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Abstract
Characterizing the distribution of effects from genome-wide genotyping data is crucial for

understanding important aspects of the genetic architecture of complex traits, such as num-

ber or proportion of non-null loci, average proportion of phenotypic variance explained per

non-null effect, power for discovery, and polygenic risk prediction. To this end, previous

work has used effect-size models based on various distributions, including the normal and

normal mixture distributions, among others. In this paper we propose a scale mixture of two

normals model for effect size distributions of genome-wide association study (GWAS) test

statistics. Test statistics corresponding to null associations are modeled as random draws

from a normal distribution with zero mean; test statistics corresponding to non-null associa-

tions are also modeled as normal with zero mean, but with larger variance. The model is fit

via minimizing discrepancies between the parametric mixture model and resampling-based

nonparametric estimates of replication effect sizes and variances. We describe in detail the

implications of this model for estimation of the non-null proportion, the probability of replica-

tion in de novo samples, the local false discovery rate, and power for discovery of a speci-

fied proportion of phenotypic variance explained from additive effects of loci surpassing a

given significance threshold. We also examine the crucial issue of the impact of linkage dis-

equilibrium (LD) on effect sizes and parameter estimates, both analytically and in simula-

tions. We apply this approach to meta-analysis test statistics from two large GWAS, one for

Crohn’s disease (CD) and the other for schizophrenia (SZ). A scale mixture of two normals

distribution provides an excellent fit to the SZ nonparametric replication effect size esti-

mates. While capturing the general behavior of the data, this mixture model underestimates
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the tails of the CD effect size distribution. We discuss the implications of pervasive small but

replicating effects in CD and SZ on genomic control and power. Finally, we conclude that,

despite having very similar estimates of variance explained by genotyped SNPs, CD and

SZ have a broadly dissimilar genetic architecture, due to differing mean effect size and pro-

portion of non-null loci.

Author Summary

We describe in detail the implications of a particular mixture model (a scale mixture of
two normals) for effect size distributions from genome-wide genotyping data. Parameters
from this model can be used for estimation of the non-null proportion, the probability of
replication in de novo samples, the local false discovery rate, power for detecting non-null
loci, and proportion of variance explained from additive effects. Here, we fit this model by
minimizing discrepancies with nonparametric estimates from a resampling-based algo-
rithm. We examine the effects of linkage disequilibrium (LD) on effect sizes and parameter
estimates, both analytically and in simulations. We validate this approach using meta-
analysis test statistics (“z-scores”) from two large GWAS, one for Crohn’s disease and the
other for schizophrenia. We demonstrate that for these studies a scale mixture of two nor-
mal distributions generally fits empirical replication effect sizes well, providing an excel-
lent fit for the schizophrenia effect sizes but underestimating the tails of the distribution
for Crohn’s disease.

Introduction
While genome-wide association studies (GWAS) have discovered thousands of genome-wide
significant risk loci for heritable disorders, including Crohn’s disease [1] and schizophrenia [2],
so far even large meta-analyses have recovered only a fraction of the heritability of most com-
plex traits. Some of this “missing heritability”may be due to rare variants of large effect,
epistasis, copy-number variation, epigenetics, etc. However, recent work utilizing variance
components models [2–5] has demonstrated that a much larger fraction of the heritability of
complex phenotypes is captured by the additive effects of SNPs than is evident only in loci sur-
passing genome-wide significance thresholds. Thus, the emerging picture is that traits such as
these are highly polygenic, and that the heritability is largely accounted for by numerous loci
each with a very small effect [5, 6]. In this scenario, instead of estimating effect sizes individu-
ally, it is useful to characterize the distribution of effect sizes for choosing significance thresh-
olds, for estimation of power, for the computation of an individual’s overall genetic risk for a
disease, and for the identification of disease mechanisms that can be used for the development
of effective treatments.

Effect size distributions can be estimated directly from the genotype-phenotype data [3, 7–
10] or from the summary statistics produced from GWAS analyses [11, 12]. In this paper we
focus on estimation of effect size distributions from summary statistics, produced from fitting
a regression model for each single nucleotide polymorphism (SNP) individually. A Wald test
statistic (“z-score”) is computed from the regression of each SNP to test its association with the
phenotype of interest. A SNP is often declared significant if the p-value of its test statistic sur-
passes a Bonferroni-inspired threshold of 5 × 10−8. Note, within this typical GWAS hypothesis
testing framework, the effect size for a given SNP computed from massively univariate test
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statistics is a weighted combination of effects from all SNPs that it is in linkage disequilibrium
(LD) with (see [13] as well as S1 Text for more details).

An implicit assumption in GWAS hypothesis testing is that SNP test statistics come from a
mixture distribution of zero (null) and non-zero (non-null) effect sizes [14], though this mixture
distribution is not usually explicitly modeled. The values of parameters from such a mixture dis-
tribution characterize important aspects of the genetic architecture of a phenotype, including the
proportion of non-null effects, the variance explained per non-null locus, and the amount of
inflation in the null distribution [15]. Mixture model parameters can also be used to compute
other quantities of interest, including estimates of the probability of replication in a de novo
study, the posterior probability that a given SNP is null or has a negligible effect conditional on its
observed z-score (i.e., the local false discovery rate), and the power to detect susceptibility loci for
a given study sample size. These parameters are also closely related to the proportion of the phe-
notypic variance explained by the additive effects of common variants and upper limits on the
accuracy of polygenic risk scores [12, 16]. Information such as LD or the functional role of SNPs
can be incorporated into the model to provide characterizations of the genetic architecture of
complex disorders that do not implicitly assume that all SNPs are a priori exchangeable [17, 18].

In this paper we implement a simple scale mixture of two normals distribution to model
GWAS z-scores. Test statistics corresponding to “null” associations are modeled as random
draws from a normal distribution with zero mean; test statistics corresponding to “non-null”
associations are also modeled as random draws from a normal distribution with zero mean but
with larger variance. The proportion of tests corresponding to null associations is also estimated.
(This model has a Bayesian interpretation, and the methods proposed are “empirical Bayes”
because the prior probability of being null is estimated from the data [19].) A closely related
model has been previously proposed for GWAS effect sizes using genotype-phenotype data [10].

We derive the connection between this mixture model and the finite-sample probability of
replication in de novo samples, the local false discovery rate, and the power for detecting a spec-
ified proportion of the phenotypic variance due to additive effects of genetic loci for a given
local false discovery rate. The mixture model is fitted using a resampling-based procedure
applied to meta-analysis sub-study z-scores. By repeatedly and randomly partitioning the sub-
studies into disjoint training and replication samples, we obtain nonparametric smoothed esti-
mates of replication effect sizes and variances that are scaled estimates of their conditional pos-
terior expectations (given the observed z-scores) with respect to a simple measurement model.
We then fit a parametric scale mixture of two normals models that minimizes the sum of
squared discrepancies with these nonparametric estimates.

