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Abstract

Organogenesis is controlled by gene networks activated by upstream selector genes. Dur-
ing development the gene network is activated stepwise, with a sequential deployment of
successive transcription factors and signalling molecules that modify the interaction of the
elements of the network as the organ forms. Very little is known about the steps leading
from the early specification of the cells that form the organ primordium to the moment when
a robust gene network is in place. Here we study in detail how a Hox protein induces during
early embryogenesis a simple organogenetic cascade that matures into a complex gene
network through the activation of feedback and feed forward interaction loops. To address
how the network organization changes during development and how the target genes inte-
grate the genetic information it provides, we analyze in Drosophila the induction of posterior
spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in
the spiracle primordium a cascade of transcription factors and signalling molecules includ-
ing the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back
directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network.
Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modu-
lar cis regulatory element integrates the dynamic network information set by Abd-B and

the JAK/STAT signalling pathway during development. We describe how a Hox induced
genetic cascade transforms into a robust gene network during organogenesis due to the
repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our
results show that in this network STAT functions not just as a direct transcription factor, but
also acts as a "counter-repressor”, uncovering a novel mode for STAT directed transcrip-
tional regulation.

Author Summary

Organogenesis is controlled by gene networks activated by upstream selector genes. To
address how the network organization changes during development and how the target
genes integrate the genetic information it provides, we analyze in Drosophila the induction
of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-
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B activates in the spiracle primordium a cascade of transcription factors and signalling
molecules including the JAK/STAT pathway. We find that at later stages STAT activity
feeds back into Abd-B, initiating the transformation of the Hox cascade into a gene-net-
work. Focusing on a spiracle downstream target gene of Abd-B, we analyze how its cis reg-
ulatory elements integrate the dynamic network information set by Abd-B and the JAK/
STAT signalling pathway during development. Our results also show that the well known
transcription factor STAT can control gene expression as a “counter-repressor”, uncover-
ing an alternative novel mode for STAT directed transcriptional regulation.

Introduction

Organogenesis is controlled by the activation of complex gene regulatory networks in precise
positions of the organism [1]. Selector genes, or master regulator genes, encode transcription
factors required for the expression of entire organogenetic gene regulatory networks and, when
expressed ectopically, can induce the formation of additional organs at new locations [2,3].
Prominent examples are Eyeless (Ey) capable of inducing ectopic eyes; or the Hox proteins
capable of inducing segment specific organs [1,4]. However, these genes by themselves are
unable to provide all the information required to specify an organ. For example, the organ
specified by a particular Hox protein varies at different positions of the segment depending on
its interaction with tissue-specific transcription factors and signalling pathway effectors active
in each region. Similarly, ectopic Ey expression can only induce the formation of additional
eyes at certain locations of the imaginal discs showing that the functional outcome of these pro-
teins is locally modulated. Once a regulatory gene network is selected, each network gene has
to be precisely activated in time and space and this is usually controlled through the gene’s
non-coding cis-regulatory modules (CRMs). Thus, CRMs play a critical role since they act as
integrators of specific combinations of transregulatory transcription factors and signalling
pathway effectors, resulting in localized transcriptional activity.

Examples of Hox-induced organogenetic networks include the formation of the corpora
allata or the maxillary cirri by Deformed (Dfd); the development of the prothoracic or the sali-
vary glands by Sex combs reduced (Scr); or the formation of the posterior spiracles by Abdomi-
nal-B (Abd-B) [5-8]. In all these cases the Hox protein is the most upstream activator of an
organogenetic gene-cascade. This simple and linear view of the role of Hox genes in the estab-
lishment of gene networks, contrasts with what is known for other selector genes. Eye develop-
ment shows a more complex situation where Ey is not simply upstream of a linear cascade but
forms part of the gene network itself, collaborating with other transcription factors as Eyes
absent, Sine oculis or Dachshund that are equally important to induce eye organogenesis [9].

The formation of the posterior spiracles of Drosophila is an excellent model to study how a
Hox protein controls organogenesis [8,10]. The posterior spiracles constitute the only external
opening of the trachea when the larva hatches so their development has to be completed during
embryogenesis. Posterior spiracle organogenesis is induced in the eighth abdominal (A8) seg-
ment when the Abdominal-B (Abd-B) Hox selector protein activates a series of primary targets
that include the transcription factor genes cut (ct), empty spiracles (ems) and spalt (sal) as well
as the unpaired (upd) and upd2 genes encoding ligands for the JAK/STAT pathway receptor.
Downstream of these primary targets, a number of secondary target genes are activated which
require the activity of the primary targets to be expressed. Secondary targets include other tran-
scription factors, but also genes encoding realizators of organogenesis, like non-classic cadher-
ins involved in cell adhesion, RhoGAP and RhoGEF GTPase regulatory proteins influencing
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cytoskeletal organization, and cell polarity determinants [11]. Central among the cell polarity
genes is crumbs (crb), one of the major determinants of apico-basal polarity [12,13]. Crbisa
transmembrane protein that localizes to the subapical region of all ectodermal cells where it is
required to maintain the epithelial structure by interaction with cortical proteins also involved
in apico-basal polarity regulation. Although Crb is ubiquitous in all ectodermal cells, its expres-
sion is increased in the cells that invaginate to form the posterior spiracles (S1A and S1B Fig
and [11]). The enhancement of crb transcription in the spiracle primordium is controlled by a
posterior spiracle specific CRM regulated by JAK/STAT signalling (S1D and S1E Fig). In turn,
JAK/STAT signalling in the posterior spiracles depends on upd transcription that is controlled
by Abd-B (S1C and S1F Fig and [11]). Although this simple linear model, where the crb-spira-
cle enhancer expression is solely dependent on JAK/STAT activation, can explain why it is
expressed in the spiracle primordia of A8 (S1C and S1D Fig), it does not explain why this
enhancer is not also activated in the tracheal pits, where upd is transcribed and the JAK/STAT
signalling cascade is also active (S1C and S1G-S1G” Fig). Thus, the regulation of the crb poste-
rior spiracle CRM must be more complex to attain organ specificity.

To understand how organ specific gene expression is regulated in a Hox-induced morpho-
genetic cascade during organogenesis, we have studied the transcriptional activation of crb in
the posterior spiracles. Our results show that spiracle specific expression of this downstream
secondary target requires the cooperation of the primary targets and the Abd-B Hox selector
protein. Moreover, we show that the simple linear cascade initiated by Abd-B early in embryo-
genesis, soon becomes a complex network due to feedback loops set up by the primary targets.
Furthermore, we find evidence that STAT can influence gene expression in a novel way, not
just as a positive transcription factor, but also as a counter-repressor. The crb posterior spiracle
expression is controlled by an unanticipated number of interactions between modular elements
of the CRM that influence the final transcriptional outcome.

Results

A crb518 minimal enhancer directs expression to the posterior spiracle
in a JAK/STAT dependent manner

The reporter construct crb43.2-lacZ contains a 2kb crb intronic region driving posterior spira-
cle expression. It was shown that the activity of this reporter depends on activation of JAK/
STAT signalling and that mutation of the STAT binding sites present in this element downre-
gulate its activity [[11,14] and S1 Fig, compare E and F]. These initial studies suggested that the
crb43.2 enhancer is a direct target of the JAK/STAT pathway. To confirm this observation, we
expressed activated STAT-GFP in S2 cells and performed Chromatin Immunoprecipitation
(ChIP) using an anti-GFP antibody (S2A Fig). The enrichment of input recovery shows that
STAT is able to bind directly to the crb enhancer, reinforcing the view that crb is a direct target
of the JAK/STAT pathway.

