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Abstract
Recent studies have demonstrated that the DNAmethylome changes with age. This epige-

netic drift may have deep implications for cellular differentiation and disease development.

However, it remains unclear how much of this drift is functional or caused by underlying

changes in cell subtype composition. Moreover, no study has yet comprehensively explored

epigenetic drift at different genomic length scales and in relation to regulatory elements.

Here we conduct an in-depth analysis of epigenetic drift in blood tissue. We demonstrate

that most of the age-associated drift is independent of the increase in the granulocyte to

lymphocyte ratio that accompanies aging and that enrichment of age-hypermethylated CpG

islands increases upon adjustment for cellular composition. We further find that drift has

only a minimal impact on in-cis gene expression, acting primarily to stabilize pre-existing

baseline expression levels. By studying epigenetic drift at different genomic length scales,

we demonstrate the existence of mega-base scale age-associated hypomethylated blocks,

covering approximately 14% of the human genome, and which exhibit preferential hypo-

methylation in age-matched cancer tissue. Importantly, we demonstrate the feasibility of in-

tegrating Illumina 450k DNA methylation with ENCODE data to identify transcription factors

with key roles in cellular development and aging. Specifically, we identify REST and regula-

tory factors of the histone methyltransferase MLL complex, whose function may be dis-

rupted in aging.

In summary, most of the epigenetic drift seen in blood is independent of changes in

blood cell type composition, and exhibits patterns at different genomic length scales remi-

niscent of those seen in cancer. Integration of Illumina 450k with appropriate ENCODE data

may represent a fruitful approach to identify transcription factors with key roles in aging

and disease.
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Author Summary

Two well-known features of aging are the gradual decline of the body’s ability to regenerate
tissues, as well as an increased incidence of diseases like cancer and Alzheimers. One of the
most recent exciting findings which may underlie the aging process is a gradual modifica-
tion of DNA, called epigenetic drift, which is effected by the covalent addition and removal
of methyl groups, which in turn can deregulate the activity of nearby genes. However, this
study presents the most convincing evidence to date that epigenetic drift acts to stabilize
the activity levels of nearby genes. This study shows that instead, epigenetic drift may act
primarly to disrupt DNA binding patterns of proteins which regulate the activity of many
genes, and moreover identifies specific regulatory proteins with key roles in cancer and Alz-
heimers. The study also performs the most comprehensive analysis of epigenetic drift at dif-
ferent spatial scales, demonstrating that epigenetic drift on the largest length scales is highly
reminiscent of those seen in cancer. In summary, this work substantially supports the view
that epigenetic drift may contribute to the age-associated increased risk of diseases like can-
cer and Alzheimers, by disrupting master regulators of genomewide gene activity.

Introduction
Recent studies, using Illumina Infinium beadarrays, have demonstrated that genome-wide
DNAmethylation patterns change with age [1–6]. Further studies have indicated that this age-
associated epigenetic drift may have deep implications for stem-cell biology [7], disease devel-
opment [8] and possibly also human evolution [9, 10]. Thus, it has become of great interest
and importance to study the detailed dynamics of the DNA methylation landscape in response
to aging.

In this regard however there are many pressing unanswered questions. First is the issue of
cellular heterogeneity. Although a number of studies have already indicated that a significant
component of the epigenetic drift is tissue-independent, and therefore unlikely to be caused by
underlying changes in cell subtype composition [2, 3, 6], this result remains unproven and con-
trasts with a number of Epigenome-Wide Association Studies (EWAS) for specific diseases, no-
tably Rheumatoid Arthritis [11] and cancer [12, 13], which have shown that in the disease
context, correction of intra-sample cellular heterogeneity can be critical [11, 14]. Indeed, a
number of statistical methods have emerged allowing correction for cell subtype compositional
changes [15, 16]. However, to date no study has applied these algorithms in the context of age-
ing to assess how much of the epigenetic drift is due to underlying changes in cell-type compo-
sition. This is particularly pertinent in the context of blood tissue, since in this tissue it is
known that there is an age-associated increase in the granulocyte to lymphocyte ratio [12, 15].

Another outstanding issue concerns the characteristic genomic length-scales of epigenetic
drift. Cancer epigenome studies have demonstrated that cancer-associated DNA methylation
changes exhibit differential patterns at different length scales, with local hypermethylation at
CpG islands (CGIs) often immersed within large-megabase scale blocks of widespread hypo-
methylation [17, 18]. However, so far no study has comprehensively explored whether hypo-
methylated blocks emerge in normal tissue as a function of age, and whether these bear any
resemblance to those seen in cancer or early neoplastic lesions. Given that age is a major risk
factor for many diseases, specially cancer, the existence of such blocks could provide an impor-
tant indicator of future disease development.

