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Abstract

During development, proper differentiation and final organ size rely on the control of territo-
rial specification and cell proliferation. Although many regulators of these processes have
been identified, how both are coordinated remains largely unknown. The homeodomain Iro-
quois/Irx proteins play a key, evolutionarily conserved, role in territorial specification. Here
we show that in the imaginal discs, reduced function of Iroquois genes promotes cell prolif-
eration by accelerating the G1 to S transition. Conversely, their increased expression
causes cell-cycle arrest, down-regulating the activity of the Cyclin E/Cdk2 complex. We
demonstrate that physical interaction of the Iroquois protein Caupolican with Cyclin E-con-
taining protein complexes, through its IRO box and Cyclin-binding domains, underlies its
activity in cell-cycle control. Thus, Drosophila Iroquois proteins are able to regulate cell-
autonomously the growth of the territories they specify. Moreover, our results provide a
molecular mechanism for a role of Iroquois/Irx genes as tumour suppressors.

Author Summary

The correct development of body organs, with their characteristic size and shape, requires
the coordination of cell division and cell differentiation. Here we show that the Iroquois
proteins (Irx in vertebrates) slow down cell division in the Drosophila imaginal discs, in
addition to their well-known role in cell fate and territorial specification. In humans, inac-
tivating mutations at the Irx genes are associated to several types of cancer, thus allowing
their classification as tumour suppressor genes. We have observed that Drosophila Iro-
quois genes similarly behave as tumour suppressor genes. Iroquois proteins belong to a
family of homeodomain-containing transcriptional regulators. However, our results indi-
cate that they control cell division by a transcription independent mechanism based on
their physical interaction with Cyclin E containing complexes, a key player in cell-cycle
progression. We have identified two evolutionary conserved domains of Iroquois proteins,
different from the homeodomain, involved in that interaction. This new function of Iro-
quois proteins places them in a key position to coordinate growth and differentiation
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during normal development. Our results further suggest a molecular mechanism for their
role in tumour suppression. Future studies of Irx genes should help to determine if a simi-
lar mechanism could operate to help cancer progression when Irx activity is
compromised.

Introduction

Development of the different body parts in multicellular organisms is a stepwise process that
entails the specification within developmental fields of territories with the ability to acquire dif-
ferent fates. Morphogens, which orchestrate such territorial specification, are also able to regu-
late territorial growth [1]. There is increasing evidence that, conversely, the regulation of the
size of the developmental fields over which morphogens spread and operate is paramount for
territorial specification [2-4]. For instance, in two paradigms of morphogenetic fields—the ver-
tebrate limb primordium and the Drosophila imaginal discs- two sources of morphogens are
present at opposite sites. Since activity of one of them is prevented by the action of the other
one, the morphogenetic field must reach a critical size for that morphogen to escape from inhi-
bition and be able to initiate the territorial specification program [5-8]. Therefore, the identifi-
cation of the genes that control cell proliferation in developmental fields is key to a better
understanding of how cell proliferation and territorial specification are coordinated during
development.

Here we address the role of the Drosophila Iroquois Complex genes (Iro genes) in cell prolif-
eration. The three Iro genes, araucan (ara), caupolican (caup) and mirror (mirr), encode highly
related and evolutionarily conserved homeodomain transcription factors of the TALE family
[9-11]. They play key roles in development that range from territorial specification to pattern
formation (reviewed in [12]). Namely, at the early second larval instar, Iro genes are expressed
in sub-regions of the wing and eye imaginal discs where they define the prospective notum and
the dorsal compartment of the eye, respectively [13-15]. Iro genes also contribute to the growth
of the discs by generating organising borders at the confrontation of Iro-expressing and non-
expressing cells [13-15]. In the dorsal compartment of the eye disc, Iro proteins repress the
expression of fringe (fng), thus restricting the activation of the Notch pathway at the dorso/ven-
tral (D/V) compartment border. This triggers growth of the entire eye disc and the initiation of
retinal differentiation from its posterior rim [14, 16, 17], reviewed in [18]. Moreover, Iro pro-
teins may also have a more direct role in the control of cell proliferation. Thus, clones of iro”
cells in the eye disc are larger than the control ones [13, 19] and, conversely, generalized over-
expression of ara in the wing disc reduces wing size [9]. Furthermore, vertebrate Irx genes
(orthologs of Drosophila Iroquois genes) appear to function as tumour suppressor genes (TSG)
for certain types of cancer [20-23].

In this work we show that Iro proteins indeed control cell proliferation, both during normal
development and in several established Drosophila tumour-like models. Iro proteins specifi-
cally regulate the G1-S transition of the cell cycle by modulating the activity of the CyclinE/
Cyclin dependent kinase 2 (CycE/Cdk2) complex. Unexpectedly for transcription factors, they
are able to do so by a non-transcriptional mechanism. Thus, we demonstrate that Caup forms
a protein complex with CycE in S2 cells and disclose the function of the evolutionarily-con-
served IRO-box domain of Caup for that physical interaction and for cell cycle regulation in
vivo. Our results support a direct, cell-autonomous role of Drosophila Iro genes in the regula-
tion of cell cycle progression. This function of the Iro genes uncovers a new layer of regulation
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of organ size during development and may account for their behaviour as tumour suppressor
genes.

Results
Loss of function of Iro genes enhances cell proliferation

We found that iro"“?' homozygous flies and those harbouring the iro"*" allele combined

with a deficiency of the whole Iro-C (iro”*™™, S1A Fig) had dorsally enlarged eyes (Fig 1A-1D,
5% of iro" " flies, 36% of the iro"F! /iro®™ everted flies). The cephalic capsule was mor-
phologically normal, except for alterations in the number of orbital bristles (Fig 1D, arrow-
head). In third instar wild-type eye imaginal discs, the three Iro genes are expressed in a dorsal
domain ahead of the morphogenetic furrow (S1B and S1C Fig, see also [10, 14]). In contrast, in
iro" P! /iro®™ eye discs the expression of caup was undetectable and that of ara was strongly
decreased, while mirr expression was not affected (S1D-S1F Fig). Dorsally enlarged eyes were
also found in 51% of the flies depleted of Mirr (by expression of two copies of UAS-mirr RNAi
driven by eyGal4 at 25°C).

Ectopic D/V organisers, induced by clones of iro mutant cells in the dorsal compartment of
the eye disc, can promote dorsally enlarged eyes [14, 19]. In adult eyes, the D/V organizer is
visualized as the symmetry axis of the ommatidia field, named the equator (S1G and S1G’ Fig;

[24]). However, ectopic equators were not found in retina sections of adult enlarged iro®“"'/

iro”™ eyes (S1H and S1H’ Fig). Enlarged eyes have also been associated with reduced activity
of the Wingless (Wg) pathway, which allows morphogenetic furrow initiation from the lateral
margins of the disc [25]. While similar advance of the morphogenetic furrow was found in the
dorsal domain in Mirr depleted eye discs (ey-Gal4> 2 X UAS-mirr RNAI, Fig 1F’, arrow),
expression of wg was not apparently modified (Fig 1E and 1F, see also [14, 19]). Thus, we can
rule out the generation of ectopic D/V organisers or insufficiency for Wg as the cause(s) of the
observed eye enlargements.

Next, we monitored the rate of cell proliferation and the occurrence of cell death in iro
iroP™? eye discs, as their modifications might explain the enlarged eyes. Indeed the mitotic
index was significantly increased in the Iro expressing domain, as compared to similar regions

of wild-type discs (Fig 1G, 1H and 1K). This increase was not specific of the eye disc, since it
EGPl/iTODFM3

EGPI/

also occurred in the lateral-notum region of iro
notum is delimited proximally by wg expression and distally by the most proximal of the wing
hinge folds). Notably, the mitotic index was not altered in the region of iro"“"'/iro®*™? wing
discs proximal to the domain of wg expression (a region where Iro genes are not expressed at
the third instar [12]), when compared to that of a similar region of wild-type discs (Fig 11-1K).