To identify the minimal sequence requirements for crb posterior spiracle specific expression
we compared crb43.2 sequence among several Drosophila species (S2B Fig). As the initial char-
acterization of crb43.2 indicated the requirement of two low affinity STAT binding sites [14],
we tested a highly conserved 518 bp genomic fragment centred around these sites (S2B Fig).
The 518 bp element was cloned into a lacZ reporter transformation plasmid containing a mini-
mal promoter and lacZ expression was analyzed in transgenic flies. Like the original c¢rb43.2
enhancer, crb518 directs expression of the transgene specifically in the posterior spiracles (S2C
Fig). Moreover, the activity of crb518 is also regulated by JAK/STAT signalling as both inacti-
vation of the pathway or mutation of the STAT binding sites result in the downregulation of
the enhancer’s activity (S2E and S2F Fig).
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conservation

Highly conserved

These results show that the crb518 enhancer constitutes a minimal element able to direct
specific expression of crumbs to the posterior spiracle in a JAK/STAT dependent manner.

A posterior spiracle specificity element can be separated from the STAT
binding sites
To understand the molecular mechanisms by which STAT activates crumbs in the posterior
spiracles, we further dissected the crb518 minimal enhancer. Based on the position of the
STAT binding sites, the crb518 enhancer can be subdivided into three regions (Fig 1A): a
region encompassing the first 204 nucleotides (1-204, yellow), a 101 bp region containing the
STAT binding sites (205-305 bp, red) and a region including the last 213 nucleotides (306-518
bp, green). Transgenes were designed with different combinations of these regions and their
expression patterns characterized. When the 1-204 bp region is deleted (crb313), spiracle
expression is lost (Fig 1C). This result suggests that the STAT binding sites although required,
are not sufficient to direct expression to the posterior spiracles and that additional factors bind-
ing to the 1-204 fragment (yellow) are crucial. This conclusion is further supported by the
inability of the crbI101 construct, which contains the 205-305 fragment (red) including both
STAT sites, to direct expression in the spiracles (Fig 1D).

These observations are in accordance with our finding that the crb305 enhancer, where
the 306-518 fragment (green) is deleted, is able to direct expression to the posterior spiracle
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Fig 1. Component modules of the crb518 posterior spiracle minimal enhancer. (A) Constructs designed to analyse the crb518 CRM (S and asterisks
indicate the position of STAT92E binding sites). (B) crb518-lacZ reporter expression. (C) The crb313-lacZ reporter with the 1-204 bp region deleted loses
posterior spiracle expression. (D) The crb107-lacZ reporter containing the STAT92E binding sites is unable to direct expression to the posterior spiracles. (E)
The crb305-lacZ reporter is able to direct expression to the posterior spiracle and its expression is downregulated in embryos mutant for the Unpaired JAK/
STAT ligands (F). (G) The crb204-lacZ reporter lacking the STAT92E binding sites is able to direct expression in the posterior spiracles and still requires
JAK/STAT function as in unpaired null mutants its activity in the posterior spiracles is abolished (H). Arrowheads: posterior spiracle primordium.

doi:10.1371/journal.pgen.1005412.g001
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(Fig 1E). Moreover, the activity of crb305 is still dependent on the JAK/STAT pathway as its
expression is downregulated in the absence of all three unpaired ligands (Fig 1F). Therefore the
crb305 enhancer seemed to contain all the cis-regulatory elements required to direct expression
to the posterior spiracle in a JAK/STAT dependent manner.

Finally, we tested the expression of the crb204 construct, which contains the 1-204 fragment
(yellow) but lacks the STAT binding sites. Surprisingly, the crb204 is able to direct expression
to the posterior spiracles (Fig 1G). Moreover, this expression is dependent on JAK/STAT path-
way activity as in embryos mutant for the unpaired ligands the enhancer is downregulated (Fig
1H).

Taken together, these results show that crb204 contains the crb posterior spiracle specificity
element. Moreover, the expression of this construct suggests that although the activity of the
JAK/STAT pathway is required to activate the crb spiracle expression, the STAT binding sites
are dispensable. This seems to contradict our previous observations where mutation of the
STAT sites resulted in the downregulation of the larger crb43.2 and ¢crb518 enhancers.

The spiracle specific crb204 element does not contain cryptic STAT
binding sites
The spiracle expression of the crb204 enhancer was unexpected not only because it did not con-
tain the STAT binding sites known to be required for the larger enhancers’ activity but also
because despite the absence of STAT sites the enhancer is still regulated by the JAK/STAT
pathway. These results prompted us to consider the possibility of cryptic STAT binding sites in
¢crb204 that could account for these observations. Therefore, we searched for putative addi-
tional STAT binding sites that differed in one or two nucleotides from the consensus
TTCNNN(N)GAA sequence [14,15]. Using this relaxed criterion, we identified fifteen possible
cryptic binding sites spread along crb305 (S3A Fig, asterisks), twelve of them in crb204. To
determine if STAT is able to bind in vitro to any of these putative sites, EMSAs were performed
with activated STAT92E protein incubated with oligonucleotides containing the different cryp-
tic sites (S3B Fig). As controls we used oligonucleotides containing the STAT consensus bind-
ing sites as well as mutated versions of these sites (Materials and Methods). In these conditions,
STAT92E is only able to bind the previously identified consensus sites, while it fails to bind the
mutated STAT sites or any of the putative cryptic sites (S3B Fig). Therefore, these experiments
exclude the possibility of cryptic binding sites being responsible for the activity of crb204.
Taken together, these results suggest that the JAK/STAT pathway is required to specify
expression in the posterior spiracles most likely by indirectly regulating factors binding to the
1-204 specificity element (yellow). This detailed analysis reveals that STAT does not function
as a crb spiracle enhancer coactivator, but has a different function in the context of the crb
enhancer.

The binding of STAT92E to crb518 is required to counteract a repressor
element

Mutation of the STAT sites in both the original ¢rb43.2 enhancer [11,14] and in the crb518
enhancer indicated that the STAT sites are required for full activation (S1E and S1F and S2C-
S2F Figs). However, the spiracle activity of crb204 excluded the possibility that the direct bind-
ing of STAT is necessary to direct expression to the posterior spiracles (Fig 1G). These contra-
dictory results can be accommodated in a model where the specificity element is silenced by a
nearby repressor element; the function of STAT being to prevent the repression, thereby, allow-
ing spiracle specific activation (Fig 2A and 2A’). In this hypothesis the JAK/STAT pathway
would play a dual role: first, it would be required indirectly to activate the specificity element
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Fig 2. STAT92E binding sites are required to release crb518 from repression. (A) Representation of the dual STAT92E requirement for crb518 CRM
expression in the posterior spiracles (A’). crb518 requires direct STAT92E binding to counteract a repressor, as well as an indirect STAT92E function to
induce an activator of the spiracle specificity module. (B) Mutation of the STAT binding sites (crb578-STAT-mt-Z) in the presence of the repressor module
downregulates spiracle expression (B’). (C) Mutation of the STAT binding sites in the absence of the repressor module (crb305-STAT-mt-Z) does not affect
spiracle expression (C’). (D) Fusion of the specificity and repressor modules in the absence of the STAT-binding module (crb518A101-Z) downregulates
spiracle expression (D’). Arrowheads: posterior spiracle primordium.

doi:10.1371/journal.pgen.1005412.9002
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by regulating activator factors; and second, it would be required directly to overcome the
repression of the enhancer by counteracting a repressor element present in the CRM. Mutation
of the STAT sites would prevent the binding of STAT to the CRM disabling this second
counter-repression role resulting in the downregulation of expression controlled by the speci-
ficity element.

