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Abstract
Whole-genome regression methods are being increasingly used for the analysis and predic-

tion of complex traits and diseases. In human genetics, these methods are commonly used

for inferences about genetic parameters, such as the amount of genetic variance among in-

dividuals or the proportion of phenotypic variance that can be explained by regression on

molecular markers. This is so even though some of the assumptions commonly adopted for

data analysis are at odds with important quantitative genetic concepts. In this article we de-

velop theory that leads to a precise definition of parameters arising in high dimensional ge-

nomic regressions; we focus on the so-called genomic heritability: the proportion of

variance of a trait that can be explained (in the population) by a linear regression on a set of

markers. We propose a definition of this parameter that is framed within the classical quanti-

tative genetics theory and show that the genomic heritability and the trait heritability param-

eters are equal only when all causal variants are typed. Further, we discuss how the

genomic variance and genomic heritability, defined as quantitative genetic parameters, re-

late to parameters of statistical models commonly used for inferences, and indicate potential

inferential problems that are assessed further using simulations. When a large proportion of

the markers used in the analysis are in LE with QTL the likelihood function can be misspeci-

fied. This can induce a sizable finite-sample bias and, possibly, lack of consistency of likeli-

hood (or Bayesian) estimates. This situation can be encountered if the individuals in the

sample are distantly related and linkage disequilibrium spans over short regions. This bias

does not negate the use of whole-genome regression models as predictive machines; how-

ever, our results indicate that caution is needed when using marker-based regressions for

inferences about population parameters such as the genomic heritability.

Author Summary

Whole-genome regression (WGR) methods are being increasingly used for inferring the
proportion of variance that can be explained by a linear regression on a massive number
of markers, called ‘genomic heritability.’However, the statistical assumptions involved in
WGRs are somewhat at odds with important quantitative genetics concepts. We argue and
show that the parameters of the statistical model used for data analysis typically bear a
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tenuous relationship with the quantitative genetic parameters of interest. We also study,
using simulations, the extent of bias of likelihood-based estimates. We conclude that
under certain circumstances estimates can have a sizable finite-sample bias; therefore, cau-
tion needs to be exercised when interpreting parameter estimates derived from
WGR models.

Introduction
Whole-genome regression (WGR) methods [1] are becoming increasingly used for analysis
and prediction of complex traits, quantitative or categorical. These methods were first devel-
oped for prediction in plant and animal breeding (e.g., [2,3]). More recently, there has been an
increased interest in using WGR methods for inferring the proportion of variance that can be
explained by a linear regression on a marker panel, or ‘genomic heritability’ [4–6]. Prediction
and inference are two different problems, and a model that may yield good (e.g., unbiased and
precise) estimates of parameters of interest may have a relatively poor prediction performance,
and vice versa. Most of the methodological research in WGR methods was developed in animal
breeding with a focus on prediction. Unfortunately, little is known about the inferential proper-
ties of estimates derived fromWGRs models. For example, it is unclear whether the commonly
used likelihood-based (or Bayesian) estimators of variance components or of genomic herita-
bility estimate population parameters consistently [7].

Before copious marker information became available, genetic analysis (e.g., estimation of
heritability) was mainly based on mixed effects linear models applied to family data [8]. In the
so-called infinitesimal model, relatedness due to kinship is assessed using pedigrees, and a cen-
tral element of model specification is the assumption that genotypic values result from the
small and additive effects of alleles at a large number of loci. A number of studies have investi-
gated the quality of fit of the infinitesimal model to experimental [9,10] and to simulated family
data [11]. Most of these studies have concluded that the additive infinitesimal model is a useful
abstraction, except in situations involving a few large-effect non-additive loci. Therefore, at
least at some operational level, with family information the distinction between the model that
generated the data and the one used for analysis has not seemed critical.

The availability of genotype information on a large number of loci has made possible to as-
sess kinship among nominally unrelated individuals [9–13]. In this setting, and due to imper-
fect linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), the
patterns of allele sharing at markers and at causal loci may be very different [6]. Hence, the dis-
tinction between the data generating process and the model used for data analysis, or instru-
mental model, must be made clearly: in the instrumental model marker genotype information
is used in lieu of the causal genotypes that are at the basis of the classical model of quantitative
genetic theory. Thus, clarifying the link between the parameters of the instrumental model
(e.g., the genomic or SNP variance) and classical quantitative genetic parameters (e.g., the ge-
netic variance) is essential.

Yang et al. (2010) [4] proposed using the G-BLUP method [2], a particular class of WGR,
applied to data involving distantly related individuals, for estimation of the proportion of vari-
ance accounted for by a multiple-linear regression on common SNP. The proportion of unex-
plained genetic variance can be interpreted as ‘missing heritability’, which conceptually can be
attributed to imperfect LD between markers and QTL. Using a WGR approach Yang et al.
(2010) found that approximately half of the heritability of human height was captured by com-
mon SNP. Other studies, e.g., [6], have corroborated Yang’s results using both simulated and
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real data. More recently, WGRs have been used for estimation in scenarios where all causal var-
iants are assumed to be included in the marker panel, and various suggestions have been made
with the purpose of obtaining inferences of genomic heritability that resemble more closely
those based on pedigrees [5].

In the literature on genomic analysis of complex traits published so far [4–6,14], genetic pa-
rameters have been defined based on the statistical assumptions of the instrumental model
used for data analysis. This is so despite the fact that there is a key difference in the way geno-
types and effects are treated in statistical models and in quantitative genetics theory. In the lat-
ter, inter-individual differences in genetic values are attributed to subject-to-subject differences
on allele content at QTL [15–17]; therefore genetic variance stems from variation at QTL geno-
types. In this framework, at any given time in a population, the effects of alleles on a trait (e.g.,
the average effects of allele substitution) are fixed quantities, e.g., [16] pp. 112–113. On the
other hand, in the instrumental regression models, genotypes are treated as fixed and variation
stems from uncertainty about marker effects (the so called ‘variance of marker effects’). This
key difference in the treatment of genotypes and of their effects has important consequences
that we further explore in this article.

An important contribution of this paper is to establish theory aiming at a precise definition
of parameters arising in regression models using genomic data (markers, sequence) as explana-
tory variables. Our approach is framed within the classical quantitative genetics paradigm. We
discuss how these “instrumental model parameters” relate to “structural parameters” of an un-
derlying conceptual QTL model. We also present stylized cases that shed light into the inter-
pretation of the parameters of the instrumental model. Finally, we discuss potential estimation
problems and provide a limited set of simulations where some statistical properties of likeli-
hood-based estimates are assessed.

Materials and Methods
In the first part of this section we develop the basis for a definition of genetic parameters aris-
ing in genomic regressions and in the second part of the section we describe two simulation
studies conducted to assess some statistical properties of likelihood-based estimates of
genomic parameters.