We analyzed the cell cycle profiles of iro mutant cells using iro”*™>/iroGal4 UAS-GFP wing
imaginal discs, which express GFP in the ara/caup domain [26]. iroGal4 is a hypomorphic iro
allele [26] and iro”™ is a null allele (S1A Fig). We separated the GFP* and GFP" cell popula-
tions by FACS. In wild type wing discs, the cell cycle profile of wing pouch disc cells (mostly
Iro non-expressing cells) and that of the rest of the disc (most of them Iro-expressing cells) are
very similar [27]. Thus, GFP" cells represented the internal control. Indeed, their cell cycle pro-
file (38% in G1, 21% in S and 40% in G2, Fig 1L) was very similar to that previously described
for wild-type cells from whole wing discs [28] and for wing pouch disc cells [27]. However, iro
mutant GFP" cells showed a cell cycle profile statistically different from that of rest of the wing
disc cells (27% in G1, 26% in S and 47% in G2, Fig 1L). These alterations in the cell cycle profile
resembled those caused by over-expression of cycE [28] and suggested that reduced levels of
Iro proteins accelerate the passage through the G1 phase. In sum, these results allow us to con-
clude that Iro proteins cell-autonomously restrict cell proliferation.

wing discs (Fig 11-1K, the lateral
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Fig 1. Cell-autonomous increase in cell proliferation in iro mutants. Lateral (A, C) and dorsal (B, D)
views of heads of flies of the indicated genotypes. (E- F’) Expression of Wg (green) and Phalloidin staining
(red) in wild-type (E, E’) and eyGal4>mirr RNAI (two copies of mirr RNAI, flies raised at 29°C, F, F’) eye discs.
(E and E’ and F and F’ are different focal planes of the same disc). Arrowheads and arrow mark the position of
the morphogenetic furrow. (G-K) Mitotic patterns (phospho-Histone H3 staining, green, G, H; red I, J) and
quantification of the relative mitotic index (K) in lro-expressing territories (white dotted areas in G-J) and in the
prospective proximal notum (yellow dotted areas in |, J). (*p<0.05; **p<0.005). (L) G1/S transition is
accelerated in iro mutant cells. Representative profiles of FACS analysis of cells dissociated from iro

DFMS/
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iroGal4 UAS-GFP wing discs. (The differences in the percentages of G1 and (G2+8S) cells between the GFP*
and GFP" populations are statistically significant, **p<0.005). (M, N) Reduction of Mirr levels (one copy of
UAS-mirr RNAI, larvae raised at 25°C) and over-expression of stg synergistically interact to increase eye
size. (M) Quantification of the fraction of enlarged eyes in flies of the indicated genotypes (average from two
independent experiments, n>100, *p<0.05). (N) Representative mutant enlarged eye. In this and following
figures, the eye discs are oriented dorsal up and posterior to the right, and the wing discs, ventral up and
posterior to the right. Quantitative data are shown as arithmetic mean +/- SD (error bars). WT, wild-type.

doi:10.1371/journal.pgen.1005463.g001

We reasoned that an increase in the rate of the G2-M transition in the iro mutant eye discs
should enhance eye overgrowth. Indeed, we found a synergistic effect on dorsal eye growth
when string (stg), a phosphatase that drives the G2-M transition [29], was expressed in a back-
ground of slightly reduced expression of mirr (Fig 1M and 1N). We conclude that the reduced
levels of Iro proteins in the dorsal territory of the iro eye disc induced over proliferation that
resulted in dorsal eye overgrowth.

We also found an increased number of apoptotic cells in the iro territories of the mutant
discs (SIM-S1P’ Fig). This increased apoptosis might help compensate the excess of prolifera-
tion, and reduce the extent of overgrowth especially in the notum (that was only slightly

EGP1

deformed in iro mutants, S1I-S1L Fig). It further precludes precise analysis of the doubling

time of iro mutant cells.

Over-expression of Iro genes restricts cell proliferation

Next, we tested whether over-expression of Iro genes caused the opposite effect to their loss of
activity, that is, a reduction of cell proliferation. Since generalized expression of any of the Iro
genes in the eye disc eliminates the D/V organiser and prevents growth of the eye disc and eye
formation [14, 16, 17], we examined the effect of caup excess of function in the wing disc. We
over-expressed caup-HA (henceforth caup) either in its normal expression domain, the pro-
spective notum (using the apGal4 driver) or in the wing pouch (nubGal4 driver). We assayed
the effect of transient over-expressions of caup using of the Gal4/Gal80" system. We combined
the nubGal4 and apGaldlines with a tubGal80" transgene [30]. At 17°C, (permissive tempera-
ture for Gal80"), Gal80 inhibits Gal4 activity. nubGal4 (or apGald); tubGal80"; UAS-caup lar-
vae were raised at 17°C, and transferred to 29°C (to inactivate Gal80") 16 hours prior to their
dissection at late third larval instar. Both in the nub and ap domains, caup over-expression
caused a significant reduction in the mitotic index (Fig 2A-2B’ and 2Dj; S2] and S2K Fig), Simi-
lar reduction in the mitotic index also occurred upon forced expression of ara or mirr (S2D,
S2E and S2H Fig). We also observed a decreased incorporation of the thymidine analogue EAU
in the cells over-expressing caup (Fig 2E and 2E’). Cell size was not noticeably affected by tran-
sient caup over expression (S2A and S2B Fig). Since it also was unmodified by depletion of
CycE in similar experimental conditions (S2C Fig), we assume this could be due to the tran-
sient over-expression of the transgenes.

To analyze the effect of much prolonged over-expression of caup in the wing disc, compati-
ble with the development of the adult wing, we resorted to the salGal4 line. This Gal4 line
drives expression of UAS genes in the central wing pouch of the wing disc from early third
instar until 4h of pupal development (Fig 2F, [31]). Accordingly to a decreased cell prolifera-
tion in the sal domain of the wing discs caused by caup over-expression (S2M-S2M” Fig), we
found a significant reduction in the size of this domain (Fig 2G, compare with F;) and of the
adult wings (Fig 3A, 3B and 3G and S3A Fig). Furthermore, the mutant wings showed altered
venation pattern and wing margin notches (Fig 3A and 3B). Wing notches were also found
associated to cell cycle arrest caused by depletion of CycE (S3D Fig) and by the over-expression
of dacapo (dap), ortholog of the Cyclin-dependent kinase (Cdk) inhibitor p21 [32], (S3E Fig)
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Fig 2. Over-expression of caup inhibits cell cycle progression. (A-C’) Mitotic pattern (pH3 staining) of wing imaginal discs expressing the indicated
transgenes driven by nubGal4 during 16 h prior to dissection (expression domain shown in green). (D) Quantification of the relative mitotic index in the nub
territory in the indicated genetic backgrounds (***p<0.00001). (E, E’) Pattern of S phase cells (assayed by EdU incorporation) in wing discs expressing
caup-HA (green in E) in the dorsal (D) compartment (apGal4 driver). Compare the pattern of EAU incorporation in the dorsal and control ventral (V)
compartment. (F, G) Over-expression of caup driven by salGal4 reduces the size of the sal territory (labelled by GFP, disc counterstained with phalloidin,

red).
doi:10.1371/journal.pgen.1005463.9002

and could be attributed to reduced wg expression at the prospective wing margin in the sal-
Gal4>caup wing discs (S3B-S3C’ Fig). In addition, salGal4>caup wings showed enlarged cells
in the sal domain (Fig 3H; S3] and S3K Fig). Small wings with vein patterning defects also
result from over-expressing ara [9].

Although some cells entered apoptosis after caup over-expression (S4E and S4E’ Fig), their
contribution to the mutant phenotype was apparently minimal. Co-expression of caup with
the apoptosis inhibitor DIAP1 [33], reduced apoptosis (S4E-S4F’ Fig) but did not modify
either the size, vein pattern or notches of wings over-expressing caup (S4A, S4B and S41 Fig).
salGal4 driven expression lasts until 4 h after puparium formation [31]. Thus, to rule out the
possibility that cell death during pupal stages could contribute to the mutant phenotype of sal-
Gal4>caup flies, we over-expressed caup in heterozygous conditions for Df(3L)H99. This defi-
ciency removes the apoptosis inducing genes reaper, hid and grim [34] and halving the copy
number of these genes largely reduces induced cell death [35]. We found that such reduction of
apoptotic-inducing proteins did not modify the wing phenotype of salGal4>caup flies (S4C,
$4D and S4I Fig).

These results indicate that elevated levels of Iro proteins restrict cell proliferation in the
wing imaginal discs.

caup genetically interacts with CyckE

To further analyze the role of Iro proteins on cell cycle progression we searched for genetic
interactions between caup and several cell cycle regulators. Co-expression of caup (salGal4
driver) with the G2-M regulator stg [32], which on its own only slightly decreased cell size
(Fig 3H; S3F Fig), did not rescue the effects of caup over-expression (Fig 3B, 3E, 3G and
3H).