As our model predicts the existence of a repressor element, we set to identify its location by
deletion of DNA in a ¢rb518 enhancer with mutated STAT sites (Fig 2B and 2C). The logic
behind this experiment was that the deletion of the repressor element should allow the activity
of the specificity element in the absence of STAT binding sites. We found that removal of the
306-518 fragment (crb305-STAT-mt) results in the expression of the enhancer in the posterior
spiracles (Fig 2B’ and 2C’) confirming the existence of a repressor element in the 306-518 distal
region (green region).

To further support our findings we generated an additional construct fusing the putative
repressor module to the crb spiracle specificity module (Fig 2D). As expected from the presence
of a repressor element, the expression of this transgene in the posterior spiracles is downregu-
lated (Fig 2D’).

To determine whether the STAT binding sites and the repressor element present in the
205-518 fragment are able to function as regulatory modules independent of the specific con-
text of the crb spiracle specificity module, we fused the crb313 fragment (red and green in Fig
1A), which does not drive expression in the posterior spiracles (Fig 1C), to ems0.35 (Fig 3A and
3B), an unrelated posterior spiracle enhancer of the empty spiracles gene [16]. Although the
crb313-ems0.35 fusion construct generates a novel gut pattern of expression not present in any
of the original constructs, ems0.35 spiracle activity is still present when fused to the crb313 ele-
ment (Fig 3A and 3B and 3D and 3E). In contrast, fusion of the crb313 element with the STAT
sites mutated results in the loss of the posterior spiracle expression driven by ems0.35 (Fig 3G
and 3H). These results further support the presence of a repressor element in the 306-518 frag-
ment that would be counteracted by the STAT sites, and reveal the modular nature of the
crb518 CRM. Moreover, while the erns0.35 enhancer by itself is expressed independently of
STAT function (Fig 3B and 3C), it becomes STAT dependent when fused to the crb313 element

wit stage 11||Df(1)os1A stage 11

|
ems 0.35-Z |

T
3§0 f 4

ems 0.35 \
ems 0.35-Z
@ Df(1)os
1 350
crb313-ems 0.35-Z | ems 0.35 [
518 W
crb313-ems’0: F
wt
G
] -
crb313 MUT-ems 0.35-Z | ems 0.35 [
518 N

crb313 MU

Fig 3. The repressor domain functions as an independent regulatory module. (A) The ems0.35 enhancer (blue) drives expression to the posterior
spiracles (B). (C) Expression of ems0.35-Z is maintained in Df(1)os 1A mutant embryos lacking JAK/STAT pathway activity. (D) Fusion of the crb STAT-
binding and repressor modules (red and green) to ems0.35 (crb313-ems0.35) does not affect spiracle expression in wild type embryos (E), but abolishes
spiracle expression in Df(1)os 1A embryos (F). (G) When the STAT-binding sites are mutated in this construct (crb313 MUT-ems0.35) spiracle activity is lost
(H). Note that the crb313-ems0.35 fusion construct generates a novel gut pattern of expression that is STAT independent as it is unaffected in Df(1)os1A
mutants or when the STAT sites are mutated. Arrowheads: posterior spiracle primordium.

doi:10.1371/journal.pgen.1005412.9003
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(Fig 3E and 3F). Taken together, these data show that crb518 is structured into three different
regions, each with a specific function: an activator element driving spiracle specificity (1-204,
yellow), a STAT-binding element that contains the conserved STAT binding sites (205-305,
red) and a repressor element (306-518, green).

Analysis of the 306-518 DNA sequence did not provide any strong indication regarding the
nature of the repressor protein. To fine map the repressor region, we constructed transgenes
where we added increasing size fragments distal to crb305-STAT-mt (S4B Fig). In these con-
structs the position of the repressor element should be identifiable by its ability to inhibit the
specificity spiracle element, which cannot be counteracted by STAT binding. Based on the
sequence conservation between D. melanogaster and D. virilis (S4A Fig) the repressor contain-
ing region was divided into four elements: two highly conserved elements (CE), CE1 (345-385
bp) and CE2 (492-518 bp), intercalated by two non-conserved (NC) elements, NC1 (305-344
bp) and NC2 (386-491 bp). Addition of NC1 and CE1 has no effect on the activity of the
enhancer (S4B-54D Fig). However, when the NC2 element is included, the spiracle expression
is downregulated (S4E Fig).

Taken together, these results map the position of the repressor element around the NC2
region distal to the STAT binding sites.

The repressor element regulates the temporal activation of the crumbs
spiracle enhancer

The identification of a repressor element in the ¢rb518 enhancer prompted us to determine its
role in the regulation of c¢rb in the posterior spiracle. The repressor domain does not seem to be
involved in tissue-specific regulation as the specificity element (crb204, Fig 1G) is sufficient to
direct spiracle activation. In fact, we were unable to observe any ectopic activation in constructs
where the repressor element was deleted. Therefore, it seemed plausible that the repressor ele-
ment could be required for temporal regulation of crumbs expression in the posterior spiracles.
To test this possibility, we analyzed the onset of expression directed by the different crb CRM
variants (Fig 4). While ¢rb43.2 and crb518, induce reporter transcription from stage 11 (Fig
4A'-4A”, 4B’-4B”), we observe that crb305, which lacks the repressor element, induces earlier
transcription starting at stage 10 (Fig 4C-4C”).

These results demonstrate that the repressor element does not have a major function on tis-
sue-specificity as expression is still detected in the posterior spiracles, but it does affect the tem-
poral regulation of the enhancer with the onset of transcription occurring at earlier stages of
development.

Identification of trans-activating factors controlling crb spiracle specific
activation

Our finding that STAT is not involved in the direct activation of the crb spiracle enhancer,
made us look into the posterior spiracle gene cascade for alternative activators. To this end,
using the 69B-Gal4 line, we tested whether any of the Abd-B primary targets expressed
throughout the epidermis could activate ectopic crb305 expression. While ectopic expression of
spalt (sal), empty spiracles (ems) or cut (ct) have no effect, ectopic expression of unpaired
resulted in ectopic activation of the spiracle enhancer (Figs 5E and S5), consistent with the
requirement of JAK/STAT for crb expression in the posterior spiracles. Interestingly, despite
69B-Gal4 expressing unpaired throughout the embryonic epidermis, ectopic activation of the
enhancer is mostly confined to the posterior segments where Abd-B is also expressed. This
result raised the possibility of Abd-B having a direct input on the activation of the crb specific-
ity element. To test this possibility, we determined the ability of Abd-B to bind to the crb CRM
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Fig 4. The repressor module regulates the temporal activation of crb518. Activation of the crb enhancer variants determined by in situ using lacZ RNA

probes. While the spatial expression of the three reporters is similar, expression of crb305 (C-C”) starts at an earlier developmental stage than crb43.2 (A-A”)
and crb518 (B-B”), indicating that the repressor element regulates crb’s CRM temporal activation (compare A and B with C). Arrowheads: posterior spiracle
primordium.

doi:10.1371/journal.pgen.1005412.9004

in S2 cells using ChIP analysis. We obtained a 9-fold increase in input recovery when per-

forming ChIP with Abd-B confirming that Abd-B is able to bind directly to the crb enhancer
(Fig 6A).