Theory
In standard quantitative genetic theory [15–17] additive genetic values are linear functions of
allele content at QTL. Concepts such as the additive effect of an allele in a population or narrow
sense (trait) heritability are defined with reference to this framework. The standard quantitative
genetic model (hereinafter referred to as QTL-model) assumes that a trait of interest measured
on individual i (yi; i = 1, . . ., n) is affected by alleles at qQTL. Hereinafter, for ease of presenta-
tion, we assume that all loci are bi-allelic and that genotype codes (zij; j = 1,2, . . ., q) and pheno-
types have been centered, so that E(yi) = 0 and E(zij) = 0 for all individuals and loci.

The genetic value of an individual is defined as the expected phenotypic value given QTL
genotypes, gi = E(yi|zi), where zi = {zi1, . . ., ziq} is a vector of genotype codes observed at the
ith individual at each of the q QTL. The conditional expectation function maps from geno-
types to expected phenotypic value. The genetic variance of a trait in the conceptual popula-
tion is simply the average (over individuals) squared deviation of the genetic values from
the population mean. In our setting, because E(yi) = 0, the genetic variance becomes

s2
g ¼ Ez Eyjz yijzið Þ2

n o
¼ Ez g2i

� �
. Clearly, genetic variation stems from inter-individual

differences in allele content at QTL (this is what confers individuals different genetic values).
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Additive effects and additive variance. The conditional expectation function, gi = E(yi |
zi), may not be linear on QTL effects. However, regardless of the genetic mechanism operating
within or across loci, one can always define a linear regression model of the form

yi ¼ a0zi þ di; ð1Þ

where α, a column vector of dimension q, whose elements are the regressions of phenotype on
allelic content, represents the vector of additive effects of the QTL, or effects of allele substitu-
tions [16], defined as the regression of gi on zi. Thus

a ¼ Cov zi; zi
0ð Þ�1Cov zi; gið Þ ¼ S�1

z Szg : ð2Þ

Here,

Sz ¼

Varðzi1Þ . . . Covðzi1; ziqÞ
..
. . .

. ..
.

Covðziq; zi1Þ . . . VarðziqÞ

26664
37775

is a q×qmatrix whose entries are the variances and covariances of allelic contents at the qQTL,

and Szg ¼ Cov zi1; gið Þ; . . . ;Cov ziq; gi
� �n o0

is a q-dimensional vector containing covariances

between genotypes at QTL and genetic values. In (1), the deviate δi is a random residual that in-
cludes genetic and environmental effects that cannot be captured by the linear regression on al-
lele contents, e.g., dominance, epistasis and QTL-environment interactions. By construction
this residual is uncorrelated with QTL genotypes, indeed

Cov yi � a0zi; zi
0ð Þ ¼ Cov yi; zi

0ð Þ � Cov a0zi; zi
0ð Þ ¼ Cov gi; zi

0ð Þ � SgzS
�1
z Sz ¼ Sgz � Sgz ¼ 0

Importantly, the terms Sz and Szg ; and therefore α, are viewed as fixed population quantities

and not as random variables. Also, these covariance matrices are assumed to be homogeneous
across individuals; this condition may be met in an unstructured population but may not hold
if individuals within the population cluster according to some substructure or are aggregated in
families because, in such cases, variances and covariances may vary among clusters. On the

other hand, α0zi, is random because QTL genotypes vary between individuals in the population
according to some law such as Hardy-Weinberg.

(Eq 1) leads to the following decomposition of phenotypic variance

Var yið Þ ¼ Var a0zið Þ þ Var dið Þ

or

s2
y ¼ a0Szaþ s2

d ¼ s2
a þ s2

d;

where

s2
a ¼

Xq

j ¼ 1
Var zij

� �
a2j þ 2

Xq

j ¼ 1

Xq

j0>j
Cov zij; zij0

� �
ajaj0 ð3Þ

is the additive genetic variance, stemming from the regression of phenotype on allelic contents
at QTL. Note that in (3) randomness arises from variation and covariation of allelic contents at
the QTL, as postulated in the basic model of quantitative genetics [15–17],whereas α is a
fixed parameter.

Genomic Heritability: What Is It?

PLOS Genetics | DOI:10.1371/journal.pgen.1005048 May 5, 2015 4 / 21



Expression (3) shows that the additive variance is not only a function of the variances of
QTL genotypes (the diagonal elements of Sz) and of their effects, but also of the patterns of LD
between QTL (the off-diagonal elements of Sz). The contribution of LD to genetic variance
(additive and non-additive) is a well-established result in quantitative genetics [18,19]. For this
reason, in general, the additive variance cannot be partitioned into locus-specific components
[19,20]. For example, following Avery and Hill [19] if in a large population individuals mate
completely at random, the additive variance can be expressed as

s2
a ¼ 2Sq

j ¼ 1yj 1� yj

� �
a2j þ 4Sq

j ¼ 1S
q

j0>j
ajaj0Djj0

where Djj0 is the coefficient of LD between locus j and j’ and θj is the frequency of the allele

coded as 1 at the jthQTL [19]. However, if alleles at QTL pairs are in complete LE,

Djj0 ¼ 0 for j 6¼ j
0
, leading to s2

a ¼ Pq
j ¼ 1 2yj 1� yj

� �
a2
j . In this case, the additive variances

at each of the QTL “add up” to the total additive genetic variance.
Narrow sense (trait) heritability is defined as the proportion of phenotypic variance ex-

plained by additive effects [15–17], that is

h2 ¼ s2
a

s2
y

¼ s2
a

s2
a þ s2

d

¼ a0
P

za
a0
P

zaþ s2
d

Note that h2 is also the squared correlation between phenotypes and additive genetic values,
since

Cor yi;; a
0zi

� �2 ¼ Cov yi;; a
0zi

� �2
Var yið ÞVarða0ziÞ

¼ Var a0zið Þ2
Var yið ÞVarða0ziÞ

¼ h2:

Therefore, h2 is also the maximum r-squared that can be achieved when fitting a linear additive
model on known QTL allelic contents.

Instrumental Model (regression on markers). While genetic values are functions of allele
content at QTL, in practice the set of genes affecting a complex trait is often unknown. There-
fore empirical (instrumental) linear regression models are fitted using markers whose alleles
are typically in imperfect LD with those at QTL. Concepts such as the “additive effect of a
marker”, or the amount of variance explained by marker effects (the so called “genomic vari-
ance”) have been employed by many authors (e.g., Goddard 2009). However, the literature
lacks a precise definition of these parameters as well as of an analytical treatment that holds re-
gardless of trait architecture or patterns of LD. Here, we attempt to fill this gap by presenting
precise definitions of marker effects and of genomic heritability, from a quantitative genetic
theory perspective.

