
RESEARCH ARTICLE

Glycosyl Phosphatidylinositol Anchor
Biosynthesis Is Essential for Maintaining
Epithelial Integrity during Caenorhabditis
elegans Embryogenesis
Yemima Budirahardja1☯, Thang Dinh Doan1☯, Ronen Zaidel-Bar1,2*

1 Mechanobiology Institute, National University of Singapore, Singapore, 2 Department of Biomedical
Engineering, National University of Singapore, Singapore

☯ These authors contributed equally to this work.
* biezbr@nus.edu.sg

Abstract
Glycosylphosphatidylinositol (GPI) is a post-translational modification resulting in the at-

tachment of modified proteins to the outer leaflet of the plasma membrane. Tissue culture

experiments have shown GPI-anchored proteins (GPI-APs) to be targeted to the apical

membrane of epithelial cells. However, the in vivo importance of this targeting has not been

investigated since null mutations in GPI biosynthesis enzymes in mice result in very early

embryonic lethality. Missense mutations in the human GPI biosynthesis enzyme pigv are
associated with a multiple congenital malformation syndrome with a high frequency of

Hirschsprung disease and renal anomalies. However, it is currently unknown how these

phenotypes are linked to PIGV function. Here, we identify a temperature-sensitive hypo-

morphic allele of PIGV in Caenorhabditis elegans, pigv-1(qm34), enabling us to study the

role of GPI-APs in development. At the restrictive temperature we found a 75% reduction in

GPI-APs at the surface of embryonic cells. Consequently, ~80% of pigv-1(qm34) embryos

arrested development during the elongation phase of morphogenesis, exhibiting internal

cysts and/or surface ruptures. Closer examination of the defects revealed them all to be the

result of breaches in epithelial tissues: cysts formed in the intestine and excretory canal,

and ruptures occurred through epidermal cells, suggesting weakening of the epithelial

membrane or membrane-cortex connection. Knockdown of piga-1, another GPI biosynthe-

sis enzymes resulted in similar phenotypes. Importantly, fortifying the link between the api-

cal membrane and actin cortex by overexpression of the ezrin/radixin/moesin ortholog

ERM-1, significantly rescued cyst formation and ruptures in the pigv-1(qm34)mutant. In

conclusion, we discovered GPI-APs play a critical role in maintaining the integrity of the epi-

thelial tissues, allowing them to withstand the pressure and stresses of morphogenesis. Our

findings may help to explain some of the phenotypes observed in human syndromes associ-

ated with pigvmutations.
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Author Summary

Cell surface proteins, such as receptors, either integrate into the plasma membrane
through a transmembrane domain or are tethered to it by an accessory glycosylated phos-
pholipid (GPI) anchor that is attached to them after they are made. The GPI-anchor bio-
synthesis pathway is highly conserved from yeast to humans and null mutations in any of
the key enzymes are lethal at early developmental stages. Point mutations in several genes
encoding for GPI-anchor biosynthesis enzymes have been linked to human disease. Specif-
ically, mutations in PIGV are associated with multiple congenital malformations, includ-
ing renal and anorectal malformation and mental retardation. It is currently not known
how the mutations in PIGV lead to these diseases. Here we describe a point mutation in
the PIGV ortholog of the nematode Caenorhabditis elegans, pigv-1, which is found to
cause a high degree of embryonic lethality. We documented a substantial reduction in the
level of GPI-anchors in the mutant. Importantly, following its development using 4D mi-
croscopy and employing tissue-specific rescue, we identified loss of epithelial integrity as
the primary cause of developmental arrest. Our results highlight the importance of GPI-
anchored proteins for epithelial integrity in vivo and suggest a possible etiology for human
diseases associated with PIGVmutations.

Introduction
Proteins can attach to the plasma membrane by intrinsic transmembrane domains or by post-
translational modifications with lipid moieties. One such lipid modification, tethering proteins
to the outer leaflet of the plasma membrane (PM), is a glycosylphospatidylinositol (GPI) an-
chor, whose synthesis and attachment to proteins in the endoplasmic reticulum (ER) is a
multi-step process involving>30 enzymes [1]. Proteins subjected to GPI anchor modification
harbor two signal peptides, an N terminal signal peptide that targets them to the ER and a
C terminal signal peptide that serves as a marker for GPI attachment [2]. The basic structure of
a GPI anchor consists of a phosphoethanolamine linker, a glycan core and a phospholipid tail.
The glycan core of GPI can be modified by other phosphoethanolamine or other sugar groups,
giving rise to diverse GPI anchor structures [3].

From the ER, GPI-anchor proteins (GPI-APs) are transported to the Golgi, where the phos-
pholipid tail of GPI anchor undergoes lipid remodeling to increase the efficiency of membrane
binding. GPI-AP are then sorted and subsequently delivered to the outer leaflet of the PM
through the trans-Golgi network [4]. GPI-APs are mostly localized to the apical membrane of
polarized cells and are enriched in domains known as lipid rafts [5,6]. Extraction of lipid rafts
using weak non-ionic detergent pulls down GPI-APs along with the rafts [7]. Apical polariza-
tion of GPI-APs has also been observed in vivo in epithelial cells of pancreas, intestine and uri-
nary bladder in GFP-GPI-expressing mice. GPI-APs are also present in non-polarized tissues
with equal distribution across the membrane [8].

GPI-APs have very diverse functions in various cells across species. They are required for vi-
ability and cell wall biosynthesis in yeast, act as defense against host immune system in try-
panosome, mediate cell-cell interactions, signal transduction, and perform enzymatic activity
in mammalian cells [1,3,9]. At the tissue level, GPI-APs were shown to be important for
germline and oocyte development in the nematode Caenorhabditis elegans (C. elegans). Muta-
tion in piga-1 (ortholog of mammalian PIGA), the catalytic subunit of phosphatidylinositol
N-acetylglucosaminyltransferase complex, the first enzyme playing a role in GPI biosynthesis,
decreases the number of germline mitotic cells and compromises oocyte formation and
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maturation [10]. At the organism level, GPI-APs were shown to be essential for mouse and
human embryogenesis. A complete PIGA knockout mouse could never be obtained and this
may be explained by the fact that mouse embryonic stem cells depleted of PIGA form embryoid
bodies that are arrested at an early stage of differentiation [11,12].

While each individual GPI-AP has a unique function that depends on the protein itself,
there is evidence to suggest that GPI anchors themselves, independent of the proteins they an-
chor, play a role in organizing the PM. Moreover, despite the fact that GPI-anchors are posi-
tioned in the outer leaflet of the PM, they have been shown to be affected by the organization
of the actin cortex underlying the PM [13,14].

Mounting evidence supporting essential roles for GPI-APs during human embryogenesis
comes from human genetic studies conducted in the past decade. Missense mutations in genes
encoding enzymes catalyzing various steps of GPI anchor biosynthesis, such as PIGW that cat-
alyzes attachment of acyl group to phosphatidylinositiol [15,16], PIGV that catalyzes transfer
of second mannose to GPI intermediate [17,18], PIGT that attaches GPI to proteins [19] and
PGAP2 that modifies the phospholipid tail of PI [20] result in congenital diseases known as
hyperphosphatasia mental retardation syndrome (HPMRS), Hirschprung disease, morphologi-
cal malformation and renal anomalies [21,22,23,24].

