria such as E. coli than in higher, eukaryotic cells through differences

in codon choice. The increased U-density of membrane protein mRNA was suggested to func-

tion as a post-transcriptional zip code for membrane targeting. Since L. lactis is an AT-rich

organism, the general U-density of transcripts is intrinsically higher than that of E. coli. If the

U-density of transcripts is of evolutionary importance, we would expect to see an adapted,

higher U-bias in the preferred codons specifying hydrophobic amino acid residues in L. lactis.
This is indeed the case for hydrophobic amino acid residues in L. lactis, whereas this bias is less

pronounced in E. coli (Fig 7A). Therefore, despite the AT-rich genomic sequence of L. lactis,
the U-density of membrane protein-encoding mRNA is significantly higher than that of

mRNAs of cytosolic proteins, but also than that of membrane protein-encoding mRNAs of E.

coli (Fig 7B). This suggests that in AT-rich organisms the deployment of mostly relatively U-

rich codons for hydrophobic amino acid residues has been selected for, through which the rel-

ative difference between the general U-density of mRNAs encoding membrane or cytoplasmic

proteins is maintained.

Discussion

L. lactis has emerged as a suitable host for membrane protein production, although expression

of heterologous membrane proteins is still suboptimal. To gain insights into potential obsta-

cles, we examined the fate of transcripts of well and poorly expressing membrane proteins,

and the relationship between mRNA localization, transcription, translation, and degradation.

In E. coli, transcripts for many integral membrane proteins are present in SRP-dependent co-

translational translocation complexes during the major part of their lifetime [9]. Transcripts

encoding the homologous transporter BcaP localized to the membrane in L. lactiswhile dis-

ruption of their translation led to loss of membrane-proximal mRNA foci, suggesting that a

Fig 7. Increased uracil density in L. lactis genes encoding membrane proteins. (A) The relative codon

bias for all hydrophobic amino acids in L. lactis MG1363 (left bars) and E. coli K12 (right bars). The red bars

indicate the codon(s) with the highest uracil content. (B) Boxplots show that the uracil density of transcripts

encoding membrane proteins is increased in both species. A Student’s t-test was performed: the uracil density

was significantly different (p < 0.0001; indicated by ****) between the two types of transcripts for both E. coli

and L. lactis.

doi:10.1371/journal.pgen.1006523.g007
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similar transertion system operates in this bacterium. Transcripts of poorly expressed mem-

brane proteins, H. sapiens PS1Δ9 and S. tuberosum SUT1, formed distinctive polar clusters in

L. lactis. Importantly, neither the expression vector pNZ8048 nor protein aggregates co-local-

ized at the poles. Although high-copy number plasmids have been localized predominantly at

the cell poles of bacteria [26–28], pNZ8048-derivatives randomly distributed in the cells, with

a predisposition in the area where the chromosomal DNA is also situated. The ColE1-derived

plasmid pBluescript, with ~50 copies per cell, does not adopt any specific subcellular location

in E. coli [48]. Both this and our study show that high-copy number plasmids do not necessar-

ily cluster at the poles.

The occurrence of polar mRNA clusters was translation-dependent, positively correlated to

the level of heterologous transcripts, and was always accompanied by severe growth defects,

loss of nucleoid-occluded ribosomes, and activation of the heat-shock response. Furthermore,

PS1Δ9-expressing cells displayed confined plasmid distribution and delayed degradation of

polar PS1Δ912bs mRNA clusters. The disappearance of polar mRNA foci was a prerequisite for

cells to be able to grow again, and was accompanied by a loss of nisin-driven transcription but

also by relocalization and increase of ribosomal protein S2-eYFP. The sudden release of many

PS1Δ912bs transcripts from polar foci, however, severely impacted growth, often leading to

defects in cell division. All of these observations are an indication that cells with polar mRNA

clusters adopt an altered cellular state. Previous ensemble studies of L. lactis overproducing

membrane proteins suggested that the stringent response might be involved [17]. High alar-

mone ((p)ppGpp) levels in E. coli and B. subtilis lead to a shift from transcription of rRNA
genes to transcription of genes involved in nutrient generation, preparing the cell for survival

in a nutrient-poor environment [49,50]. In Staphylococcus aureus, (p)ppGpp inhibits ribosome

assembly by binding GTPases involved in the maturation of ribosomal subunits [51]. It is

therefore tempting to speculate that the loss of active ribosomes in L. lactis is triggered by the

stringent response due to nutrient limitation or expression of the heterologous protein PS1Δ9.