crb305-Z

Fig 5. Activation of the crb305 posterior spiracle enhancer requires a both Abd-Bm and STAT92E function. Expression of crb305-Z in Abd-B" null
homozygous mutant embryos (A), or Df(1)os1A embryos lacking all three Upd ligands (B). Ectopic expression of Abd-Bm in the ectoderm drives ectopic
activation of crb305 in all trunk segments in wild type embryos (C) but fails to do so in embryos lacking the Upd ligands (D). Ectopic expression of Upd,

induces ectopic activation of crb305 exclusively in the posterior segments (E). This activation is dependent on Abd-B function since ectopic expression of
Upd in Abd-BM? mutant embryos fails to activate crb305 (F). Arrowheads: posterior spiracle primordium.

doi:10.1371/journal.pgen.1005412.9g005
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Analysis of the crb305 sequence shows the existence of eight putative Abd-B binding sites
(Fig 6B, asterisks). To determine if Abd-B could bind them directly, EMSAs were performed
with oligonucleotides covering regions containing the predicted sites (Fig 6B). As a control, we
designed oligonucleotides containing point mutations abolishing Abd-B binding. Abd-B was
expressed in S2 cells and cell extracts prepared and used in these assays. As seen in EMSA, all
eight sites are bound by Abd-B with different affinities (Fig 6C). Moreover, binding to oligonu-
cleotides containing more than one Abd-B site, is only abolished when both sites are mutant. A
similar additive binding has been described for other direct Abd-B targets [16-18].

JAK/STAT and Abd-B collaborate for crb spiracle enhancer activation

Our results suggest that Abd-B may be required both directly and indirectly for the activation
of crb in the posterior spiracles. Directly, through Abd-B’s binding to the crb specificity element
and indirectly through its activation of upd transcription and thus JAK/STAT signalling.

Similarly, STAT is also required directly and indirectly for crb’s spiracle expression: directly,
to block the repressor’s element activity; and indirectly, because JAK/STAT signalling is also
required for the activation of the crb specificity element (Fig 1H).

To study if Abd-B can induce the activation of the specificity domain in the absence of JAK/
STAT signalling and vice versa, we analyzed the effect of ectopically expressing one in embryos
mutant for the other. We performed these experiments using the crb305 enhancer that lacks
the repressor domain, avoiding the interference of the repressor element. The ectopic crb305
expression in segments A8-A9 caused by ectopic upd is not present in Abd-B mutants (com-
pare Fig 5E and 5F) showing that Abd-B provides an additional input in the activation of the
crb305 enhancer. Similarly, ectopic Abd-B expression in Df(1)os1A embryos lacking all three
upd ligands is not capable of activating the crb305 enhancer (compare Fig 5C and 5D). There-
fore, these results indicate that both STAT and Abd-B inputs are necessary in parallel for spira-
cle specificity rather than all the Abd-B activity being mediated by its activation of upd and
JAK/STAT signalling.

JAK/STAT activates expression of Abd-B via a feedback loop

The above data show that both STAT and Abd-B are required for crb specificity element
expression. As the function of STAT on the specificity element is indirect, it is likely to be
mediated through the regulation of another transcription factor expressed in the posterior spi-
racles. This means that a still unidentified STAT target mediates STAT’s indirect function on
the crb spiracle enhancer. Alternatively, Abd-B itself could be regulated by STAT via a feedback
mechanism.

If a feedback loop mechanism existed in the posterior spiracles, overexpressing Abd-B
should result in the activation of endogenous Abd-B. To determine the existence of such feed-
back loop, the 69B-Gal4 line was used to ectopically activate UAS-Abd-Bm in the ectoderm of
embryos containing the BAC-Abd-B-GFP (Fig 7A). In this BAC element GFP-tagged Abd-B is
regulated by the endogenous upstream Abd-B cis-regulatory sequences that are sufficient to
drive normal expression in the A8 and A9 segments (Figs 7B and 7C and S6A-S6A”). This set-
up allows discriminating between the ectopically expressed Abd-Bm protein and any feedback
induced Abd-B-GFP protein from the BAC element. Ectopic UAS-Abd-Bm induction results in
ectopic expression of Abd-B-GFP, indicating that a feedback loop mechanism maintaining
Abd-B expression does exist (Fig 7D). We next tested whether this feedback loop could be
mediated by the activation of the JAK/STAT pathway. To determine this, we repeated the
experiment in a Df(1)os1A mutant background and found that most feedback-induced ectopic
expression disappeared (Fig 7E) while feedback-independent expression in A8-A9 is

PLOS Genetics | DOI:10.1371/journal.pgen.1005412  July 31,2015 10/22



@’PLOS | GENETICS

STAT and Hox Interactions in a Gene-Network

>]

-
N

g 1 204 S S 305
2 104 | %% % % * % * % .
§ crb305-Z | Abd-B bs (*) Wild-Type  Mutation
L 81
5 | e #1 TTTATCG TcegTCG
a ¢ oligo #1 +2 === #2 TTTATCA TccgTCA
§ 4 oligo #3 5 #3 TTTATGA TccgTGA
2 5] 9 - #4 TTTATTC  TccgTTC
0 - oligo #4 —— #5 TTTATGG TcegTGG
+ + pAc-Gal4 ] * % #6 TTTACGA TccgCGA
- +  PUAST-Abd-Bm-HA  ©ligo#5+6 - #7  TTTAGGG ccgAGGG
+ - pUAST oligo #7 + 8 —_ #8 ATTATAT  AccgTAT
Oligo #1+ 2 Oligo #3 Oligo #4
WT MUT #1 WT MUT #2 MUT #1+2 WT MUT WT MUT
a-Abd-B R T S E R S I - - -+ - - -4 - - -+ - - - 4
Abd-Bm - -+t - -+ o+ EEE O S - - - 4+ - -+ 4 - -+ 4 - -+ 4+
non-transfected NE -+ - - -+ - - - R + -+ - - -+ - - -+ - - -+ - -
oligo+Abd-B+o-Abd-B > -- . - - - <+
: X - <«
oligo+Abd B:g <t
==

Oligo »

cowe coss

Gewe swes <

1234 56738 9101112 13141516 17181920 21222324 25262728 29303132 33343536
Oligo #5 +6 Oligo #7 + 8
WT MUT #5 WT MUT #6 MUT #5 + #6 WT MUT #7 WT MUT #8 MUT #7 + #8
a-Abd-B R e S B R S R T S R T T
Abd-Bm - -+ 4+ - -+ o+ B T T e 3 - -+ - -+ 4 B I S S
non-transfected NE - + - - - + - - R I SR I SR I
oligo+Abd-B+a-Abd-B > - - - .
oligo+Abd-B » - - - *
oigo - (N0 G0 CNEEP G GID coe. cune ssve J—
. e <

37383940 41424344

45464748 49505152 53545556

57585960 61626364

65666768 69707172 73747576

Fig 6. Abd-Bm binds multiple sites in crb305 posterior spiracle enhancer. (A) Chromatin immunoprecipitation shows Abd-B binding to crb in S2 cells.
Cells were transfected with pAC-Gal4 to activate the expression of UAS constructs, and either with pUAST-Abd-Bm-HA or empty pUAST as a control. ChIP

was performed using an anti-HA antibody. (B) Localization of putative Abd-B binding sites in crb305 (asterisks) and oligos used to test direct binding of Abd-B
in EMSAs; (S) indicates the position of the consensus STAT92E binding sites. (C) EMSAs showing binding of Abd-B to wild type oligos (lanes 1-4, 9-12, 21—
24,29-32, 37-40, 45-48, 57-60, 65-68, black arrows) but not to oligos with the mutated sites (lanes 5-8, 13-20, 25-28, 33-36, 41-44, 49-56, 61-64, 69—
76). In oligos containing two Abd-B sites, both have to be mutated to abolish Abd-B binding (lanes 5-20, 41-56, 61-76). Specificity of the observed band
shifts was determined by the presence of a super-shift after incubation with anti-Abd-B antibody (grey arrows). White arrows point at unspecific bands.
Protein extracts from non-transfected S2 cells were used as negative control. Arrowheads indicate the unbound radioactively labelled oligos.