Studies on the roles of GPI-APs during embryogenesis have been hindered by the difficulties
in obtaining viable mutants for GPI biosynthesis enzymes. In this study, we exploit a hypo-
morphic temperature-sensitive allele of pigv-1 (human PIGV ortholog) in C. elegans to investi-
gate the role of GPI-APs during embryogenesis. We found that GPI-APs are vital for the
integrity of epithelial tissues during morphogenesis, suggesting an essential role for GPI-APs in
stabilizing the apical membrane of epithelial tissues under stress.

Results

A temperature sensitive missense mutation in pigv-1(qm34) leads to
defects in embryonic elongation
In the course of our whole genome sequencing of maternal-effect morphologically abnormal
(mal) mutants isolated by Hekimi et al. [25] in an ethyl methanesulfonate (EMS) mutagenesis
screen, we discovered thatmal-3(qm34) (Fig. 1A) has a missense mutation at amino acid 361 of
previously unassigned gene T09B4.1, converting glycine to glutamate (Fig. 1B). BLAST analysis
of the T09B4.1 protein sequence suggested that it is an ortholog of human GPI mannosyltrans-
ferase 2, which is known as PIGV (S1A–B Fig.). The mutation was verified by conventional se-
quencing, and from this point onwards we refer tomal-3(qm34) as pigv-1(qm34).

Sometimes, EMS mutagenesis results in hypomorphic alleles that are temperature-sensitive.
We investigated this possibility by growing pigv-1(qm34) worms at 15, 20 and 25°C and mea-
suring their viability at each temperature. We found that pigv-1(qm34) is a heat-sensitive allele,
with more than 80% embryonic lethality at 25°C (Fig. 1C, S1 Table). We followed embryogene-
sis by time-lapse differential interference contrast (DIC) microscopy and observed phenotypes
resulting from pigv-1 inactivation at 25°C. At this temperature C. elegans embryogenesis takes
10.5 hours from the first division till hatching (S2 Fig.). The first 3 hours of embryogenesis are
characterized by formation of the founder cells, rapid cell division and gastrulation. At around
3 hours the epidermis is born on the dorsal side of the embryo and the next 3.5 hours are domi-
nated by epidermal morphogenesis, a three step process made up of intercalation, enclosure,
and elongation [26]. Loss of pigv-1 resulted in defects appearing during elongation with cysts
forming inside the embryo and/or cells leaking out from the embryo body, resulting in elonga-
tion arrest and embryonic lethality (Fig. 1D). Quantification of 176 pigv-1(qm34) embryos
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Fig 1. A temperature sensitive missensemutation in pigv-1(qm34) leads to defects in embryonic elongation. (A) Wild type L1 larva (left panel), and
pigv-1(qm34) (right panel) exhibiting a morphological defect close to the head. (B) Gene and protein organization of PIGV-1. qm34 is a pigv-1 allele with a
missense mutation at the amino acid 361 converting glycine to glutamic acid (indicated by a star). E denotes exon and TM denotes transmembrane. Light
gray box after exon 8 indicates the 3’UTR. (C) pigv-1(qm34) embryos are heat-sensitive; Percent of wild type and pigv-1(qm34) embryos that fail to hatch at
15°C, 20°C, and 25°C. (D) Wild type embryo progressively elongates from 2 folds to almost 4 folds in an hour (upper panel), whereas pigv-1(qm34) embryo
arrested during elongation at 3 fold stage (lower panel) with a rupture (stippled orange line) and cysts formed in excretory canal (red arrow) and intestine
(blue arrow). In all images, anterior is to the left, time stamp is in minutes. (E) Classification of the terminal phenotypes of wild type and pigv-1(qm34)
embryos based on 4D Nomarski movies, as shown in D. (F) In the upshift experiments, pigv-1(qm34) embryos at different embryonic stages dissected from
gravid adults grown at 15°C were upshifted to 25°C and maintained at the restrictive temperature throughout embryogenesis and scored as lethal when they
did not hatch at the end of embryogenesis. For downshift experiments, similar procedure was done except that worms were kept at 25°C for 24 hours before
downshifted to 15°C. FC denotes founder cells generation, G denotes gastrulation, VCC denotes ventral cleft closure, DI denotes dorsal intercalation, VE
denotes ventral enclosure, EE denotes early elongation and LE denotes late elongation. (G) WRM0638cC08 fosmid containing pigv-1 and GFP::PIGV-1
expression driven by erm-1 promoter significantly rescues pigv-1(qm34) embryonic lethality. Data in C and G are presented as average ± s.e.m. For each
experiment, more than 100 embryos were counted. Experiments were done in duplicate and repeated five times (*P<0.05, **P<0.01, two-tailed test). See
S1, S2, S3 and S4 Tables for numerical values and statistical analyses of data presented in panel C, E, F and G, respectively.

doi:10.1371/journal.pgen.1005082.g001
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showed that over 80% displayed ruptures and/or cyst formation and arrested in elongation
(Fig. 1E). Few escapers hatched and became L1 larva with body shape defects (Fig. 1A).

Utilizing the heat sensitivity of pigv-1(qm34), we determined the developmental period
when pigv-1 activity is required through reciprocal temperature shift experiments. We found
that pigv-1 activity is essential from the one cell embryo stage until elongation. Once elongation
was underway inactivation of PIGV-1 had less effect on embryogenesis (Fig. 1F, S3 Table).

We confirmed that these phenotypes are caused by the mutation in pigv-1 by rescue experi-
ments. Transformation of pigv-1(qm34) worms with a fosmid that contains a wild-type allele of
the pigv-1 gene significantly rescued embryonic lethality (P<0.01) (Fig. 1G, S4 Table). Expres-
sion of a gfp-tagged pigv-1 under the control of 2.4 kb upstream of the pigv-1 start codon failed
to rescue embryonic lethality in pigv-1(qm34) mutant worms, most likely due to low expres-
sion. On the other hand, expression of pigv-1 under the control of the erm-1 promoter, which
resulted in 3 fold stronger expression, successfully rescued embryonic lethality of pigv-1(qm34)
(Fig. 1G, S4 Table), confirming that the mutated gene causing lethality in the pigv-1(qm34)
strain is pigv-1.

GPI-APs are present throughout embryogenesis and are enriched in
apical membranes of epithelial cells after differentiation
To visualize GPI-AP distribution during embryogenesis, we used Alexa-488 labeled proaeroly-
sin (FLAER), a bacterial toxin that binds specifically to GPI-AP [27], to label embryos at
different stages of development (Fig. 2). In the one-cell embryo, GPI-APs accumulated at peri-
nuclear areas and were enriched in the anterior cytoplasm (Fig. 2, first row). As soon as new
membrane was delivered to the cell surface, during cell division, GPI-APs accumulated on the
plasma membrane (Fig. 2, second row). During gastrulation we observed GPI-APs accumulat-
ed at the membrane of all cells (Fig. 2, fourth row). While being uniformly localized on mem-
brane of all cells in the early embryo, non-uniform GPI-AP distribution was observed upon
tissue differentiation. For example, during dorsal intercalation, GPI-APs were highly enriched
on pharyngeal cell membranes in a non-polarized manner, whereas later on, during elongation,
they became apically enriched (Fig. 2, fifth to seventh rows).