We demonstrate this statistical framework in simulations and on meta-analysis z-scores
from Crohn’s disease [1] and schizophrenia [20] GWAS. We show that the scale mixture of
two normals model provides an excellent fit to the posterior effect size means and variances for
the schizophrenia data, while capturing the general behavior (though underestimating the tails
of the effect size distribution) for Crohn’s disease. We conclude that, despite having very simi-
lar estimates of variance explained by genotyped SNPs, Crohn’s disease and schizophrenia
have a broadly dissimilar genetic architecture due to differing mean effect size and proportion
of non-null loci. Finally, we examine the effects of LD on effect size distributions estimated
from GWAS summary statistics, both analytically and in simulation studies.

Results

Crohn’s Disease
Crohn’s disease (CD) is a type of inflammatory bowel disease that is caused by multiple factors
in genetically susceptible individuals. Estimates of narrow-sense heritability for CD are h2 �
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0.50 [21]. The variance captured by the additive effects of genotyped SNPs using a liability
model assuming an underlying normal distribution for additive per allele risk effects has been
estimated at h2

chip ¼ 0:22 [22]. The CD data consist of N = 942,772 SNP z-scores from a GWAS

meta-analysis of eight sub-studies on a total of n = 23,671 subjects (7,352 cases) [1]. Sub-study
z-scores are available at http://www.ibdgenetics.org/downloads.html. Before running the
resampling algorithm, SNPs were randomly pruned for approximate independence, so that LD
� 0.20 between any pair of SNPs, resulting in N = 97,855 SNPs.

Fig 1 shows the resampling means and variances of replication z-scores as a function of
training z-scores for the CD meta-analysis sub-studies, based on all 70 possible partitions of
sub-studies into four training and four replication datasets. Also plotted are the predicted repli-
cation conditional means and variances from the best fitting scale mixture of two normals
model. The nonparametric and model-based estimates show good agreement except in the tails
(absolute discovery z-scores> 3). Lack of fit is due to larger effect sizes in the tails than is pre-
dicted by the mixture model. Stated differently, the distribution of effect sizes has a larger
kurtosis than can be captured by the two-component mixture. This results in conservative esti-
mates of replication effect sizes, replication probabilities, and local fdr for SNPs in this part of
the distribution. Other authors have proposed a scale mixture including more than two compo-
nents (e.g., [10]), which could be implemented within our resampling-based algorithm at the
cost of two parameters per additional mixture component.

The estimated non-null proportion is bp2 ¼ 0:0008 indicating that almost 0.1% of the
97,855 approximately independent SNPs fall within in the “large effects” category. The stan-
dard deviation for small effects is bs1 ¼ 0:008, and the standard deviation for large effects isbs2 ¼ 0:078. The estimated null standard deviation is bs0 ¼ 0:991, or slightly below the theoret-
ical null standard deviation. Note, the “empirical null” variance [23] is approximately given bybs2

0 þ 2�pð1� �pÞnbs2
1 ¼ 1:08, where n is the effective sample size of the study and �p is the mean

minor allele frequency. As indicated by the small but non-zero estimate of σ1, there is a positive
slope through the origin in the plot of replication effects (upper left panel of Fig 1), indicating
that even very small z-scores tend to replicate at a higher rate than expected by chance. Thus, it
is more appropriate to state that replication z-scores show a mixture of “small” and “large” rep-
licating effects rather than “null” and “non-null”. Small replicating effects could potentially be
due to population stratification or to weak yet pervasive LD with causal effects (see S1 Text).

The estimated number of large effect SNPs among the 97,855 is given by N bp2 ¼ 76. There
are 45 SNPs declared significant using a local fdr threshold of 0.05, which corresponds to SNPs
with p-values�9.8 × 10−8. Thus, the CD meta-analysis is currently powered to detect approxi-
mately 60% of large effect SNPs using a local fdr threshold of 0.05.

Note, the presence of correlation among genetic loci due to LD is important for the interpre-
tation of parameters in the mixture model. For example, the proportion of large effects π2 is
dependent on the level of pruning, with π2 being larger in unpruned data and lower in data
pruned for approximate independence. This is because large effects tend to be in higher total
LD with other SNPs, and hence a higher proportion of these are eliminated during random
pruning. One explanation why large-effect SNPs tend to have higher total LD is that these
SNPs tag larger genomic regions and hence have a higher probability of tagging causal effects
(see [13] and the S1 Text). Another possible explanation, not mutually exclusive with the first,
is that SNPs that fall in functional genomic categories (e.g., within genes) are enriched for
causal effects and that these categories also tend to be in regions of higher total LD [17, 18].
The balance between these two explanations determines how much π2 is over-estimated
using unpruned loci or under-estimated using loci pruned for independence, relative to the
underlying and unknown proportion of causal effects. While we perform random pruning to
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approximate independence here, the efficient and accurate handling of the effects of LD-
induced correlation and blurring of effect size distributions is an area of on-going research.

Schizophrenia
Schizophrenia (SZ) is known to be highly polygenic and has an estimated narrow-sense herita-
bility h2 � 0.8 [24]. The additive variance captured by SNPs using a liability model has been
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Fig 1. Empirical andmodel-based posterior expectations and variances for schizophrenia and Crohn’s disease.Upper left panel: Schizophrenia
empirical conditional mean of split-half replication z-scores (purple line) and fitted effect sizes from scale mixture of normals model (yellow line). Lower left
panel: Schizophrenia empirical conditional variance of split-half replication z-scores (purple line) and fitted variances from scale mixture of normals model
(yellow line).Upper right panel: Crohn’s disease empirical conditional mean of split-half replication z-scores (purple line) and fitted effect sizes from scale
mixture of normals model (yellow line). Lower right panel: Crohn’s disease empirical conditional variance of split-half replication z-scores (purple line) and
fitted variances from scale mixture of normals model (yellow line).

doi:10.1371/journal.pgen.1005717.g001
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estimated at h2
chip ¼ 0:23 [25], close to that of CD. The SZ data analyzed here consist of

N = 2,558,411 association z-scores from a GWAS meta-analysis of 52 sub-studies with
n = 82,315 total subjects (35,476 cases) [26]. The full study meta-analysis statistics are available
at http://www.med.unc.edu/pgc/downloads. PGC analytic datasets can be obtained by applica-
tion to the controlled-access NIMH Genetics Repository. Data were randomly pruned for pair-
wise LD�0.20, leaving N = 129,973 roughly independent SNPs. The resampling procedure
was run over 100 iterations, with random splits of the sub-studies into differing proportions
(30%,40%, and 50%) for training and the remaining proportion as replication data.