Suppose that the analysis is carried out using pmarkers with genotype codes in vector
xi = {xi1, . . ., xip} 0; as before, we assume that marker genotypes have been centered, that is
E{xij} = 0 (j = 1,...,p). The marked additive genetic value can be defined as the regression of the
true additive genetic value, α0zi, on allelic content at marker loci, that is

a0zi ¼ b0xi þ xi; ð4Þ

where ξi is a model residual representing components of the true additive genetic values that,
due to imperfect marker-QTL LD, cannot be explained by a regression on markers.

Marker effects are defined as the multivariate multiple regression of additive genetic values
on markers

b ¼ Var xið Þ�1Cov xi; a
0zið Þ ¼ S�1

x Sxza ¼ Ba ð5Þ
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where,

Sx ¼

Varðxi1Þ . . . Covðxi1; xipÞ
..
. . .

. ..
.

Covðxip; xi1Þ . . . VarðxipÞ

26664
37775;

is the p×p covariance matrix among marker genotypes,

Sxz ¼

Covðxi1; zi1Þ . . . Covðxi1; ziqÞ
..
. . .

. ..
.

Covðxip; zi1Þ . . . Covðxip; ziqÞ

26664
37775

is a p×qmatrix of covariances between marker and QTL genotypes, and B ¼ S�1
x Sxz ¼ bxjzk

n o
is p×q a matrix containing regressions on allelic contents of each QTL on each marker. Since
Sx, Sxz and α are fixed population parameters, so is β. Also, note that, by definition, the regres-

sion residual ξi = zi 0α—xi0β is uncorrelated with xi. Indeed

Cov xi; xið Þ ¼ Covðxi; zi0a� xi
0bÞ ¼ Sxza� Sxb ¼ Sxza� SxS

�1
x Sxza ¼ 0:

Genomic values are then defined as b0xi ¼ a0SzxS
�1
x xi ¼ a0 ẑ i, where ẑ i ¼ SzxS

�1
x xi ¼ B0xi

is the best linear predictor of allele content at QTL, given allele content at markers. Note that
while each element of zi takes one of 3 exhaustive and mutually exclusive values, ẑ i is a continu-
ous-valued vector, this being due to the linear approximation used. The variance of genomic
values, or genomic variance, is

Varðb0xiÞ ¼ b0Covðxi; xi0Þb
¼ b0Sxb

¼ a0SzxS
�1
x SxS

�1
x Sxza

¼ a0SzxS
�1
x Sxza

ð6Þ

Its value depends on the QTL effects (α), and on the LD relationships among QTL and

markers (via Sxz), and among markers (via S�1
x ). The variance of the regression residual is

VarðxiÞ ¼ Var a0zi � b0xið Þ ¼ a0 Sza� a0SzxS
�1
x Sxza ¼ a0 ðSz � SzxS

�1
x SxzÞa

The expression between parentheses in the right-hand side is the conditional (if the joint
distribution were multivariate normal) covariance matrix among QTL genotypes, given
markers. This quantity represents remaining uncertainty about QTL genotypes once markers
are observed. Because ξi is uncorrelated with xi, the model in (Eq 4) yields the variance parti-
tion

Var a0zið Þ ¼ Var b0xið Þ þ Var xið Þ;

leading to the decomposition

a0Sza ¼ a0SzxS
�1
x Sxza þ a0ðSz � SzxS

�1
x SxzÞa
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or

s2
a ¼ s2

g þ s2
g

where, s2
g ¼ Var b0xijað Þ is the variance of the ‘genomic values’ or genomic variance, see ex-

pression (6), is interpretable as the amount of additive variance captured by regression on
markers. Likewise, s2

g can be interpreted as the “missing” additive genetic variance, that is,

the variability yet to be marked. The ratio s2
g=s

2
a represents the proportion of additive vari-

ance that is explained by a linear regression on available markers and the product of this ratio
times the trait heritability is the proportion of variance of phenotypes explained by the re-
gression on markers, or genomic heritability:

h2
g ¼ s2

g

s2
y

¼ s2
a

s2
y

s2
g

s2
a

¼ h2
s2
g

s2
a

The proportion ofmissing heritability can be defined as a population parameter as

h2 � h2
g

h2
¼ s2

a � s2
g

s2
a

¼ a0Sza� a0SzxS
�1
x Sxza

a0Sza
¼ a0ðSz � SzxS

�1
x SxzÞa

a0Sza

The covariance between phenotypes and genomic values is Cov(yi,β0xi) = Cov(β0xi + ξi + δi,
β0xi) = Var(β0xi) + Cov(ξi, β0xi) + Cov(δi,β0xi), The 1

st term on the right-hand-side of the preced-
ing equation is the genomic variance and the second term is, by construction, zero. However,
the term Cov(δi,β0xi) may not be zero because δi and xi may be correlated. However, if Cov(δi,

β0xi) = 0, then Cov yi; b
0xið Þ ¼ Var b0xið Þ ¼ a0SzxS

�1
x Sxza, and the squared-correlation be-

tween phenotypes and genomic values becomes, Cor yi; b
0xið Þ2 ¼ a0SzxS

�1
x Sxzað Þ
s2y

¼ h2
g .

Rotation invariance. The additive and genomic variances (expressions 3 and 6, respec-
tively) are invariant under linear transformations of genotypes; therefore, these parameters,
and functions thereof, do not depend on how genotypes are coded. A proof of this property is
provided in the Supplementary methods S1 Text.

Insights from special cases. Above, parameters of the instrumental model were defined
without imposing any restriction on patterns of LD. Special cases that shed light into interpre-
tation of some of these parameters can be obtained by imposing restrictions on the trait ‘archi-
tecture’ and on the patterns of LD.

For instance, if there is a single marker-QTL pair, both Szx and Sx are scalars; therefore, the
marker effect (population parameter), using (Eq 5) becomes

b ¼ S�1
x Sxza ¼ bzxa

where bzx ¼ cov xi ;zið Þ
var xið Þ is the linear regression of the QTL genotype on the marker genotype. The

genomic value is then xi β = xibzxα, and the expression for the genomic variance (Eq 6) reduces

to s2
g ¼ cov xi;zið Þ2

var xið Þ a2. The proportion of the additive variance explained by the regression on

markers is

s2
g

s2
a

¼
cov xi ;zið Þ2
var xið Þ a2

h i
var zið Þa2½ � ¼ cov xi; zið Þ2

var zið Þvar xið Þ ¼ r2;

the squared correlation between genotypes at the marker locus and at the QTL. Therefore, the