PIGV-1 is expressed in all embryonic epithelial tissues where it is
required for GPI-anchor biosynthesis
To gain insight into the spatial and temporal activity of the PIGV-1 enzyme during embryo-
genesis, we visualized an N-terminally GFP-tagged PIGV-1 driven by its endogenous promoter
in an extrachromosomal array. We could not detect GFP::PIGV-1 in the early embryo, possibly
due to silencing of the transgenes in the germline. Later in development the expression level
was low. Nevertheless, we observed GFP::PIGV-1 to be prominent in the epidermis, pharynx,
intestine, rectum and excretory cell (Fig. 3A), all tissues with epithelial character. At the subcel-
lular level, PIGV-1 localized to intracellular structures that appear to be ER [28,29].

Using FLAER staining as readout for GPI-anchor biosynthesis, we compared the intensity
of FLAER staining in pigv-1(qm34) at the permissive (15°C) and restrictive (25°C) tempera-
tures. At 15°C, pigv-1(qm34) embryos exhibited FLAER levels similar to wild type, whereas at
25°C, abrogation of PIGV-1 activity led to a 4-fold reduction in the FLAER signal (Fig. 3B, sec-
ond and third rows). FLAER staining was restored to wild-type levels in pigv-1(qm34) embryos
at 25°C when pigv-1 was expressed in all epithelial tissues by the erm-1 promoter (Fig. 3B,
fourth row). Taken together these data show that GPI-APs are enriched in epithelial tissues
and the abundance of GPI-APs at the cell membrane is dependent on the activity of PIGV-1.
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Loss of function of piga-1 exhibits phenotypes similar to pigv-1(qm34)
mutant embryos
In mammalian cells, more than 30 enzymes are known to regulate the GPI anchor biosynthesis
pathway. Many of these enzymes have orthologs in C. elegans (S1B Fig.). A previous study has
shown that RNAi-mediated knockdown of most C. elegans GPI anchor biosynthesis enzymes

Fig 2. GPI-APs are present at the membrane throughout embryogenesis. Proaerolysin coupled to Alexa
488 (FLAER) was used to visualize GPI-APs in wild type embryos. GPI-APs are highly enriched at
pharyngeal membranes, initially non-polarized, but then becomes polarized at the apical membrane during
elongation. Red arrowhead denotes excretory canal.

doi:10.1371/journal.pgen.1005082.g002
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does not lead to any phenotype and two of them, namely pigk and pigo resulted in sterility [10].
We scanned a range of feeding RNAi conditions for pigk and pigo, with the rationale that par-
tial loss of function might bypass their requirement for germline development, and expose a
possible role in embryogenesis. However, we observed either sterility or no phenotype when
each of the two enzymes was depleted. Thus, we turned our attention towards piga-1(tm2939)
mutant worms characterized in the previous study [10]. Progeny of homozygous piga-1
(tm2939) worms are embryonic lethal, and they display a deformed eggshell due to increased
osmotic sensitivity during germline development. To uncouple the functions of PIGA-1 during

Fig 3. PIGV-1 is expressed in all embryonic epithelial tissues where it is essential for GPI-anchor biosynthesis. (A) PIGV-1 is expressed in epithelial
tissues during embryogenesis: epidermis (top left panel); excretory cell (bottom left panel); pharynx, and rectum (top right panel) and intestine (bottom right
panel). In this and subsequent images, red arrow indicates epidermis, black arrow indicates intestine, black arrowhead indicates pharynx and red arrowhead
indicates excretory canal and open arrowhead indicates rectum. (B) FLAER staining highlights GPI-APs localization at the membrane of embryonic tissues in
wild type and mutant embryos at comma stage. Differences in FLAER staining intensity are demonstrated by heat maps of corresponding images (right
panels). Similar fluorescence intensity is observed in wild type and pigv-1(qm34) embryos grown at the permissive temperature, but highly reduced in pigv-1
(qm34) embryos grown at the restrictive temperature. Expressing PIGV-1 in pigv-1(qm34) restores GPI-AP biosynthesis and their localization at
restrictive temperature.

doi:10.1371/journal.pgen.1005082.g003

GPI Anchors Maintain Epithelia Integrity

PLOS Genetics | DOI:10.1371/journal.pgen.1005082 March 25, 2015 7 / 24



germline development and embryogenesis, we used piga-1(tm2939) worms rescued by piga-1
expression under the control of lag-2, a distal tip cell promoter. First, we examined whether
lag-2 drives piga-1 expression during embryogenesis and found piga-1 expressed ubiquitously
during embryogenesis (Fig. 4A). Since the plag-2::piga-1::gfp construct is expressed as an extra-
chromosomal array, some embryos lose piga-1 expression during embryogenesis. We identified
which embryos lost the extrachromosomal array and followed their embryonic phenotypes.
While all the embryos retaining piga-1 expression during embryogenesis hatched, ~50% of the
embryos devoid of piga-1 expression were arrested during elongation. In one-third of arrested

Fig 4. Loss of function of piga-1 shows similar phenotypes to pigv-1(qm34)mutant embryos. (A) plag-2 promoter drives piga-1 expression
ubiquitously in various tissues: epidermis (top panel), intestine (middle panel) and excretory canal (bottom panel). (B) Loss of PIGA-1 expression results in
elongations defects. Embryos were dissected from gravid adults expressing plag-2::piga-1::gfp and examined for their expression and phenotypes during
embryogenesis. Those retaining PIGA-1::GFP expression elongate and hatch (top panel), whereas ~50% of embryos losing PIGA-1::GFP expression arrest
during elongation with or without rupture (middle and lower panels).

doi:10.1371/journal.pgen.1005082.g004
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embryos, internal cells leaked out from the embryo body (Fig. 4B), a phenotype reminiscent of
pigv-1(qm34) embryos, suggesting that weakening of epithelial tissue integrity is not a specific
phenotype of pigv-1 loss of function, but rather a general consequence of disruption of the GPI
biosynthesis pathway.

Loss of GPI-APs leads to breaches in epithelial tissue in the epidermis,
embryonic intestine and excretory canal
The elongation phase of C. elegans embryogenesis is characterized by the formation of circum-
ferential actin bundles (CFB) in the dorsal and ventral epidermal cells and actomyosin contrac-
tion in the lateral epidermal cells [30]. Contractility of the muscle tissues is known to be
required for elongation beyond the 2-fold length [31]. We tested whether the elongation arrest
occurring upon pigv-1 inactivation is caused by defective CFB and/or muscle organization. We
examined CFB in pigv-1(qm34) embryos using an F-actin reporter (VAB-10 actin binding do-
main tagged with GFP) and found that CFB structure is indistinguishable from that of wild
type embryo (S3A Fig.). Myotactin antibodies were utilized to examine muscle organization
and we observed no difference between muscle organization in wild type and in pigv-1(qm34)
embryos (S3B Fig.). Moreover, some pigv-1(qm34) embryos elongated beyond two-fold stage.
These results suggest that elongation arrest in pigv-1(qm34) embryos is not caused by defects
in CFB or muscle structure.