Fig 1 shows the empirical replication means and variances of z-scores, as a function of train-
ing z-scores, for the SZ meta-analysis sub-studies, based on the split-half samples. The pre-
dicted replication conditional means and variances show an excellent fit to the nonparametric
estimates. The estimated non-null proportion is bp2 ¼ 0:012, indicating that about 1.2% of the
pruned SNPs are in the large effect class. Thus, in terms of the proportion of large effect SNPs
in pruned data, SZ is almost fifteen times more polygenic than CD. At the current effective
sample size there are 15 SNPs with local fdr�0.05, or 1% of the estimated Nbp2 ¼ 1,516 large-
effect SNPs. The null standard deviation is estimated to be bs0 ¼ 1:01, very close to the theoreti-
cal null. The standard deviation for large effects is bs2 ¼ 0:020. Despite being more polygenic,
large effect SNPs in SZ on average account for only 7% of the phenotypic variance accounted
for by large effect SNPs in the CD data.

The standard deviation for small effects is bs1 ¼ 0:007, and hence the empirical null variance
is approximately bs2

0 þ 2�pð1� �pÞnbs2
1 ¼ 1:32. Since bs1 > 0, as with CD there is a positive slope

through the origin of the replication z-scores as a function of discovery z-scores (upper right
panel of Fig 1) which scales with the size of the training sample (see S1 Fig). This is in contrast
to what would be expected if the observed z scores were a mixture of true null (exactly zero)
and non-null (non-zero) effects (S2 Fig), in which case there would be no positive slope
through the origin.

Finite Sample Prediction and False Discovery Rate
For the SZ data, parameter estimates from the scale mixture of normals model were used to
compute the probability that a SNP will replicate given its observed training z-score, as given in
Eq (15). Fig 2 displays the resampling-based replication rate and model-based replication prob-
abilities for the CD and SZ meta-analyses, for resampling performed using 30% and 50% of the
data in the training sample and the remainder in the replication sample. Fig 2 shows good
agreement of the resampling-based replication rates with the mixture model-based replication
probabilities for SZ. For CD, model-based replication probabilities underestimate the resam-
pling-based replication rates in the tails, again due to excess kurtosis not captured by the two
scale mixture components.

The results displayed in Fig 2 do not constitute a true replication analysis, since the entire
set of 52 studies was used to estimate the mixture model parameters. To assess true replication,
we divided the sub-studies into disjoint “discovery” and “replication” samples. For the discov-
ery sample, we computed the meta-analysis z-scores and local fdrs using summary statistics
from 26 randomly selected sub-studies, consisting of 17,691 cases and 24,683 controls on the
same set of N = 129,973 SNPs pruned to pairwise LD�0.20. For the replication sample we
computed the meta-analysis z-scores using the remaining 26 studies, with 17,785 cases and
22,156 controls. We defined replication for a locus as having a one-sided replication p-value
�0.05 and discovery and replication z-scores having the same sign. Other definitions of repli-
cation can be easily implemented. Replication proportions and mean predicted replication
probabilities using Eq (15) are displayed in Fig 3. While replication proportions are noisy due
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to small numbers of SNPs in most fdr bins ([0, 0.1): 6, [0.1, 0.2): 0, [0.2, 0.3): 1, [0.3, 0.4): 3,
[0.4, 0.5): 3, [0.5, 0.6): 7, [0.6, 0.7): 10, [0.7, 0.8): 31, [0.8, 0.9): 132, [0.9, 1.0]: 129,780), they gen-
erally track the predicted replication probabilities, showing some evidence, however, that pre-
dicted replication probabilities may be somewhat lower than actual replication rates. A
downward bias in predicted replication probabilities could be caused by under-fitting the
extreme tails of the distribution; this could potentially be rectified by adding one or more nor-
mal mixtures over the current two.
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doi:10.1371/journal.pgen.1005717.g002
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Proportion of Posterior Heritability and Power
For a given threshold it is possible to estimate the proportion of posterior expected additive
variance explained by SNPs selected using a given significance threshold. Let c> 0 be a given
significance threshold, so that any SNP |Z|� c is declared significant. Let zi and δi denote the
Wald statistic of the ith SNP with effect size δi as given in Eq (3). The proportion of genetic

Fig 3. Replication proportions and predicted replication probabilities. Local fdr estimate are shown on the x-axis (binned from 0 to 1 in increments of
0.10), with discovery fdr computed on 26 randomly selected sub-studies in the PGC schizophrenia data consisting of 17,691 cases and 24,683 controls on
N = 129,973 SNPs pruned to pairwise LD� 0:20. For the independent replication sample we computed the meta-analysis z-scores using the remaining 26
studies, with 17,785 cases and 22,156 controls. Replication was defined as: (i) discovery and replication z-scores have same sign, and (ii) replication z-score
associated with one-tailed p-value� 0:05. Black squares show actual replication proportions for each bin, whereas red squares showmean predicted
replication probabilities given in Eq (15).

doi:10.1371/journal.pgen.1005717.g003
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variance explained by these SNPs based on the scale mixture of two normals model is approxi-
mately

h2
c �

P
jzij�c

bEfd2i j Zi ¼ zigPN
i¼1

bEfd2

i j Zi ¼ zig
ð1Þ

where bEfd2i j Zi ¼ zig is estimated via Eq (13), substituting estimates bθ for θ. This estimate
relies on the assumption that the average LD of SNPs declared significant is roughly the same
as the average LD of all SNPs, or that SNPs are first pruned for approximate independence. We
can also modify Eq (1) to give the proportion of variance due to large effects accounted for by
SNPs declared significant

h2
c;1 �

P
jzi j�c

bE1fd2i j Zi ¼ zigPN
i¼1

bE1fd2

i j Zi ¼ zig
ð2Þ

where E1 denotes the posterior expectation due to large effects [27].
Using the parameters from the model-based fits, we can compute power for discovery when

SNPs are declared non-null based on local fdr or p-value cut-offs. It is convenient to express
power as the proportion of the genetic variance due to additive effects discovered for a given
threshold. For example, the 45 SNPs with fdr�0.05 in the pruned CD data account for 55% of
the genetic variance due to additive common effects in the pruned sample, including both large
and small replicating effects. However, these loci account for 83% of variance due to large
effects alone. Power estimates for CD are conservative, since the tails of the distribution are
somewhat underestimated by the mixture of two normals model. In the SCZ data, the 15 SNPs
with fdr�0.05 account for 3% of the variance due to the additive effects of all common vari-
ants, but 34% of the variance due to large effects alone. The difference in power between the
two disorders is due to the more polygenic nature of SZ compared to CD, combined with its
much smaller average size per “large-effect” SNP.