Finally, epigenetic drift is thought to be one mechanism underlying the decline of stem-cell
function with age, thus compromising normal homeostasis [7, 9]. That this might be the case is
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further supported by a recent study of dynamic DNA methylation changes during cellular de-
velopment [19], which showed that differentially methylated regions (DMRs) in development
are strongly enriched for regulatory elements. Indeed, differential binding of transcription fac-
tors as a result of differential DNA methylation at transcription factor binding sites (TFBSs)
may be an important mechanism of cellular development and lineage specification. It follows
that age-associated epigenetic drift may compromise binding of key lineage-specifying tran-
scription factors. Although there is already considerable evidence that developmental tran-
scription factors represent targets of epigenetic drift [2, 3], no study has yet explored in detail
which transcription factor binding profiles may be disrupted in aging as a result of drift.

More generally, the ability to detect putative differential binding of transcription factors by
studying DNAmethylation patterns around their TFBSs is specially important because, unlike
ChIP-Seq, DNAmethylation can be reliably measured genome-wide from limited amounts of
DNA [20]. Thus, DNA methylation can be measured in large numbers of clinical or non-
clinical specimens, allowing in principle transcription factors disrupted in disease and ageing
to be identified [21]. Moreover, differential binding caused by differential DNAmethylation
may represent a more accurate way of assessing differential activity of transcription factors. For
instance, assessing transcription factor activity from its mRNA or protein expression level is
problematic due to postranslational modifications [22]. Thus, DNA methylation may provide
improved or complementary information about transcription factor activity.

In this work we perform a comprehensive study of DNAmethylation drift addressing the
core issues mentioned above. We focus on blood because of its availability and the fact that the
largest studies to date have been performed in this tissue [4, 5]. By using a powerful algorithm to
correct for cellular heterogeneity [15], we demonstrate that most of the epigenetic drift, specially
the age-hypermethylated component of it, is not caused by changes in blood cell subtype com-
position. We further demonstrate that age-associated DNAmethylation patterns exhibit spatial
patterns at different genomic length scales which are reminiscent of those seen in cancer. More-
over, by integrating large-scale 450k DNAmethylation data with extensive TFBS information
from the ENCODE project [23–25], we demonstrate the feasibility of the Illumina 450k technol-
ogy to identify important lineage-specific transcription factors. Having demonstrated the feasi-
bility of this approach in the context of cellular development, we next apply the same method to
aging, identifying novel transcription factors which may be implicated in the aging process.

Results

Overall patterns of age-associated DNAmethylation are independent of
changes in blood cell subtype composition
Age-associated DNAmethylation changes have so far only been studied comprehensively at
the level of individual CpGs [1–6], and in whole blood tissue, a tissue for which the largest sam-
ple collections are available [4, 5]. However, the interpretation of age-associated changes in
whole blood is problematic due to underlying age-associated changes in blood cell subtype pro-
portions [12, 15]. To address these challenges, recent studies have developed methods that
allow more robust inference of differential DNA methylation at the level of genomic regions
[26, 27] and which is independent of underlying changes in cell subtype composition [15, 16].

Here we decided to use one of these recent methods [15], to re-analyze one of the largest
Illumina 450k DNA methylation data sets available, encompassing whole blood samples from
656 individuals spanning a wide age range (19 to 101 year olds) [5]. In order to call differential
methylation more robustly and to avoid any statistical biases caused by neighboring probes on
the beadarray, we decided to collapse neighboring probes in the genome into specific clusters
[26], dividing all probes up into 3 different regional classes: CpG islands, shelves & shores and

Integrative Multi-scale Analysis of Epigenetic Drift

PLOS Genetics | DOI:10.1371/journal.pgen.1004996 February 18, 2015 3 / 21



open sea. Specifically, probes within a class and which were spatially close were grouped into
regions with an upper bound of 1.5Kb set on the size of these regions (Methods). This resulted
in 239650 regional clusters, consisting of 109424 open sea, 90090 shelve/shore, and 40136 CpG
island regions. Probe methylation values within regions were averaged. Supervised linear re-
gression analysis was performed for each of the 239650 regions, adjusting for plate and gender
(plate was fully correlated with ethnicity in such a way that adjusting for plate also adjusts for
ethnicity (Methods)), which identified 124352 age-DMRs at an FDR< 0.05. Focusing on the
top 5% age-DMRs (a total of 11982), the far majority (75%) were hypomethylated with age,
consistent with previous observations [4, 5]. Although the majority of the top 5% DMRs fell
into open sea and shore/shelf regions, CpG-islands were more strongly enriched given their
overall lower numbers in the genome (Fig. 1A). We observed a marked difference between
open sea or shore/shelf regions and CpG islands, with approximately 90% of open sea/shore/
shelf age-DMRs exhibiting hypomethylation, in contrast to age-DMRs mapping to CpG is-
lands, which were overwhelmingly hypermethylated (87%) with age (Fig. 1B). We verified that
all these results remained unchanged had we used a less stringent Bonferroni correction thresh-
old (26019 age-DMRs) (S1_Fig in S1 Text). Age-DMRs mapping to CpG islands predominant-
ly exhibited low levels of DNAmethylation in the youngest individuals of our cohort (age