We then set out to characterize the embryonic phenotypes resulting from pigv-1 inactivation
in more detail. We employed several cell junction and membrane markers expressed in specific
tissues to pinpoint the location of the defects. Using AJM-1::GFP and HMP-1::GFP as a marker
for epidermal apical junctions, we observed gaps between epidermal cells through which inter-
nal cells leaked out, most often from the embryo anterior (Fig. 5A and S1–S4 Movies). In some
embryos, the gap is created by misalignment of leading ventral epidermal cells coming from
opposite ends to enclose the embryo at the ventral midline (Fig. 5A). Using a plasma mem-
brane marker specifically expressed in the pharynx and intestine, we identified cysts to be locat-
ed at the basal side of the intestine, and using CED-10::GFP, which highlights plasma
membrane of all cells, we observed cysts to be located between the intestine and its surrounding
basal lamina (Fig. 5B-C, S4 Fig.). Using AJM-1::GFP to highlight the apical junctions of intesti-
nal cells we observed widening of the lumen in pigv-1(qm34) embryos (Fig. 5D). We measured
intestinal lumen width of wild type and pigv-1(qm34) embryos in early (2–2.5 fold) and later
(3–3.5 fold) stages of elongation and found that the lumen width of pigv-1(qm34) embryos was
significantly wider (P<0.05) than that of wild type embryos at late elongation (Fig. 5D). Fur-
thermore, we noticed that the intestine in pigv-1(qm34) embryos was often twisted (S6C Fig.).

Using mCherry-tagged AQP-8, a water channel specifically localized to the excretory canal,
expressed at a low level which maintains a normal translumenal flux, we found the excretory
canal to be another location where cysts formed in pigv-1(qm34) embryos (Fig. 5E). In contrast
with the intestinal cysts that formed in extracellular space the excretory canal cysts formed
within the cell. Few embryos that survived embryogenesis hatched with excretory canal cysts
(S5 Fig.). The excretory canals in larvae with excretory canal cysts were usually very short. Not
only the length, but the branching of the excretory canal is also affected in pigv-1(qm34) em-
bryo. In wild-type worms the excretory canal extends four tubules shaped like an H: a pair to-
wards anterior and another pair towards posterior from the cell body. However, the excretory
canal in pigv-1(qm34) embryo often has one or two more tubules extending from the cell body
or branching from the original tubules (S7 Fig.).

GPI-APs are known to be targeted to apical membranes in polarized epithelial cells [5,6].
We therefore examined whether the apicobasal polarity of epithelial cells is affected in pigv-1
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Fig 5. Loss of GPI-APs leads to breaches in epithelial tissue in the embryonic epidermis, intestine and excretory canal. (A) Epidermal cell sealing at
the embryo ventral midline is defective in pigv-1(qm34) mutant. In wild type embryo, the two pairs of leader cells coming from left and right sides of the
embryo perfectly align at the embryo midline (top left panel), leading to embryo enclosure (top middle panel) and followed by successful elongation (top right
panel). In pigv-1(qm34) mutant, two pairs of ventral epidermal leader cells misalign at embryo midline (bottom left panel). As a result, a gap is formed
between the leader cells (bottommiddle panel) and subsequently cells are bursting out from the hole (bottom right panel). See the corresponding movies
S1 Movie and S2 Movie. Cell junction in all panels is marked by AJM-1::GFP. A maximum intensity projection of embryo epidermis is shown in all panels.
Light and dark blue arrows indicate two pairs of leader epidermal cells, stippled red circle indicates gap between leader cells and stippled magenta circle
indicates location of rupture. (B) Cysts form at intestine basal side in pigv-1(qm34) embryo. Blue circle indicate cyst location in both DIC and GFP panels. (C)
Cysts are located in between intestine and basal lamina in pigv-1(qm34) embryo. Blue circles indicate cyst location in both DIC and GFP channels. (D)
Intestinal lumen is enlarged in pigv-1(qm34) embryo. Wild type and pigv-1(qm34) embryos expressing AJM-1::GFP and undergoing elongation were fixed. A
maximum intensity projection of embryo intestine was made and the widest section of intestine both in wild type and in pigv-1(qm34) embryos were
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(qm34) embryos. We observed that the apical markers PAR-6 and PKC-3 were correctly
localized on the apical intestinal and excretory cell membranes in pigv-1(qm34) embryos
(S6A Fig.), and AJM-1 was localized at the apical side of epidermal and intestinal cell-cell junc-
tions (S6B–C Fig.). Conversely, the basolateral marker LET-413 was localized to the basolateral
membranes in epidermal and intestinal cells in pigv-1(qm34) embryos, indistinguishable from
wild type (S6B Fig.). Similarly, the intermediate filament IFB-2 was correctly localized beneath
the apical membrane in intestinal tissue in pigv-1(qm34) embryos (S6C Fig). Altogether, these
results rule out a polarity defect as the underlying cause for the pigv-1(qm34)
mutant phenotypes.

GPI-AP biosynthesis in all epithelial tissues is required to rescue
embryonic lethality of pigv-1(qm34)
We observed pigv-1 loss of function to affect the integrity of three epithelial tissues: epidermis,
intestine and excretory canal. However, it was not immediately evident which defective tissue
was responsible for the embryonic lethality. To address this question we restored pigv-1 expres-
sion specifically in each epithelial tissue or in all epithelial tissues of pigv-1(qm34) worms and
determined their embryonic viability. We employed the lin-26 promoter to drive expression in
the epidermis, the pha-4 promoter to drive expression in the pharynx and intestine, the aqp-8
promoter to drive expression in the excretory canal, and the erm-1 promoter to drive expres-
sion in all epithelial tissues (Fig. 6A). All promoters drove pigv-1 expression at
comparable levels.

While restoring pigv-1 expression in the pharynx-intestine or in the excretory canal partially
reduced pigv-1(qm34) embryonic lethality, restoring pigv-1 expression in the epidermis did not
significantly reduce pigv-1(qm34) embryonic lethality (Fig. 6B, S4 Table). The most significant
rescue of embryonic lethality achieved by expression of pigv-1 in a single tissue was a 17% re-
duction in lethality. In contrast, expressing pigv-1 in all epithelial tissues using the erm-1 pro-
moter sharply decreased pigv-1(qm34) embryonic lethality down by 62%, comparable to the
sum of the embryonic rescue of each epithelial tissue (Fig. 6B, S4 Table). Thus, it appears that
pigv-1 function is required in all epithelial tissues for embryonic viability.

Overexpression of ERM-1::GFP rescues embryonic lethality of
pigv-1(qm34)
The cytoskeletal cortex underlying the plasma membrane provides it with structural support
and protects the membrane from mechanical stress. Depletion of spectrin in erythrocytes
changes membrane rigidity and subsequently leads to cell fragmentation [32]. Thus, we hy-
pothesized that strengthening the actin cortex in pigv-1(qm34) embryos might positively affect
membrane integrity. First, we examined whether providing more actin has any impact on epi-
thelial membrane integrity. We examined pigv-1(qm34) embryos overexpressing YFP::ACT-5
in the epidermis and intestine and found that embryonic lethality in these worms is indistin-
guishable from that of pigv-1(qm34) (Fig. 7A, S5 Table). We then explored whether strengthen-
ing the link between the actin cortex and the cell membrane might influence membrane
integrity. We chose worms overexpressing ERM-1::GFP at a level which does not cause any

measured (inset). The graph shows lumen width in wild type and pigv-1(qm34) embryos at early elongation (2 and 2.5 folds), as well as late elongation (3 and
3.5 folds). The line inside the box indicates median, whereas the whiskers indicate minimum and maximum values. Lumen width in pigv-1(qm34) embryo is
significantly wider than that of wild type at late elongation (n> 7 for each data set, *P<0.05, two-tailed test) (E) Cyst forms in excretory canal of pigv-1
(qm34) embryo. Excretory canal is marked by AQP-8::mCherry. Blue circle indicates cyst location in DIC channel, red arrowhead indicates cyst location in
mCherry channel and CB stands for cell body. A maximum intensity projection of the excretory canal is shown in mCherry channels.