Next we investigated the interaction of caup with G1/S regulators. CycE binds to and acti-
vates Cdk2 to drive the G1-S transition [32]. While over-expression of CycE or Cdk2 (salGal4
driver) did not modify wing or cell size (Fig 3G and 3H; S3G and S3H Fig), the co-expression

PLOS Genetics | DOI:10.1371/journal.pgen.1005463 August 25, 2015 6/20



o ®
@ ) PLOS | GENETICS Iroquois Proteins Control Cell Cycle Progression

< D caup >cdk2 E - ~~">caup >stg F
©
O
(‘2 G 25 Jedek H 60

NE 5 kk kk :5 50

£ Q40

w15 £

o 230

e § 20

g 0.3 10 I

° < 0 R R £ R & R QKL
Q R KL R & R ® <R O NPRAPEA AT LR ARV O
76176( < O\;’é”&;ﬁ 76276(5%\ 7?;76 7%70%09 GGQ’O\&’b\Jé\;Qﬁ
A Y AN 2O O © O "
L 70970*300&708:&‘)?76 SR AP0 @ S 70@) PR g L
A o W
© TR )
=

Q& Q o
2|0 5 A
all? & 5
= " A

Fig 3. Genetic interactions of caup with cell cycle regulators. (A-F) Representative wings from flies of the indicated genotypes. Scale bar in A represents
500 pm. The region of the adult wing derived from the sal-expressing domain is shown in yellow in A. (G, H) Quantification of wing area (G, n = 10) and of the
number of cells in a fixed wing area, similar to the region boxed in A (H, n = 5, calculated from the number of trichomes) for the indicated genotypes.
*¥*%p<0.0001; **p<0.005; *p<0.05. (I-K) Restoring cell proliferation by exogenously provided CycE recovers wing development in flies over-expressing ara
(arrows). Transgene expression was driven by MD638Gal4 (expression domain in green in the inset in 1). Red arrow in J indicates the notum-like structure
that develops after ara over-expression (53% of the cases). The remaining MD638Gal4>ara>GFP flies present a wing stump and do not develop extra notum
tissue. 98% of flies co-expressing ara and cycE show partially recovered wings (black arrow in K) and never develop a double notum (n>90).

doi:10.1371/journal.pgen.1005463.9g003

of caup with CycE reverted all aspects of the caup over-expression adult phenotype (Fig 3A-
3C, 3G and 3H; S3]-S3L Fig). Nevertheless, no reversion of the phenotype was observed by co-
expressing cdk2 (Fig 3D, 3G and 3H). In contrast, the Cdk inhibitor dap [32], whose over-
expression reduced wing size and cell number and caused wing notches (Fig 3G and 3H; S3E
and S3I Fig), enhanced the caup over-expression effect (Fig 3B and 3F-3H).

These results suggested that CycE, but not Cdk2, becomes a limiting factor for cell prolifera-
tion in the presence of high levels of Caup. Therefore, we examined if exogenously provided
CycE could recover cell proliferation in cells over-expressing caup (nubGal4 and apGal4 driv-
ers). Fig 2A-2D and S2]J-S2L Fig showed that this was indeed the case. Similar interactions
were observed between ara or mirr and CycE (S2D-S2I Fig). Conversely, we found that co-
expression with the F-box protein Archipelago (Ago), which induces CycE degradation
through the proteosome pathway [36], significantly reduced the size of the salGal4>caup
wings (S5A-S5D and S5G Fig). However, depletion of Ago (by expression of ago RNAi), which
increased wing size (S5E and S5G Fig) did not recover but even enhanced the caup-over
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expression phenotype (S5B, S5F and S5G Fig). This effect could be attributed to the stabiliza-
tion of unknown targets of Ago (other than CycE) by the depletion of this protein.

Next, we wonder whether similar insufficiency for CycE and the resulting impaired cell pro-
liferation, could underlie other adult phenotypes caused by Iro genes over-expression. Associ-
ated to ectopic expression of ara in the prospective wing pouch, wings are absent and extra
notum tissue develops ([37-39] and Fig 3]). Interestingly, co-expression of ara and CycE,
which restored cell proliferation, allowed differentiation of a wing, albeit of a reduced size
(Fig 3K). These results agree with those of [8], which showed that decreased cell proliferation
in the wing pouch from early larval stages causes wing loss and duplication of body wall struc-
tures. In sum, these genetic interactions further support the regulation of cell cycle progression
by Iro proteins at the G1-S transition suggested by the cell cycle profile analyses.

caup over-expression inhibited the activity of the CycE/Cdk2 complex

In Drosophila, the activity of the CycE/Cdk2 complex is required and sufficient for G1-S transi-
tion [32]. We examined the activity of this complex in cells that ectopically express caup by
MPM-2 staining. This antibody recognizes a CycE/Cdk2 regulated protein complex that
assembles into the histone locus body and is visualized as nuclear dots [40]. As shown in Fig
4A and 4A’, caup over-expressing cells of the posterior compartment (hhGal4 driver) displayed
lower punctuated staining than control anterior cells indicating a decreased activity of the
CycE/Cdk2 complex.

As we have shown above, CycE is a limiting component in caup over-expressing cells. Thus,
the decreased activity of the CycE/Cdk2 complex could result from repression of CycE expres-
sion. However, transcription of CycE in the wing disc was not noticeably modified by caup
forced expression (Fig 4B and 4C, see also S6A-S6C Fig). Interestingly, CycE protein levels
were strongly increased (Fig 4D and 4E), even when apoptosis was reduced in salGal4>caup
discs (S4G-S4H’ and S4] Fig). This suggested the stabilization of CycE protein when caup was
over-expressed. Since phosphorylation of CycE by the CycE/Cdk2 complex is essential for its
degradation [41], this result also supported that Caup reduced the activity of the CycE/Cdk2

hhGal4; tubGal80* >caup salGal4 >caup
: C

ECT |

caup-HA + + +
G CycE'V5 + + -
IP: a-HA

INPUT 10%

Fig 4. Functional and physical interaction of Caup with the CycE/Cdk2 complex. Activity of the CycE/
Cdk2 complex, monitored by MPM-2 staining (A, A’); cycE transcription (detected by in situ hybridization, B,
C) and CycE accumulation (detected by immunostaining, D-F) in wing imaginal discs of the indicated
genotypes. (G) Caup co-immunoprecipitates with CycE in S2 cells. Western blot of protein extracts from S2
cells expressing the indicated tagged proteins, immunoprecipitated with anti-HA or anti-V5 antibodies and
probed with anti-HA. Black bars indicate position of the 100 KDa protein marker.

doi:10.1371/journal.pgen.1005463.g004
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complex. Similar increase in CycE levels was found associated to the inhibition of the CycE/
Cdk2 complex by dap over expression (Fig 4F). Since mRNA and protein levels of dap were
not modified in caup over-expressing cells (S6D-S61 Fig), the decreased activity of the CycE/
Cdk2 complex in caup over expressing cells cannot be attributed to a deficiency of CycE or to
excess amount of Dap.

Caup bind to a CycE-containing protein complex

Putative Cyclin-binding sites have been identified in the three Drosophila Iro proteins (Eukary-
otic Linear Motiv server, http://elm.eu.org). Hence, we wondered whether the reduction of
CycE function in caup over-expressing cells (despite their higher than normal CycE levels)
might be due physical interaction of Caup with CycE containing complexes. We tested for this
interaction by co-immunoprecipitation of Caup-HA and CycE-V5 from Drosophila S2 cells.
As shown in Fig 4G, Caup-HA was present in CycE-containing complexes.

Next, we tested whether the putative Cyc-binding site present in Caup mediated the interac-
tion with CycE and, therefore, its effect on cell cycle regulation. We mutated this site and over-
expressed the resulting protein (Caup™“*, Fig 5A) in wing discs. Caup™**
than wild-type Caup in reducing wing size (Fig 5B and 5D) and in repressing cell proliferation
(Fig 5H), although it appeared similarly effective than wild-type Caup in inducing CycE accu-
mulation (a read-out of the inhibition of CycE/Cdk2 complex activity, Fig 5E, 5E” and 5G). In

cyck

was less effective

agreement with our working hypothesis, the decreased ability of Caup
and cell proliferation was paralleled by its compromised ability to co-immunoprecipitate with
CycE in S2 cells (Fig 5I).

These results suggest that Caup may be interacting with CycE-containing complexes
through additional domain(s). Iro/Irx proteins harbour a conserved stretch of 14 amino acids,

to reduce wing size

the IRO-box, whose function is unknown [11]. We mutagenized it changing its two conserved
positively charged amino acids into Alanine (Caup™©**, Fig 5A) and assayed its activity in
vivo and its ability to interact with CycE-containing complexes as described for Caup™“*.
Caup™ ™ was much less effective than wild-type Caup and Caup™** in interfering with cell
cycle progression as shown by its effect on the mitotic index (Fig 5H), wing size (Fig 5C and
5D) and CycE accumulation (Fig 5F and 5G). Accordingly, Caup™ ™ showed a highly
reduced ability to co-immunoprecipitate with CycE (Fig 5]). Since Caup™* and Caup™ >
were still able to repress cell proliferation, albeit less than wild-type Caup, we generated a dou-
ble mutant caup™**” P Tt still reduced wing size when over-expressed to a similar extent
than Caup™ ™ (S7D and S7E Fig).

