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Cohesin complexes have been extensively studied for their roles in sister chromatid cohesion
during cell division, and in addition, regulate transcription throughmultiple mechanisms.
Together with Nipped-B, a cohesin-loading factor that facilitates enhancer-promoter interac-
tions, cohesins bind many activated enhancers but seem to preferentially associate with a sub-
set of active genes linked to growth control and development [1]. This is consistent with
findings that mutations in Nipped-B lead to Cornelia de Lange syndrome (CdLS), a genetic
condition accompanied by developmental abnormalities and intellectual delay. The mecha-
nism by which cohesin and Nipped B “choose” their gene targets from all the active genes has
been elusive. A recent study by Swain et al. [2] provides important insights into this selection
process. Using chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq),
bioinformatics, and binding studies, Swain et al. [2] identify two RNA-binding proteins, TBPH
and Lark, that help guide the selection of genes bound by cohesin and Nipped-B. This is
achieved by binding to nascent RNA transcripts and subsequent stabilization of cohesin and
Nipped-B complexes on DNA (Fig 1).

TBPH is theDrosophila homolog of TAR DNA-binding protein (TARDP, or TDP-43),
which harbors nuclear localization and export signals (NLS, NES), two RNA recognitionmotifs
(RRMs), and a C terminus low complexity, prion-like domain [3]. It has been implicated in
multiple aspects of gene expression, including transcription, splicing, mRNA transport, associ-
ation with RNA stress granules (SGs), and translation [4]. Similar to TBPH, Lark, also known
as RBM4, is an RNA-binding protein involved in splicing and translation regulation, compris-
ing two RRM domains and a low complexity C terminus domain that are separated by a C2HC
Zn finger-bindingmotif [5].

Multiple lines of evidence led the authors to hypothesize that RNA-binding proteins may
help define the repertoire of genes bound by cohesin and Nipped-B complexes. First, TBPH/
TDP-43 has been shown to bind UG repeats within its RNA targets [6–8], while Nipped-B
associates preferentially with genes containing TG repeats downstream of transcription start
sites [9]. Second, TDP-43 was found to regulate the transcription of the testis-specificmouse
acrv1 gene by binding to TGTGTG sequences within its promoter. Deletion of RRM1 or dis-
abling RNA binding compromise TDP-43’s repressor function, suggesting that an RNA inter-
mediate may be involved in its role as a transcriptional repressor [10]. Third, RNA
immunoprecipitation experiments identified several transcripts produced by Nipped-B-bound
genes as Lark targets [11]. Lark was also found to associate with transcripts of cohesin-bound
genes by RNA affinity chromatography and mass spectrometry approaches [2].

To test this intriguing hypothesis, Swain et al. [2] used a ChIP-seq approach and found that
cohesin, Nipped B, TBPH, and Lark bind genes and regulatory sequences such as enhancers
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and Polycomb Response Elements (PREs) in highly comparable patterns. This occurs both in
culturedDrosophila cells and in wing epithelia, suggesting that these binding patterns are also
present in vivo, in a developmental context. Next, the authors proceeded to decipher the mech-
anistic interactions between cohesion/Nipped-B and RNA-binding proteins using loss of func-
tion approaches. Depletion of TBPH by RNAi indicates that this RNA-binding protein
facilitates the occupancy by cohesin and Nipped-B of most regulatory promoters, enhancers,
and PREs with which they normally associate. In contrast, Lark appears to modify cohesin and
Nipped-B binding sites differentially, depending on whether the sequences are contained
within promoters, enhancers, or PREs. In the future, it will be interesting to determine what
other molecular players may be mediating the complex effects of Lark on cohesin and Nipped-
B and what the physiological consequences are of these seemingly differential interactions.

In keeping with these complexities, RNAi depletion studies indicate that Nipped-B also
facilitates the binding of TBPH and Lark to genes and their regulatory sequences. This under-
scores the interdependency between cohesin/Nipped-B on one hand and RNA-binding pro-
teins on another, and highlights an intricate interplay between these DNA- and RNA-binding
proteins that will be important to uncover in future studies. Co-immunoprecipitation experi-
ments from nuclear extracts indicate that these proteins form a complex driven by protein–
protein interactions, independent of the presence of DNA or RNA. Furthermore, transcription

Fig 1. Model for TBPH and Lark interacting with Nipped-B and cohesin. TBPH binds to UG-rich sequences on nascent transcripts. This

recruits Nipped-B, which in turn recruits cohesin and Lark to DNA. TBPH also participates in the splicing of newly transcribed RNAs. In future work

it will be interesting to determine how nuclear depletion of TDP-43 or disease-associated mutations affect the coupling of transcription regulation

by cohesion/Nipped-B and RNA processing, whether it is (1) splicing or (2) mRNA transport, translation, or association with RNA stress granules. It

also remains to be determined whether TBPH/TDP-43 associates with the same RNA targets in all steps of RNA metabolism.

doi:10.1371/journal.pgen.1006419.g001
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is not required to maintain the association of Nipped-B, TBPH, and Lark with chromosomes.
Together with in vitro RNA–protein binding studies, these findings support a scenario where
TBPH and Lark interact with nascent RNAs generated from cohesin-binding genes and help
stabilize Nipped-B, which in turn loads cohesin onto chromosomes. Althoughmore work is
needed in the future to determine the precise order of assembly, perhaps using live imaging
studies, the data presented by Swain et al. [2] provides strong evidence for this model (Fig 1).

What does the future hold for the interplay between cohesin/Nipped-B- and RNA-binding
proteins in regulating gene expression? The report highlighted here [2] opens up several new
questions related to coordination of transcription and RNA processing during development,
under stress and in disease (Fig 1). How might cohesin and Nipped-B aid RNA processing
steps, including splicing, mRNA transport, and translation, that both TBPH/TDP-43 and Lark
have been implicated in? It will be particularly interesting to determine the relationships
between gene transcription and RNA processing controlled by TBPH/TDP-43 and Lark in a
tissue-specificmanner during development, as they may reveal novel mechanisms of human
disease. TDP-43 is a DNA/RNA-binding protein linked to amyotrophic lateral sclerosis (ALS)
and frontotemporal lobar degeneration (FTLD), two fatal neurodegenerative diseases [12].
Overwhelmingly, evidence points to depletion of TDP-43 from the nucleus and cytoplasmic
accumulation as key factors in the pathomechanism of disease [13], therefore raising the possi-
bility that misexpression of genes regulated by cohesin and Nipped-B could also play a role in
neuronal death. While this seems paradoxical because of the fact that TDP-43 is involved in
adult onset neurodegeneration,whereas Nipped-B mutations cause developmental delay, we
note that TDP-43 phenotypes are modulated by factors required for development, including
EphA4 [14] and Fragile XMental Retardation Protein (FMRP) [15]. Interestingly, FMRP
forms a functional complex with Lark and modulates circadian activity inDrosophila [16]. It
will be interesting to determine whether these RNA-binding proteins share common RNA tar-
gets that may be under the control of cohesin and Nipped-B at the level of transcription. Given
the involvement of TDP-43 in ALS/FTLD, Nipped-B in CdLS, and FMRP in the most common
form of inheritedmental retardation (Fragile X syndrome), these new findings raise the possi-
bility that cognitive deficits and neuronal dysfunction in these conditions may share common
molecularmechanisms whether they occur early or late in life. The future belongs to systems
approaches expected to uncover newmechanisms by which DNA- and RNA-binding proteins
give each other a helping hand in sculpting the landscape of gene expression regulation during
development and in disease.
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