doi:10.1371/journal.pgen.1005082.g005
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phenotypic defect since a previous study showed that at high levels of expression ERM-1 leads
to formation of excretory canal cysts [33]. We crossed the ERM-1::GFP-overexpressing worms
with pigv-1(qm34) and found that embryonic lethality was significantly reduced in the pigv-1
(qm34);ERM-1::GFP strain. Depletion of overexpressed ERM-1 by gfp(RNAi) in this stain re-
verted embryonic lethality back to pigv-1(qm34) level, confirming ERM-1 overexpression is re-
sponsible for rescuing pigv-1-associated embryonic lethality (Fig. 7A, S5 Table). Careful
examination of embryogenesis in pigv-1(qm34) embryos overexpressing ERM-1::GFP revealed
strong suppression of pigv-1 phenotypes, and a significant portion of embryos (36%) hatched
without any visible defects (Fig. 7B, S2 Table). Considering ERM-1 localization at intestine and

Fig 6. GPI-AP biosynthesis in epithelial tissues is sufficient to rescue embryonic lethality of pigv-1(qm34). (A) Several epithelial tissue specific
promoters were utilized to express pigv-1 in pigv-1(qm34) embryos: lin-26 promoter for epidermal expression (first panel); pha-4 promoter for pharyngeal
and intestinal expression (second panel); aqp-8 promoter for excretory canal expression (third panel); erm-1 promoter for all epithelial tissue expression
(fourth to sixth panel). A sum projection of embryonic tissues is shown in all panels. (B) PIGV-1 expression in each epithelial tissue rescues pigv-1(qm34)
embryonic lethality at various degrees, whereas PIGV-1 expression in all epithelial tissues driven by erm-1 promoter rescues pigv-1(qm34) embryonic
lethality the highest. Data are presented as average ± s.e.m. For each experiment, more than 100 embryos were counted. Experiments were done in
duplicate and repeated five times (**P<0.01, two-tailed test). See S4 Table for numerical values and statistical analyses.

doi:10.1371/journal.pgen.1005082.g006
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excretory canal apical membranes, we reasoned that ERM-1 overexpression could rescue
apical-associated phenotypes in these tissues. Measuring the width of intestinal lumen we
found that it was reduced to the wild type dimension (Fig. 7C).

To gain insight into the mechanism of pigv-1-phenotype rescue by ERM-1 overexpression,
we examined whether endogenous ERM-1 distribution and level were altered in pigv-1(qm34)
embryos. Immunolabeling with ERM-1 antibodies showed no difference in ERM-1 distribution
or level between wild type and pigv-1(qm34) embryos (Fig. 8A). We then asked whether

Fig 7. Overexpression of ERM-1::GFP rescues embryonic lethality and intestinal lumen width of pigv-1(qm34). (A) Embryonic lethality of pigv-1
(qm34) is suppressed by ERM-1::GFP, but not by YFP::ACT-5 overexpression. Data are presented as average ± s.e.m. For each experiment, more than 100
embryos were counted. Experiments were done in duplicate and repeated five times (**P<0.01, two-tailed test). (B) Overexpression of ERM-1::GFP rescues
pigv-1(qm34) embryonic lethality phenotypes. (C) Overexpression of ERM-1::GFP rescues enlarged intestinal lumen width in pigv-1(qm34) embryos (n>10,
**P<0.01, two-tailed test). See S2 and S5 Tables for numerical values and statistical analyses.

doi:10.1371/journal.pgen.1005082.g007
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ERM-1 might rescue pigv-1mutant by enhancing the residual pigv-1 activity and restoring the
level of GPI-APs. Using FLAER as the probe for GPI-APs, we found that GPI-AP level in
pigv-1(qm34) embryos overexpressing ERM-1 is similar to pigv-1(qm34) embryos alone, sug-
gesting that ERM-1 overexpression does not rescue pigv-1 embryonic lethality by restoring
GPI-APs (Fig. 8B).

Discussion
GPI anchor is an important post-translational protein modification whose functions and
mechanisms have been widely studied using unicellular organisms and mammalian cells in cul-
ture [1,6,9]. However, the role of GPI biosynthesis in animals remains poorly understood. In
humans, somatic mutations in PIGA gene loci lead to paroxysmal nocturnal hemaglobinuria, a
disease characterized by increased susceptibility of erythrocytes to lysis by the complement

Fig 8. ERM-1 overexpression does not rescue GPI-AP biosynthesis in pigv-1(qm34). (A) Endogenous
ERM-1 distribution and level are not affected in pigv-1(qm34) embryo. A maximum intensity projection of
embryo intestine is shown for wild type and pigv-1(qm34) embryos. (B) ERM-1::GFP overexpression does
not restore GPI-AP levels at the membrane. The level of GPI-APs in pigv-1(qm34) embryos expressing
ERM-1::GFP at restrictive temperature (second and fourth panels) is> 10 folds lower than that of wild type
embryo (first and third panels).

doi:10.1371/journal.pgen.1005082.g008
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immune system [34]. No heritable mutation in piga gene in human has been identified, sug-
gesting that PIGA function is required during embryogenesis. Indeed, deletion of PIGA gene in
mice, which completely abrogates GPI biosynthesis, resulted in early embryogenesis defects
[11,35]. However, this condition precludes the study of GPI function
throughout embryogenesis.

Also in C. elegans, a null mutation in piga-1 results in germline defects and early embryonic
lethality. In this study, we circumvented the early requirements for GPI-APs by using a temper-
ature sensitive hypomorphic allele of pigv-1. The amount of GPI-APs remaining upon pigv-1
inactivation was sufficient for normal germline development, thus enabling us to uncover their
requirement during embryogenesis. We showed that GPI-APs are present and function
throughout embryogenesis. Interestingly, the phenotypes of pigv-1 inactivation, i.e., weakened
epithelial tissues, are manifested only late in embryogenesis during the elongation stage of epi-
dermal morphogenesis. This may be due to increased mechanical forces generated by actomyo-
sin in muscle and epidermis tissues at that stage.

Although present at the membrane of all cells in the C. elegans embryo, pigv-1 loss of func-
tion exhibits no defect in early development events, such as gastrulation or tissue differentia-
tion. This is in contrast to mammalian embryogenesis, in which complete PIGA depletion
results in defects in tissue differentiation [35]. One possible explanation for this difference is
that the residual GPI-APs in pigv-1 animals are sufficient for normal differentiation. Another
reason could be differences in the proteins regulating differentiation. Tissue differentiation in
mammals is regulated by BMP/ TGF-β signaling whose activation requires GPI-anchored co-
receptors, Dragon and Cripto-1 [35,36]. Although present in C. elegans, BMP/TGF-β signaling
is not required during embryogenesis, but operates during postembryonic development, regu-
lating body size [37,38].