Genomic Heritability: What Is It?
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genomic heritability is h2
g ¼ r2h2 � h2. If LD is perfect, h2

g ¼ h2; otherwise, it will get closer

to 0 as LD becomes weaker.
Goddard (2009)[21] used a conceptual framework where QTL are in mutual LE and, for

each QTL, there is a single marker associated to it. In this stylized setting the entire genome is
represented as independent QTL-markers pairs (zij, xij). Under these conditions several simpli-
fications occur. Because of LE between markers and QTL in different pairs, the matrices Sx

and Sz are diagonal. Further, if markers and QTL are sorted by pair, then Szx is also diagonal.
In this setting marker effects are simply obtained by regressing QTL genotypes on markers

within pairs, that is, bj ¼ bzjxjaj where bzjxj ¼
Cov xij ;zijð Þ
Var xijð Þ is the regression of the jthQTL on the jth

marker. The genomic variance can be decomposed as the sum of marker-specific components:

s2
g ¼

X
j

cov xij; zij
� �2

var xij
� � a2j ¼

X
j
var xij

� �
b2

j ¼
X

j
var zij

� �
r2j a

2
j ð7Þ

where r2j is the squared-correlation between the marker and the QTL genotype at the jth pair

(Goddard, 2009).
With sequence data all “causal variants” are expected to be included in the marker panel;

therefore, it is reasonable to expect that there will be no missing heritability, i.e., the trait herita-
bility and genomic heritability parameters coincide. The framework outlined in previous sections
is consistent with this view. In fact, it can be shown that when all “causal variants” are included
in the marker panel, the vector of marker effects satisfies:βj = {αj if xj is a QTL; 0 otherwise}. Con-
sequently, the genomic and trait heritability coincide (i.e., there is no missing heritability). This
intuitive but important result can be derived using properties of inverses of partitioned matrices,
and a detailed derivation is provided in the Supplementary Methods S2 Text. Importantly, this
result applies to the relationship between the trait heritability and genomic heritability parame-
ters as defined in expressions 3 and 7. However, this does not imply that estimators would con-
verge in probability to the true population parameters; we return to this problem in the section
on parameter estimation.

On defining genomic parameters based on statistical assumptions. As stated earlier, in
classical quantitative genetics theory genetic variance arises from variation and co-variation of
allelic contents at QTL, and both QTL and marker effects are fixed population parameters.
However, in WGR studies marker genotypes are observable but their effects are unknown. In
fact, in classical likelihood or Bayesian analysis, marker effects are treated as random variables,
mainly because the number of markers exceeds samples size and restrictions must be imposed
on the values of the regressions, and inferences are conditional on the observed marker geno-
types. For example, in the family of models named the Bayesian alphabet [22,23], marker ef-

fects b ¼ bj
n op

j ¼ 1
are assumed to be IID (identically and independently distributed) draws

from some common prior distribution with null mean and variance VarðbjÞ ¼ s2
b. The regres-

sion model is built conditionally on the observed marker genotypes and the prior variance of the
ith genomic value is: Var b0xijxið Þ ¼ s2

b

P
jx

2
ij. The expected value of this parameter taken over

the distribution of marker genotypes is s2
u ¼ Exi

Var b0xijxið Þf g ¼ s2
b

P
jE x2ij

� �
¼ s2

b

P
jVar xij

� �
.

Under HW-equilibrium, Var xij

� �
¼ 2pj 1� pj

� �
; where πj is the allelic frequency at marker

locus j. Therefore

s2
u ¼ Exi

Var b0xijxið Þf g ¼ s2
b

X
j
2pj 1� pj

� �
ð8aÞ

Genomic Heritability: What Is It?
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If the xij are standardized to have unit variance,

s2
u ¼ ps2

b ð8bÞ

In the literature, expressions (8a) and (8b) are usually referred to as the “genomic variance” (e.g.,
VanRaden 2008). However, for the reasons discussed above, the link between expression (8a)
and the population parameter s2

g defined in (6) is not straightforward. First, as stated, from a

quantitative genetics perspective, marker effects are fixed population parameters and not random
variables. Secondly, expression (8a) suggests that the genomic variance can be decomposed into
locus-specific components. However as noted earlier, under general conditions this is not possi-
ble, because LD affects both the additive and the genomic variances, precluding a decomposition
such as that implied by the right hand side of expressions (8a) and (8b).

To illustrate, consider a simplified setting with one QTL and two markers, and assume that

genotypes are standardized to unit variance and that α = 1, Sx ¼ 1 :5

:5 1

" #
, and Szx = [.5 .5].

Using expression (5) in this setting produces marker effects that are both equal to 1/3. If we ig-
nore the LD between markers, the individual contribution to genomic variance of each marker
locus is (1/3)2, leading to a total genomic variance equal to 2/9. However, using (6) we obtain

that the genomic variance is considerably larger :5 :5½ � 1 :5

:5 1

" #�1
:5

:5

" #
¼ 1

3
. In order to ex-

press the genomic variance in a form that is similar to the genomic variance parameter of the in-
strumental model (8a), it is necessary to assume the stylized model that leads to expression (7).

This shows the rather tenuous relationship between the population parameter s2
g and the

parameter of the statistical model s2
u.

Above we demonstrated the consequences of ignoring LD in the determination of the ge-
nomic variance. If markers are in complete mutual linkage equilibrium expression (6) re-

duces to s2
g ¼ b

0
Sxb ¼ P

j2pj 1� pj

� �
b2

j ; this is equivalent to the statistical parameter

s2
u ¼ s2

b

P
j2pj 1� pj

� �
only if all effects have equal size, that is β1 = β2 = . . . = β0, with

b2

0 ¼ s2
b. If effects have unequal size and there is no association between effect size and al-

lele frequency, then one may regard s2
b

P
j2pj 1� pj

� �
as a reasonable approximation to s2

g by

interpreting s2
b as the ‘average squared-effect’. However, this still requires that the markers

are in complete LE and this is a seemingly unrealistic assumption for WGR based on hun-
dreds of thousands or millions of markers.

Statistical properties of likelihood-based estimates

In the previous section we argued that the statistical parameter s2
u agrees with the population pa-

rameter s2
g only under highly simplified scenarios. Another important question is that of wheth-

er estimators derived from potentially misspecified likelihoods (either in likelihood-based or
Bayesian estimates) can estimate parameters consistently, meaning that that the estimator con-
verges to the true value of the parameter asymptotically. This will happen, for instance, if the
bias and variance of the estimator go to zero as sample size goes to infinity, e.g., [24]).

We focus our study on the G-BLUP procedure due to its widespread use and relative sim-
plicity. In this method, phenotypes are regressed on markers using a linear model of the form

yi ¼ P
jxijbj þ "i where bjeiidN 0; s2

b

� �
and "jeiidN 0; s2

"

� �
; with marker effects and residuals
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mutually independent. The model implies the following marginal distribution of phenotypes

yeN 0;Gs2
u þ Is2

"

� �
where N(.,.) stands for a multivariate normal distribution, G is a genomic-relationship matrix
and s2

u is a variance parameter. Maximizing the likelihood (s2
u and s

2
" are the unknown param-

eters) function associated with above-expression yields maximum likelihood estimates of vari-

ance components and of the proportion of variance explained by the model: h2
u ¼ s2u

s2uþs2"
.