The functional differences observed between wild-type Caup, Caup”™“* and Caup
could not be attributed to an altered sub-cellular localization, significantly different levels of
expression or stability, since these were similar (S7A-S7C and S7F Fig). Both Caup™“* and
Caup™©P*** retained the ability to act as transcriptional regulators (monitored by repression
of fng, a direct target of Iro genes [42], Fig 6K-6L") and accordingly, over-expression of
Caup™ O in the eye disc prevented eye development (S71 Fig). Thus, these results suggest
that Caup inhibits the activity of the CycE/Cdk2 complex by physical interaction mediated, at
least in part, by both the Cyc-binding domain and the IRO-box rather than by a transcrip-
tional-dependent mechanism.

To further support this conclusion, we generated additional Caup mutants devoid of tran-
scription factor activity by point mutations at key amino acids of the recognition helix of the
homeodomain [43, 44] (Caup™™* 1 and Caup™"* 2, Fig 6A). These mutant proteins were
apparently less effective than wild-type Caup in restricting wing disc growth (Fig 6B, 6C and
6F). However, they were expressed at very reduced levels and showed both cytosolic and

cycx IRO-box
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Fig 5. Structure-function analysis of Caup. (A) Domain structure of Caup. The amino acid changed in the Cyc-binding domain and IRO-box in the novel
mutants are indicated. (B, D) Representative wing phenotypes associated to Caup®®* and Caup'"°*°** over-expression (B, C) and quantification of wing
sizes of flies over-expressing the indicated transgenes (D). (E-G) Accumulation of CycE in wing imaginal cells that ectopically express Caup®** or
Caup'Ro*** quantified in G. (B-G, over-expression driven by sa/Gal4). (H) Mitotic index in the nub territory of wing discs over-expressing the indicated
transgenes. In all cases, quantifications are shown in relation to those performed in salGal4>caup>GFP or salGal4>GFP control wing discs and wings from
larvae reared in parallel to the experimental ones. (1, J) Interaction of the different Caup proteins with CycE-containing complexes. Western blots of protein
extracts from S2 cells expressing CycE-V5 and the different Caup-HA proteins, immunoprecipitated with the indicated antibodies and probed with anti-HA.
Black bars indicate the position of the 100 kDa protein marker.

doi:10.1371/journal.pgen.1005463.g005

nuclear accumulation (Fig 6G-61" and S7G Fig), which could account for their low effect.
Indeed, when expression was increased (flies raised at 29°C), they strongly reduced wing size
(Fig 6D-6F). As expected, and even upon enforced expression, Caup''~* 1 or Caup'"* 2 were
unable to repress frng expression and to prevent eye formation, although they notably reduced
eye size (Fig 6M and 6M’ and S7J Fig). In S2 cells, Caup'”*1 and Caup""*2 co-immunopre-
cipitated with CycE similarly to wild-type Caup (Fig 6] and S7K Fig). Moreover, the ability of
Caup'”*2 to reduce wing size was abolished when this protein was additionally mutated at the
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Fig 6. Functional analysis of homeodomain-mutant Caup proteins. (A) Domain structure of Caup. The
position of the point mutations generated in the homeodomain of Caup'®*1 and Caup"P*2 proteins is
indicated. (B-E) Representative wing phenotypes associated to the over-expression of caup''P*1 or
caup"P*2 at the indicated temperatures. (F) Wing areas of flies expressing the indicated transgenes driven
by salGal4 at 25°C, save when otherwise indicated. (G-I"*) Sub-cellular localization of the different Caup
proteins. Wild-type Caup localized to the cell nuclei (G-G™). Caup"P*1 (H-H™) and Caup™P*2 (I-I) are also
found diffusely distributed in the cytosol. H- I images were taken with higher laser intensity than G-G™
because Caup"P*1 and Caup"®*2 accumulate at lower levels than wild-type Caup. (J) Interaction of
CaupHD*1 with CycE-containing complexes. Western blots of protein extracts from S2 cells expressing
CycE-V5 and the indicated Caup-HA proteins, immunoprecipitated with anti-V5 antibody and probed with
anti-HA. Black bars indicate the position of the 100 kDa protein marker. (K-M") Transcriptional activity of
different Caup* proteins. Clones of cells expressing caup* and lacZ are marked by X-Gal staining (green).
fng mRNA (in situ hybridization) is shown in blue (K, L and M) and separately in K’, L’ and M’. Caup®°* (K, K’)
and Caup'fO*%** (L |’) cell- autonomously repress fng expression (arrows) (The apparent decrease in fng
expression around the clones over expressing Caup®°* or Caup'™°°°** is due to the epithelial folds that
surround them, as previously shown for caup over-expressing clones [60]). Caup"P*2 does not repress fng
expression (arrowhead; M, M").

doi:10.1371/journal.pgen.1005463.g006
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eyGal4d

salGal4

IRO-box (Fig 6F). Hence these data support the binding of Caup to CycE-containing com-
plexes, mainly through the IRO-box, as the main molecular mechanism for its function in the
control of the cell cycle.

Iro proteins regulate growth in Drosophila tumour models

Our results demonstrated the ability of Iro proteins to restrict cell cycle progression during
normal development. Next, we addressed whether they were able to do so in Drosophila
tumour-like models.

Over-expression of the Notch ligand Delta (DI) causes the development of slightly enlarged
eyes (eyGald>DI>lacZ flies, Fig 7A) and provides a sensitized genetic background useful to
identify genes affecting cell proliferation and tumorigenesis [45]. We tested whether reduced
activity of any of the Iro genes affected the size of eyGal4>DI>lacZ eyes. Indeed, while partial
depletion of Caup on its own had no discernible effect on eye size (S8B Fig), it increased both
the size and the number of eyes that showed severe folding (Fig 7A and 7B). Similar enhance-
ment of this mutant phenotype was obtained by co-expressing DI and RNAi constructs tar-
geted to ara or mirr (S8A, S8C and S8D Fig) or in combination with iro®*/+ (Fig 7C, 61% of
the eyGal4>DI>iro"“"’/+ eyes were enlarged compared with 39% of the eyes in eyGal4>DI
control flies).

>DI >lacZ >DI >caupRNA >DI: irofeP7 /+ D
>DI >eyeful 56%

o‘, ~ >DI >eyeful; iro®™3/+ 81%

\ —‘g W W = >Di>eyeful >GFP 54%
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61% | o >DI>eyeful; > mirRNAI 82%
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—
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Fig 7. The levels of Iro proteins modulate tumour-like growth. (A-C) Depletion of Iro proteins enhances eye growth in the sensitized background
eyGal4>DI>LacZ (note the enlarged and folded eyes in B, C, compare with A). Representative eyes are shown, along with the percentage of enlarged eyes
for each genotype (average from two independent experiments, n>80 each). Flies were raised at 29°C. (D) Reduction of iro function (iro®™%/+, or mirr
depletion) enhances tumour-like growth in the >DI >eyeful tumour model. (Left) Representative enlarged tumourous eye. (Right) Percentage of enlarged
eyes in flies of the indicated genotypes (n>100, average value of three independent experiments). (E-I) Over-expression of caup reduces yki-induced
overgrowth by CycE /Cdk2 inhibition. Compare the size of the sal domain (in green) in wing discs of the indicated genotypes. (G) Quantification of the area of
the sal domain in third instar wing discs. Size domain was normalized to that of a sal>GFP>GFP>GFP wing discs (*p< 0.0001; **p<0.01). Discs are

counterstained with Phalloidin (red).

doi:10.1371/journal.pgen.1005463.9g007
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Co-expression in the eye disc (driven by eyGal4) of DI and the epigenetic silencers Pip-
squeak and Lola (referred to as >DI >eyeful flies) induces the formation of tumour-like over-
growths in the eye [45]. Frequency of tumour formation was enhanced when >DI >eyeful flies
were in addition heterozygous for iro°™ or depleted of Mirr (Fig 7D).

Thus, Iro depletion enhanced tumorous growth in the eye. Next we assayed whether, con-
versely, over-expression of caup reduced the overgrowth of the wing disc in another tumoral
model. The Hippo pathway controls organ size in Drosophila and vertebrates by a coordinated
regulation of proliferation and apoptosis and its dysfunction is frequently detected in human
cancers [46]. Over-expression of the downstream component of the Hippo pathway yorkie
(yki, salGal4>yki) increased the size of the territory where it is expressed (Fig 7E, 7F and 71).
We observed that co-expression of caup alleviated the overgrowth caused by yki (Fig 7G and
71). One of the effects of yki over-expression is the activation of cycE transcription ([47], S6B
Fig). Therefore, we hypothesized that the phenotypic suppression by Caup could be due to
CycE/Cdk2 inhibition. Indeed, cycE co-expression partially reverted the effect of caup on yki-
induced overgrowth (Fig 7E-71I). In sum, our data suggest a role of Iro genes as TSGs in
Drosophila.