Fig 1. Age-DMRs are mostly enriched for CGIs and the enrichment of age-hypermethylated CGIs increases after adjustment for changes in blood
cell subtype composition. A) Probabilities that a randomly picked open-sea, shore/shelf and CpG-island region is an age-DMR (defined as the top 5% of
DMRs).B)Relative numbers of age-hypermethylated and age-hypomethylated DMRs within each regional class. C) Focusing on CpG-islands, density plots
of beta DNAm values of 2500 age-DMRs (red) vs. 2500 non-age associated DMRs (green) (P> 0.8). D) As A) but now for age-DMRs derived using the
reference-based method of Houseman et al, which adjusts for putative changes in blood cell subtype proportions. E) As B), but now for the adjusted analysis.
F) Scatterplot of the t-statistics of age-DMRs (defined here as those with FDR< 0.05 in the unadjusted analysis) (x-axis) against their corresponding t-
statistics from the reference-based adjusted analysis (t(RefBased), y-axis). Green dashed lines indicate the lines of significance at FDR< 0.05.

doi:10.1371/journal.pgen.1004996.g001
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range 19–28), whereas CpG-islands whose DNAm did not change with age exhibited both low
as well as high levels of DNAm (Fig. 1C).

In order to assess the impact of changes in blood cell subtype composition, we applied the
reference-based Houseman algorithm [15] to estimate the relative proportions of 6 blood
cell subtypes (CD4+ & CD8+ T-cells, NK-cells, B-cells, monocytes and granulocytes) in the
656 whole blood samples. The algorithm predicted an age-associated decline in the relative
numbers of T and B-cell lymphocytes, whilst the proportion of granulocytes and monocytes in-
creased (S2_Fig in S1 Text), in line with previous observations [7, 12]. By using these sample-
specific cell proportion estimates as covariates in the linear regressions, we rederived an adjust-
ed set of age-DMRs, which resulted in 85299 regions at FDR< 0.05, i.e 69% of the total num-
ber identified without adjustment. Focusing on the top 5% (11982 regions) age-DMRs from
the adjusted analysis, we observed that the enrichment of CpG-islands among the adjusted
age-DMRs was increased relative to the unadjusted analysis and relative to open-sea and
shore/shelf regions (Fig. 1D–E). Among the top 5% age-DMRs from the adjusted analysis, 63%
and 37% were hypo and hypermethylated, respectively, i.e. less hypomethylation was observed
after adjustment for cell-type composition, consistent with previous data [7, 12]. Importantly,
we observed a strong correlation between the unadjusted and adjusted analysis, with approxi-
mately 50% of the unadjusted age-DMRs (FDR< 0.05) retaining significance at the same FDR
level in the adjusted analysis (Fig. 1F). Using a more stringent threshold, i.e declaring only the
top 5% of regions as age-DMRs in the unadjusted analysis, resulted in 83% of these passing an
FDR< 0.05 in the adjusted analysis. Thus, these results indicate that although less hypomethy-
lation is observed after adjustment, that most of the changes, and in particular those involving
hypermethylation, are independent of blood cell subtype, in agreement with previous observa-
tions made with the older Illumina 27k technology [2, 3, 28].

Age-associated hypomethylated blocks exist, but only a subset are
enriched for age-associated CGI hypermethylation
It is of interest to study epigenetic drift on larger genomic length scales, since recent studies
have demonstrated the existence of large mega-base scale blocks of hypomethylation in disease
[17, 18, 26]. We sought to determine if such hypomethylated blocks are also seen in normal tis-
sue as a function of age. To this end, we applied the same block-finding algorithm of Aryee et al
[26]. We identified a total of 351 age-associated blocks (FWER< 0.05), with an overall genome
coverage of 433Mb (i.e. 14% of the human genome) and with a median block size of 1.2Mb
(Table S1 in S1 Text). The overwhelming majority (98%) of these blocks exhibited hypomethy-
lation (Table S1 in S1 Text, Fig. 2A). Next, we asked if age-hyperM DMRs (FDR< 0.001) map-
ping to CGIs were enriched within these blocks. Most blocks (309/351, 88%) were either not
enriched for age-hyperM CGI-DMRs or the numbers of age-hyperM CGIs were too small to re-
liable assess statistical significance (Table S1 in S1 Text). Of the 42 blocks which were enriched
(Binomial P< 0.05), 18 showed strong enrichment encompassing at least 10 age-hyperM
CGI-DMRs (Table 1). We note that because blocks are not directly comparable, adjustment for
multiple testing in this context is prone to substantial error. However, using Benjamini-
Hochberg, 21 of these 42 blocks remained significant at an FDR< 0.05, and all 42 were signifi-
cant at a more relaxed adjusted threshold of FDR< 0.17. Importantly, the bi-modality of en-
richment of age-associated hypomethylated blocks indicates that the mechanisms leading to
DNAmethylation deregulation may be distinct for different genomic blocks.