The presence of polar mRNA clusters correlated to cells with a strong induction, as evi-

denced by both the level of overexpressed mRNAs and co-expressed MS2-GFP. As with the E.

coli Walker strains, in which T7 RNA polymerase-driven transcription is reduced compared to

the parent strain [52,53], the synthesis of less mRNA might improve the production of recalci-

trant membrane proteins in L. lactis. Lowering the inducer concentration would be a straight-

forward solution albeit that nisin A-driven expression triggers a heterogeneous response at

doses below 0.5 ng ml-1 [54]. Interestingly, mutations in the sensor histidine kinase NisK led

to a 2- to 8-fold improvement in membrane protein production due to an increase in leaky

expression in L. lactisDML1-3 strains [23]. We can now assume that this background tran-

scription causes a steady state production of low levels of recombinant mRNA that do not lead

to mRNA clustering or proteotoxic stress, prior to induction of gene expression.

The question remains what exactly causes the mRNA cluster formation. Below, three sce-

narios are discussed.

Availability for ribosomes

Overexpressed mRNAs encoding soluble proteins were mainly present in the nucleoid-free

space, whereas RBS-less transcripts accumulated at the boundaries of the chromosomal area

instead of the poles. A model on the spatial organization of intracellular mRNA localization in

bacteria predicts that a great portion of transcripts reside in the nucleoid-free space and that a

cyclic pattern of ribosome flow occurs, in which ribosomes that have finished translation in

the nucleoid-free space pick up new transcripts from the nucleoid [55]. Transcripts might thus

not readily diffuse away from their site of production without effective binding by ribosomes,
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resulting in the cluster formation at the nucleoid periphery observed here. Importantly, the

adaxial clusters of untranslatable bcaP12bs or PS1Δ912bs transcripts resembled polar mRNA

clusters in terms of density, while S2-eYFP was excluded from the poles whenever PS1Δ9 was

produced. Abrogated translation of PS1Δ912bs transcripts might therefore be the cause of their

polar clustering.

Uracil-density

In agreement with a previous study in E. coli [47], the uracil density of membrane protein-

encoding mRNA in the AT-rich L. lactis is significantly higher than that of mRNAs of cytosolic

proteins. The fact that, through codon bias, this uracil-richness has been preserved in bacteria

strengthens the idea that it might play a role in membrane protein biogenesis. Recently, two

cold-shock proteins, CspE and CspC, were shown to interact with uracil-rich transcripts and

the inner membrane of E. coli [56]. This suggests that these CSPs not only stabilize transcripts

during cold shock, but also deliver specific U-rich cargos to the cytoplasmic membrane.

Remarkably, gene expression of most CSPs in L. lactiswas downregulated upon PS1Δ9 expres-

sion but not upon BcaP-expression [7,17]. Because bcaP mRNA (0.36) and other endogenous

membrane protein transcripts contain a higher U-density than the heterologous PS1Δ9 (0.29)

and SUT1 (0.31) mRNA, it is tempting to hypothesize that the homologous bcaP12bs mRNA is

recognized (better) by L. lactis homologs of E. coli CspE and CspC, such as CspE, CspB, and

CspD2. This is supported by the notion that even RBS-less PS1Δ912bs transcripts are still more

prone to accumulate in dense clusters than RBS-less bcaP12bs transcripts, the latter of which

might be pulled away from the cell center, resulting in fewer mRNA clusters. If CSPs exert sim-

ilar functions in L. lactis and E. coli, the decline in these membrane-targeting factors observed

during PS1Δ9-expression would lead to a loss of membrane-proximal mRNA localization, and

possibly to polar predisposition instead.

SRP recognition

When SRP recognition and delivery fails, synthesis of membrane proteins continues in the

hydrophilic cytoplasm, leading to protein misfolding and aggregation [12]. A consensus SRP-

specific signal peptide on integral membrane proteins has never been identified, but recent

data suggest that translational pausing at mRNA elements 30–40 codons downstream of the

codons that specify the SRP binding site triggers SRP-binding [41,57]. Neither the gene encod-

ing PS1Δ9 nor that for SUT1 was codon-optimized for L. lactis. Due to differences in codon

choice and tRNA-availability, cis-acting signals that promote SRP-binding might be absent

when trying to express a non-optimized gene in an evolutionarily distinct host [41,57]. The

idea that the timely targeting of ribosomes to the membrane by SRP constitutes a bottleneck

during membrane protein overproduction has been explored in E. coli [58,59]. Competition

between binding to the ribosome-nascent chain of trigger factor (TF), a folding chaperone for

cytoplasmic proteins, and SRP influences efficient targeting of membrane proteins [59]. An

increase in correctly inserted membrane proteins was established by decreasing the amount of

TF while at the same time elevating the SRP level. Some N-terminal fusion proteins are known

to improve membrane protein production, putatively through promoting SRP-dependent tar-

geting and/or membrane insertion of the overexpressed protein [43,60–62]. We show here

that these adaptations could also be responsible for guiding ribosomes carrying alien mRNA

to the membrane: Interchanging the N-terminal domains of PS1Δ9 and BcaP resulted in a

reversal in mRNA localization patterns and improved production of PS1Δ9. We delivered a

proof-of-principle by introducing the BcaP N-terminal domain as a new L. lactis-specific
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fusion partner, BLS, which improves the heterologous production of recalcitrant membrane

proteins such as PS1Δ9.