Fig 4 displays the power for discovery for a genome-wide significance threshold of
p� 5 × 10−8 for increasing effective sample sizes for both CD and SZ. The z-scores are cor-
rected using λGC as defined in [28]. For example, for CD the current sample size results in 69%
of the variance due to large effect discovered; doubling the sample size for CD would result in
the discovery of almost 91%. In contrast, using the same threshold for SZ, the current sample
size uncovers SNPs accounting for only 26% of the large effect variance. The sample size would
have to be increased 32-fold to detect 90% of the variance due to large effects, despite the fact
that the current sample size of the SZ study is already much larger than that of the CD. One
reason for the slow increase in power is that the median of the z2 distribution is inflated by
both small and large effect variances, and hence the genomic inflation factor λGC [28] grows as
a function of effective sample size n.

Simulations
We conducted a series of Monte Carlo simulation studies to evaluate the performance of the
fitting algorithm under different values of the parameters and departures from the standard
meta-analysis assumptions (I)-(III) (see Models section) on the nonparametric estimates given
in Eq (16) as well as the scale mixture of normals model parameters θ = {π1, σ0, σ1, σ2}, where
π1 is the proportion of small effects, and σ0, σ1, and σ2 are the standard deviations of the null,
small effect, and large effect (normal) distributions, respectively, as given in Eq (11). The results
of these simulations are presented in S3–S7 Figs in the S1 Text section.
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The estimates by produced by minimizing the quadratic estimating equations given in Eq
(18) are in general unbiased and exhibit low variability across iterations of the simulations for a
wide variety of parameter settings (S3 Fig). In S4 Fig and S6 Fig, we show the impact of large
random departures from assumption (II): common minor allele frequencies (MAFs) across
sub-studies; large departures from assumptions (I) and (III) will have similar effects. In these
simulations, the estimated non-null proportion bp2 is largely unaffected, bs0 is slightly elevated,
and bs1 and bs2 are substantially decreased from the true values. In the scenario of large random
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departures from the overall mean values of the parameters, a random effects meta-analysis is
more appropriate [29].

In the S1 Text section we also present simulations demonstrating the effects of LD on the
distribution of effect sizes produced from massively univariate regression analyses typical of
most GWAS. As described in [13] and in the S1 Text, LD “blurs” effect sizes from multiple loci,
i.e., the expected effect size of a given locus produced from a univariate regression is a weighted
sum of effects from all loci it is in non-zero LD with.

Discussion
In this paper we derive the connection between a simple (four parameter) scale mixture of two
normals model for effect size distributions and several quantities of interest in genome-wide
studies. Specifically, parameter estimates from such a mixture model can be used to compute
the proportion of genotyped SNPs with “large” effects, the local false discovery rate, probability
of replication in a de novo sample, and power for discovery expressed as proportion of chip
heritability explained for a given sample size and significance threshold. Effect size estimates
can also be used for applications such as computation of polygenic risk for disorders (see S1
Text for how posterior effect sizes can be used in this fashion). Estimated effect sizes are shrunk
empirically via the resampling process, and hence are free from the Winner’s Curse.

Direct observation demonstrates that for the schizophrenia GWAS data the scale mixture of
two normals model provides a very good fit to nonparametric replication z-scores. The fit to
the Crohn’s disease data is not as good, since the tails of the distribution are underestimated.
This can be remedied by adding more components to the scale mixture, with two additional
parameters per component. Derivations of local fdr, replication probabilities, and power pre-
sented in the Models section can be extended to more than two components. Underestimating
the tails of the effect size distribution leads to conservative estimates of replication probabilities,
local fdr, and power for discovery.

An interesting aspect of using the resampling-based fitting procedure is the ability to sepa-
rate the null standard deviation σ0 from the standard deviation σ1 of small but replicating
effects, which are confounded in non-resampling based fitting algorithms for mixture models
employing the “empirical null” (e.g., [23]). Small replicating effects which scale with sample
size could potentially be due to residual population stratification or to weak yet pervasive LD
with causal effects. The later case would suggest that weak LD with causal variants may be a sig-
nificant source of variation in tests statistics, as discussed in [13]. (Note, however, that [13]
does not model the distribution of effect sizes and hence does not assess differential effects of
LD on null vs. non-null loci.) An important consequence of the presence of small and large
effects whose variances scale linearly with effective sample size is that the genomic inflation fac-
tor λGC [28] also grows as a function of sample size. It has been argued that the distribution of
non-null effects substantially accounts for the observed genomic inflation in large GWAS [15,
26]. While our results are consonant with this fact, we here make a more fine-grained distinc-
tion between genomic inflation due to small and that due to large replicating effects. To the
degree that small effect inflation is considered spurious, performing no genomic inflation con-
trol whatsoever would appear to be overly liberal.

A weakness of the resampling procedure is that the quadratic estimating equations do not
produce accurate confidence intervals for parameter estimates. This is due to the complicated
correlation structure among terms in the estimating equations induced by the presence of LD
in the SNPs and by the overlap in randomly resampled estimates. In theory it is possible to
obtain the overall effective degrees of freedom of the estimates by computing the mean induced
correlation which can then be used to adjust the length of standard confidence intervals. Non-
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resampling based mixture model algorithms also exist that estimate the non-null distribution
using likelihood-based flexible regression fits (e.g., see [23]), and we are currently developing a
fully Bayesian alternative that models the non-null distribution as a location mixture of B-
spline densities with mixture weights that can depend on LD and multiple genic annotation
categories. These non-resampling based algorithms can provide accurate confidence intervals
for parameters assuming the data are first pruned for approximate independence.

Another disadvantage of the proposed algorithm is that splitting studies into disjoint train-
ing and replication sets leads to lower power to estimate the non-null component of the mix-
ture when the sample size is small, where “small” depends on the level of polygenicity and the
average size for non-null effect. As such, the resampling-based algorithm depends on a fairly
sizable signal in the GWAS data so that the parameters π2 and σ2 can be estimated.