Inactivation of pigv-1 in C. elegans embryos resulted mainly in epithelial defects. Failures in
epidermal enclosure and intestinal cyst formation are consistent with weaker cell-cell adhesion.
In the epidermis, improper cell-cell adhesion creates gaps between ventral epidermal cells from
which internal tissues leak out during elongation. Compromised cell-cell junctions in the intes-
tine, which has higher osmotic pressure than the surrounding tissues, would allow passage of
low molecular weight substances, such as water molecules, from the intestinal lumen to the in-
testine basal side. The presence of a basal lamina separating the intestine from the pseudocoe-
lom results in accumulation of these substances in the form of cysts.

One possible explanation of these results is that the reduction in the amount of one or more
specific cell adhesion proteins that are GPI-anchored causes the observed defects. However,
amongst the GPI-APs that have been experimentally identified in C. elegans none are known to
mediate cell-cell adhesion [7,10]. While we do not rule out the involvement of yet unknown
GPI-anchored adhesion proteins, we propose another mechanism to explain the observed epi-
thelial phenotypes that does not depend on a specific protein, but rather on the GPI anchors
themselves. Goswami et. al. have shown that cortical actin affects the organization of GPI-AP
in the membrane [13]. We propose that GPI-APs are enriched in apical membranes of polar-
ized epithelial cells where they play a role in organizing the membrane into domains that inter-
act with the actin cortex within the cell and through these interactions stabilize the apical
membrane. According to this model, a decrease in GPI-APs will lead to fewer membrane-
cortex connections and thus to a weaker apical membrane. In support of this idea, we observed
a widening of the intestinal lumen in pigv-1mutant embryos, as would be expected if the apical
membrane of the intestine is weakened and thereby cannot resist as well the osmotic pressure
from inside the lumen. Further support for this model comes from the finding that overexpres-
sion of ERM-1 rescues lumen width and overall embryonic lethality of pigv-1mutant embryos.
ERM-1, the sole C. elegans ortholog of ezrin, radixin and moesin, is a linker protein that has an
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actin-binding domain and attaches to the PM through its FERM domain, serving to connect
the PM with the actin cortex [39,40]. ERM-1 overexpression did not increase the levels of
GPI-APs in pigv-1 embryos and hence the reduction in lethality associated with it is most likely
due to its membrane-cortex cross-linking function. From this we deduce that loss of GPI-APs
leads to a weakening of apical membranes in epithelial cells, irrespective of the proteins at-
tached to the GPI-anchor.

Another epithelial tissue affected by pigv-1 loss of function is the excretory canal. Down reg-
ulation of GPI-APs in the excretory canal leads to cysts formation and this cystic excretory
canal is usually short, consistent with apical membrane weakening upon the loss of GPI-APs.
Unlike the intestine, which is a multicellular tubule, the excretory canal is a unicellular tubule
that extends actively during embryo elongation. It has been demonstrated that a balance be-
tween membrane-actin cortex recruitment and translumenal flux is essential for the excretory
canal extension [33]. Weakened apical membrane upon down regulation of GPI-APs in pigv-1
mutant embryo may prevent further recruitment of membrane components and actin under-
coat to extend the canal, creating an imbalance between the two forces. Consequently, the
dominant force, the translumenal flux is transmitted to enlarge the canal diameter, resulting in
cysts formation. Another phenotype we observed in the excretory canal of pigv-1 mutants is ec-
topic branching. To our knowledge such a phenotype has not been associated with loss of func-
tion of any gene so far, opening a new avenue to study the regulation of tubular branching.

Besides epithelial tissues, loss of GPI-APs in C. elegansmay also affects neuronal and/or
muscle tissues, suggested by the lethargic phenotype of pigv-1(qm34) worms, although the
GPI-APs responsible for this phenotype remains to be identified. The short excretory canal
that has been observed occasionally in pigv-1(qm34) could also result from the loss of GPI-APs
from neuronal membrane. The neuronal cell adhesion molecules (NCAM) that are essential
for axon outgrowth and pathfinding have been demonstrated to regulate excretory canal exten-
sion [41,42,43]. In the absence of NCAM, the excretory canal does not grow to full extent. Sup-
porting this view, the in vitro and the in silico experiments found several NCAMs (rig-3, rig-6,
rig-7 and wrk-1) to be potentially GPI-modified [7,44].

Not all epithelial tissues displayed abnormal phenotypes in pigv-1mutants. The pharynx
and rectum are two epithelial tissues that do not seem to be affected by down regulation of
GPI-APs. High enrichment of GPI-APs at pharyngeal membranes compared to other tissues
could provide an explanation for the absence of weakened membrane phenotypes. However,
this reason does not hold for the rectum, as GPI-APs at rectal membranes are not more abun-
dant than other tissues that display weakened membrane. Since both pharynx and rectum are
covered by a cuticle, the most likely explanation for the absence of visible phenotypes is that
the cuticle protects both tissues from potential damage resulting from weakened membranes.

Restoring PIGV-1 expression individually in the epidermis, intestine and excretory canal in
pigv-1(qm34) embryos revealed that the defects in these epithelial tissues do not contribute
equally to the embryonic lethality. The intestine and the excretory canal defects have higher
contribution to embryonic lethality as compared to the epidermal defects. This is somewhat
unexpected because 56% of pigv-1(qm34) embryos die due to tissues leakage from the embryo
interior, indicating that a gap between epidermal cells is present from where the tissues pass
through. However, uncontained high pressure built in the intestinal and excretory canal due to
cell adhesion defects and membrane weakening may be sufficient to open epidermal junction
and push the internal tissues out of embryo interior.

Mutations in the human ortholog of C. elegans pigv-1, PIGV, have been associated in genetic
studies with hyperphosphatasia-mental retardation syndrome (a.k.a Mabry syndrome). This
autosomal recessive syndrome has a wide spectrum of phenotypes including intellectual dis-
abilities, facial anomalies, hyperphosphatasia, vesicoureteral and renal anomalies, and
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anorectal anomalies [21]. With the exception of hyperphosphatasia, which is known to be the
result of loss of GPI-anchored complement inhibitors in blood cells [34], the proteins and cel-
lular functions that are affected in humans with PIGVmutations are unknown. Although our
findings in C. elegans cannot possibly fully explain the cellular physiology of the human dis-
ease, it does point to a basic mechanism, i.e., weakening of apical membranes in epithelial cells,
that may be playing a role in some of the manifestations of the disease. Furthermore, if it will
be discovered that epithelial membrane integrity is affected in human patients then our work
also suggests a promising avenue for therapy, i.e., strengthening of the membrane-cortex con-
nection, based on our ERM-1 overexpression results.