Methods

Bacterial strains, media and culture conditions

Bacterial strains and plasmids used in this study are listed in S1 Table. For cloning purposes,

Lactococcus lactis NZ9000 was grown as a standing culture at 30˚C in Difco M17 medium (BD,

Franklin Lakes, NJ, USA) containing 0.5% (w/v) glucose (GM17). When required, chloram-

phenicol and/or erythromycin were added at a final concentration of 5 μg ml-1 or 3 μg ml-1,

respectively. For all other analyses, L. lactis was grown in chemically defined medium (CDM;

pH 6.8) with 0.5% glucose [63] lacking riboflavin (GCDM�), in which it reaches a growth rate

of ~0.55 h-1. When stated, 1.5% (w/v) pancreatic digest of casein (Bacto Casitone; BD Biosci-

ences, Franklin Lakes, NJ, USA) was added to GCDM� Chemically defined SA medium with

0.5% (w/v) glucose and 20 μg ml-1 5-fluoro-orotic acid (5-FOA; Sigma-Aldrich, St. Louis, MO,

USA) as a sole pyrimidine source was used for the generation of chromosomal knock-ins, as

described previously [64]. Escherichia coli DH5α (Life Technologies, Gaithersburg, MD, USA)

was used for cloning purposes; it was grown aerobically at 37˚C in LB medium (Formedium,

Norfolk, UK) with, when required, erythromycin or ampicillin at a final concentration of 150

or 100 μg ml-1, respectively. All antibiotics were obtained from Sigma-Aldrich.

Recombinant DNA techniques and oligonucleotides

Standard molecular cloning techniques were performed essentially as described [65]. Chromo-

somal DNA from L. lactiswas isolated using the Wizard Genomic DNA Purification Kit (Pro-

mega Life Sciences, Madison, WI, USA). Plasmids and PCR products were isolated and

purified using the High Pure Plasmid Isolation and PCR Purification kit (Roche Applied Sci-

ence, Mannheim, Germany) and the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel,

Düren, Germany) according to the manufacturers’ instructions. Enzymes were purchased

from Fermentas (Thermo Fisher Scientific Inc, Waltham, MA, USA) and New England Biolabs

(Ipswich, MA, USA). PCR reactions were performed with Phusion or DreamTaq polymerase

(both from Fermentas) according to the manufacturer’s protocol. In case DNA fragments

were prepared for uracil-excision DNA-based engineering, PfuX7 polymerase was employed

(Morten HH Nørholm, DTU, Denmark) [66]. The obtained PCR fragments were mixed and

treated with the USER enzyme mixture (New England Biolabs), yielding 9–12 nt-long over-

hangs annealing to complementary overhangs. No ligation was required, and USER-treated

mixtures were directly used to transform L. lactis or E. coli. Oligonucleotides employed in this

study are listed in S2 Table and were purchased from Biolegio BV (Nijmegen, The Nether-

lands). Competent E. coli cells were transformed using heat-shock, while electrocompetent L.

lactis cells were transformed using electroporation with a Bio-Rad Gene Pulser (Bio-Rad Labo-

ratories, Richmond, CA). All nucleotide sequencing was performed at Macrogen Europe

(Amsterdam, The Netherlands).

Plasmid and strain construction

Nucleotide sequences of the primers and their role in the construction work described below

are presented in S1 Text and S2 Table. Pertinent regions of all plasmids were sequenced to con-

firm their proper nucleotide sequences. All plasmids and strains that were used or constructed

during this study are listed in S1 Table.
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Protein analysis, western blotting, and immunodetection

L. lactisNZ9000 carrying pLG-BcaP or pLG-CodY was inoculated 1:100 in chemically-defined

medium containing 0.5% (w/v) glucose (GCDM; (18)) and grown as standing culture at 30˚C

to an OD600 of 0.4, and induced with 5 ng ml-1 of nisin A (Sigma-Aldrich). Cells were har-

vested 2 hrs post-induction by centrifugation at 9,000×g for 15 min at 4˚C, washed with ice-

cold 100 mM potassium phosphate (KPi) pH 7.0 and resuspended to OD600 of 1 in ice-cold