Discussion

The identification of genes that control cell proliferation is paramount in developmental and
cancer biology. The Iroquois proteins play multiple roles in regionalization and patterning dur-
ing Drosophila development (reviewed in [12]). Here we show that they are also involved in the
control of cell proliferation and, interestingly for homeodomain-containing proteins, they
appear to do so by a non-transcriptional mechanism. This novel function of Iro genes would
help developmental fields to attain their correct size and, if altered by Iro down regulation,
could be a critical step for tumour progression.

We have analyzed iro hypomorphic and over-expression conditions and found that Iro pro-
teins negatively control the G1-S transition of the cell cycle. caup over-expression impaired the
activity of CycE/Cdk2 complex, while simultaneously increased the level of CycE protein. Still,
CycE appears to be a limiting factor since its exogenous administration restores cell prolifera-
tion, while its reduction enhances it. The presence of Caup in CycE-containing protein com-
plexes allow us to propose that this physical interaction inhibits CycE/Cdk2 activity thus
slowing down cell proliferation. This hypothesis is supported by our observation that Caup™*
and Caup™©*** mutant proteins show both impaired ability to co-immunoprecipitate with
CycE and to restrict cell cycle progression. Although not experimentally demonstrated, we
speculate that Caup may interact with CycE and Cdk2 containing complexes and inhibit their
activity by preventing substrate recognition and/or stabilizing p21 binding. Further work is
required to determine more precisely these molecular interactions. Since Caup™<*™8OPox gtj]]
retains some ability to repress cell proliferation, we presume that either the functionality of
these domains was not completely abolished by the mutations generated or the existence of
additional unidentified interacting sites.

Although other homeobox proteins (and also some epigenetic regulators) have been shown
to modulate the activity of cell cycle regulators by protein-protein interaction, many of them
do it through transcriptional regulation [48-50]. We can rule out a transcriptional effect of
Caup on cell cycle regulation since transcriptionally inactive Caup™"*1 and Caup*2 are still
able to inhibit cell cycle progression.

Iro proteins play redundant roles in several developmental contexts [14, 15]. Here we show
that the three of them are able to repress cell cycle progression when over-expressed and that
this effect is abrogated by co-expression of cycE. The presence of putative Cyclin binding
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motives and the high conservation of the IRO-box in the Iro proteins [11] led us to propose
that Ara and Mirr may also physically interact with CycE containing complexes. Since we
found that the penetrance of the dorsal eye enlargement phenotype increases by reducing the
overall amount of Iro proteins, we suggest that they may act in a redundant manner to modu-
late CycE/Cdk2 activity. Alternatively, the three Iro proteins may be functioning in a stoichio-
metric complex, this explaining why depletion of only one of them causes eye enlargement.

The present results suggest a novel role of Iro proteins as cell-autonomous regulators of the
growth of the domains of the imaginal discs where they are expressed. Furthermore, our results
fit to a current model that suggests that growth of territorial fields modulates the response of
cells to morphogens (reviewed in [3]). In the eye discs, the ability of Decapentaplegic (Dpp) to
induce retina differentiation is counteracted by Wg emanating from the anterior-most region
of the discs (reviewed in [18] until the disc attains a size such that dpp expressing cells are
beyond the range of action of Wg [7]. Accordingly, we suggest that the enhanced cell prolifera-
tion found in iro mutant discs, would enlarge the physical separation between Wg- and Dpp-
expressing cells in the dorsal domain, thus increasing the efficiency of Dpp signalling and caus-
ing dorsal eye enlargement.

In analogy with this model for eye disc development, specification of the wing driven by Wg
in the distal part of the wing disc is counteracted by the Vein morphogen, which spreads from
the most proximal part of the wing disc (reviewed in [3]). In this scenario, reduction of the size
of the distal wing disc by inhibition of cell proliferation prevents wing development (with the
concomitant generation of a notum-like tissue, as shown in [8] and in this work), by facilitating
the inhibition of Wg by Vein. Interestingly, Vein activates Iro gene expression in the notum
region [38, 51] while Wg do so in the dorsal eye disc [14, 52-55]. Thus, we propose that Iro
genes could provide a molecular mechanism that allow the ligands Vein (in the notum) and
Wg (in the dorsal eye) to regulate the size of the morphogenetic field in which they operate.

Our results further suggest that a direct regulation of cell cycle progression by Iro/Irx pro-
teins may be relevant for tumorigenesis. Thus, tumorous-like growth was observed in the eye
imaginal discs when iro function was reduced in a sensitized genetic background (such as
ey>Dl or ey>DI >eyeful flies). Conversely, we show the ability of caup over-expression to
counteract the overgrowth induced by Yki in imaginal discs, and that this is partially mediated
by cycE/cdk2 inactivation. These data suggest a role of Iro genes as TSGs in Drosophila and
agree with the association found between loss or reduced expression of members of Irx gene
family and certain types of human cancer [20-23]. Note however that the role of Iro/Irx genes
in tumorigenesis may be cell type-dependent since in some cases they appear to act as onco-
genes [55 56]. Considering the presence of the IRO box [11] and of putative Cyclin-binding
domains in Irx proteins (http://elm.eu.org), we hypothesize that some Irx mutations may con-
tribute to cancer progression in vertebrates by increasing the activity of the CycE/Cdk2 com-
plex and thus accelerating the G1-S transition, a key step frequently affected in cancer cells
[57].

Materials and Methods
Site-directed mutagenesis of Caup

The following Caup mutations (caup-mut) were generated: Caup™“*, deletion of amino-acids

365 to 367 (RGL) of the Caup putative Cyclin-binding domain (RGLAP); Caup"™°***, substi-
tution of the only two positively charged amino acids of the IRO-box, Lysine 459 and Lysine
461 [11] to Ala; Caup™P*1, substitution of homeodomain Arginine 282 and Arginine 283 to
Alanine [43] and CaupHD*Z, substitution of homeodomain Asparagine 279 to Alanine [44].
Mutants were obtained by site-directed mutagenesis (Quick-Change system, Stratagene) of
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wild-type caup cDNA [9] or caup-mut cDNA (this work) with the primers indicated in Supple-
mental Experimental Procedures.

Over-expression experiments

Larvae expressing UAS-transgenes driven by salGal4; MD638Gal4 or eyGal4 were raised at
25°C unless otherwise indicated. To increase the penetrance of the dorsally enlarged eye phe-
notype, eyGal4; 2x UAS-mirr RNAi larvae (Fig 1F) were raised at 29°C. To avoid the embryonic
lethality associated with caup over-expression driven by ap and hh Gal4, we combined these
lines with a tubGal80® transgene [30]. Below 29°C, Gal80 inhibits Gal4 activity. Gal4 line;
UAS-iro gene/ tubGal80" larvae were raised at 17°C, and transferred to 29°C 16 hours prior to
dissection. In all experiments, the number of UAS genes was kept constant to avoid differences
due to Gal4 titration. UAS-caup-HA and UAS-caup*-HA transgenic flies were obtained by the
site-specific integration system at the 51D cytogenetic position [58] to get similar expression
levels.

Flow cytometry analysis

50 wing discs were dissected from iro”*™?/iroGal4, UAS-GFP larvae at 100-120h after egg lay-
ing. FACS analysis was done according to [28]. Cells were sorted by GFP expression using
FACSCVantage SE (BD Biosciences) and cell cycle profiles were determined by Hoescht flour-
escence using a FACSCalibur flow cytometer (Becton Dickinson). Data from five independent
experiments were analyzed using the Flow]Jo software and Dean-Jett-Fox model.

Cell transfection and co-immunoprecipitation

Drosophila S2 cells were cultured in Insect-XPRESS media (Lonza) supplemented with 7% fetal
calf serum and transfected using Nucleofector Technology (Lonza), according to the manufac-
turer’s specifications. caup-HA [59] and caup-mut-HA (this work) were cloned downstream of
the constitutive promoter of the Drosophila Actin 5C gene in the pAc5.1 B plasmid (Invitro-
gen). The full-length cycE ORF was amplified from DGRC cDNA clone LD22682 using the fol-
lowing primers: 5 GAATCCGGCCGTACAATTATG3 and 5TCTAGAGGGATTGCTTCT
AC3’ and cloned in pAc5.1 A (Invitrogen). Transfected cells were cultured during 48 hours
before obtaining cell lysates by standard procedures. Antibodies used in immunoprecipitations
and immunoblots were mouse anti-V5 (Invitrogen), mouse anti-GFP (Roche) and rat anti-HA
(Roche). Similar results were obtained in at least two independent experiments.