Many of the hypomethylated blocks contained many well separated CGIs exhibiting
hypermethylation and targeting multiple genes (Fig. 2B). Among these was a block on
chromosome-19 containing multiple genes encoding for zinc-finger proteins, as well as a block
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on chromosome-13 containingMYCBP2 and POU4F1. However, we also observed hypo-
methylated blocks where the enrichment was driven by hypermethylated CGIs which were all
in close proximity to each other, for example this was the case for a block on chromosome-4
with all CGIs in the neighborhood of theHAND2 gene (S3_Fig in S1 Text), a gene which has
already been linked to aging [1] and which has also been causally implicated in endometrial
carcinogenesis [29]. Thus, our analysis suggests that only a relatively small fraction of hypo-
methylated blocks are enriched for age-hypermethylated CGIs, with a few of these blocks rep-
resenting hotspots of CGI hypermethylation.

Age-associated hypomethylated blocks exhibit preferential
hypomethylation in cancer, independently of age and tissue
Next, we asked if age-associated hypomethylated blocks overlap significantly with those seen in
cancer. To investigate this, we mapped the age-associated hypomethylated blocks onto cancer

Fig 2. Age-associated hypomethylated blocks enriched for hypermethylated CGIs. A) Example of a large genomic region on chromosome-19
containing a significant age-associated hypomethylated block (indicated in green). y-axis gives the fit from the Bumphunter algorithm indicating the
methylation change for an increase in 10 age-years, x-axis the genomic position. B) Selected age-hypomethylated blocks enriched for CGIs undergoing
hypermethylation. Each plot shows the fit from the Bumphunter algorithm indicating the methylation change per 10 age-years (y-axis) as a function of
opensea probe position (x-axis). In blue we indicate the positions of CGIs, and in red those that are significantly hypermethylated with age. Some of the
genes associated with the age-hypermethylated CGIs are indicated in red.

doi:10.1371/journal.pgen.1004996.g002
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DNAmethylation data from the TCGA [30], comparing average DNAmethylation levels of
open sea probes within blocks between normal and age-matched cancer tissue. Blocks showed
significantly lower DNAm levels in cancer tissue compared to age-matched normal samples,
independently of tissue type (Fig. 3). Next, we randomly picked open sea blocks which did not
show significant age-associated hypomethylation in blood and recomputed statistics of differ-
ential methylation for these blocks. Comparing the distribution of the statistics of differential
DNAm for the age-associated blocks to these randomly picked blocks, revealed significantly
larger negative statistics (Kolmogorov-Smirnov P< 1e − 10) for the age-associated hypoM
blocks (Fig. 3). Thus, this extends previous observations made at the level of CGIs to the mega-
base scale block level, further supporting the view that much of the cancer-associated deregula-
tion of DNA methylation may already be present in aged normal tissue [31].

Most age-DMRs do not affect expression of target genes
Next, we decided to shed further light on the potential functional effect of epigenetic drift. Al-
though a recent study, which performed matched Illumina 450k and gene expression profiling
for the same blood samples, concluded that most drift does not cause gene expression changes,
this study was significantly underpowered [32]. Thus, given that another unmatched study did
report a weak association between age-DMRs and gene expression [5], the functional signifi-
cance of epigenetic drift remains unclear. To address this question, we analysed one of the larg-
est whole blood gene expression datasets available, encompassing over 200 samples [33]
(Methods). We focused on DNAm levels in CpG island probe clusters with probes mapping to

Table 1. 18 Age-associated hypomethylated open sea blocks enriched for CGIs undergoing age-associated hypermethylation, and containing at
least 10 such CGIs.