Materials and Methods

Strains and alleles
Strains were grown and maintained at 20°C under standard conditions [45]. Wild type strain
N2 was used as a control. The pigv-1(qm34) was retrieved from an EMS screening conducted by
Hekimi et al. [25]. For analysis using GFP fusions, F2 progeny exhibiting pigv-1 phenotypes
and carrying the markers were selected from crosses between pigv-1(qm34) and the following
strains: SU93 jcIs1[ajm-1::gfp, unc-29(+), rol-6p::rol-6(su1006)] [46], SU265 jcIs17[hmp-1p::
hmp-1::gfp, dlg-1p::dlg-1::dsRed, rol-6p::rol-6(su1006)] [47], SU467 pIs7[pha-4p::pm::gfp, rol-6p::
rol-6(su1006)] [48], FT17 xnIs3[par-6p::par-6::gfp, unc-119(+)]; unc-119(ed3) III, MOT63
temIs59[pIC26::pkc-3]; unc-119(ed3) III, WS4918 opIS310[ced-1p::yfp::act-5::let-858 3'UTR, unc-
119(+)] [49], VJ402 fgEx1[erm-1p::erm-1::gfp, rol-6p::rol-6(su1006)] [33], ML1735mcIs50[lin-
26p::vab-10(actin-binding domain)::gfp,myo-2p::GFP] [50], plag-2p::piga-1::egfp-expressing
strain was generated by Murata et al [10].

Plasmid construction
All plasmids generated in this study were constructed in a modified pPD95.75 backbone. For
tissue-specific rescue of pigv-1 loss of function, GFP position was changed to be at the N termi-
nal instead of at the C terminal of the multiple cloning sites (MCS), whereas for AQP-
8-expressing plasmid, GFP at C terminal was replaced with mCherry. To construct pigv-1p::
gfp::pigv-1 plasmid, pigv-1 promoter (2.4 kb sequence upstream of pigv-1 start codon) and cod-
ing sequence were amplified and inserted into SbfI and AgeI sites upstream of gfp in original
pPD95.75 vector. Circular PCR was performed to amplify the whole plasmid, but the gfp region
using a pair of primers harboring XhoI sites at their 5’ ends. PCR product was then ligated to
produce a circular plasmid containing pigv-1 promoter and coding sequence, but without gfp.
Second circular PCR was conducted to insert two new restriction sites, i.e.: NotI and BglII be-
tween pigv-1 promoter and coding sequence. PCR product was then subjected to digestion
using NotI and BglII. gfp coding sequence was amplified from original pPD95.75 and subcloned
into pJET (Thermo Scientific). The recombinant plasmid was digested using NotI and BglII
and gfp sequence-containing product was ligated to pigv-1-containing pPD95.75, resulting in a
plasmid expressing gfp::pigv-1 driven by pigv-1 promoter. Four different promoters were used
to rescue pigv-1(qm34) in different tissues: 4.1 kb sequence of lin-26 promoter to drive pigv-1
expression in epidermis, 7.1 kb of pha-4 promoter for expression in pharynx and intestine, 2.2
kb of aqp-8 promoter for expression in excretory canal and 3 kb of erm-1 promoter for expres-
sion in all epithelial tissues. They are inserted into modified pPD95.75 at SbfI/NotI sites replac-
ing pigv-1 promoter. Transgenic animals generated by injecting the constructs into the gonad
of hermaphrodite animals resulted in the following strains: RZB40 (pigv-1(qm34);msnEx40
[lin-26p::gfp::pigv-1; rol-6(su1006)]), RZB41 (pigv-1(qm34);msnEx41[pha-4p::gfp::pigv-1; rol-6
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(su1006)]), RZB129 (pigv-1(qm34);msnEx129[aqp-8p::gfp::pigv-1; rol-6(su1006)]) and RZB128
(pigv-1(qm34);msnEx128[erm-1p::gfp::pigv-1; rol-6(su1006)]).

To construct aqp-8::mCherry-expressing plasmid, mCherry coding sequence was amplified
from pAA64 and ligated to circularly amplified pPD95.75 devoid of gfp sequence using Gibson
assembly (NEB). Subsequently, 2.2 kb aqp-8 promoter together with aqp-8 genomic sequence
were inserted at SbfI/BamHI sites in modified pPD95.75. Injection of this construct resulted in
strain RZB221 (pigv-1(qm34);msnEx221[aqp-8p::aqp-8::mCherry; rol-6(su1006)]).

Microinjection
Microinjection was performed as described by Mello and Fire [51]. Injection mix includes
100 μg/μl salmon sperm DNA digested with PvuII, 20 μg/μl rol-6(su1006) digested with SbfI
and 5–10 μg/μl each construct digested with SbfI.

Whole genome sequencing and mutation validation
Genomic DNA was extracted from pigv-1(qm34) mutant worms using standard method and
subjected to whole genome sequencing using Illumina platform and annotated using MAQ-
Gene [52]. The whole genome sequencing and its annotation were performed by Hobert lab
(Columbia University). Candidate genes altered in pigv-1(qm34) were narrowed down using
genetic mapping results done by Hekimi et al. [25]. Point mutation in pigv-1 gene was con-
firmed by amplification of pigv-1 gene in pigv-1(qm34) mutant worms, subcloning into pJET
vector (Thermo Scientific) and followed by conventional sequencing (First Base). Further vali-
dation of pigv-1missense mutation as the phenotype-causing gene in pigv-1(qm34) worms was
done by injection of 100 μg/μl fosmid WRM063BcC08, which contains pigv-1 gene, together
with the co-transformation marker rol-6(su1006) into the gonad of pigv-1(qm34) hermaphro-
dites. F2 rollers were upshifted to 25°C and examined for embryonic lethality.

Quantification of embryonic lethality
Ten to fifteen gravid hermaphrodites were placed on the plate and incubated for several hours
to lay more than 100 eggs. Hermaphrodites were then removed and the number of eggs laid
was counted. Twenty-four hours later, the number of larvae hatched was determined. Each ex-
periment was done in duplicate and repeated five times. Beside experiments determining tem-
perature sensitivity that are conducted at three different temperatures (15°C, 20°C and 25°C),
the remaining experiments were conducted solely at 25°C to get the highest extent of pigv-1 in-
activation. In this case, L4 larvae were upshifted from 20°C to 25°C for 20 to 24 hours prior to
the test.

Temperature shift experiments
For upshift experiment, embryos were dissected from gravid pigv-1(qm34) worms grown at
15°C and incubated at 25°C for the duration of embryogenesis. Each embryo was staged and
scored for hatching. For downshift experiment, similar procedure was performed, except that
pigv-1(qm34) worms were kept at 25°C for 24 hours before downshifted to 15°C. Embryos that
do not hatch at the end of embryogenesis were considered as lethal.

4Dmicroscopy and Pigv-1 phenotype classification
Larvae or embryos collected from gravid hermaphrodite, mounted onto 3% agarose padded-
glass slide, closed with coverslip and sealed with wax. Normaski images shown in Fig. 1A, B
and S2B were captured using a Nikon Ti Eclipse widefield microscope equipped with DIC

GPI Anchors Maintain Epithelia Integrity

PLOS Genetics | DOI:10.1371/journal.pgen.1005082 March 25, 2015 18 / 24



1.40NA oil condenser and a charged-coupled device camera Cool Snap HQ2 (Photometrics).
All other imaging were done using spinning disk confocal system composed of a Nikon Ti
Eclipse microscope with a CSU-X1 spinning disk confocal head (Yokogawa), DPSS-Laser
(Roper Scientific) at 491 and 568 nm excitation wavelength and an Evolve Rapid-Cal electron
multiplying charged-coupled device camera (Photometrics). For both microscopes, Meta-
morph software (Molecular Devices) was used to control acquisition. Projected images were
created using Fiji.

After 24 hour DIC recording, wild type, pigv-1(qm34) and pigv-1(qm34) embryos expressing
ERM-1::GFP were scored as viable or lethal and each category is further classified into four
subcategories; i.e.: without visible defects, with cysts and rupture, with cyst only and with
rupture only.