doi:10.1371/journal.pgen.1005412.g006
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Fig 7. JAK/STAT activates expression of Abd-B through a feedback loop. (A) Genomic region contained in [CH321-91P18] BAC-Abd-B-gfp and
location of the V/T42855 enhancer sequence. Asterisks represent 3N (red) and 4N (blue) STAT sites present in the V742855, green boxes and arrows in the
scale line mark the position of the control and experimental oligos used in the ChIP experiment below. (B) Endogenous Abd-B protein expression. (C) GFP-
tagged Abd-B expression from the BAC-Abd-B-gfp is indistinguishable in the A8 and A9 abdominal segments from the endogenous protein. (D) Ectopic Abd-
Bm expression in the embryonic ectoderm using 69B-Gal4 induces ectopic BAC-Abd-B-gfp activation anterior to A8. (E) In Df(7)os1A embryos lacking JAK/
STAT ligands ectopic Abd-Bm expression cannot activate high levels of BAC-Abd-B-gfp anterior to A8. (F) Ectopic Upd expression using 69B-Gal4 induces
ectopic BAC-Abd-B-gfp activation. Note in D and F that the expression observed in A8 and A9 is stronger than the ectopic expression in anterior segments.
This is likely due to the BAC element containing several A8-A9 enhancers not all of which will respond to the feedback and become activated ectopically. (G)
Posterior spiracle gal4 RNA expression (arrowhead) driven by the 2.2kb Abd-B genomic fragment in VT42855-Gal4 line. (H) Posterior spiracle expression in
VT42855-Gal4 disappears in Df(1)os1A embryos lacking JAK/STAT ligands. Note that central nervous expression is unaffected. (I-K) VT42855-Gal4/+, UAS-
lacZ/+ embryos double stained with anti-BGal (green in |, white in K) and anti-Ct (red in | white in J) to prove the posterior spiracle expression (inset) of
VT42855. (L) STAT92E-GFP Chromatin immunoprecipitation in S2 cells shows STAT binding to the V742855 region of the Abd-B cis regulatory element
compared with the negative control region devoid of STAT sites indicated in A (green boxes). Cells were transfected with pAC-Gal4 to activate the expression
of UAS constructs, pAC-Hop ™™ expressing an activated JAK kinase to induce STAT92E activation by phosphorylation and either with
pUAST-STAT92E-GFP or empty pUAST as a control. ChIP of STAT92E was performed using an anti-GFP antibody. The position of oligos used to amplify
the VT42855 region is indicated in (A) by an arrow and their sequences indicated in Materials and Methods. (M) The crb518 posterior spiracle enhancer is
composed of a specificity module sufficient to drive posterior spiracles expression, a STAT binding module and a repressor module. Early Abd-B expression
activates the JAK/STAT Unpaired ligand and other primary posterior spiracle targets, but fails to activate crb518 CRM as a result of the repressor module
activity. The JAK/STAT pathway plays a key role in the activation of crb by, first, reinforcing Abd-B expression in A8 through a feedback loop mechanism;
second, inducing additional activator factors, which together with ABD-B act over the specificity module and finally by direct binding of STAT92E to crb518 to
counteract the repressor element. Arrowheads in G and H indicate the position of the posterior spiracle primordium; arrows in D and F indicate some of the
segments that exhibit ectopic activation of the BAC-Abd-B-gfp.

doi:10.1371/journal.pgen.1005412.g007

maintained. We also ectopically expressed upd throughout the ectoderm using the 69B-Gal4
driver line and analyzed Abd-B-GFP expression. As with ectopic expression of Abd-Bm, Upd
also results in the ectopic activation of Abd-B-GFP expression (Fig 7F). As these results suggest
the existence in Abd-B of an enhancer regulated by JAK/STAT signalling, we analyzed the
Stark Lab genome collection of enhancers made from the Abd-B locus [19]. We found that a
2.2 kb fragment (VT42855) drives expression in the posterior spiracles and contains a high
density of STAT sites (Fig 7A and 7G and 7I-7K). Chromatin immunoprecipitation with
STAT-GFP shows an enrichment of input recovery of this fragment suggesting that STAT is
able to bind directly to the Abd-B cis regulatory region (Fig 7L). Moreover, V142855 expression
in the posterior spiracles is abolished in Df{1)osIA mutants (Fig 7G and 7H) confirming the
existence of a JAK/STAT regulated enhancer in the Abd-B locus. Taken together, these results
indicate the existence of a feedback loop mechanism used to maintain spiracle expression of
Abd-B via activation of the JAK/STAT pathway.

Discussion

Using the posterior spiracles as a model, we have analysed how an organogenetic gene network
develops and how a particular gene of this network integrates the changing genetic
information.

Dynamics of the global genetic regulatory interactions during
organogenesis: transformation of a genetic cascade into a gene
network

Two main regulatory structures have been described during organogenesis: genetic cascades
and genetic networks. Genetic cascades are characterized by the hierarchical interactions
between its components, with one gene setting the stage and the others responding to it. In this
system, the type of organ to develop is chosen by the upstream selector gene, which controls the
different cell behaviours via intermediate transcription factors [8,20-22].

Gene networks differ by the absence of a single master gene. In a gene network, like that
controlling eye development, not only several genes can trigger organogenesis but also all of
these genes are necessary for organogenesis. In the absence of anyone of them, organogenesis
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cannot proceed, even if forced expression of the other master regulators is induced. [23-25].
This behaviour suggests that none of the regulators is exclusively upstream of the others and
that activation of any of the master genes results in the activation of the other master genes
through cross-regulatory loops [9]. Cross-regulatory feedback loops confer robustness to a reg-
ulatory system and their absence in early Hox induced organogenesis could be due to the fast
development of the Drosophila embryo that precludes Hox genes to become integrated by feed-
back loops into the cascades they activate.

The formation of the posterior spiracle is a typical example of organogenesis induced by a
Hox gene cascade [11]. Here, Abd-B activates the primary targets that, in turn, activate second-
ary targets like Cad96C, Cad88C, Gef64C and Cad74A. The hierarchical organization of these
targets was demonstrated by the observation that in Abd-B mutants the simultaneous activa-
tion of the four Abd-B primary targets can activate the expression of Cad96C, Cad88C, Gef64C
and Cad74A [11]. Despite of this, here we have found evidence that during embryonic develop-
ment, the Abd-B spiracle cascade is already transforming into a gene network. We have
observed that Abd-B activates the JAK/STAT signalling pathway in the posterior spiracles
through upd and that the JAK/STAT pathway feedbacks to enhance Abd-B expression. Two
observations show that this is important to maintain robust crb expression: first, JAK/STAT
pathway signalling only weakly activates the expression of the crb posterior spiracle enhancer
in segments that do not express Abd-B; and second, JAK/STAT pathway activation is insuffi-
cient to activate the crb enhancer in the A8 segment of Abd-B mutant embryos (Fig 5). An indi-
rect feedback loop affecting the Ubx Hox gene has been reported [26]. In the visceral
mesoderm Ubx activates in PS7 the signalling molecule dpp. Dpp signals to the neighbouring
PS8 cells to activate with Abd-A wingless expression. In turn, Wg signals from PS8 back to PS7
where it is required for the maintenance of Ubx expression. This case and the JAK/STAT—
Abd-B interaction we describe here may represent the earliest examples of indirect autoregula-
tory loops transforming a Hox-cascade into a Hox-network. It would be interesting to analyze
other organogenetic cascades to find out if the establishment of feedback loops is a common
theme during development and at what stage they become active.