Maximization of the likelihood function is facilitated using the eigenvalue decomposition of
the Gmatrix; further details about this are given in S3 Text.

Since G is computed using markers that are not necessarily QTL or that are in imperfect LD
with QTL, the (co)variance patterns of additive effects and, consequently, the likelihood func-
tion, can be misspecified [6]. This potentially leads to large finite-sample bias and to inconsis-
tency of estimates, meaning that the genetic parameters may not be well estimated even in
large samples. To assess some statistical properties of maximum likelihood estimators (MLE)
we conducted two simulations. In both, phenotypes were generated according to the additive
QTL model of (Eq 1), yi = α0zi + δi, with QTL effects sampled from a zero-mean normal distri-
bution and from an independent normal distribution with IID residuals, that is dieNð0; s2

d Þ.
Variance parameters were chosen to generate a trait heritability of 0.5. In our first simulation
markers and QTL were generated according to a stylized LD pattern. Our second simulation
uses real human genotypes.

Simulation 1 (simplified LD patterns). Here, the genome consisted of independent LD
blocks. This assumption is not necessarily realistic; however, this setting allows us to determine
the value of the genomic heritability parameter and facilitated exploring the effect of the extent
of LD (by changing the length of the LD block) on statistical properties of the likelihood-based
estimates. To simulate genotypes we: (a) generated haplotypes according to a Markov process,
(b) randomly mated haplotypes to generate diploid genotype blocks, and (c) randomly merged
genotype blocks to create a genome. Genomes included 50,000 loci; in one set of the simulation
scenarios (SB = short blocks) each LD block contained 5 loci and there were 10,000 blocks in
mutual LE; in another set of simulation scenarios (LB = long blocks) each block contained 50
loci and there were 1,000 blocks in mutual LE. The LD patterns within blocks were controlled
by the parameters of the Markov process used to generate haplotypes. Specifically, in one set of
the simulation scenarios (FTP = fixed transition probabilities) the transition probability of the
Markov process was the same for all LD blocks; this approach produced blocks with very simi-
lar LD patterns. In a second set of simulation scenarios (RTP = random transition probability)
the transition probability of each LD block was sampled form a beta distribution. Hence, the
LD patterns changed from block to block here. S1 Fig displays the realized LD patterns for each
of the simulation scenarios. Full details of the algorithm used to generate genomes are given in
the Supplementary Methods section S4 Text.

Once genomes were simulated genetic values were generated according to an additive
model. There were 200 QTL with positions chosen at random and with effects sampled from
IID normal distributions. In the SB scenarios, 200 blocks were randomly selected out of the
10,000, and a QTL was assigned to a randomly chosen locus within the LD block. In LB scenar-
ios the 200 QTL positions were assigned completely at random within the 50K-loci genome.
Full details about the simulation procedure are provided in the Supplementary Methods file
S4 Text.

We run a total of 3,000 Monte Carlo (MC) replicates. For each MC replicate, we produced a
population of size of 10,000 individuals. The genomes from the entire population were used to
calculate population parameters such as genetic, phenotypic and genomic variances using
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formulae presented previously. From the 10,000 individuals, 1,000 were chosen at random, and
data from these were used to estimate trait heritability and genomic heritability by maximum
likelihood using a G-BLUP model. The G-BLUPmodel was fitted using G-matrices computed
using: only QTL, QTL and markers in LD with QTL (QTL+MRK.LD), ALL loci, only markers
in LD with QTL (MRK.LD), only markers in linkage equilibrium with QTL (MRK.LE) and all
markers (MRK.LD+MRK.LE). This resulted in 6 distinct genomic relationship matrices and
each yielded an estimate of genomic heritability per MC replicate. According to the theory de-
scribed in the first section of this article, in the analyses of settings where QTL are in the panel
(QTL, QTL+MRK.LD, ALL loci), the genomic and trait heritability parameters coincide. In sce-
narios without QTL in the panel and including markers in LD with the QTL (MRK.LD, MRK.
LD+MRK.LE) the proportion of variance explained is h2

g . Finally in the scenario including only

MRK.LE, the marker panel is not expected to explain any fraction of the phenotypic variance.
Simulation 2 (real human genotypes). For this simulation we used real human genotypes;

these reflect LD patterns that are more realistic than those considered in the previous section,
at least in humans.

The genotypes used in the simulation were obtained from the type-2 diabetes case-control
data set from the Nurses’Health Study and the Health Professionals Follow-up; both are part
of the Gene-Environment Association Studies consortia (GENEVA[25], https://www.
genevastudy.org/). This data set was obtained under dbGaP research project #5058 (dbGaP
study accession: phs000091.v2.p1); the data set has been designated as “non-human subjects”
and approved for general research use by the IRB unit of the University of Alabama at Birming-
ham (UAB). We used only genotypes of nominally unrelated individuals of Caucasian origin
and with less than 5% of missing genotypes. This left 5,000 individuals for the analysis.

The simulation setting was similar to that described in de los Campos et al. [6]: from a set of
400K (K = 1,000), 300K SNP were randomly chosen and designated as markers. From the re-
maining 100K SNP, 5,000 were chosen and designated as QTL using a sampling method that
over-sampled markers with low minor-allele frequency (see Low-MAF scenario in [6] for fur-
ther details). We run 1,000 MC replicates and, in each MC replicate, 2,500 individuals were
randomly sampled from the 5,000 available. QTL effects and model residuals were sampled
from IID normal distributions with variance parameters chosen to produce a trait heritability
of 0.5, and genetic values and phenotypes were generated according to an additive model as in
(Eq 1).

Variance parameters were estimated using G matrices computed with: only QTL loci, only
markers (MRK), and by combining markers and QTL (MRK+QTL). According to theory, in
the analyses of scenarios QTL and MRK+QTL there is no missing heritability (i.e., the trait and
genomic heritability parameters coincide). When only MRK information is used there may be
missing heritability but the actual extent is unknown because the population parameters Sz,
Szx and Sz cannot be reliably estimated from a sample of 5,000 individuals.

Results and Discussion
We begin this section by presenting results from the two simulation studies discussed above.
This is followed by a discussion of the conceptual and empirical results presented in
this article.

Results from simulation studies
Simulation 1 (simplified LD patterns). S1 Fig shows the squared correlations between

the locus at the center of the block (position 3/25 in SB/LB scenarios) and each of the loci in
the same block, by position. The average LD patterns are the same across scenarios; however,
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there is random variation across curves (LD blocks). As desired, the extent of variability in LD
patterns is largest in the RTP (random transition probability) scenarios and minimum in the
FTP (fixed transition probability) scenarios.