In general, it is crucial to consider the impact of LD on the massively univariate regression

estimates common to standard GWAS analyses, since regression weights bb have expectations

that depend heavily on the LD structure (see S1 Text). In particular, the expectation of bbi is
equal to the causal effect of the ith SNP plus a weighted sum of all the causal effects it is in LD
with (see S1 Text for details and [13]). The effects of LD on nonparametric estimates of the
effect size distribution, and hence also on estimates of parameters from the scale-mixture of
normal model, can be profound. Simulations (S5 Fig and S7 Fig) also show an over 20-fold
increase in π2 estimates from the generative model compared to the distribution of observed
z-scores. These simulations present a worst-case scenario for inflation of π2: no pruning, all
causal effects are in the middle of large LD blocks, and every other SNP in the block is null. In
reality, LD blocks containing functional genomic regions appear to have a higher proportion
of non-null effects than can be explained by inflation of statistics due to LD alone [17]. LD
pruning would also lower the estimate of π2 much closer to the causal proportion. The effi-
cient and accurate handling of the effects of LD on effect size distributions is an area of active
research.

Models

Association Statistics
For the jth subject, j = 1,. . ., n, the genotype-phenotype data consist of {xj, yj}, where xj is the
vector of mean-centered allele counts from N assayed bi-allelic loci (SNPs) and yj either is a
continuous response, or yj 2 {0, 1} for case-control data, where 0 denotes control and 1 denotes
case status. Let X = (ξ1, . . ., ξN) be the n × Nmatrix of allele counts, where ξi is the n × 1 column
vector of allele counts for the ith genetic locus. (Thus, the jth row of X is given by xT

j , where

superscript T denotes the transpose of a vector or matrix.) Under Hardy-Weinberg Equilib-
rium (HWE), the elements of ξi are distributed as centered binomial random variables, Bin(2,
pi) − 2pi, where pi is the effect allele frequency for the ith SNP. In the sequel, we assume pi is
known, ignoring uncertainty due to estimation, which has no impact on the asymptotic results.

Let bbi denote the regression coefficient of ξi on the outcome vector y = (y1, . . ., yn)
T. In this

paper, we assume that the vector of regression coefficients bb ¼ ðbb1; . . . ;
bbNÞT is produced

using massively univariate linear (for continuous) or logistic (for dichotomous) regressions.
However, the resampling methodology described below is applicable to any regression coeffi-

cient estimates bb, including, for example, best linear unbiased predictors (BLUPs) from ran-
dom-effects models [3, 30, 31], which may provide better localization of effects. We describe

the effects of LD on univariate estimates bb both analytically and in Monte Carlo simulations in
the S1 Text.
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The regression coefficient estimates bb are used to produce an N-dimensional vector of
Wald test statistics (“z-scores”)

z ’ ffiffiffi
n

p
Cbb;

where C is an N × N diagonal matrix and’ denotes asymptotic equality as the effective sample

size n goes to infinity. The diagonal entries cii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ=s2

i

p
, where pi is the effect allele

frequency for the ith SNP and σi is the residual standard deviation (for linear regression) or
equal to 1 (for logistic regression). Thus

z ’ ffiffiffi
n

p
Cbb

¼ ffiffiffi
n

p
diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

s2
i

s( )bb
¼ ffiffiffi

n
p

δ þ ω

ð3Þ

where δ = (δ1, . . ., δN)
T and ω = (ω1, . . ., ωN)

T are N-dimensional vectors such that

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

s2
i

s
Efbbig

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p bi
si

ð4Þ

and oi � Nð0; s2
0Þ. Here, bi denotes the expectation Efbbig, and normality of ω follows from a

large sample approximation (see S1 Text). We assume that the effect sizes are exchangeable
with δi * g(δi), where g is an (unknown) marginal density. The theoretical value of the vari-
ance s2

0 ¼ 1; however, s2
0 may be greater than 1 in the presence of the population substructure

such as cryptic relatedness [28], and in the model fitting algorithm described below s2
0 is esti-

mated from the data. In the remainder of the paper, we define the effect size of the ith SNP as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
bi=si.

Often the data available from large GWAS meta-analyses are the z-scores from the individ-
ual sub-studies, rather than the full genotypic and phenotypic data. In this scenario, it is possi-
ble to use the proposed re-sampling based algorithm using z-scores from the individual
studies. Suppose the data (X,y) are partitioned into K disjoint independent samples (sub-stud-
ies) {(Xk, yk)jk = 1, . . ., K}, each with effective sample size nk. The kth sub-study is used to com-

pute an N-dimensional vector of SNP regression weights bbk. The z-scores from each sub-study
are given by

zk ’ ffiffiffiffiffi
nk

p
Ck

bbk;

where Ck ¼ diagf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk;ið1� pk;iÞ=s2

k;i

q
g is an N × N diagonal matrix and s2

k;i is the residual var-

iance in the ith regression (for continuous outcomes) or 1 (for logistic regression on discrete
outcomes). If for k = 1, . . ., K, i = 1, . . ., N, we assume (I) s2

k;i ¼ s2
i ; (II) effect allele frequencies

pk,i = pi; and (III) bk;i ¼ Efbbk;ig ¼ bi; then, the diagonal entries ck;ii ¼ cii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ=s2

i

p
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and

zk ’ ffiffiffiffiffi
nk

p
Ck

bbk

¼ ffiffiffiffiffi
nk

p
δ þ ωk

¼ δk þ ωk;

where δk � ffiffiffiffiffi
nk

p
δ and δ = (δ1, . . .,δN)

T, with di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p ðbi=siÞ. Thus, δk differs across
sub-studies only in the multiplicative factor

ffiffiffiffiffi
nk

p
. Assumptions (I)–(III) should be approxi-

mately valid if the sub-studies can be considered random draws from the same population.
Note, assumptions (I)–(III) are also necessary for meta-analyses to be valid; hence, the assump-
tions necessary for the random partitioning algorithm proposed below are precisely the stan-
dard assumptions used in GWAS meta-analyses [32]. Alternatively, if there are random
departures from assumptions (I)–(III), a meta-analysis treating sub-study z-scores as random
effects could be performed [29].

If the sub-study z-scores {z1, . . .,zK} are given, the overall meta-analysis z-scores can be
computed as a weighted sum [32]

z ¼
PK

k¼1

ffiffiffiffiffi
nk

p
zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 nk

q ¼ ffiffiffi
n

p
δ þ ω; ð5Þ

where n ¼ PK
k¼1 nk and ω ¼ PK

k¼1

ffiffiffiffiffi
nk

p
ωk=

ffiffiffi
n

p
and again wi � Nð0; s2

0Þ. In both the Crohn’s

disease and the schizophrenia GWAS examples, meta-analysis z-scores are produced using
fixed-effects methods, as in their original papers [1, 26].