Integrating the global genetic regulatory information into single target
genes: the posterior spiracle regulation of crb

During organogenesis the complex patterning information set by the transcription factors and
signalling molecules upstream in the cascade has to be integrated to activate the realizator mol-
ecules modulating the organogenetic cell behaviours [27]. This is mediated through the cis reg-
ulatory modules of each realizator gene. In this study, we have focused on how the posterior
spiracle gene cascade activates the crb polarity gene through a CRM that responds to JAK/
STAT signalling. The observation that the spiracle enhancer requires the activity of upd, an
Abd-B primary target, suggested that Abd-B activates crb indirectly, by setting STAT activity
[11]. Our dissection of the crb-spiracle CRM has revealed that a spiracle specificity element can
be separated from the STAT binding sites and that the “minimal” CRM is modular in nature.
The crb-spiracle CRM studied here is composed by, at least, three independently acting ele-
ments: an activator element where the spiracle specificity resides; a STAT binding element that
is only required to counteract a neighbouring repressor element; and a repressor element that
interferes with the activity of the specificity module.

We have found that the spiracle specificity element is bound by Abd-B suggesting that crb is
a direct target of Abd-B. However, crb is different from other Abd-B primary targets, since the
crb specificity element also requires for its expression STAT activation, itself a target of Abd-B.
Because of its mixed character as a direct and an indirect target, we term crb a delayed-primary
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target: primary to reflect its direct regulation by Abd-B, and delayed because it can only
respond to the presence of Abd-B after other Abd-B primary targets are active. The require-
ment of both Abd-B and JAK/STAT signalling for crb activation explains why the crb-spiracle
enhancer is only active in A8 and not in more anterior segments where JAK/STAT signalling is
also active, as well as why crb-spiracle enhancer expression in A8 is restricted dorsally despite
Abd-B being expressed throughout this segment.

The repressor element we have identified is “transplantable” and can function autono-
mously on an independent posterior spiracle enhancer. In fact, we have shown that the ems spi-
racle enhancer, that is STAT independent (Fig 3C), can be engineered to become STAT
dependent by the inclusion of the STAT binding and repressor modules found in ¢rb (Fig 3E
and 3F). The observation that the specificity element in crb is sufficient to drive the activity of
the enhancer, begs the question of why is there any need for the presence of further modules in
the enhancer. As the specificity element cannot function until the repressor activity is counter-
acted by Abd-B induction of JAK/STAT signalling in the spiracle, the repressor module pro-
vides the CRM with a subtle system to delay the crb spiracle expression during development.

The integration of the results in this work uncovers the existence of complex Abd-B and
JAK/STAT dynamic interactions that are described by the model shown in Fig 7M. Early Abd-
B binding to the crb specificity module cannot activate transcription due to the presence of the
neighbouring repressor module. This repression is relieved when Abd-B activation of upd in
the posterior spiracles activates STAT. Direct binding of STAT to the crb CRM relieves the
repression. We hypothesize that STAT induces the function of another activator protein (A)
that also binds to the specificity module (Fig 7M). The existence of such activator driven down-
stream of STAT is necessary to explain why ubiquitous ectodermal Abd-B expression with the
69B-Gal4 line is unable to activate the crb305 enhancer in upd mutant embryos despite the
absence of the repressor module (Fig 5D). Besides these functions, our data show that STAT rein-
forces Abd-B expression in the spiracles through a feed back loop. The model in Fig 7M can
explain why the inactivation of JAK/STAT signalling in Df(1)osI1A embryos has a stronger effect
on crb518 enhancer expression than the deletion of the STAT binding sites (compare S2E and
S2F Fig and similar observations using crb43.2 in Lovegrove et al. [11]). Mutation of the two
STAT binding sites decreases crb expression because the repressor module is free to interfere
with the specificity module. Mutation of Df(1)os1A has a larger influence on expression because
it affects crb regulation at three levels: First, because, as in the previous case, the repressor module
is free to interfere with the specificity module in the absence of active STAT; second, because the
proposed Activator downstream of JAK/STAT will not be activated; and third, because the STAT
teedback loop over Abd-B will not be activated. Although we still do not know all the players
involved in the regulation of the crb posterior spiracle enhancer, this case provides an example of
how gene networks and CRMs dynamically interact during development.

The complex CRM controlling crb spatial and temporal regulation in the posterior spiracles
provides a plastic regulatory platform that could be subtly modulated during evolution. Earlier
crb activation could be obtained by loss of the repressor module and lower or delayed expres-
sion by removal of Abd-B or STAT binding sites. Such quantitative and temporal regulation
changes in either direction could be rapidly established by selection of minor mutations in
these elements.

Counter-repression: an alternative way for STAT to control cell specific
transcriptional regulation

STAT proteins in vertebrates and invertebrates are considered to be a family of latent transcrip-
tion factors activated by phosphorylation. After their activation, the cytoplasmic proteins
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dimerize and accumulate in the nucleus where they bind DNA through TTC(3-4N)GAA sites
to activate transcription [28,29]. STAT specific transcriptional activation has been suggested to
require either cooperative interaction with other enhancer binding proteins, or interaction
with co-activator proteins that stabilize or recruit RNA polymerase II complexes or destabilize
chromatin [30,31]. In this view, transcription of specific downstream targets is due to the direct
interaction of STAT with other activators expressed in the same cells. Initially, we expected the
STAT dependent up-regulation of crb in the spiracles to be controlled using such a mechanism,
however, we have found this not to be the case. Our experiments show that direct STAT bind-
ing to the posterior spiracle’s specificity element is not required for transcription. This result
suggests that STAT does not function as a classical transcription factor stabilizing RNA poly-
merase II in the posterior spiracles, but rather acts as a counter-repressor protein. STAT func-
tion as a counter-repressor is to prevent that proteins binding to the repressor element
interfere with the binding or function of transcriptional activators in the specificity module.
Thus, we propose that besides its function as a transcriptional activator, STAT can control
gene specific expression through a novel function: counter-repression. Although future work
should identify the STAT92E domain controlling counter-repression, we can predict that if the
counter-repression domain were different from the transactivation domain, deletion of the
transactivation element would still result in a STAT92E protein capable of controlling tran-
scription through counter-repression. The existence of an independent domain with such new
function could explain published results showing that STAT proteins with a deleted transacti-
vation domain are still active proteins and do not act as dominant negative transcription fac-
tors [32]. Counter-repression is not related to the non-canonical JAK/STAT control of
heterochromatin stability described by Li and collaborators as this does not require direct
STAT binding to its consensus DNA sites [33-35], while we show that STAT counter-repres-
sion requires the presence of its binding sites.

In summary, we have shown that the Hox protein Abd-B initiates a simple embryonic pos-
terior spiracle cascade that soon evolves into a gene network. In this network, Abd-B and the
JAK/STAT signalling pathway (which is activated downstream of Abd-B in the spiracles) inter-
act to precisely control the temporal activation of the crb realizator gene. Importantly, our
study uncovered a novel way for STAT proteins to control cell specific gene expression: per-
missive counter-repression.

