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Conservation of gene and protein sequence, and, therefore, conservation of the resulting mo-
lecular interactions that mediate biological processes, is foundational to our understanding of
biology. This conservation allows discovery in one organism, such as worms or mice, to inform
our understanding of the biology in another organism, such as humans. However, there is
emerging recognition that many biological processes involve important non-conserved ele-
ments, and that de novo gene birth provides an important mechanism for functional evolution
[1–3]. Understanding how these novel elements incorporate into gene regulatory networks and
alter the network architecture is an important area for theoretical research [4–5], but few ex-
perimental examples have been described.

Formation of the dauer larva by nematodes is an adaptation that is responsive to a variety
of environmental cues and alterations, features that suggest the underlying gene regulatory
network might benefit from enhanced robustness and evolvability [6]. The dauer larva is a rela-
tively dormant, alternative developmental stage that nematodes enter under stressful condi-
tions, such as low food or crowding (signaled by pheromone), that confers increased longevity
and tolerance to stressors [7]. In many parasitic nematodes, this stage corresponds to the infec-
tive larval stage when the larvae transition to new hosts. There are important conserved com-
ponents of the gene network that regulate dauer formation, one being the nuclear hormone
receptor DAF-12, which is important in free-living as well as parasitic nematode species [8–
10]. However, it is also clear that this pathway is subject to considerable inter- and intraspecific
differences [11–13]. Recent work on natural isolates of the nematode Pristionchus pacificus
identified strain-specific phenotypic differences in dauer formation, and argued that genetically
distinct populations exhibit greater sensitivity to pheromone from other populations (phero-
mone cross-preference [14]). The genetic alterations responsible for these phenotypic differ-
ences, however, had not yet been identified.

A new paper in this issue of PLOS Genetics [15] provides an answer, and at the same time
highlights how “orphan” genes can be incorporated into conserved regulatory networks. The
authors started with two strains of P. pacificus that exhibited marked differences in response to
pheromone signaling: the RS2333/California strain, with low dauer formation in response to
pheromone, and the RS5134/Ohio strain, with a high response. They then generated 911 re-
combinant inbred lines (RIL) between the strains, and used Quantitative-Trait-Loci (QTL)
mapping to identify a novel gene with no apparent orthologs outside of Pristionchus, dauerless
(dau-1), that had undergone a duplication event in the RS2333/California strain. This sug-
gested that dau-1 functions as a repressor of dauer formation in a dose-dependent manner. To
test this hypothesis, the authors created transgenic lines with multiple copies of dau-1, and
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created deletion mutants using CRISPR/Cas9 technology. Their data support the hypothesis as
P. pacificus animals with more than two gene copies show no dauer formation in response to
pheromone, whereas the deletion of one or both gene copies in RS2333 results in significantly
higher dauer formation. The authors also show that this function is mediated by the CAN neu-
rons. dau-1 is expressed in these cells, and ablation of these neurons results in increased dauer
formation similar to that seen in dau-1mutants. Finally, epistasis experiments show that dau-1
acts either downstream or in parallel to steroid hormone signaling, but is dependent on the nu-
clear hormone receptor gene daf-12 (Fig 1).

Discovery of the dau-1 genes provides insight for how orphan genes can play an important
role in the function and the evolution of biological networks that are conserved across species.
The presence—and the duplication—of this gene is interpreted to provide a selective advantage
in the context of intraspecific competition because it would allow individuals to continue with
a reproductive life cycle even in the presence of crowding. Indeed, Mayer et al. have uncovered
additional dau-1 paralogs in RS2333, indicating a potential for ongoing duplication of these
novel genes [15]. A second important finding of this paper is that these orphan genes influence
dauer formation by modulating a pathway with highly conserved elements (Fig 1). The results
provide an important experimental example to complement the theoretical models for how the
evolution of novel genes can add functional modifications to conserved regulatory networks.
In this case, orphan gene evolution contributes to the evolutionary arms race between compet-
ing strains.

Important questions remain. In particular, previous work showed that different P. pacificus
isolates exhibit differences in pheromone signaling and dauer survival, in addition to phero-
mone response, arguing that there are additional genetic modifications in the dauer regulatory

Fig 1. Proposedmodel for genetic evolution in P. pacificus dauer formation. A) Conserved features of the dauer formation pathway. In endocrine cells,
cholesterol is a substrate for the biosynthesis of dafachronic acid (DA), a DAF-12 ligand that suppresses the ability of DAF-12 to promote dauer formation. B)
Model for the RS5134/Ohio strain with one copy of dauerless (dau-1.1). dau-1.1 is expressed in the CAN neuron cells and acts (genetically) to inhibit DAF-12
function and thereby inhibit dauer formation. C) The RS2333/California strain has two copies of dauerless (dau-1.1 and dau-1.2), and a corresponding double
effect of inhibition of dauer formation.

doi:10.1371/journal.pgen.1005254.g001
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network [14]. Whether these functions are influenced by dau-1 or related genes, and how these
features of the dauer regulation network may interact, is not known. In addition, whether this
represents a unique example or an evolutionary prototype is not clear. Generalizations of the
types of changes that are responsible for evolutionary change have focused on the level of indi-
vidual orthologous (and, therefore, conserved) genes [16–17]. These earlier analyses did, how-
ever, highlight how the network position of a gene can influence whether it is likely subject to
evolutionary modification, and the types of network nodes that are more likely to be affected
by cis-regulatory or protein-coding changes. As more evolutionary examples involving orphan
genes are described, it will be interesting to learn if they are preferentially incorporated into
particular nodes of regulatory networks, and whether they contribute primarily to intraspecific
differences or have a role at longer evolutionary timescales.
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