Table 1 shows the average (over the 3,000 MC replicates) estimates of genomic heritability,
and Fig 1 displays box plots of estimates by scenario and method. Columns 3–4 of Table 1 pro-
vide the true value of the population parameters and columns 5–10 provide the average MC es-
timates and the corresponding SEs, by scenario and model. Trait heritability was 0.5, and
genomic heritability ranged from values close to 0.30 in SB scenarios and slightly higher .325-
.328 in LB scenarios. Columns 5–7 give results of analyses from scenarios where QTL were in-
cluded in the marker panel; hence, without missing heritability. When only QTL genotypes
were used to compute the G-matrix, the average estimated genomic heritability was 0.5 and the
estimates were rather precise (SE 0.024). This suggests that ML estimation with this sample
size yielded estimates with no detectable bias, that is, when the model holds. When QTL and
MRK in LD with QTL were used to compute G, the ML estimate of genomic heritability was
seemingly unbiased in the SB scenario, and had a very small upward bias in the LB scenarios.
Columns 8–9 of Table 1 show results obtained when G was computed using MRK.LD and
without using QTL. In this scenario there is missing heritability: the genomic heritability is
smaller than the trait heritability. In the SB-FTP scenario using MRK.LD genotypes only, the
genomic heritability was estimated almost without bias. However, in all other simulation sce-
narios (SB-RTP, LB-FTP and LB-RTP) there was a sizable upward bias in estimates of genomic
heritability. The bias was accentuated when MRK.LE were added to MRK.LD when computing
G. These results are in line with what we observed in the analysis with ALL loci, and suggest
that adding a large number of markers in LE with QTL in the analysis induces bias and in-
creases the sampling variance of estimates.

Simulation 2 (real human genotypes). For each MC replicate a G-BLUP model was fitted
to the 2,500 records, using a G matrix computed from: QTL genotypes, MRK, and QTL+MRK.
Fig 2 displays the estimated density plots for each case. In the analysis using only QTL informa-
tion the average estimated genomic heritability (.498) was very close to the trait heritability
(.5); the estimated 90% confidence interval ranged from .438 to .558. The analysis with markers
only showed an average estimated genomic heritability of .328, that is an estimated extent of
missing heritability of 34%, similar to that reported by de los Campos et al. (2013) [6] who ana-
lyzed data simulated with a similar but not identical scheme. The sampling variance of the esti-
mator was very large, with a 90% CI for the estimated genomic heritability with MRK ranging

Table 1. Mean (SD) of estimates of genomic heritability by simulation scenario (rows) and information used for analysis.

LD Block Trans. Prob. Parameter
Values

Average (SE) Maximum Likelihood Estimate

h2
h2G QTL QTL+ MRK.LD ALL MRK.LD MRK.LE+MR.LD MRK.LE

Short Fixed .500 .295 .498 (.024) .499 (.035) .536 (.225) .305 (.036) .289 (.191) .078 (.113)

Rand. .500 .303 .500 (.024) .499 (.033) .535 (.214) .312 (.034) .324 (.187) .075 (.105)

Long Fixed .500 .328 .500 (.024) .505 (.085) .543 (.210) .337 (.087) .353 (.189) .071 (.100)

Rand. .500 .325 .500 (.024) .502 (.074) .518 (.152) .381 (.071) .415 (.144) .051 (.071)

h2: trait heritability; h2
G: genomic heritability; Short/Long refer to the length of the LD blocks. Fixed/Rand define whether the LD patterns were the same

(Fixed) or varied (Rand.) between blocks (Rand). QTL (only QTL), QTL+MRK.LD (QTL and markers in LD with QTL), ALL (all loci), MRK.LD (only markers

in LD with QTL), MRK.LD+MRK.LE (only markers, no QTL) and MRK.LE (only markers in LE with QTL) were used to compute the genomic

relationship matrix.

doi:10.1371/journal.pgen.1005048.t001
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from .136 to .517. This indicates that, when constructing G, adding markers that are in imper-
fect LD with QTL adds considerable uncertainty to estimates of variance components. Finally,
the distribution of the estimates of genomic heritability obtained with markers and QTL was
similar to that obtained with markers only, but shifted to the right, with a mean equal to .411.
In this scenario, as stated, the trait and genomic heritability parameter coincide (i.e., there is no
missing heritability); therefore, the result indicates that G-BLUP leads to a downward-biased
estimate of the genomic heritability and incorrectly suggests the existence of missing heritabili-
ty when there is not.

Fig 1. Boxplot of estimated genomic heritability (3,000 MC replicates) by simulation and analysis scenario. Each plot presents results for one
simulation scenario (5/10K 10 thousand LD blocks with 5 loci each; 50/1K one thousand LD blocks, each with 50 loci; FTP, ‘fixed transition probability,
indicates that the LD patterns were the same across LD blocks, RTP, random transition probability, is a scenario where LD patterns changed between
blocks). The labels in the horizontal axis indicate what information was used to compute the G-matrix (QTL = genotypes at causal loci, MRK.LD = markers in
LD with QTL, MRK.LE = markers in LE with QTL, ALL = all loci).

doi:10.1371/journal.pgen.1005048.g001
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Discussion
The first attempts at using molecular markers for assessment of kinship and for estimation of
trait heritability originate in the analysis of natural populations more than half a century ago
[9–12,26–28]. Several of these studies indicated that, for distant relatives, the proportion of al-
lele sharing varies substantially among chromosome segments and, consequently, the accuracy
of estimators of relatedness using markers is low unless the number of markers is very large.
The advent of dense genome-wide SNP data brought a revival of the topic and made it possible
to obtain inferences of genetic parameters using nominally unrelated individuals [4].

In the literature on genomic analysis of complex traits, parameters such as the genomic heri-
tability have been defined based on the model used for data analysis [4–6,29]. This approach
has two potential pitfalls. Firstly, there is a key difference between the way genotypes and their
effects are dealt with and interpreted in quantitative genetics and in the random regression
models used for data analysis. In quantitative genetics genetic variance stems from variation of
allele content at QTL loci, and QTL effects are fixed quantities at a given time in a population
[15–17]. This is in contrast with the statistical models used for data analysis, where marker ge-
notypes are treated as fixed and effects are regarded as random. In the latter models variance
stems from uncertainty about the unknown effects and this bears no immediate connection
with the concept of genetic variance. This results in a tenuous link between these parameters
and those from quantitative genetics theory. Secondly, because patterns of allele sharing vary
across the genome and because markers are typically in imperfect LD with QTL, the patterns

Fig 2. Density plot of estimated genomic heritability (1,000 MC replicates) by analysis scenario
(Simulation 2). The vertical dashed line gives the simulated heritability (QTL, MRK, MRK+QTL indicate
whether QTL genotypes, or marker genotypes, MRK, or both, MRK+QTL, were used to compute genomic
relationships).

doi:10.1371/journal.pgen.1005048.g002
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of variance and covariance at QTL and at markers can be very different. This is especially im-
portant for distantly related individuals [6]. Under these circumstances the likelihood function
of marker-based models may largely misrepresent the underlying data generating process, lead-
ing to potential inferential problems (e.g., inconsistency as well as finite sample bias and very
low precision of estimates).