Chr Length(Mb) Probes FWER(hypoM) Obs(AgeHyperCGI) Exp(AgeHyperCGI) P(Enr)

16 4.88 204 < 0.002 36 28.20 0.034

19 1.97 181 < 0.002 38 24.42 6e-04

13 4.23 133 < 0.002 10 4.65 0.001

5 2.02 112 < 0.002 13 7.56 0.007

2 1.24 79 < 0.002 16 9.01 0.002

2 2.27 88 < 0.002 12 6.69 0.005

12 2.32 135 0.002 38 14.83 3e-12

13 1.96 63 0.002 11 6.98 0.025

14 1.58 51 0.002 12 5.23 2e-04

4 2.08 27 0.002 11 6.40 0.011

4 0.70 15 0.002 10 5.52 0.008

6 3.18 188 0.004 21 12.79 0.003

2 2.28 94 0.004 20 13.66 0.017

20 1.97 77 0.004 32 22.97 0.011

5 2.58 113 0.006 10 4.07 2e-04

8 1.91 60 0.008 20 7.85 2e-07

7 1.22 50 0.028 25 18.32 0.026

7 0.55 51 0.034 17 9.01 7e-04

Columns label chromosome, length of block (Mb), number of contiguous open sea regions defining hypomethylated block, the family wise error rate

(FWER) for the hypomethylated block, observed number of age-hyperM CGIs within block, expected number of age-hyperM CGIs within block and

Binomial P-value of enrichment of age-hyperM CGIs within block. In bold-face we indicate those significant under adjustment for multiple testing

(Benjamini-Hochberg FDR < 0.05).

doi:10.1371/journal.pgen.1004996.t001
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Fig 3. Age-associated hypomethylated blocks exhibit preferential hypomethylation in cancer. Left boxplots show the average beta methylation levels
over open-sea regions within an age-associated hypomethylated block on Chr-10 in normal tissue and age-matched cancers from the TCGA. (A)
Endometrial Cancer (UCEC),B) Lung Adenoma Carcinoma (LUAD), C) Breast Cancer,D) Lung Squamous Cell Carcinoma (LSCC). P-values in boxplots are
from aWilcoxon rank sum test. Number of samples in each group is indicated. Right panel depicts the density distribution of the t-statistics of all age-
hypomethylated blocks (magenta), as assessed between normal and age-matched cancer tissue. The cyan curve represents the corresponding statistics for
a random set of non-age associated blocks, matched for number and length distribution of the observed age-hypomethylated blocks. P-value is from a
Kolmogorov-Smirnov test.

doi:10.1371/journal.pgen.1004996.g003
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within 200bp of the transcription start site (TSS) or 1st exon, since it was shown previously
that Illumina 450k probes mapping to these regions provide the best predictive power of a cor-
responding gene’s expression level [34]. However, we did not find any global statistical signifi-
cance between the statistics of differential DNAmethylation and those of differential
expression (S4_Fig in S1 Text).

To understand why, we posited that age hyperM CGI-DMRs may preferentially target genes
which are normally not expressed in blood, whilst age-hypoM CGI-DMRs may corresponding-
ly target more highly expressed genes. To test this hypothesis it is important to first obtain esti-
mates of the baseline levels of expression in blood, ideally at birth. To this end, we obtained an
expression data set of cord blood and placenta samples [35]. Confirming our hypothesis, we
observed a highly significant trend with genes undergoing age-hypermethylation around their
TSSs exhibiting significantly lower levels of expression than genes exhibiting age-associated
hypomethylation (Fig. 4A). Thus, age-associated modulation of DNAmethylation is unlikely
to cause widespread in-cis expression alterations, because the direction of DNAm change may
only act to stabilize pre-existing expression levels. To validate this result, we decided to repeat
this analysis in the de Jong et al cohort [33], separately on young and old age groups. Remark-
ably, we observed a similar trend as in the cord blood and placenta data (Fig. 4B). Importantly,
we can also observe no difference in the expression levels of age-hyperM or age-hypoM genes
between the younger and older individuals (Fig. 4B).

In order to validate these results further, we collected another relatively large gene expres-
sion data set of 198 whole blood samples, albeit this cohort consisted of significantly older indi-
viduals [36]. Confirming our earlier result, we did not find that genes mapping to age-hyperM
DMRs exhibited age-associated decreases in gene expression, and similarly that genes mapping
to age-hypoM DMRs did not exhibit gene expression increases (S4_Fig in S1 Text). Important-
ly, in this cohort we also observed a significantly higher level of expression of genes undergoing
age-associated hypoM in their promoters compared to those undergoing age-associated
hyperM, a result which was also independent of age-group (Fig. 4C).

Integration of Illumina 450k DNAmethylation and ENCODE data to
identify transcription factors associated with cellular phenotypes
A recent study used whole-genome bisulfite sequencing (WGBS) to demonstrate that differen-
tial DNA methylation can be a powerful means of identifying regulatory elements, including
transcription factors, which play key roles in cellular development [19]. Similarly, we posited
that differential DNAmethylation changes associated with age, if enriched for transcription
factor binding sites (TFBS), may allows us to identify transcription factors whose differential
binding and activity patterns become disrupted with age.