Posterior Expectations and Variances
The N × 1 vector of effect sizes δ is of fundamental interest in GWAS analyses, closely related
to power for discovery, proportion of chip heritability discovered, the probability that a SNP is
null given its observed z-score, and polygenic risk estimation. As above, let z = (z1, . . .,zN)

T

denote the N-dimensional vector of z-scores, where n is the effective sample size of the study.
From Eq (3), these z-scores are derived from the simple measurement model z ¼ ffiffiffi

n
p

δ þ ω,
where δ is the N × 1 are random draws from an unknown effect size distribution independent

of the oi �iid Nð0; s2
0Þ.

Since the δi are not observed directly, we are interested in the marginal posterior distribu-
tions of δi given the observed test statistic zi. For many uses it is sufficient to obtain the poste-
rior means (Ef ffiffiffi

n
p

di j zig) and variances (Varf
ffiffiffi
n

p
di j zig), for i = 1, . . ., N. By Theorem 11.1 of

[23] (p. 221), these are given by

Ef ffiffiffi
n

p
di j zig ¼ zi þ s2

0

d
dz

log ff ðziÞg;

Varf ffiffiffi
n

p
di j zig ¼ s2

0 1þ s2
0

d2

dz2
log ff ðziÞg

� �
;

ð6Þ

where f(zi) is the common marginal probability density function (pdf) of the zi and s2
0 is the

variance of ωi. This result is quite general, essentially requiring only that δi and ωi are indepen-
dent and oi � Nð0; s2

0Þ [23].
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Two-Groups Mixture Model
A commonly employed Bayesian framework assumes that some proportion of the tests are gen-
erated under the null hypothesis (i.e., δi � 0) and that the complement are generated under the
non-null hypothesis (i.e., δi≉0) [27]. To formalize this model, let (Zi,Hi) be exchangeable ran-
dom variables, i = 1, . . .,N, where as usual Zi denotes the test statistic for the ith test, and Hi *
Bernoulli(π2) is an indicator of whether the ith test is null (Hi = 1) or non-null (Hi = 2), and
hence π2 denotes the proportion of non-null effects, i.e., the a priori probability that a given
hypothesis test is non-null. The marginal density of Zi is given by

f ðziÞ ¼ p1f1ðziÞ þ p2f2ðziÞ; ð7Þ

where π1 = 1 − π2 is the null proportion, f1 is the null density, and f2 is the non-null density.
Under the assumptions following Eq (3), the non-null density f2 is the convolution of a normal
density with mean zero and variance s2

0, denoted by �ð� j 0; s2
0Þ, with the (as yet) unspecified

non-null density g of δ.
The two-group mixture model given by Eq (7) is the foundation for the Bayesian interpreta-

tion of the false discovery rate [19, 33]. In particular, Efron [19] defined the local false discovery
rate (fdr) as the posterior probability thatHi = 0 given Zi = zi. By an application of Bayes’ Rule
to Eq (7), the fdr is derived as

fdrðziÞ ¼ PrðHi ¼ 0jZi ¼ ziÞ

¼ p1f1ðziÞ
f ðziÞ

:
ð8Þ

The local true discovery rate for the ith SNP is then defined simply as tdr(zi) = 1 − fdr(zi), the
posterior probability that an effect is non-null given its observed test statistic zi. Local fdr can
be used as a thresholding technique by selecting SNPs corresponding to fdr(zi)�α for some
choice of cut-off, say α� 0.05, or equivalently, selecting those SNPs for which tdr(z)>1 − α.

There is a close connection between Eq (6) and the fdr defined in Eq (8). By Corrollary 11.3
of [23] (p. 223), these are given by

Ef ffiffiffi
n

p
di j zig ¼ � d

dz
log ffdrðziÞg

Varf ffiffiffi
n

p
di j zig ¼ � d2

dz2
log ffdrðziÞg:

ð9Þ

Scale mixture of normals model. We present a simple scale mixture of two normals
model for the marginal density g of δi

gðdiÞ ¼ p1�ðdi j 0; s2
1Þ þ p2�ðdi j 0; s2

1 þ s2
2Þ; ð10Þ

This model posits that effects come from a normal distribution Nð0; s2
1Þ with probability π1 or

from a normal distribution with larger variance, Nð0; s2
1 þ s2

1Þ with probability π2 = 1 − π1. If
s2
1 ¼ 0, then �ðzi j 0; s2

1Þ is a point mass (indicator function) at zero, i.e., effects drawn from
this distribution are always exactly zero, corresponding to the null hypothesis Hi: δi = 0. More
generally, if s2

1 � 0 this corresponds to a mixture of “small” and “large” effects, which includes
zero and small non-zero effects as a special case. Large values of |δi| will have a higher posterior
probability of coming from the distribution with larger variance. From Eq (3), zi �

ffiffiffi
n

p
di þ oi,
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where oi � Nð0; s2
0Þ is independent of δi. The marginal density of Zi is thus given by

f ðziÞ ¼ p1� zi j 0; s2
0 þ 2npið1� piÞs2

1

� �þ
p2� zi j 0; s2

0 þ 2npið1� piÞ s2
1 þ s2

2

� �� �
:

ð11Þ

Note, this scale mixture of normals is closely related to the model given in [10]. For a good dis-
cussion of mixture models and Bayesian selection in the context of genetic effect size distribu-
tions, see [7].

An advantage of the scale mixture of two normals model is its computational tractability.
Model fitting involves estimation of only four parameters. Moreover, it is relatively straightfor-
ward to use estimates of these parameters to compute other quantities of interest. For example,
we can express the fdr as

fdrðziÞ ¼ Prðdi � 0 j ziÞ

¼ p1�ðzi j 0; s2
0 þ 2npið1� piÞs2

1Þ
p1�ðzi j 0; s2

0 þ 2npið1� piÞs2
1ÞÞ þ p2�ðzi j 0; s2

0 þ 2npið1� piÞ½s2
1 þ s2

2	Þ
;

ð12Þ

Here, fdr refers to the posterior probability of being a “small” effect, which includes zero effects
as a sub-case (s2

1 ¼ 0). We can also derive the posterior expectations and variances of the effect
sizes given the z-scores in terms of the mixture model. Let θ ¼ fp1; s

2
0; s

2
1; s

2
2g, and let μ(zi, n,

pijθ) denote the posterior expectation of
ffiffiffi
n

p
di given zi. Using the properties of conditional nor-

mal distributions and the fact that fdr(zi) = P(Hi = 1|Zi = zi) and tdr(zi) = P(Hi = 2|Zi = zi),

mðzi; n; pi j θÞ � Ef ffiffiffi
n

p
di j Zi ¼ zig

¼ 2npið1� piÞs2
1

s2
0 þ 2npið1� piÞs2

1

	 

fdrðziÞ þ

2npið1� piÞ½s2
1 þ s2

2	
s2
0 þ 2npið1� piÞ½s2

1 þ s2
2	

	 

tdrðziÞ:

ð13Þ

Moreover, the posterior variance σ2(zi, n, pijθ) of
ffiffiffi
n

p
di given zi is given by

s2ðzi; n; pi j θÞ � Varfdi j Zi ¼ zig

¼ s2
0 þ s4

0

z2i � ðs2
0 þ 2npið1� piÞs2

1Þ
ðs2

0 þ 2npið1� piÞs2
1Þ2

fdrðziÞ
"

þ z2i � ðs2
0 þ 2npið1� piÞ½s2

1 þ s2
2	Þ

ðs2
0 þ 2npið1� piÞ½s2

1 þ s2
2	Þ2

tdrðziÞ

� z2i
fdrðziÞ

s2
0 þ 2npið1� piÞs2

1

þ tdrðziÞ
s2
0 þ 2npið1� piÞ½s2

1 þ s2
2	

	 
2
#
:

ð14Þ

We can also use the mixture model parameters to compute the finite-sample probability that
the ith SNP will replicate given its observed z-score zi. Suppose we have a training study with
effective sample size n producing z-score Z, and a replication study with effective sample size
nr and z-score Zr. We define the replication for the ith SNP as (i) sign(Zi) = sign(Zr,i); and (ii) |
Zi|� cα for some significance threshold cα. For example, cα = 1.64 corresponds to a one-sided
p = 0.05. Using the properties of conditional normal distributions we can write this probability
as

PðjZr;ij � ca and signðZr;iÞ ¼ signðZiÞ j Zi ¼ ziÞ
¼ Fð�ca j mr;0; s

2
r;0ÞfdrðziÞ þ Fð�ca j mr;1; s

2
r;1ÞtdrðziÞ;

ð15Þ
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where F(� jμ,σ2) is the cumulative distribution function (cdf) of the normal distribution with
mean μ and variance σ2, and

mr;0 ¼ �
ffiffiffiffiffiffiffi
nnr

p
2pið1� piÞs2

1

s2
0 þ 2npið1� piÞs2

1

	 

jzij;

s2
r;0 ¼ s2

0 þ 2nrpið1� piÞs2
1 �

nnrð2pið1� piÞs2
1Þ2

s2
0 þ 2npið1� piÞs2

1

;

mr;1 ¼ �
ffiffiffiffiffiffiffi
nnr

p
2pið1� piÞ½s2

1 þ s2
2	

s2
0 þ 2npið1� piÞ½s2

1 þ s2
2	

	 

jzij;

s2
r;1 ¼ s2

0 þ 2nrpið1� piÞ½s2
1 þ s2

2	 �
nnrð2pið1� piÞ½s2

1 þ s2
2	Þ2

s2
0 þ 2npið1� piÞ½s2

1 þ s2
2	
:

For large values of nr, if s2
1 � 0 the finite sample replication rate given in Eq (15) reduces to tdr

(zi). Thus, an accurate model-based finite-sample replication prediction provides empirical jus-
tification for using the estimated fdr(zi) as a cut-off providing accurate false discovery rate
control.

Nonparametric estimates. Other authors have proposed estimating effect sizes via 10-fold
cross-validation or bootstrapping [34, 35]. These approaches shrink effect sizes towards zero,
to avoid the positive upward bias in estimation of effects due to selection or ranking. They
demonstrate that, by selecting tests based on p-values from a random subsample of data and
then estimating the effect sizes on the out-of-sample data, estimates of effect sizes are substan-
tially less biased than the naive estimates that use the same data directly for selection and esti-
mation of non-null effect sizes.

We take an approach related to the 10-fold cross-validation algorithm given in [34]. The
algorithm we propose repeatedly and randomly partitions the sub-study z-scores into training
and replication sets. In contrast to [34], at each iteration an approximately unbiased estimate
of Eq (6) is constructed by binning all tests according to their training z-scores and averaging
replication z-scores separately by bin. By randomly partitioning the data and averaging esti-
mates across iterations, we obtain an estimate which is again approximately unbiased and
which smooths out random deviations due to arbitrarily partitioning studies into “discovery”
and “replication” samples.

More specifically, to obtain nonparametric estimates of E{δi j zi}, the sub-studies are ran-
domly partitioned into two groups K times. For each iteration k = 1, . . ., K, one group is labeled
a discovery sample and the other is labeled a replication sample. Eq (5) is applied separately to
each group to obtain independent meta-analysis training z-scores Zi[k] and replication z-scores
Zr,i[k], for i = 1, . . ., N. The Zi[k] are then binned into intervals Im ¼ ½�cþ ðm� 1Þh;�cþmh	
of width h on the interval [−c, c) for fixed c> 0, wherem = 1, . . .,M. Let
Zm½k	 ¼ fZi½k	 : Zi½k	 2 Img, and let nm½k	 ¼ cardfZm½k	g, where “card” denotes the cardinality, or
number of elements in the set. We compute the sample means �Z r;m½k	 ¼ ð1=nm½k	Þ

P
i:Zi½k	2Zm½k	

Zr;i½k	

and mean squares �Z2
r;m½k	 ¼ ð1=nm½k	Þ

P
i:Z2

i½k	2Zm½k	
Z2
r;i½k	 and average these across iterations k, to

obtain smoothed estimates

�Z r;m ¼ 1

K

XK
k¼1

�Z r;m½k	

�Z2
r;m ¼ 1

K

XK
k¼1

�Z2
r;m½k	; m ¼ 1; . . . ;M:

ð16Þ
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Under the assumption that subjects in the discovery and replication samples are independent,
we have

Ef�Z r;mg ¼ EfZr j Z 2 Img ¼
ffiffiffiffi
nr

n

r
Ef ffiffiffi

n
p

d j Z 2 Img;

Ef �Z2
r;mg ¼ EfZ2

r j Z 2 Img ¼ nr

n
Ef½ ffiffiffi

n
p

d	2 j Z 2 Img þ s2
0;

ð17Þ

where n and Z are the effective sample size and the z-score of the discovery sample, and nr and
Zr are the effective sample size and the z-score of the replication sample. Eq (17) are linear trans-
formations of E{δjZ = z} and E{δ2jZ = z} and hence Eq (16) serve as nonparametric estimates of
the first two moments of the effect sizes δ given training the z-scores.