A first contribution of this article is to provide theory, framed within the principles of
quantitative genetics, proposing precise definitions of parameters of the instrumental model
(marker effects, genomic variance) at the population level. A few important results emerge
from the definitions and derivations presented in this article.

1. From a quantitative genetics perspectiveQTL marker and effects (see expressions (2) and
(5), respectively) are fixed population quantities and not random variables. Although muta-
tion, the process that gives rise to new variants and their effects, can be viewed as random, at
any given time in a population, the regressions of genetic values on allele content at QTL (α)
take on a given set of values. What makes individuals genetically different is the fact that they
carry different alleles at QTL loci. Therefore, genetic and genomic variance stems from varia-
tion of allele content at QTL and at markers, respectively, (see expression (3) and (6)) and
not from uncertainty or randomness about QTL or marker effects. This seems at odds with
definitions of genomic variance based on random effects or with Bayesian models where
marker genotypes are treated as “fixed” and marker effects as random variables. From a
Bayesian perspective it makes perfect sense to implement regressions conditioning on mark-
ers and with marker effects treated as random variables because marker genotypes are observ-
able and marker effects are unknown, i.e., a posterior distribution is conditional on all
pertinent observables. However, we question the use of these Bayesian models for definition
of genetic parameters. The variance parameters of a Bayesian model, aimed to reflect uncer-
tainty about marker effects, bear little conceptual connection with the concept of genetic vari-
ance [23].

2. Marker effects are linear combination of QTL effects (see expression (5)). With high marker
density multiple markers are likely to track variance from the same QTL. This questions the
treatment of marker effects as independent random variables. For example, if, from a Bayes-
ian perspective, QTL effects were viewed as IID draws from a normal distribution, then it fol-
lows from expression (5) that marker effects are MVN distributed with null mean and

covariance matrix Cov bð Þ / S�1
x SxzSzxS�1

x . Some of the off-diagonals of S�1
x SxzSzxS�1

x

may be null; however, assuming a priori that all the covariances are null and that all the diag-
onal entries are the same ignores the fact that multiple markers can track variance from the
same QTL. Determining the correct covariance function is not possible because in almost all
cases the positions of QTL are unknown and the coding of markers is arbitrary, thus preclud-
ing determination of Σxz. However attempts can be made at incorporating LD information in
the prior distribution in some sensible manner. For instance, [30] proposed incorporating LD
information in the prior density assigned to marker effects using parametric covariance func-
tions (e.g., auto-regressive). A limitation of this approach is that the sign of the marker effect
can be arbitrarily changed by recoding the marker. A solution to this problem is to incorpo-
rate LD information at the level of the variances of the maker effects, as proposed by Yang
and Tempelman [31]; this induces smoothness on the size of the effects without imposing re-
strictions on the sign.

3. The recognition that marker effects are linear combinations of QTL effects has a second im-
portant consequence: LD between markers plays a central role in the determination of ge-
nomic variances (see expression (6)). It is only under very idealized (and seemingly
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unrealistic) conditions that one can decompose the total genetic and genomic variance into
marker-specific components. On the other hand, in the linear regression models commonly
used for data analysis marker effects are treated as IID random variables and genotypes as
fixed quantities, leading to a decomposition of the genomic variance that does not involve
LD. Depending on the patterns of LD between markers, ignoring LD may lead to under or
over estimation of the genomic variance. This illustrates again the weak connection existing
between the genomic variance as a population parameter and the parameters that are usual-
ly defined based on statistical assumptions that are adopted for computational or other rea-
sons, but without reference to an underlying QTL model.

4. Intuitively, it should clear that if causal variants are in the marker panel, there should be
no missing heritability. Here, we presented a formal proof of this intuitive expectation: we
showed that when causal variants are included in the marker panel the trait and genomic
heritability parameters coincide. The implication is that with sequence data there should be
no missing heritability at the population level. Empirically, however, estimates may suggest
missing heritability; if this happens, this would be reflective of shortcomings of the
estimator chosen.

Estimation of genomic variance using G-BLUP and maximum likelihood
Above, we discussed conceptual problems emerging when genetic parameters are defined
based on assumptions of statistical models that are not in line with fundamental quantitative
genetic concepts. A second problem arises when estimation of these parameters is based on
markers and not on QTL-genotypes. Under regularity conditions, maximum likelihood esti-
mates are asymptotically unbiased ([24]). However, consistency cannot be guaranteed unless
the likelihood is correctly specified and, even if the estimator happens to be consistent, misspe-
cified likelihoods can induce sizable finite-sample bias. The proportion of allele sharing at any
given set of loci can be viewed as a random variable with expected value given by twice the kin-
ship coefficient between the individuals (derived from the full pedigree and with additional as-
sumptions such as absence of mutation and no selection) and random variation given by the
effects of Mendelian sampling [32]. If a large number of markers segregate independently
from the QTL the proportion of allele sharing at markers and at QTL can be very different
(e.g., [6]). This is particularly important for pairs of individuals sharing short chromosome
segments (e.g., distantly related individuals from populations with large effective population
size). Under these conditions a likelihood, constructed based on proportions of allele sharing
at markers, can be largely misspecified and consistency may not hold. Of course, this does not
necessarily imply that estimates would be inconsistent or have noticeable finite-sample biases;
it just poses a caveat: one needs to be careful with use of estimates derived from models based
on misspecified likelihoods, as it is most probably the case for marker-based model for whole-
genome inference.

There are at least two cases where a likelihood function based on markers will not be largely
misspecified. The first one is when patterns of allele sharing at markers and at QTL are very
similar; this can occur if markers are in tight LD with QTL, and also with data from close rela-
tives. A second case is when the components of genetic values that cannot be explained by
markers (ξi in expression (4)) are IID, in which case the likelihood will correctly represent the
(co)variance structure of the data. In these two cases the parameters of the instrumental model
(e.g., h2

u) could be inferred consistently. Unfortunately, in general there is no good reason to be-
lieve that the ξi0s are IID and therefore the likelihood function will typically be misspecified.
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Goddard et al. [33] suggested a way of computing the marker-based genomic relationship
matrix which, the authors argue, would have the property that the expected value of the pro-
portion of allele sharing at QTL (GQTL) given the realized proportions of allele sharing at mark-
ers (GMRK) is GMRK, that is E[GQTL|GMRK] = GMRK. However, even if this property were to
hold, this does not imply that estimates of variance components derived using GMRK would be
unbiased. Indeed, in each sample GQTL can differ from GMRK; if the differences in the propor-
tion of allele sharing at markers and at QTL are large enough, misspecification of the likelihood
function due to the fact that we use GMRK instead of GQTL, can induce a systematic bias.