100 mM KPi. For lysis, glass beads were added to 1 ml of the cell suspension, and cells were

broken by 3×35 sec incubations in a mini-bead beater (Biospec Products, Bartlesville, OK)

with 1-min intervals of cooling at 4˚C. Cell debris was removed by centrifugation at 7650×g
for 15 min (4˚C). To detect overexpressed StrepII-tagged BcaP, membrane fractions were col-

lected by high-speed centrifugation (267,000×g for 30 min at 4˚C) in an Optima TLX Ultracen-

trifuge (Beckman Coulter, Brea, CA, USA). For immunodetection of StrepII-tagged BcaP,

membranes were washed with 10 mM KPi buffer containing 10% glycerol, resuspended in

2×SDS loading buffer (1M Tris-HCl, pH 6.8, 10% SDS, 20% (v/v) glycerol, 25% (v/v) β-mer-

captoethanol, 0.05% bromophenol blue), boiled for 5 min, subjected to SDS-(12.5%) PAGE.

For immunodetection of StrepII-tagged CodY, cleared cell lysates were mixed with 2×SDS

loading buffer, boiled for 5 min, and separated by SDS-(12.5%) PAGE. Proteins were trans-

ferred by semi-dry blotting to a polyvinylidene difluoride membrane (Roche Applied Sci-

ences). For dot-blotting, strains were grown and fractionated as described above. Membrane

and cytoplasmic proteins were directly spotted onto a nitrocellulose membrane (0.45 μm, Bio-

Rad). Immunodetection of transferred or spotted StrepII-tagged proteins was performed as

follows. Membranes were washed with 1×TBS-T (20 mM Tris, 150mM NaCl, and 0.1% Tween

20, pH 7.5) blocked with 5% bovine serum albumin in TBS-T, blocked with 0.001% avidin in

1×TBS-T for 20 min, washed with 1×TBS-T, after which the proteins were detected with Strep-
MAB-Classic (IBA, Göttingen, Germany), using Amersham anti-mouse polyclonal antibodies

from sheep, conjugated to horseradish peroxidase and ECL detection (both from GE Health-

care Europe GmbH, Eindhoven, The Netherlands) according to manufacturers’ instructions.

Preparation of cells for in vivo fluorescence microscopy imaging or RNA

FISH

Generally, L. lactiswas grown overnight in GM17 with appropriate antibiotics prior to micros-

copy analysis. Overnight cultures were washed in sterile 1×PBS (137 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4, 1.8 mM KH2PO4, pH 6.8) and inoculated 1:100 in GCDM�, to limit back-

ground fluorescence, and antibiotics when required. Cultures were grown to mid-exponential

phase (equivalent to OD600 of ~0.4) and induced with nisin A at a final concentration of 5 ng

ml-1. Depending on the experiment, cells were incubated for another 0 to 90 min.

For in vivo fluorescence microscopy imaging, 0.4 μl of a culture was transferred onto a

microscopy slide that was prepared as follows: Multitest-slides (MP Biomedical, Santa Ana,

CA, USA) were cleaned using 5M KOH and MilliQ, after which they were coated with 1.5%

agarose (Sigma-Aldrich) dissolved in fresh GCDM�.

To stop translation, both chloramphenicol and erythromycin were added to an induced cul-

ture, each to a final concentration of 200 μg ml-1. Cultures were then incubated for another 30

min, after which cells were examined using fluorescence microscopy (see below).

To determine the degradation rate of overexpressed transcripts, the mRNAs were produced

for 1 hr in the presence of 5 ng ml-1 of nisin A. Then rifampicin was added to a final concentra-

tion of 200 μg ml-1 to inhibit transcription. Cells were fixed (see below) at different time points

after rifampicin addition (0, 1, 2, 4, 8, 16, 32, and 64 min) and prepared essentially as described
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in the following paragraph. This procedure was repeated at least twice for each mRNA on sep-

arate days. The final mRNA half-lives were determined as further described in Data analysis.

For RNA FISH, performed essentially as described [14] and adapted for E. coli cells [15],

the cells were fixed by directly adding formaldehyde to the cultures to a final concentration of

3.7%. After incubation for 30 min at RT, the treated cells were washed twice with dyethylpyro-

carbonate (DEPC)-treated 1×PBS, resuspended in 1×PBS containing 10 mg ml-1 lysozyme

(Sigma-Aldrich), incubated for 30 min at 37˚C, washed twice with 1×PBS and permeabilized

in 70% ethanol. Permeabilized cells were washed twice with RNA FISH wash buffer (40% for-

maline and 2×SSC (150 mM NaCl, 15 mM sodium citrate, pH 7.0) in DEPC-treated MilliQ),

resuspended in RNA FISH hybridization buffer (10% (w/v) PEG6000 (Sigma-Aldrich), 2 mM

vanadyl ribonucleoside complex (VRC, 200 mM; New England Biolabs), 1 mg ml-1 yeast RNA,

40% formaline, and 2×SSC in DEPC-treated MilliQ) containing 1 mM of each FISH probe

and incubated for 16 hrs in a water bath at 30˚C. Prior to imaging, excess probe was removed

by two washings with 200 μl RNA FISH wash buffer. Finally, the cells were resuspended in

2×SSC and transferred to a microscopy slide coated with 1.5% agarose in 1×PBS.