Estimation of Parameters
For a given model EðθÞ and VðθÞ for the distribution of effect size expectations and variances,
we can estimate parameters θ by utilizing Eqs (6) and (17). Specifically, we enter the model-
based predictions (dependent on parameters θ) into quadratic estimating equations that solve
for parameter estimates minimizing the differences between the empirical and model-based
replication expectations and variances. For the scale mixture of normals model, Eqs (13) and
(14) are entered into the quadratic equations.

QðθÞ ¼
XM
m¼1

X
r2R

Ef�Z r;mg �
ffiffiffi
r

p
mðZm; nr; �p j θÞ� �2þh

VarfZ2
r;mg � rs2ðZm; nr; �p j θÞ � s2

0Þ
� �2

�
;

ð18Þ

where Ef�Z r;mg is the nonparametric posterior mean estimate of themth bin Im given in Eq

(17), VarfZ2
r;mg ¼ Ef �Z2

r;mg � Ef�Z r;mg2 is the nonparametric variance estimate, Zm is the mid-

point of Im, �p is the average effect allele frequency, and ρ = nr,ρ/nρ is the ratio of the effective
sample size of the replication sample (nr,ρ) over the effective sample size of the discovery sam-
ple (nρ). The advantage of varying ρ is the ability to observe the effects of changing sample size
on the effect size distribution and finite-sample replication rates.

In the real applications below, we keep ρ = 0.5 for the Crohn’s disease data, and we vary ρ
between 0.3 and 0.5 in the schizophrenia data. Monte Carlo simulations in the S1 Text section
use split-half samples (ρ = 0.50). For all analyses, the bin width h was chosen such that there
wereM = 201 bins equally-spaced bins spanning the range of z-scores. The values for c are cho-
sen to span the entire range of observed z-scores in the given analysis. For the Crohn’s disease
example c = 17, for schizophrenia example c = 12, and in the simulations c = 10. Note, the
mean allele frequency �p is used in place of the actual frequency for computational efficiency.
Actual values of pi could be incorporated by binning with respect to effect allele frequency in
addition to binning by discovery z-score; however, in practice this appears to have little effect
on estimates.

Eq (18) is minimized over the parameter space θ using a simplex algorithm to produce esti-

mated values bθ � f bp1 ; bs0
2; bs2

1; bs2
2g that can then be used to estimate posterior effect sizes, the

finite-sample probabilities that SNPs will replicate given their observed z-scores, and the local
false discovery rate.

The resampling and fitting algorithm is available in R and Matlab scripts, along with code to
generate synthetic sub-study GWAS z-scores, at https://sites.google.com/site/covmodfdr/.
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Supporting Information
S1 Text. S1 Text Sections 1–2 provide statistical derivations of the effects of linkage disqequili-
brium (LD) on massively univariate regression estimates from GWAS. Section 3 outlines how
posterior effect size estimates from the mixture model could be used in polygenic risk score
estimation. Section 4 provides details and results from Simulation Studies, as described in the
main text. Section 5 gives the authorship list for the Psychiatric Genetics Consortium Schizo-
phrenia Working Group.
(PDF)

S1 Fig. Empirical and Model-Based Replication Effect Sizes for Schizophrenia.Mean repli-
cation z-scores for schizophrenia (SCZ) SNPs from nonparametric estimates (blue curves) and
from mixture model based fit (green curves) for varying proportions of discovery and replica-
tion sample sizes. Top row: Left to right, 10%, 20%, and 30% in training sample.Middle row:
Left to right, 40%, 50%, and 60% in training sample. Bottom row: Left to right, 70%, 80%, and
90% in training sample.
(EPS)

S2 Fig. Expected posterior effect sizes for normal mixture model. Expected posterior effect
sizes for normal mixture model for different parameter values. Note, when s1

1 ¼ 0, the line
through the origin is flat (has no positive slope). Black line denotes replication effect sizes for
the same settings in each plot.
(TIF)

S3 Fig. Simulation Study 1. Simulated empirical(red) and predicted(blue, using the scale-mix-
ture normal model) conditional mean were shown in the first column. The second column
shows simulated empirical(red) and predicted(blue, using the scale-mixture normal model)
conditional variance. The third column shows boxplots of parameter estimates across all 50
iterations of the simulation study. The parameter values were set by expanding a grid with π1 =
{0.01, 0.02, 0.05}, σ1 = {0.0, 0.001, 0.01} and σ2 = {0.01, 0.05, 0.1}.
(EPS)

S4 Fig. Simulation Study 2. Simulated empirical(red) and predicted(blue, using the scale-mix-
ture normal model) conditional mean were shown in the first column. The second column
shows simulated empirical(red) and predicted(blue, using the scale-mixture normal model)
conditional variance. The third column shows boxplots of parameter estimates across all 50
iterations of the simulation study. The parameter values were set by expanding a grid with π1 =
{0.01, 0.02, 0.05}, σ1 = {0.0, 0.001, 0.01} and σ2 = {0.01, 0.05, 0.1}.
(EPS)

S5 Fig. Simulation Study 3. Simulated empirical(red) and predicted(blue, using the scale-mix-
ture normal model) conditional mean were shown in the first column. The second column
shows simulated empirical(red) and predicted(blue, using the scale-mixture normal model)
conditional variance. The third column shows boxplots of parameter estimates across all 50
iterations of the simulation study. The parameter values were set by expanding a grid with π1 =
{0.01, 0.02, 0.05}, σ1 = {0.0, 0.001, 0.01} and σ2 = {0.01, 0.05, 0.1}.
(EPS)

S6 Fig. Simulation Study 4. Simulated empirical(red) and predicted(blue, using the scale-mix-
ture normal model) conditional mean were shown in the first column. The second column
shows simulated empirical(red) and predicted(blue, using the scale-mixture normal model)
conditional variance. The third column shows boxplots of parameter estimates across all 50
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iterations of the simulation study. The parameter values were set by expanding a grid with π1 =
{0.01, 0.02, 0.05}, σ1 = {0.0, 0.001, 0.01} and σ2 = {0.01, 0.05, 0.1}.
(EPS)

S7 Fig. Simulation Study 5. Simulated empirical(red) and predicted(blue, using the scale-mix-
ture normal model) conditional mean were shown in the first column. The second column
shows simulated empirical(red) and predicted(blue, using the scale-mixture normal model)
conditional variance. The third column shows boxplots of parameter estimates across all 50
iterations of the simulation study. The parameter values were set by expanding a grid with π1 =
{0.01, 0.02, 0.05}, σ1 = {0.0, 0.001, 0.01} and σ2 = {0.01, 0.05, 0.1}.
(EPS)
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