In order to assess the potential of the Illumina 450k platform to identify relevant transcrip-
tion factors through differential DNAm patterns, we first considered the case of cellular devel-
opment and lineage specification, where key transcription factors are already known.
Specifically, we collected an Illumina 450k DNA methylation data set of 153 samples, encom-
passing human embryonic stem cell (hESCs) and induced pluripotent stem cell (iPSCs) lines,
as well as somatic (differentiated) tissue specimens (Methods) [37]. We derived DMRs between
the hESCs and the differentiated cell types from a total of 244347 regional clusters (Fig. 5A).
Focusing on the top 5% of DMRs (all passed FDR< 0.001), we observed that the majority were
hypomethylated in differentiated cells, with open sea regions generally exhibiting hypomethy-
lation, in contrast to shore/shelf and CGIs which were mostly hypermethylated (Fig. 5B). To
assess enrichment of TFBS among the DMRs, we first mapped 450k probes onto binding sites
of 58 transcription factors (TFs), as assessed by the ENCODE consortium [23] in the H1 hESC
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line (Methods). The average fraction of 450k probe CpGs mapping within a binding site of one
of the 58 TFs was 3% (* 16316 probes), with Pol2 exhibiting the largest overlap (12%) and
BCL11A the lowest (< 0.01% i.e. less than 454 probes) (S5_Fig in S1 Text). Enrichment analy-
sis was then performed for each one of the 58 ENCODE transcription factors, and separately,
on the hypermethylated and hypomethylated DMRs (Table S2 in S1 Text). Confirming the re-
sults of Ziller et al [19], we observed that DMRs which exhibited lower levels of methylation in
hESCs were massively enriched for binding sites of well-known pluripotency factors such as

Fig 4. Age-associated hypermethylation (hypomethylation) targets lowly (highly) expressed genes. A) Boxplots of mRNA expression levels in cord
blood and placenta samples, for three sets of genes: (i) genes undergoing age-associated hypomethylation in their CGI promoters (AgeHypoM), (ii) genes
not undergoing any age-associated DNAm changes (NonAgeDMR), and (iii) genes undergoing age-associated hypermethylation in their CGI promoters
(AgeHyperM). P-values shown between groupds are from aWilcoxon-rank sum test comparing the respective neighboring gene classes. The number of
genes in each class is indicated below plot. The P-value from a linear regression of expression against gene-class is also indicated in red. B) Left panel: As
A) but for the whole blood samples of de Jong et al 2014, for individuals under the age of 30. Right panel: As left panel, but now for 49 whole blood samples
from people over the age of 50. C) As B) but now for the expression data set of Beineke et al 2012.

doi:10.1371/journal.pgen.1004996.g004
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POU5F1 and NANOG (Fisher-test P< 10−10, Fig. 5C). Out of the 58 TFs considered, besides
OCT4 and NANOG, only 7 others (BCL11A, HDAC2, SP1, MAFK, c-JUN, CtBP2 and RXRA)
showed specific enrichment (all significant with Fisher-test P< 10−5 and with Benjamini-
Hochberg (BH) adjusted P< 0.05) among DMRs hypomethylated in hESCs. A total of 5 TFs
(TCF12, p300, TEAD4, ATF2, JUN-D) showed bivalent enrichment in both hypermethylated
and hypomethylated DMRs. The rest of TFs showed specific enrichment among the DMRs
hypomethylated in differentiated cells (Fig. 5C). Notably, CTCF was the most strongly en-
riched TF among DMRs losing methylation in differentiated cells. It is also noteworthy that
components of the polycomb complex (e.g. SUZ12 or EZH2) were not enriched in either the
hypermethylated or hypomethylated DMRs (Fig. 5C), suggesting that polycomb binding does
not play a major role in cellular differentiation. Confirming the robustness of the results and

Fig 5. Identification of pluripotent and lineage-specific TFs by integration of Illumina 450k DNAmwith ENCODE data. A) Probabilities that a randomly
picked open-sea, shore/shelf and CpG-island region is a DMR between pluripotent and differentiated cells (defined as the top 5% of DMRs).B) Relative
numbers of DMRs hypomethylated within hESCs and differentiated cell types and within each regional class. C) Enrichment heatmap of transcription factor
binding sites (as assessed in H1-hESC) for 58 TFs, among the DMRs hypomethylated in hESCs (HypoESC) and DMRs hypomethylated in differentiated
cells (HypoDIFF). D) Enrichment heatmap of transcription factor binding sites (HepG2 line) for the top ranked 58 TFs, among DMRs hypomethylated in
hESCs (HypoESC) and DMRs hypomethylated in liver cells (HypoLIV). In C-D), TFs have been ranked according to the significance of enrichment among
HypoESCDMRs. Color codes: white (P> 0.01), pink (P< 0.01), red (P< 1e − 5), brown (P< 1e − 10). ChIP-Seq binding profiles of the same TF but
generated by different labs are distinguished by an abbreviation of the corresponding lab: SF (Stanford), HA (Hudson-Alpha).

doi:10.1371/journal.pgen.1004996.g005
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reliability of the ENCODE data, we observed that ChIP-Seq binding profiles of the same TF
but generated by different laboratories had very similar enrichment values (Fig. 5C).