Wing size, mitotic index and pixel intensity determination

Areas of the sal domain of wing imaginal discs (n = 10) and of wings from female flies (n = 10;
mounted in lactic acid /ethanol, 6:5) and pixel intensity of CycE-expressing cells were mea-
sured with Adobe Photoshop CS4. The values of CycE pixel intensity for each wing disc corre-
spond to the ratio between average pixel intensity at the sal territory and the average pixel
intensity at the adjacent territory (n = 10). To calculate the relative mitotic index, the number
of pH3 expressing cells per area was quantified with Adobe Photoshop CS4 and then normal-
ized to the mitotic index in the same region in control discs (n = 10).

Statistical analysis

Data are shown as arithmetic mean + standard deviation (SD, indicated by error bars). The sta-
tistical difference between groups of data was examined by Student’s t-test. p<0.05 was consid-
ered statistically significant.
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Supporting Information

S1 Fig. Molecular and phenotypic analysis of iro mutations. (A) Scheme of the Iro-Complex
showing in parenthesis the genomic regions deleted in the indicated iro deficiencies (Df).
Arrows below the names of the Iro genes indicate their exon-intron structure. The homeodomain-
encoding exons are shown in red. Df(3L )iroPF7 (iro7) is embryonic lethal, while Df(3L Jiro?P!
(iro?°F1) is fully viable. (B-F) Pattern of expression of the indicated Iro genes in third instar wild-
type (WT, B, C) and iro®*1/ iroP™3 (D-F) eye discs (B, immunostaining; C-F, in situ hybridiza-
tion). Hindsight accumulation (Hnt, green) in B labels the photoreceptor nuclei. The white arrow
in B points at the morphogenetic furrow, an indentation of the disc epithelium that moves from
posterior to anterior across the disc leaving differentiating ommatida in its wake [24]. (G- H") His-
tological tangential sections of adult retinas of the indicated genotypes. (G’, H") Dorsal and ventral
ommatidial chirality is represented by arrows (black and red respectively) in the enlarged histolog-
ical section of a wild-type eye (G”) and in the schematic representation of the iro"“*"/iro®™™ eye
(H"). Yellow lines indicate the position of the equator. (I-L) Dorsal (I, K) and lateral (], L) views of
nota form flies of the indicated genotypes. Red arrows point at the notopleural suture lost in
iro"*! flies. (M-P’) Down-regulation of Iro gene expression causes apoptosis (activated Caspase 3
staining) in wings (M, O) and eye (N, P, P’) discs. irotSF7
ing in P, three of them are outlined. (M, N) Discs were counterstained with Phalloidin (red).
(TIF)

clones are labelled by loss of GFP stain-

S2 Fig. (A-C’) Analysis of wing disc cell size. The indicated UAS-trangenes were expressed
during 16h prior to larvae dissection at late third instar stage. Transient over-expression of
caup (B, b’) does not noticeably affect the size of wing disc cells (compare with A, a’). Similar
transient depletion of CycE (CycE RNAi driven by enGal4) does not increase wing disc cell size
(G, ). The broken yellow line indicates the limit between anterior and en-expressing posterior
compartment cells. anti- aPKC staining was used to mark cell contours. (D-L) Cell cycle arrest
caused by ara, caup or mirr over-expression is suppressed by CycE co-expression. pH3 staining
(white) of wing imaginal discs that express the indicated transgenes driven by nubGal4 (D-I)
or apGal4 (J-L). The domains of expression of the Gal4 lines are outlined in D and J. Quantifi-
cation of the relative mitotic index +/- SD is shown at the low right angle. (M-M”) Cell cycle
arrest caused by caup over-expression driven by salGal4.

(TIF)

S3 Fig. Effect of the over-expression of caup and cell cycle regulators on wing and wing cell
size. (A) caup over expression (salGal4 driver) reduces both the length (proximo-distal, P/D
axis, 14% reduction) and the width (antero-posterior, A/P axis, 19% reduction) of wings. Data
were normalized to those of control salGal4>GFP wings. (B- C’) Expression of wg (immunos-
taining) in wing discs of the indicated genotypes. (D-I) Representative wings of flies of the indi-
cated genotypes. (J-L) High magnification views of the intervein region boxed in F from wings
of the indicated genotypes. Similar images were used to count the number of cells (each one
producing a trichome) per fixed area and to obtain the numerical data presented in Fig 3H.
(TIF)

$4 Fig. The mutant phenotype associated to iro gene over-expression is not suppressed by
inhibition of apoptosis. (A-D) Representative wings of the indicated genotypes and wing size
quantification (I). (E- E’) Ectopic over-expression of caup-HA driven by salGal4 increases apo-
ptosis (activated caspase 3 staining) especially in the central part of the sal domain. (F, F) Inhi-
bition of apoptosis by DIAP1 co-expression. (G-H’) CycE accumulation in caup over
expressing cells is not modified by inhibition of apoptosis, quantification in J (*** p<0.0005).
(TIF)
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S5 Fig. Modulation of the phenotypic effect of caup over-expression by archipelago (ago)
activity. Representative wings of flies of the indicated genotypes (A-F) and wing size quantifi-
cation (G).

(TIF)

S6 Fig. (A-C) Analysis of CycE expression by in situ hybridization. Note the increase in cycE
mRNA levels associated to CycE (A) and yki (B) over-expression and the decrease caused by
hippo (hpo) over-expression (C, arrow points at the reduced sal domain in salGal4>hippo wing
discs). (D-I) caup over expression does not affect dap expression. In wild type larvae, dap
mRNA (D, E, in situ hybridization) and protein (G, H, immunostaining) accumulate at the
morphogenetic furrow in eye imaginal discs (D, G) and show a generalized expression in the
wing discs (E, H). dap expression is not modified by caup over-expression driven by salGal4 (F,
I, the sal domain is boxed).

(TIF)

S7 Fig. Sub-cellular localization, stability and activity of Caup mutant proteins (A-C"").
Nuclear localization of the indicated Caup proteins. Z-views of wing disc epithelium over-
expressing the indicated transgenes driven by salGal4. Caup accumulation was determined by
anti-HA staining, nuclei are labelled with DAPI and cell contours with Phalloidin. (D, E) Phe-
notypic effect of the over-expression of caupIRO‘box* (D) and caup™* IRO-boxx () (F, G) Assay
of the stability of the different Caup proteins. (nubGal4, tubGal80® driver, see Materials and
Methods). (Data shown as mean +/- SD). (H-J) Effect of the over-expression of different Caup
proteins (eyGal4 driver) on eye development. (K) Interaction of Caup™"*2 with CycE-contain-
ing complexes. Western blots of protein extracts from S2 cells expressing CycE-V5 and the
indicated Caup-HA proteins, immunoprecipitated with anti-V5 antibody and probed with
anti-HA. Black bars indicate the position of the 100 KDa protein marker.

(TIF)

S8 Fig. Depletion of any Iro protein enhances eye overgrowth in eyGal4> DI flies. Individual
RNAj-mediated reduction of Ara (A) or Caup (B) driven by eyGal4, in otherwise wild-type
flies, does not affect eye development. (C, D) Depletion of Ara (C) or Mirr (D) in the sensitized
eyGal4>DI background enhances eye overgrowth. Representative eyes are shown, with indica-
tion of the average fraction of eyes displaying the shown phenotype in two independent experi-
ments (n>80 each). Flies were raised at 29°C.

(TIF)

S1 Text. Drosophila strains used in this study and supplemental experimental procedures.
(PDF)

Acknowledgments

We are very grateful to Juan Modolell for his constant advice and support and José Félix de
Celis for critical reading of the manuscript, Antonio Baonza, Maria Dominguez, the Develop-
mental Studies Hybridoma Bank and Vienna Drosophila RNAi Center for materials and Eva
Caminero (Consolider transgenic platform) for germ line transformation.

Author Contributions

Conceived and designed the experiments: NB SC. Performed the experiments: NB EGP RH.
Analyzed the data: NB EGP SC. Wrote the paper: NB SC.