For DNA FISH, the cells were treated similar to preparation for RNA FISH, except for the

following changes. An RNase (Roche) step (50 μg ml-1, 1 hr, and 37˚C) was incorporated after

permeabilization with ethanol and cells were washed twice with 1×PBS. Prior to 16-hrs probe

hybridization step, cells were heated to 78˚C for 10 min in hybridization buffer, after which

the TAMRA-labeled ms2 probe was added to a final concentration of 1 mM.

The oligonucleotide probes used are summarized in S3 Table. All probes were purchased

from Biolegio BV and were covalently linked at both ends to carboxytetramethylrhodamine

(TAMRA) dyes. The ms2 FISH probe was designed to specifically hybridize to each of the 12

MS2 binding sites fused to the 3’-ends of overexpressed transcripts, leading to a theoretical

24-fold amplification of the signal. The three bcaP-FISH or PS1Δ9-FISH probes were designed

to anneal next to each other and to target the middle of the protein-coding region of the

transcripts.

Fluorescence microscopy

All micrographs were obtained with a DeltaVision Elite inverted epifluorescence microscope

(Applied Precision, GE Healthcare, Issaquah, WA, USA) equipped with a stage holder, a cli-

mate chamber, a seven-color combined set InsightSSI Solid-State Illumination module, and an

sCMOS camera (PCO AG, Kelheim, Germany). A 100× phase-contrast objective (NA 1.4, oil-

immersion, DV) was used for image capturing, in combination with SoftWorX 3.6.0 software

(Applied Precision) to control the microscope setup and to perform single-time-point or time-

lapse imaging of cells. The following standard fluorescence filter sets were used for visualiza-

tion: GFP, excitation at 475/28 nm and emisson at 525/48 nm; TAMRA/TRITC, excitation at

542/27 nm and emission at 597/45 nm; DAPI, excitation at 390/18 nm and emission at 435/48

nm (all using a polychroic beam splitter suitable for DAPI, FITC, TRITC, Cy5); eYFP, excita-

tion at 438/24 nm, emission at 548/48, using a polychroic beam splitter suitable for CFP/eYFP/

mCherry. TAMRA images were captured with 1 sec exposure time, S2-eYFP with 5 sec expo-

sure time, and GFP fusions with 0.5 to 1 sec exposure time. If stated in the figure legends,

deconvolution was performed using SoftWorX 3.6.0 software (GE Healthcare Bio-Sciences,

Pittsburgh, PA, USA).

Fluorescence measurements using a plate reader

L. lactiswas grown overnight in GM17 with appropriate antibiotics. Cells were collected

by centrifugation, washed in sterile 1×PBS, inoculated 1:100 in GCDM� with 5 μg ml-1
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chloramphenicol, and divided as quintuplos in wells of a transparent 96-wells microtitre plate.

Fluorescence was measured with the following equipment and settings: Infinite F200 plate

reader (Tecan Group Ltd., Männedorf, Switzerland) with I-control 1.10.4.0 software (Tecan

Group Ltd.), GFP filter set (excitation at 485 nm and emission at 535 nm). GFP signals were

collected as top readings with a gain setting of 60. GFP fluorescence was divided by the corre-

sponding OD600 measurements to correct for cell density effects. The cultures were grown at

30˚C to mid-exponential phase (equivalent to an OD600 of ~0.4) and induced with nisin A at a

final concentration of 5 ng ml-1. L. lactis LG029(pNZ8048) was used as an empty vector control

to obtain fold changes in expression of DnaK-GFP.

Data analysis

MATLAB-based (Mathworks, Natick, MA, USA) MicrobeTracker (http://microbetracker.org)

or Oufti (http://www.oufti.org) software were used to automatically track cell contours

[67,68]. Both ImageJ (http://imagej.net/ImageJ) and MicrobeTracker software were used to

detect fluorescent spots or measure single-cell fluorescence.

Spot detection was performed using a Gaussian fit algorithm available in the ImageJ plug-in

ISBatch [18], collecting the coordinates of the spots relative to the image file as well as the

Gaussian fitting parameters of each spot. Spots corresponding to intracellular signals were

obtained using the tracked cell meshes, and those lying outside the meshes were discarded.