GFP knockdown by RNAi
IPTG plate used for gfp(RNAi) feeding was prepared as described [53]. Wild type and pigv-1
(qm34) L1 larvae expressing ERM-1::GFP were fed using bacterial-feeding strain of gfp for 3
days at 15°C till they become L4 and then upshifted to 25°C for overnight. The absence of GFP
signal was verified by using fluorescent stereomicroscope and only those devoid of the signal
were subjected for embryonic lethality test.

FLAER staining and immunolabeling
Fixation and indirect immunofluorescence were performed essentially as described [54]. The
following primary mouse antibodies were used: ERM-1 (DSHB; 1/20), AJM-1 (MH27, DSHB;
1/10), myotactin (MH46, DSHB; 1/5) and LET-413 (DSHB; 1/2) and IFB-2 (MH33, DSHB;
1/5). Donkey anti-mouse coupled to Alexa 647 (1/500) (Life technologies) was used as second-
ary antibodies and proaerolysin coupled to Alexa 488 (FLAER, Protox Biotech) was used to de-
tect GPI-APs. Images were taken on a Nikon Ti Eclipse spinning disk microscope with 100x
objective and processed further using Fiji. To measure lumen width in wild type and pigv-1
(qm34) mutant embryos, N2 and pigv-1(qm34) embryos expressing AJM-1::GFP were fixed,
maximum intensity projection of embryonic intestine in GFP channel was constructed and the
widest section of intestinal lumen was determined. The same procedure was done to measure
lumen width in pigv-1(qm34) embryos expressing ERM-1::GFP, except that AJM-1 antibodies
were used instead of AJM-1::GFP expression.

Statistical analysis
Statistical analyses were done using Microsoft Excel. Two-tailed Student’s t-test was applied to
compare the values.

Supporting Information
S1 Fig. T09B4.1 is an ortholog of human PIGV. (A) An alignment of human PIGV and
C. elegans PIGV-1 shows a high degree of similarity between them. Amino acid residues are
colored based on ClustalX color scheme (http://www.jalview.org/help/html/colourSchemes/
clustal.html) and displayed using Jalview. (B) The GPI-anchor biosynthesis pathway in mam-
malian cells. The orthologous enzymes present in C. elegans are shown in black and PIGV-1
whose mutant allele is assessed in this study is highlighted in red.
(TIF)

S2 Fig. The timeline of C. elegans embryogenesis at 25°C. C. elegans embryogenesis is initiat-
ed by multiple rounds of cell divisions that form the founder cells. Three germ layers are then
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formed subsequently during gastrulation. The end of gastrulation is marked by closure of a
ventral cleft. All those events occur within the first 2.5 hours of embryogenesis. In the next 4
hours, the embryo undergoes epidermal morphogenesis, in which epidermal cells born at the
dorsal side of embryo intercalate and enclose the embryo at the ventral side. The embryo then
elongates to form worm-like shape and hatches.
(TIF)

S3 Fig. Loss of GPI-anchor proteins does not affect epidermal circumferential actin bun-
dles or muscles. (A) Organization of circumferential actin bundles (CFBs) in pigv-1(qm34)
embryo is similar to wild type embryo. VAB-10 actin binding domain tagged with GFP is used
to visualize CFBs. (B) Muscle organization and structure are indistinguishable between wild
type and pigv-1(qm34) embryos. Myotactin antibodies (MH46) are utilized to display muscles.
A maximum intensity projection of CFBs and muscles are shown in panel A and
B, respectively.
(TIF)

S4 Fig. Intestinal cysts are visibly distinct from the germ cells. The germ cells (GC) are dis-
tinguishable from other cell types in the embryo based on their round shape and paired locali-
zation (left panels). The GCs are visible in pigv-1(qm34) embryo in a separate focal plane from
that of the intestinal cysts (middle and right panels). The cysts in pigv-1(qm34) embryo grow in
size over time. GCs are colored in orange and cysts are colored in blue.
(TIF)

S5 Fig. pigv-1(qm34) L1 larva has a short cystic excretory canal.While the excretory canal in
wild type L1 larva is elongated (top panel), the excretory canal in pigv-1(qm34) L1 larva is cystic
and short (bottom panel). In both DIC and mCherry channels, cyst is colored in blue.
(TIF)

S6 Fig. Loss of GPI-anchor proteins does not affect epithelial polarity. (A) GFP::PAR-6 and
GFP::PKC-3 are localized to pharynx and intestine apical membranes both in wild type and
pigv-1(qm34) embryos. Stippled circle denotes excretory cell. (B) AJM-1::GFP and LET-413 are
correctly localized to apical and basolateral membrane of epidermis, pharynx and intestine, re-
spectively, both in wild type and pigv-1(qm34) embryos. (C) IFB-2 is localized to apical lumen
in wild type and pigv-1(qm34) embryos. Note that the intestine of pigv-1(qm34) embryos is
twisted at the initial segment close to the pharynx (insets). The images in the inset are deliber-
ately shown in grey for clarity. A sum projection of embryo intestine is shown in panel A and C.
(TIF)

S7 Fig. Abnormal excretory canal branching upon loss of GPI-APs. In wild type embryo,
two pairs of tubules branch out from the cell body forming an H-shape excretory canal (top
panel), whereas in pigv-1(qm34) embryo, more than two pairs of tubules branch out form cell
body (middle and bottom panels) or branch out from the tubule itself (middle panel, indicated
by a red arrowhead). CB stands for the excretory canal cell body. Numbers are written next to
the tubules to highlight the difference in tubular branching between wild type and pigv-1
(qm34) embryos. A maximum intensity projection of excretory canal marked by AQP-8::
mCherry is shown in all panels.
(TIF)

S1 Movie. Epidermal morphogenesis in wild type embryo expressing AJM-1::GFP.Movie
starts from epidermal enclosure and ends halfway through elongation. Time is indicated
in minutes.
(AVI)
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S2 Movie. Epidermal morphogenesis in pigv-1(qm34) embryo expressing AJM-1::GFP.
Movie starts from epidermal enclosure and ends halfway through elongation. Note that ventral
epidermal cells are misaligned, thus creates a gap between the cells from which the internal tis-
sues leak out. Time is indicated in minutes.
(AVI)

S3 Movie. Embryonic elongation in wild type embryo expressing HMP-1::GFP.Movie starts
from the beginning of elongation and ends at the time of hatching. Time is indicated
in minutes.
(AVI)

S4 Movie. Embryonic elongation in pigv-1(qm34) embryo expressing HMP-1::GFP.Movie
starts from the beginning of elongation. The embryo arrests during elongation due to the epi-
thelial tissue rupture at the embryo anterior. Time is indicated in minutes.
(AVI)

S1 Table. Temperature sensitivity of pigv-1(qm34) allele.
(DOCX)

S2 Table. Quantification of pigv-1(qm34) embryonic phenotypes.
(DOCX)

S3 Table. Embryonic lethality upon temperature upshift to 25°C or downshift to 15°C.
(DOCX)

S4 Table. Tissue specific rescue of pigv-1(qm34) allele.
(DOCX)

S5 Table. ERM-1::GFP rescue of pigv-1(qm34) allele.
(DOCX)
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