Materials and Methods
Fly strains

The following Gal4 driver and UAS lines were used: 69B-Gal4 to drive expression in the whole
ectoderm, UAS-Abd-Bm, UAS-upd, UAS-ct, UAS-sal, UAS-ems, UAS-grn. We used the Abd-
BM null allele, the Df(1)os1A [deleting all three Upd ligands, [36]]. As reporter spiracle lines
we used the ¢rb43.2.1-lacZ [11] and ems0.35-lacZ [16], while the 10xSTAT-dGFP reporter was
used to detect global JAK/STAT activation [37]. The VT42855-Gal4 line was obtained from the
Stark lab fly transcriptional enhancer collection http://enhancers.starklab.org/. The [CH321-
91P18] BAC-Abd-B-GFP stock is a gift from Rebecca Spokony, modENCODE consortium. To
test if the BAC can rescue Abd-B function, we combined BAC-Abd-B-GFP with a Ubx™*"2,
abd-A™!, Abd-B™® triple mutant [38] (S6 Fig).

Immunohistochemistry and RNA in situ hybridization

The embryos were grown at 25°C except the 69B-Gal4 UAS overexpression experiments that
were grown at 29°C to increase Gal4 activity. The following primary antibodies were used:
mouse anti-AbdB 1A2E, anti-Crb and anti-Ct 2B10 (Developmental Studies Hybridoma
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Bank); rabbit anti-GFP (Invitrogen) and mouse anti-BGal (Promega). Secondary antibodies
were conjugated to Alexa Fluor 488, 555 (Invitrogen). Confocal images were obtained with a
Leica SP2-AOBS microscope and processed using Image] and Adobe Photoshop CS5. We used
antisense RNA probes for upd, Gal4 and lacZ in situ.

Constructs

The design of the constructs was based on the sequence conservation analysis of crb43.2 by
comparison of the twelve Drosophila species and A. gambiae, A. mellifera and T. casteneum
genomes using the UCSC Genome Bioinformatics (http://genome.ucsc.edu/). All crb fragments
were subcloned into the pCasper-hs43-lacZ transformation plasmid. To this end, pCasper-
hs43-lacZ was digested first with EcoRI, the 5’overhang filled with Klenow and finally digested
with EcIXI. Unless stated otherwise, all PCR reactions were performed using as DNA template
the 43.2-pBluescript-SK plasmid containing the crb43.2 genomic region [11]. The primers used
to generate the different constructs are listed in S1 Table.

To generate the crb518-Z construct, the 43.2-pBluescript-SK plasmid was digested with
Drall, the resulting 5’overhangs filled with Klenow and subsequently digested with EcIXI. A
518 bp fragment was isolated, purified and subcloned into pCasper-hs43-lacZ.

To construct crb518-STAT-mt-Z, mutation of the STAT binding sites was carried out in a
two-step process. The first STAT site was mutated by site-directed mutagenesis as described in
[39] using the stat4n1-mt primer. The resulting plasmid with the mutated first STAT binding
site was then used as a template to perform the mutation of the second STAT site by PCR
mutagenesis. A first PCR reaction was performed using the primer pair crb-stat2-mt and rev-
crb. The product was purified and used as a reverse primer in a second PCR reaction using fw-
crb as forward primer. The resulting PCR product containing both mutated STAT binding
sites was digested with EcIXTI and subcloned into pCasper-hs43-lacZ.

The crb305-Z, crb313-Z, crb101-Z, crb204-Z, crb305-STAT-mt-Z, crbA25-Z, crbA133-Z
and crbA174-Z constructs were generated as follows: the region of interest was amplified by
PCR using either 43.2-pBluescript-SK (for crb305-Z, crb313-Z, crb101-Z and crb204-Z) or
crb518-STAT-mt (for crb305-STAT-mt-Z, crbA25-Z, crbA133-Z and crbA174-Z) as DNA tem-
plate; the PCR products were digested wit EcIXI and subcloned into pCasper-hs43-lacZ. The
primer pairs used are as follow: fw-crb and rev-stat (crb305-Z and crb305-STAT-mt), fw-stat
and rev-crb (crb313-Z), fw-stat and rev-stat (crb101-Z), fw-crb and rev-crb204 (crb204-2), fw-
crb and crbA25-rev (crbA25-Z), fw-crb and crbA133-rev (crbA133-Z) and fw-crb and
crbA174-rev (crbA174-27).

To generate crb518A101-Z, a first PCR was performed using the primer pair fw-A10I and
rev-crb. The resulting product was purified and used as a primer in a second PCR with the fw-
crb primer. The resulting PCR product was digested with EcIXI and subcloned into pCasper-
hs43-lacZ.

To generate the crb313-ems0.35-Z constructs PCR reactions were performed using the
reverse primer rev-crb with fw-crb205-BHI. The PCR products were purified and digested with
EcIXI and cloned into pCasper-ems 0.35 [16] digested with EcIXI and BamHI.

All constructs were randomly inserted using P-element transformation. We analysed between
three and ten independent lines to discard insertion-site position-effects. Injection was per-
formed by the Drosophila Consolider-Ingenio (CBM-SO, Madrid) platform or by BestGene.

Chromatin Immunoprecipitation (ChIP) assays

This protocol, based on [40], was done as previously described [14,16]. ChIP was performed
using transiently transfected S2 cells. 1 x 107 cells were seeded in 10 cm cell culture dishes one
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day before transfection. For Abd-B ChIP, cells were transfected with either (1) 5 ug pUAS-
T-Abd-Bm-HA and 5 pg pAC-GAL4 or (2) 5 ug of empty pUAST and 5 pg pAC-GALA4 plas-
mids. For STAT92E-GFP ChIP, cells were transfected with either (1) 3.5 pg pUAST-STAT92E-
GFP, 3.5 ug pAC-Hop ™™ and 3.5 pug pAC-GALA4 plasmids or (2) 3.5 pg empty pUAST, 3.5 pg
pAC-Hop™™ ! and 3.5 ug pAC-GAL4 plasmids. 1/10 of cells were collected to monitor the
protein expression by Western blot. Remaining cells were cross-linked, lysed and sheared to
350-1000 bp. Immunoprecipitations were performed using 6 pl of anti-HA antibody (Abcam)
or 50 pl of anti-GFP conjugated magnetic beads (MBL) per 100 ug sheared chromatin. qRT-
PCR was performed with primers crbQPCR1for (5-TTCATTCATTTCCATGAACACA-3’)
and crbQPCRI1rev (5-ATTCGTCGGTTTTCCTTGTC-3’) amplifying inside the crb43.2
enhancer sequence; AbdB Baclfor (5-TTGGACAAATTCACATGCAA-3’) and AbdB Baclrev
(5-GGCCAATGAACTTCCCTCTA-3’) amplifying inside the VT42855 enhancer sequence;
and, as a control, with AbdB BacC-Afor (5-TGAACTTAAATGCCGAATCAA-3’) and AbdB
BacC-Arev (5-CACAAGAAGTGCGTGACTGA-3’) amplifying in a sequence lacking STAT
binding sites. The data are represented as recovered percentage from the input in HA-Abd-B-
transfected cells or GFP-transfected cells against pUASt-empty-transfected cells.