The remaining spot coordinates were transformed and normalized to intracellular coordinates

to fit in the dimension of one half of a coccoid model cell. To construct the model cell, the

average L. lactis cell outline and nucleoid size were extracted from image files of live DAPI-

stained L. lactis NZ9000 cells using cell and nucleoid tracking (S1C Fig). The membrane-width

inside the cell outline was estimated using images of cells expressing the fluorescent membrane

protein BcaP-GFP. The resulting demi-coccoid form had a dimension of 800×900 nm, repre-

senting the average width×0.5(length) of an L. lactis cell grown in GCDM�. Remaining spots

were conjointly projected into this model cell, and the resulting spot occupancy was plotted as

density maps using MATLAB. The Gaussian fitting parameters obtained from the ISBatch

plug-in were used to calculate the intensity (I) of fluorescent spots (I = πw2h, where w = full-

width at half-maximum (FWHM); h = height or maximum of Gaussian fit parameter).

To obtain mRNA degradation curves, FISH was employed to obtain total TAMRA signals

per cell for each time point after rifampicin addition as described in Preparation of cells for

in vivo fluorescence microscopy imaging or RNA FISH. TAMRA signals minus background

were extracted using MicrobeTracker. Bootstrapping (5×500 randomly picked cells per

population) was performed to examine the accuracy of the sampling distribution. Single expo-

nential decay curves described by N(t) = N0e−λt were fitted to the averages of normalized

median values obtained from independent experiments using MATLAB. Transcript half-lives

were calculated from the decay coefficients (λ) using t1
2
¼ lnð2Þ=l.

The ObjectJ plug-in for ImageJ was employed to track cell lengths and S2-eYFP distribution

along the Y-axes of the cells (https://sils.fnwi.uva.nl/bcb/objectj). All box-and-whisker plots

(box plots) are represented according to the Tukey method for plotting whiskers.

To the determine the U-density of transcript groups representing cytoplasmic proteins or

membrane proteins, the nucleotide sequences of genes encoding all cytoplasmic proteins and

membrane proteins were identified and extracted from the genome sequences of L. lactis
MG1363 and E. coli K12 using tools available at https://genome2d.molgenrug.nl. The number

of thymines was divided by the total number of nucleotides of each gene to obtain the uracil

density per gene. The codon usage indexes for both organism were obtained from http://

genomes.urv.es/CAIcal.
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Supporting Information

S1 Fig. Verification of protein production of 12bs-labeled transcripts and analysis of

mRNA distribution inside fluorescent foci. (A) Analysis of overexpressed StrepII-tagged

CodY (30.2 kDa) in cell-free extracts and of StrepII-tagged BcaP (50.6 kDa) in membrane frac-

tions of L. lactisNZ9000 by Western hybridization using anti-StrepII antibodies. BcaP is

known to migrate faster than expected on the basis of its molecular mass and typically forms a

band at a position where proteins of around 37.5 kDa would migrate [13]. Control (-), empty-

vector control. (B) Micrographs of L. lactisNZ9000 cells expressing gfp12bs mRNA and GFP

protein. PC = phase contrast. Scale bar represents 2 μm. (C) To obtain the model cell which

served as a projection space used for the localization maps, we analyzed the area occupied by

the nucleoid and the membrane inside of the obtained cell meshes. Using MicrobeTracker, we

measured the length and width of the cell meshes (cell outline) as well as the nucleoids stained

by DAPI (cyan) of 200 living cells in various states of division (left panel). Furthermore, we

extracted the average thickness occupied by the membrane by analyzing living cells expressing

the fluorescent membrane protein BcaP-GFP (left panel). For each of these parameters, a pop-

ulation average was obtained. Right panel depicts a schematic, scaled representation of a cell

that had just divided, including the obtained length and width averages (displayed in μm).

Black lines represent cell contour obtained from cell meshes, turquoise lines depict chromo-

somal area, and green lines depict cell membrane and cell wall. (D) The Gaussian fit parame-

ters FWHM (full-width at half maximum of spot height (h)), and the spot intensity I (π
(FWHM)2h) obtained from spot detection analyses were used to visualize the spatial distribu-

tion of transcripts within foci formed by bcaP12bs, codY12bs, PS1Δ912bs, or SUT112bs mRNA.

Heat maps were reconstructed from the FWHM values of each focus, all of which were plotted

as a function of reciprocal magnitudes for all four transcripts. The white dashed lines serve as a

reference and indicate the cut-off of maximal FWHM values reached of spots with increased

FWHM-to-brightness ratios. Contrast bar: low (blue) to high (yellow) density of spot parame-

ter distribution.