PLOS Genetics | DOI:10.1371/journal.pgen.1005463 August 25, 2015 17/20


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005463.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005463.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005463.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005463.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005463.s009

@’PLOS | GENETICS

Iroquois Proteins Control Cell Cycle Progression

References

1.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Schwank G, Basler K (2010) Regulation of organ growth by morphogen gradients. Cold Spring Harb
Perspect Biol. 2: a001669. doi: 10.1101/cshperspect.a001669 PMID: 20182606

Amore G, Casares F (2010) Size matters: the contribution of cell proliferation to the progression of the
specification Drosophila eye gene regulatory network. Dev Biol 344: 569-577. doi: 10.1016/j.ydbio.
2010.06.015 PMID: 20599903

Dekanty A, Milan M (2011) The interplay between morphogens and tissue growth. EMBO Rep 12:
1003-1010. doi: 10.1038/embor.2011.172 PMID: 21886183

Towers M, Tickle C (2009) Growing models of vertebrate limb development. Development 136: 179—
190. doi: 10.1242/dev.024158 PMID: 19103802

Cooper KL, Hu JK, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ (2011) Initiation of proximal-
distal patterning in the vertebrate limb by signals and growth. Science 332: 1083—-1086. doi: 10.1126/
science.1199499 PMID: 21617075

Rosello-Diez A, Ros MA, Torres M (2011) Diffusible signals, not autonomous mechanisms, determine
the main proximodistal limb subdivision. Science 332: 1086—1088. doi: 10.1126/science.1199489
PMID: 21617076

Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue
specification to promote regional identity in the Drosophila head. Dev Cell 5: 403—414. PMID:
12967560

Rafel N, Milan M (2008) Notch signalling coordinates tissue growth and wing fate specification in Dro-
sophila. Development 135: 3995-4001. doi: 10.1242/dev.027789 PMID: 18987026

Gomez-Skarmeta JL, Diez del Corral R, de la Calle-Mustienes E, Ferres-Marco D, Modolell J (1996)
Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that con-
trol proneural and vein-forming genes. Cell 85: 95-105. PMID: 8620542

McNeill H, Yang CH, Brodsky M, Ungos J, Simon MA (1997) mirror encodes a novel PBX-class homeo-
protein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev 11:
1073-1082. PMID: 9136934

Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF)
reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25: 4173-4180.
PMID: 9336443

Cavodeassi F, Modolell J, Gomez-Skarmeta JL (2001) The Iroquois family of genes: from body building
to neural patterning. Development 128: 2847-2855. PMID: 11532909

Cavodeassi F, Modolell J, Campuzano S (2000) The Iroquois homeobox genes function as dorsal
selectors in the Drosophila head. Development 127: 1921-1929. PMID: 10751180

Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M (1999) Compartments and organising
boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:
4933-4942. PMID: 10529412

Diez del Corral R, Aroca P, Gomez-Skarmeta JL, Cavodeassi F, Modolell J (1999) The Iroquois homeo-
domain proteins are required to specify body wall identity in Drosophila. Genes Dev 13: 1754-1761.
PMID: 10398687

Cho KO, Choi KW. (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila
eye. Nature 396: 272—-276. PMID: 9834034

Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and
polarity in the Drosophila eye. Nature 396: 276—278. PMID: 9834035

Dominguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the
Drosophila eye-antennal disc. Dev Dyn 232: 673-684. PMID: 15704149

Pichaud F, Casares F (2000) homothorax and iroquois-C genes are required for the establishment of
territories within the developing eye disc. Mech Dev 96: 15-25. PMID: 10940621

Bennett KL, Karpenko M, Lin MT, Claus R, Arab K, Dyckhoff G, et al. (2008) Frequently methylated
tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res 68: 4494-4499. doi:
10.1158/0008-5472.CAN-07-6509 PMID: 18559491

LuY,YuY, ZhuZ, XuH, JiJ, BuL, etal. (2005) Identification of a new target region by loss of heterozy-
gosity at 5p15.33 in sporadic gastric carcinomas: genotype and phenotype related. Cancer Lett 224:
329-337. PMID: 15914283

Guo X, LiuW, PanY, NiP, JiJ, Guo L, etal. (2010) Homeobox gene IRX1 is a tumor suppressor gene
in gastric carcinoma. Oncogene 29: 3908-3920. doi: 10.1038/onc.2010.143 PMID: 20440264

PLOS Genetics | DOI:10.1371/journal.pgen.1005463 August 25, 2015 18/20


http://dx.doi.org/10.1101/cshperspect.a001669
http://www.ncbi.nlm.nih.gov/pubmed/20182606
http://dx.doi.org/10.1016/j.ydbio.2010.06.015
http://dx.doi.org/10.1016/j.ydbio.2010.06.015
http://www.ncbi.nlm.nih.gov/pubmed/20599903
http://dx.doi.org/10.1038/embor.2011.172
http://www.ncbi.nlm.nih.gov/pubmed/21886183
http://dx.doi.org/10.1242/dev.024158
http://www.ncbi.nlm.nih.gov/pubmed/19103802
http://dx.doi.org/10.1126/science.1199499
http://dx.doi.org/10.1126/science.1199499
http://www.ncbi.nlm.nih.gov/pubmed/21617075
http://dx.doi.org/10.1126/science.1199489
http://www.ncbi.nlm.nih.gov/pubmed/21617076
http://www.ncbi.nlm.nih.gov/pubmed/12967560
http://dx.doi.org/10.1242/dev.027789
http://www.ncbi.nlm.nih.gov/pubmed/18987026
http://www.ncbi.nlm.nih.gov/pubmed/8620542
http://www.ncbi.nlm.nih.gov/pubmed/9136934
http://www.ncbi.nlm.nih.gov/pubmed/9336443
http://www.ncbi.nlm.nih.gov/pubmed/11532909
http://www.ncbi.nlm.nih.gov/pubmed/10751180
http://www.ncbi.nlm.nih.gov/pubmed/10529412
http://www.ncbi.nlm.nih.gov/pubmed/10398687
http://www.ncbi.nlm.nih.gov/pubmed/9834034
http://www.ncbi.nlm.nih.gov/pubmed/9834035
http://www.ncbi.nlm.nih.gov/pubmed/15704149
http://www.ncbi.nlm.nih.gov/pubmed/10940621
http://dx.doi.org/10.1158/0008-5472.CAN-07-6509
http://www.ncbi.nlm.nih.gov/pubmed/18559491
http://www.ncbi.nlm.nih.gov/pubmed/15914283
http://dx.doi.org/10.1038/onc.2010.143
http://www.ncbi.nlm.nih.gov/pubmed/20440264

@’PLOS | GENETICS

Iroquois Proteins Control Cell Cycle Progression

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

Nguyen HH, Takata R, Akamatsu S, Shigemizu D, Tsunoda T, Furihata M, et al. (2012) IRX4 at 5p15
suppresses prostate cancer growth through the interaction with vitamin D receptor, conferring prostate
cancer susceptibility. Hum Mol Genet 21: 2076-2085. doi: 10.1093/hmg/dds025 PMID: 22323358

Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A, edi-
tors. The development of Drosophila melanogaster. Cold Spring Harbor Lab Press, Vol 1l p. 1277—
1325.

Treisman JE, Rubin GM (1995) wingless inhibits morphogenetic furrow movement in the Drosophila
eye disc. Development 121: 3519-3527. PMID: 8582266

Mazzoni EOQ, Celik A, Wernet MF, Vasiliauskas D, Johnston RJ, Cook TA, et al. (2008) Iroquois com-
plex genes induce co-expression of rhodopsins in Drosophila. PLoS Biol 6:€97. doi: 10.1371/journal.
pbio.0060097 PMID: 18433293

Organista MF, De Celis JF (2013) The Spalt transcription factors regulate cell proliferation, survival and
epithelial integrity downstream of the Decapentaplegic signalling pathway. Biol Open 2: 37—48. doi: 10.
1242/bi0.20123038 PMID: 23336075

Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA (1998) Coordination of growth and cell division in
the Drosophila wing. Cell 93: 1183-1193. PMID: 9657151

Edgar BA, O'Farrell PH (1990) The three postblastoderm cell cycles of Drosophila embryogenesis are
regulated in G2 by string. Cell 62: 469—-480. PMID: 2199063

McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time
and space. Trends Genet 20: 384-391. PMID: 15262411

Cruz C, Glavic A, Casado M, de Celis JF (2009) A gain-of-function screen identifying genes required for
growth and pattern formation of the Drosophila melanogaster wing. Genetics 183: 1005—1026. doi: 10.
1534/genetics.109.107748 PMID: 19737745

Lee LA, Orr-Weaver TL (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrin-
sic cues. Annu Rev Genet 37: 545-578. PMID: 14616073

Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is
essential for cell survival and is negatively regulated by HID. Cell 98: 453—-463. PMID: 10481910

Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes
Dev 10: 1773-1782. PMID: 8698237

Waldron JA, Jones Cl, Towler BP, Pashler AL, Grima DP, Hebbes S, et al. (2015) Xrn1/Pacman affects
apoptosis and regulates expression of hid and reaper. Biol Open. 4: 649-660. doi: 10.1242/bio.
201410199 PMID: 25836675

Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001) Archipelago regulates Cyclin E levels
in Drosophila and is mutated in human cancer cell lines. Nature 413: 311-316. PMID: 11565033

Aldaz S, Morata G, Azpiazu N (2003) The Pax-homeobox gene eyegone is involved in the subdivision
of the thorax of Drosophila. Development 130: 4473-4482. PMID: 12900462

Wang SH, Simcox A, Campbell G (2000) Dual role for Drosophila epidermal growth factor re.ceptor sig-
naling in early wing disc development. Genes Dev 14:2271-2276. PMID: 10995384

de Navascues J, Modolell J (2007) tailup, a LIM-HD gene, and Iro-C cooperate in Drosophila dorsal
mesothorax specification. Development 134: 1779-1788. PMID: 17409113

White AE, Leslie ME, Calvi BR, Marzluff WF, Duronio RJ (2007) Developmental and cell cycle regula-
tion of the Drosophila histone locus body. Mol Biol Cell 18:2491-2502. PMID: 17442888

Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiqui-
tin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev
10:1979-1690. PMID: 8769642

Bilioni A, Craig G, Hill C, McNeill H (2005) Iroquois transcription factors recognize a unique motif to
mediate transcriptional repression in vivo. Proc Natl Acad SciU S A 102: 14671-14676. PMID:
16203991

Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA (2008) Analysis of
homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133:
1277-1289. doi: 10.1016/j.cell.2008.05.023 PMID: 18585360

Ades SE, Sauer RT (1995) Specificity of minor-groove and major-groove interactions in a homeodo-
main-DNA complex. Biochemistry 34: 14601-14608. PMID: 7578067

Ferres-Marco D, Gutierrez-Garcia |, Vallejo DM, Bolivar J, Gutierrez-Avino FJ, Dominguez M (2006)
Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439:
430-436. PMID: 16437107

Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27: 355-371. doi:
10.1101/gad.210773.112 PMID: 23431053

PLOS Genetics | DOI:10.1371/journal.pgen.1005463 August 25, 2015 19/20


http://dx.doi.org/10.1093/hmg/dds025
http://www.ncbi.nlm.nih.gov/pubmed/22323358
http://www.ncbi.nlm.nih.gov/pubmed/8582266
http://dx.doi.org/10.1371/journal.pbio.0060097
http://dx.doi.org/10.1371/journal.pbio.0060097
http://www.ncbi.nlm.nih.gov/pubmed/18433293
http://dx.doi.org/10.1242/bio.20123038
http://dx.doi.org/10.1242/bio.20123038
http://www.ncbi.nlm.nih.gov/pubmed/23336075
http://www.ncbi.nlm.nih.gov/pubmed/9657151
http://www.ncbi.nlm.nih.gov/pubmed/2199063
http://www.ncbi.nlm.nih.gov/pubmed/15262411
http://dx.doi.org/10.1534/genetics.109.107748
http://dx.doi.org/10.1534/genetics.109.107748
http://www.ncbi.nlm.nih.gov/pubmed/19737745
http://www.ncbi.nlm.nih.gov/pubmed/14616073
http://www.ncbi.nlm.nih.gov/pubmed/10481910
http://www.ncbi.nlm.nih.gov/pubmed/8698237
http://dx.doi.org/10.1242/bio.201410199
http://dx.doi.org/10.1242/bio.201410199
http://www.ncbi.nlm.nih.gov/pubmed/25836675
http://www.ncbi.nlm.nih.gov/pubmed/11565033
http://www.ncbi.nlm.nih.gov/pubmed/12900462
http://www.ncbi.nlm.nih.gov/pubmed/10995384
http://www.ncbi.nlm.nih.gov/pubmed/17409113
http://www.ncbi.nlm.nih.gov/pubmed/17442888
http://www.ncbi.nlm.nih.gov/pubmed/8769642
http://www.ncbi.nlm.nih.gov/pubmed/16203991
http://dx.doi.org/10.1016/j.cell.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18585360
http://www.ncbi.nlm.nih.gov/pubmed/7578067
http://www.ncbi.nlm.nih.gov/pubmed/16437107
http://dx.doi.org/10.1101/gad.210773.112
http://www.ncbi.nlm.nih.gov/pubmed/23431053

@’PLOS | GENETICS

Iroquois Proteins Control Cell Cycle Progression

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneration
and stem cell self-renewal. Nature Cell Biol 13: 877—-883. doi: 10.1038/ncb2303 PMID: 21808241

Del Bene F, Wittbrodt J (2005). Cell cycle control by homeobox genes in development and disease.
Semin Cell Dev Biol 16: 449-460. PMID: 15840452

Baig J, Chanut F, Kornberg TB, Klebes A (2010) The chromatin-remodeling protein Osa interacts with
CyclinE in Drosophila eye imaginal discs. Genetics 184: 731-44. doi: 10.1534/genetics.109.109967
PMID: 20008573

Lecona E, Rojas LA, Bonasio R, Johnston A, Fernandez-Capetillo O, Reinberg D (2013) Polycomb pro-
tein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes. PLoS
Biol 11:e1001737. doi: 10.1371/journal.pbio.1001737 PMID: 24358021

Zecca M, Struhl G (2002) Control of growth and patterning of the Drosophila wing imaginal disc by
EGFR-mediated signaling. Development 129: 1369—1376. PMID: 11880346

Heberlein U, Borod ER, Chanut FA (1998) Dorsoventral patterning in the Drosophila retina by wingless.
Development 125: 567-577. PMID: 9435278

Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dor-
soventral axes of the eye disc. Development 128: 1519—1529. PMID: 11290291

Maurel-Zaffran C, Treisman JE (2000) pannier acts upstream of wingless to direct dorsal eye disc
development in Drosophila. Development 127: 1007—1016. PMID: 10662640

Myrthue A, Rademacher BL, Pittsenbarger J, Kutyba-Brooks B, Gantner M, Qian DZ, et al. (2008) The
iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and reg-
ulates apoptosis and the cell cycle in LNCaP prostate cancer cells. Clin Cancer Res 14: 3562-3570.
doi: 10.1158/1078-0432.CCR-07-4649 PMID: 18519790

Martorell O, Barriga FM, Merlos-Suarez A, Stephan-Otto Attolini C, Casanova J, Batlle E, et al. (2014)
Iro/IRX transcription factors negatively regulate Dpp/TGF-beta pathway activity during intestinal tumori-
genesis. EMBO Rep 15: 1210-1218. doi: 10.15252/embr.201438622 PMID: 25296644

Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776—
2786. PMID: 15838514

Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Dro-
sophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312-3317. PMID:
17360644

Carrasco-Rando M, Tutor AS, Prieto-Sanchez S, Gonzalez-Perez E, Barrios N, Letizia A, et al. (2011)
Drosophila araucan and caupolican integrate intrinsic and signalling inputs for the acquisition by muscle
progenitors of the lateral transverse fate. PLoS Genet 7: €1002186. doi: 10.1371/journal.pgen.
1002186 PMID: 21811416

Villa-Cuesta E, Gonzalez-Perez E, Modolell J (2007) Apposition of iroquois expressing and non-
expressing cells leads to cell sorting and fold formation in the Drosophila imaginal wing disc. BMC Dev
Biol 7:106. PMID: 17880703

PLOS Genetics | DOI:10.1371/journal.pgen.1005463 August 25, 2015 20/20


http://dx.doi.org/10.1038/ncb2303
http://www.ncbi.nlm.nih.gov/pubmed/21808241
http://www.ncbi.nlm.nih.gov/pubmed/15840452
http://dx.doi.org/10.1534/genetics.109.109967
http://www.ncbi.nlm.nih.gov/pubmed/20008573
http://dx.doi.org/10.1371/journal.pbio.1001737
http://www.ncbi.nlm.nih.gov/pubmed/24358021
http://www.ncbi.nlm.nih.gov/pubmed/11880346
http://www.ncbi.nlm.nih.gov/pubmed/9435278
http://www.ncbi.nlm.nih.gov/pubmed/11290291
http://www.ncbi.nlm.nih.gov/pubmed/10662640
http://dx.doi.org/10.1158/1078-0432.CCR-07-4649
http://www.ncbi.nlm.nih.gov/pubmed/18519790
http://dx.doi.org/10.15252/embr.201438622
http://www.ncbi.nlm.nih.gov/pubmed/25296644
http://www.ncbi.nlm.nih.gov/pubmed/15838514
http://www.ncbi.nlm.nih.gov/pubmed/17360644
http://dx.doi.org/10.1371/journal.pgen.1002186
http://dx.doi.org/10.1371/journal.pgen.1002186
http://www.ncbi.nlm.nih.gov/pubmed/21811416
http://www.ncbi.nlm.nih.gov/pubmed/17880703