Among the 60 somatic tissue samples, some tissues were represented in sufficient numbers
to also allow for tissue-specific analyses. To see whether differential DNAmethylation would
allow us to infer lineage-specific transcription factors, we considered the case of liver-tissue
[19]. Because ChIP-Seq for a reasonable number of TFs (more than 50) has only been per-
formed for a liver cancer cell line (HepG2), we used the binding site profiles as determined in
this cell-line. We identified a total of 1547 DMRs hypomethylated in hESCs compared to nor-
mal liver samples (n = 4), compared to as many as 10670 DMRs which were hypomethylated
in the normal liver cells. TFBS enrichment analysis revealed massive enrichment of FOXA1,
FOXA2, CEBPB, HNF4A and HNF4G binding sites (Fisher test P< 10−10, BH-adjusted
P< 0.05) among the liver-specific hypomethylated regions (Fig. 5D & Table S3 in S1 Text),
once again consistent with previous observations [19] and with the previously documented
role of these TFs in liver specification [38, 39].

Differential DNA methylation patterns identify REST and chromatin
organization factors as key targets of disruption during aging
Having validated our algorithm in the context of cellular development, we next asked if specific
TFBSs may be enriched among age-associated DMRs. Using ENCODE TFBSs as assessed in
the H1-hESC line, we found that even though only the minority (3036 DMRs, 25%) of age-
DMRs were hypermethylated, that these were more strongly enriched (Table S2 in S1 Text).
The transcription factors most strongly enriched among age-hypermethylated DMRs were two
polycomb components (EZH2, SUZ12), as well as RBBP5 and NRSF/REST (Fig. 6A). Far fewer
TFs were enriched among age-hypomethylated DMRs, but most of these also showed enrich-
ment of binding sites among age-hypermethylated DMRs (e.g. RAD21, ZNF143, CTCF)
(Fig. 6A, Table S4 in S1 Text). We note that most of the enrichments were highly significant
(Fisher-test P< 10−10, BH-adjusted P< 0.05, Fig. 6A, Table S4 in S1 Text).

Because many transcription factors co-bind at specific sites, we next performed a multivari-
ate regression analysis to assess if the association of a given TF binding profile with age-
associated DNA methylation is independent of co-binding by other TFs (Methods). We note
that no pair of distinct TFs exhibited a Jaccard Coefficient overlap higher than 0.7, thus allow-
ing us to use all distinct TF binding profiles in the multivariate analysis, which largely con-
firmed the previous enrichment analysis (Fig. 6B). Specifically, the polycomb factors (EZH2,
SUZ12) were once again highly enriched among age-hyperM DMRs, as well as RBBP5, TAF1,
NRSF/REST, CTBP2 and EGR1. TFs whose binding sites were enriched among age-hypoM
DMRs included as before RAD21 and ZNF143, but now also ATF2, CEBPB and JARID1A. We
verified that results were largely unchanged had we used the age-DMRs from the cellular het-
erogeneity adjusted analysis (SI, S6_Fig in S1 Text).

Next, we asked if particular TFs have binding sites enriched within the previously identified
age-associated hypomethylated blocks. Not unsurprisingly, this revealed TFs whose binding
sites we previously found to be enriched within age-hypoM DMRs (e.g. RAD21, ZNF143,
CTCF, S7_Fig in S1 Text). However, it also identified a number of TFs whose binding sites
were enriched only among age-hyperM DMRs, specifically this was the case for SIN3A, TBP
and TAF1. Interestingly, these specific TFs also had substantially more binding sites within
open-sea regions, in comparison to say the polycomb factors (EZH2,SUZ12) which exhibited
the least enrichment of binding sites within blocks (S7_Fig in S1 Text).