(TIF)

S2 Fig. Localization of MS2-labeled transcripts. Overexpressed codY12bs, bcaP12bs, PS1Δ912bs
or SUT112bs transcripts visualized in vivowith co-expressed MS2-GFP in L. lactis LG010 cells

(left panels). Corresponding phase contrast pictures are shown in the center panels. Scale

bar = 5 μm. Location maps of spot projections (right panels) from the MS2 datasets obtained

from 794, 1290, 609, and 841 cells, respectively, highlighting the preferential localization of

each overexpressed mRNA (Method described in Material and methods). Thick transparent

lines: Cell boundaries including the portion occupied by cell wall and membrane as approxi-

mated using BcaP-GFP expressing cells (See S1C Fig). Thin transparent lines: Boundaries of

chromosomal areas as approximated using DAPI staining in living cells (See S1C Fig). Scale

bars depict the relative density of each mRNA species.

(TIF)

S3 Fig. Co-localization of overexpressed membrane protein mRNA with cognate pro-

teins or DnaK-GFP. (A) Deconvolved fluorescence micrographs of co-visualized bcaP12bs
mRNA and the corresponding membrane protein BcaP fused to GFP. The upper panels

show cells in which BcaP-GFP aggregation seeds are present, while cells with dense polar

bcaP-gfp12bs mRNA clusters in combination with membrane-localized BcaP-GFP are exem-

plified in the lower panels. The yellow arrowhead in the right-upper panel indicates an

overlapping fluorescent mRNA and protein focus. Right panels: false-colored overlays

(red: mRNA; cyan: protein). (B) Fluorescence micrographs of L. lactis NZ9000 cells with
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TAMRA-labeled PS1Δ9-gfp12bs transcripts (left panel), PS1Δ9-GFP (second panel from the

left) and a deconvolved false-colored overlay (third panel from the left; red: PS1Δ9-gfp12bs;
cyan: PS1Δ9-GFP). Right-most panel: Original false-colored overlay image. Yellow arrow-

heads indicate signals that show proximal localization of PS1Δ9-GFP protein and mRNA.

(C) Upper two panels show fluorescence micrographs of DnaK-GFP localization in L. lactis
LG029 cells collected and examined during exponential growth without stress. The upper

left panel displays the effect on DnaK-GFP localization of fixation with 3.7% paraformalde-

hyde (PFA). The upper right panel shows the distribution of DnaK-GFP in living cells. The

lower panels depict DnaK-GFP localization in L. lactis LG029 cells expressing either bcaP12bs
or PS1Δ912bs. Cells were fixed with 3.7% PFA and prepared for FISH analysis prior to imag-

ing. (D) Histograms and their fitted normal distributions of the distances between centers of

PS1Δ9-GFP (grey) or DnaK-GFP (red) foci and polar PS1Δ9-gfp12bs mRNA clusters in 100

single NZ9000 or LG029 cells, respectively. (E) Location maps of preferential localization of

PS1Δ912bs mRNA, PS1Δ9-GFP, and DnaK-GFP. Intracellular coordinates of fluorescent foci

corresponding to overexpressed PS1Δ912bs mRNA, and of co-visualized PS1Δ9-GFP or

DnaK-GFP, reconstructed as described in Data analysis. Scale bars in all micrographs corre-

spond to 2 μm.

(TIF)

S4 Fig. Localization of pNZ-derived plasmids in single L. lactis cells. (A) Fluorescence

micrographs of L. lactis LG045a cells constitutively expressing ParB-GFP, either carrying

pNZ8048 without parS sequence (left panel) or pNZ8048 with consensus parS sequence (right

panel). (B) pLG-BcaP plasmids visualized in L. lactis NZ9000 using DNA FISH and the

TAMRA labeled ms2 probes after non-induced cells were treated with RNase I to remove

(complementary) RNA.

(TIF)

S5 Fig. Effect of disruption of translation of overexpressed transcripts on MS2-GFP locali-

zation and GFP production. (A) Fluorescence microscopy L. lactis LG010 cells expressing

MS2-GFP, with or with Cm/Ery treatment. Treated cells display a partial exclusion of

MS2-GFP from the nucleoid region. This is not the case in the non-treated cells. Scale bar is

2 μm. (B) The fluorescence of L. lactisNZ9000 cells overexpressing gfp12bs transcripts with or

without ribosomal binding sites (RBS). (C) Snap shots of time-lapse microscopy following the

subcellular S2-eYFP distribution in L. lactis(rpsB::rpsB-eYFP) grown in nutrition-rich or nutri-

tion-limiting conditions. Cells were grown to mid-exponential phase in GCDM�, after which

samples were transferred to a microscope slide with an agarose patch either dissolved in