Recently Jiang et al. [34] examined large sample properties of REML estimators of variance
parameters of a marker-based regression (s2

"; s2
u) and concluded that, under certain condi-

tions, the REML estimators can converge in probability to the true value of the statistical pa-
rameters, this being the case even if the likelihood is misspecified. The proof of this result is
based on three key assumptions: (a) the model used to estimate parameters, what we here call
the instrumental model, includes all QTL genotypes plus a number of markers with no effect,
(b) all the covariates used in the model (i.e., both QTLs and markers) are mutually indepen-
dent, and (c) the number of QLT is not too small relative to the number of markers. In this spe-
cific setting the authors prove consistency of the REML estimator of the error variance and the
convergence in probability of the REML estimator of the statistical parameter s2

u. This result,
which the authors verified in simulations, indicates some robustness of the REML estimator.
On the other hand, in our study we detected several cases where misspecified likelihoods pro-
duced sizable finite-sample bias, this occurring in settings where ML estimates derived from
correctly specified likelihoods were seemingly unbiased. However, there are important differ-
ences between the study of Jiang et al. [34] and ours. Firstly, Jiang et al. [34] focused on estima-
tion of the statistical parameters of the instrumental model (s2

"; s2
u) while here we addressed

estimation of parameters defined from a quantitative genetics perspective (s2
"; s2

g) and, as we

discussed here, s2
u and s

2
g coincide only under very stylized conditions (e.g., complete LE be-

tween loci, a condition assumed by Jiang et al. [34] which we did not adopt here). Secondly, in
an attempt to resemble what one encounters with modern genomic data, our simulations used
a ratio between the number of QTL relative to the total number of loci that is relatively small
(200/50K in simulation 1, and 5/305 in simulation 2). Importantly, Jiang et al. [34] indicate
that the asymptotic results presented in their study involve approximations that may not hold
when the ratio of number of QTL relative to the total number of loci is close to zero. Thirdly,
our simulations incorporated LD (either LD blocks in simulation 1 or LD patterns realized in
real human genotypes in simulation 2); therefore, in our case loci were not in mutual LE as as-
sumed in Jiang et al. [34]. Fourthly, in the simulation used in [34] the ratio between the total
number of loci (both marker and QTL) and sample size was 10; in our simulations this ratio
was 50 in simulation 1 and approximately 60 in simulation 2. We adopted these settings be-
cause with modern genomic data the ratio between the number of markers and sample size is
expected to be large. In the light of the evidence presented here it seems clear that further stud-
ies are needed to characterize the finite sample properties of REML estimators derived using
misspecified likelihoods in settings that resemble the conditions encountered in the analysis of
real genomes.

Simulation studies using real human genotypes, including the one presented here, indicate
that estimates of h2

u based on the G-BLUP model incorporating both markers and all QTL ge-
notypes are lower than the trait heritability of the trait ðh2Þ. This reinforces the idea that
GBLUP may not lead to unbiased estimates of the genomic heritability (h2

g) because when all

QTL are included in the marker panel h2
g ¼ h2. Speed et al. [5] argued that a main reason for

incorrect estimation is that LD is ignored in the computation of the G matrix. These authors
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suggested an alternative method for computing G that resulted in estimates of genomic herita-
bility closer to the simulated trait heritability. However, in a follow up discussion [35,36] pre-
sented alternative simulations scenarios where the method of Speed et al. [5] yielded biased
estimates. All in all, this suggests that the appropriate choice of method used for computing G
may depend on the genetic architecture of the trait, a feature that is typically unknown, even if
attention is restricted to additive gene action only. From our perspective, the main problem
does not reside in the manner the G matrix is computed but, rather, in the use of massive num-
bers of markers that are in LE with QTL. The use of such data increases the sampling variance
of estimates and may cause large finite-sample bias and lack of consistency.

Estimation of genomic heritability using WGRmodels
We have argued that the instrumental parameter h2

u may not provide a good representation
of the genomic heritability (h2

gÞ; an important reason for the difference between these two pa-

rameters is that while LD plays a role in the determination of s2
g associations among marker

genotypes are ignored in the definition of s2
u. An alternative approach that accounts for

multi-locus LD, could be based on the sample-variance of the true genomic values [37] that is

~s2
g ¼ n�1

Pn
i ¼ 1 xi

0b� �xi
0b

� �2
where �xi represents the average genotype. Of course,

marker effects are unknown; however as suggested by Sorensen et al. [37] one could infer ~s2
g

in a Bayesian setting by evaluating ~s2
g using samples from the posterior distribution of marker

effects. The parameter ~s2
g accounts for LD between markers in a very specific manner: ~s2

g be-

comes equal to the genomic variance parameter, s2
g ¼ b

0
Sxb (see expression 7), with Sx re-

placed by its method-of-moments estimator X0 Xn-1. Indeed, when genotypes are centered,

~s2
g ¼ n�1

Xn

i ¼ 1
xi

0bð Þ2 ¼ n�1
Xn

i ¼ 1
bxi xi

0b ¼ n�1b
0 Xn

i ¼ 1
xi xi

0
h i

b

¼ b
0
n�1X 0X½ �b:

Analysis and prediction of complex traits using Whole-Genome
Regressions
Complex traits are possibly affected by large numbers of small-effect QTL and the analysis of
such traits requires fitting a large number of variants concurrently using a WGR approach
such as the one proposed by [1]. Close relatives share long chromosome segments and, under
these circumstances, the patterns of allele sharing at markers and at QTL are very similar. This
leads to high prediction accuracy and very small bias in genomic heritability estimates. When
markers and QTL co-segregate, variable selection does not seem to be needed [6]. On the other
hand with distantly related individuals, the addition of large numbers of markers that are in LE
with QTL can lead to incorrect specification of genomic relationships and this can result in po-
tential inconsistencies of estimates of genomic heritability. We do not question the use of
WGR for analysis of complex traits and as a prediction machine. Rather, we warn about prob-
lems arising when these methods are used for inferences. In our opinion this problem has been
overlooked and oversimplified, and further research is needed to understand if and under what
circumstances WGRs such as the G-BLUP can be used to correctly assess the true proportion
of variance that can be explained by a regression on markers in the population.
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