Electrophoretic mobility shift assays (EMSA)

The complementary oligonucleotides (Sigma Aldrich) used to generate the radiolabelled probes
in EMSAs to determine STAT92E and Abd-B binding are listed in S2 and S3 Tables respectively.
Radioactively labelled probes were generated by annealing and subsequent end filling with
[@->?P]dCTP. The conditions used were similar to those described previously [16]. Briefly, dou-
ble-stranded, end-labelled DNA (50,000 cpm/binding reaction; 10 nM) was incubated for 30 min
at 4°C with 2 pl of cell extract lysate expressing each tested protein or 2 pl of the cell extract con-
trol and 50 mM NaCl, 5 mM EDTA, 0,5 mM DTT, 10 mM Tris-HCI (pH 7.8), 4% glycerol,

1 mM MgCl,, and 1 mg of poly dI-dC as nonspecific competitors, in a final reaction volume of
20 pl. The reactions were run on a 5% polyacrylamide gel, in 0.5x Tris-borate-EDTA bulffer to
visualize complex formation by retardation of the **P-labeled target DNA. In some experiments
monoclonal anti-Abd-B or anti-GFP were incubated with aliquots of the reaction mixture for an
additional 30 min. For each gel shift reaction, a control with cell extract of non-transO0FEcted
cells was used to detect possible DNA binding by endogenous lysate factors. Gels were dried at
80°C in vacuum, exposed to a phosphorimager screen and detected by a typhoon scanner.

Supporting Information

S1 Fig. JAK/STAT upregulates crb expression in the posterior spiracles. (A, B) Higher levels
of Crb protein are expressed in the posterior spiracles and tracheae primordia than in the sur-
rounding embryonic ectoderm. Inset in (A) shows an A8 close up. (C) upd RNA expression.
(D, E) Posterior spiracle specific B-Gal expression driven by the crb43.2 CRM. (F) Mutation of
two STAT binding sites in crb43.2 decreases posterior spiracle reporter expression. (G-G”)
Cells with activated JAK/STAT signalling express the 10xSTAT-dGFP reporter in both poste-
rior spiracles and trachea primordia (green in G and grey in G’). Ct staining (red in G and grey
in G”) labels the internal posterior spiracle cells. Arrowheads: posterior spiracle primordium;
arrows: tracheal pits. Ml: Mandibulary, Mx: Maxillary, Lb: Labial, T1-T3: Thoracic and A1-A9:
Abdominal segments.

(TTF)

S2 Fig. Characterization of the crb posterior spiracle JAK/STAT regulated minimal CRM.
(A) Chromatin Immunoprecipitation (ChIP) shows activated STAT92E-GFP binds to the crb
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CRM in S2 cells. Cells were transfected with pAC-Gal4 to activate the expression of UAS con-
structs, pAC-Hop ™™™ expressing an activated JAK kinase to induce STAT92E activation by
phosphorylation and either with pUAST-STAT92E-GFP or pUAST alone as a control. ChIP of
STAT92E was performed using an anti-GFP antibody. (B) Sequence conservation of the
crb43.2 across the aligned genomes of twelve Drosophila species together with mosquito (A.
gambiae), honeybee (A. mellifera) and beetle (T. casteneum). crb518 location is highlighted in
red. Asterisks indicate the 4N STAT92E binding sites. (C) B-Gal expression driven by crb518.
(D) Expression of ¢rb518 in Abd-BM! mutant embryos. (E) Expression of crb518 in Df(1)os1A
mutant embryos lacking the three Unpaired ligands. (F) Expression of crb518 when both
STATO2E sites are mutated (crb518-STAT-mt-Z). Arrowheads; posterior spiracle primordium.
(TTF)

S3 Fig. The spiracle specificity module does not contain cryptic STAT92E binding sites. (A)
Localization of the putative cryptic STAT92E binding sites in crb305 deviating by one (orange)
or two nucleotides (blue) from the consensus (S) and oligos used in EMSAs to determine bind-
ing of activated STAT92E-GFP. Oligos with mutated STAT consensus sites (x) were used as
negative controls. (B) EMSAs showing that only STAT consensus sites are bound by activated
STAT92E as shown by the band shifts (black arrows) and by supershifts (grey arrows) in the
presence of anti-GFP (lanes 1-5, 11-15, 36-40, 56-60); neither mutated STAT sites (lanes
6-10, 16-20) nor the putative cryptic sites (lanes 21-35, 41-55, 61-80) exhibited binding by
activated STAT92E-GFP. As previously reported [14], addition of the antibody in the super-
shift stabilizes STAT92E binding to DNA.

(TTF)

$4 Fig. Localization of the repressor element of crb518. (A) Analysis of the repressor module
sequence conservation across the aligned genomes of twelve Drosophila species together with
the mosquito (A. gambiae), the honeybee (A. mellifera) and the beetle (T. casteneum), shows
two highly conserved elements CE1 (345-385 bp) and CE2 (492-518 bp) intercalated by two
non-conserved elements NC1 (306-344 bp) and NC2 (386-491 bp). The expression of
crb305-STAT-mt reporter (B) is not affected by the addition of NC1 (C), or NCI1 and CE1 (D),
however, the addition of NC1, CE1 and NC2 downregulates expression in the posterior spira-
cles (E). Arrowheads: posterior spiracles primordium.

(TIF)

S5 Fig. Ectopic upd induces ectopic expression of crb305 in the posterior abdominal seg-
ments. (A) Wild type expression of crb305 reporter (green in A and A") is mostly restricted to
the posterior spiracles as shown by co-expression of the posterior spiracle marker Ct (red in A
and A"). (B, B”) In 69B-Gal4 UAS-upd embryos crb305 is only expressed ectopically in the pos-
terior abdominal segments, despite 69B-Gal4 driving expression in the ectoderm of more ante-
rior segments. Note that while crb305 (green) is ectopically activated, Ct (red) is maintained to
the posterior spiracle anlage (B, B’). Images show confocal stainings of st12 embryos. Arrows:
posterior spiracles primordium.

(TTF)

S6 Fig. Expression and function of the [CH321-91P18] BAC-Abd-B-gfp construct. (A)
BAC-Abd-B-gfp embryo double stained with anti-Abd-B (A, A’, red) and anti-GFP (A, A”,
green) at st14. Abd-B-GFP expression (A") is restricted to PS13-PS14 and only the endogenous
Abd-B protein is detected in PS10-12 (red in A and A'). (B) Ventral view of a late wild type
embryo cuticle showing the large denticle belts present in the abdominal segments compared
with the smaller thoracic denticle belts. (B') shows a dorsal view of the same cuticle focusing on
the posterior spiracles. (C) Ventral view of a Ubx"*"?, abd-A™', Abd-BM® triple mutant
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embryo cuticle showing the abdominal denticle belts have the same aspect as the T2 thoracic
belts. (C') shows a dorsal view of the same cuticle where the posterior spiracles are missing. (D)
Ventral view of the cuticle of a Ubx**2, abd-AM!, Abd-B™® triple mutant embryo heterozy-
gous for BAC-Abd-B-gfp showing little rescue in the abdominal denticle belts which almost
have the same aspect as the T2 thoracic belts. (D') dorsal view of the same cuticle showing the
posterior spiracles are partially rescued with the formation of small filzkérpers. In A-A”, arrow
indicates the posterior spiracle and the arrowhead, the trachea; in B’, C’ and D’, arrows indicate
the position of the posterior spiracles.

(TIF)

S1 Table. Primers used to generate the different reporter constructs.
(XLSX)

S2 Table. Primers used to generate double stranded oligonucleotides used in the EMSAs
with STAT92E-GFP. An additional GGA and GAG (in bold) was added to the 5’ end of the
forward and reverse primers, respectively, to allow labelling with [a->*P]dCTP.

(XLSX)

$3 Table. Primers used to generate double stranded oligonucleotides used in the EMSAs
with Abd-Bm-HA. An additional GGA and GAG (in bold) was added to the 5’ end of the for-
ward and reverse primers, respectively, to allow labelling with [a->*P]dCTP.

(XLSX)
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