GCDM� or 1×PBS supplemented with 0.5% glucose (GPBS). (D) The relative level of overex-

pressed codY12bs (black), bcaP12bs (red), PS1Δ912bs (grey), and SUT112bs (blue) transcripts as a

function of time after rifampicin addition (at t = 0) was monitored using FISH. The data was

fitted to single exponential decay, of which the curves are shown as solid lines. Error bars

depict standard deviations obtained from bootstrapped datasets. (E) The dataset of [36] was

used to determine the mRNA degradation rates of lactococcal transcripts. The log values of

median half-lives, log t1
2

� �
, of a total of 994, 787, and 996 transcripts at growth rate (μ) of 0.11,

0.51, and 0.80 h−1, respectively, were extracted and plotted as a function of the respective

growth rates (open black circles). A best fit to the data (dashed black line) followed from

log t1
2

� �
¼ � 2:3m2 þ 0:6mþ 2:7. The closed black circle indicates the median log t1

2

� �
at

μ = 0.55h−1, corresponding to a median t1
2

of 10.9 min. A similar strategy was employed to

estimate the t1
2

values of codY (open red circle) and bcaP (open blue circle) mRNA at
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μ = 0.55h−1, resulting in log t1
2
codY

� �
¼ � 2:0m2 þ 0:1mþ 2:4 (dotted red line) and

log t1
2
bcaP

� �
¼ � 5:2m2 þ 3:3mþ 2:2 (dotted blue line). The lifetime of codY12bs mRNA

(t1/2 = 7.1 min) was in good agreement with that previously reported for codY mRNA (t1/2 =

7.4 min for μ = 0.55 h-1). This corresponds to a t1
2

for codY or bcap mRNA of 6.4 min or 11.5

min, respectively, at μ = 0.55h−1. Breakdown of overexpressed bcaP12bs mRNA (t1
2
¼ 6:2 min)

was at least not slower than that of endogenous bcaP mRNA. Note that media composition dif-

fers substantially between our measurements and those performed by Dressaire et al., possibly

influencing specific mRNA lifetimes. (F) Degradation curves of PS1Δ912bs (grey squares) or

SUT112bs (blue squares) of cells containing polar mRNA clusters (filled squares, solid lines) or

cells without such foci (open squares, dashed lines). The data were fitted to single exponential

decay functions, of which corresponding curves are depicted in the graph. (G) Degradation

curves of bcaP12bs or PS1Δ912bs transcripts with (red and grey dashed lines, respectively; repli-

cated from (D)) or without functional RBS (red and grey solid lines).

(TIF)

S1 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled bcaP12bs mRNA.

(MOV)

S2 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled codY12bs mRNA.

(MOV)

S3 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled PS1Δ912bs mRNA.

(MOV)

S4 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled SUT112bs mRNA.

(MOV)

S5 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled PS1Δ912bs mRNA clusters

that ceased to grow. Cells from a nisin-induced culture were transferred to a microscope slide

with an agarose patch in growth medium without additional inducer. Scale bar represents 2 μm.

(AVI)

S6 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled PS1Δ912bs mRNA clus-

ters that were removed from the poles, after which the cells elongated without cell division.

Cells from a nisin-induced culture were transferred to a microscope slide with an agarose

patch in growth medium without additional inducer. Scale bar represents 2 μm.

(AVI)

S7 Movie. Time-lapse movie of L. lactis cells with MS2-GFP-labeled PS1Δ912bs mRNA clus-

ters that were removed from the poles, after which cell division was restored. Cells from a

nisin-induced culture were transferred to a microscope slide with an agarose patch in growth

medium without additional inducer nisin. Scale bar represents 2 μm.

(AVI)

S8 Movie. Time-lapse movie of L. lactis cells in which MS2-GFP-labeled bcaP12bs mRNA foci

disappeared. Cells from a nisin-induced culture were transferred to a microscope slide with an

agarose patch in growth medium without additional inducer. Scale bar represents 2 μm.

(AVI)

S1 Table. Strains and plasmids used in this study. Abr = Antibiotic resistance.

Amp = ampicillin, Cm = chloramphenicol, Ery = erythromycin.

(DOCX)
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S2 Table. Sequences of oligonucleotide used for plasmid and strain construction. Under-

lined nucleotides highlight restriction enzyme sites.

(DOCX)

S3 Table. Sequences of oligonucleotide sequences used for FISH.

(DOCX)

S1 Text. Supplementary Results and Materials. Content: 1. Validation of single-probe FISH

for transcript visualization in L. lactis. 2. Evaluation of the MS2 system for visualization of

overproduced transcripts in living L. lactis cells. 3. Plasmid and strain construction. 4. S1 Text

—Figures. 5. S1 Text—References.

(DOCX)
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