In summary, our integrative DNAmethylation ENCODE analysis not only points towards
an age-associated disruption of PRC2 binding, but also of that of important transcription
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Fig 6. Enrichment of TFBSs among age-DMRs. A) Left top panel depicts the age of the individuals from which the blood samples were taken, sorted by
increasing age. Heatmap depicts relative DNAmethylation levels for the top 500 age-hypomethylated and top 500 age-hypermethylated DMRs (blue =
relative high DNAmethylation, yellow = relative low DNAmethylation), with samples sorted by increasing age. Right panel depicts (with black lines) which
DMRs overlap with transcription factor binding sites (TFBS) for a number of TFs which exhibited highly significant enrichment either for age-hypermethylated
or age-hypomethylated DMRs (or both). Below the panels we give the odds ratios (OR) and Fisher-test P-values (P) of enrichment of the corresponding
TFBSs among age-hypermethylated and age-hypomethylated regions of the top 5% of age-DMRs. B)Combinatorial enrichment analysis of TFBSs. TFs
have been sorted according to the strength of association (P-value) of their binding profile with the association of a region’s DNAmethylation with age, as
assessed from a multivariate linear regression model. Color code for P-values: white (P> 0.01), pink (P< 0.01), red (P< 1e − 5), brown (P< 1e − 10). Below
P-value bar we show the corresponding estimated t-statistic in the multivariate analysis (magenta = strongly significant (P< 0.001) positive values, cyan =
strongly significant (P< 0.001) negative values).

doi:10.1371/journal.pgen.1004996.g006
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factors like REST, which has recently been strongly implicated in Alzheimer’s [40], and RBBP5,
which interacts with members of the histone methyltransferase MLL complex. In addition, the
data points towards a potential binding site redistribution of other transcription factors like
RAD21, ZNF143 and the chromatin organization factor CTCF. Of note, pluripotency factors,
which were strongly enriched in the previous cellular development/differentiation analysis,
were not so in the aging analysis (Tables S2 & S4 in S1 Text & Fig. 6).

Discussion
Given the emerging importance of age-associated epigenetic drift, we decided to conduct an
in-depth novel integrative multi-scale analysis of this epigenetic phenomenon in whole blood
tissue, the tissue for which the largest data set is available. Our analysis makes a number of im-
portant novel observations, whilst also confirming some earlier findings made with the less
comprehensive Illumina 27k arrays [41].

First, we have demonstrated that most of the epigenetic drift is not caused by underlying
changes in blood cell subtype proportions. Indeed, focusing on the 5% most significant age-
associated DNAmethylation changes, we observed that over 80% of these changes retained sta-
tistical significance in an analysis adjusted for shifts in blood cell subtype proportions. Intrigu-
ingly, we observed that age-DMRs were enriched most strongly for CpG island
hypermethylation and that this enrichment increased upon adjustment for cellular heterogene-
ity (Fig. 1). We note that although opensea and shore/shelf probes were generally much more
numerous among age-DMRs (Figs. 1B & 1E), that this seems to only reflect the bias of the 450k
array towards this class of probes. Normalizing for this bias, as we did here, shows that CGIs
have the highest probability of being an age-DMR (Figs. 1A & 1D). The stronger enrichment of
CGIs in the adjusted analysis is also consistent with two previous observations: First, that the
main age-associated shift in blood cell subtype composition, ie. an increase in the granulocyte
to lymphocyte ratio, is accompanied by a global loss of methylation [7], and secondly, that a
significant proportion of developmental DMRs are distal to promoter CGIs and TSSs [19].
Thus, if a substantial proportion of the myeloid/lymphoid cell subtype specificity is conveyed
by DNAmethylation patterns in shore/shelf and open-sea regions, then this would explain
why these regions are less enriched after adjustment for the age-associated myeloid/lymphoid
skewing. All these are important observations, because it suggests that the mechanisms leading
to the age-associated modulation of the DNAmethylome are very distinct to those implicated
in development and differentiation. This is perhaps not surprising, since otherwise drift, which
is already prominent in early life [42, 43], would have a dramatic effect on normal tissue ho-
meostasis well before the normal aging effects become visible [10]. Our integrative analysis
with a large blood gene expression data set further supports this view, since we found that drift
does not significantly alter in-cis gene expression levels, a result which is also consistent with a
recent age-related gene expression study conducted in lymphoblastoid cell-lines [44]. In fact,
quite remarkably, we observed that drift may act to stabilize pre-existing baseline levels of gene
expression. Indeed, we found that age-associated hypermethylation at CGIs preferentially tar-
gets genes that are not expressed in blood tissue, whereas age-associated hypomethylation cor-
respondingly targets more highly expressed genes (Figs. 4A & B). This confirms an earlier
observation made by Day et al with the older Illumina 27k beadarrays [41], and was further val-
idated in another large gene expression data set (Fig. 4B).

It is important to point out that our observation that a significant proportion of epigenetic
drift is not caused by changes in blood-cell type composition does not contradict the observa-
tions and recommendations of Jaffe and Irizarry [14]. As shown here, adjustment for blood-
cell type composition does remove some of the epigenetic drift attributable to the increase in
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the granulocyte to lymphocyte ratio (Fig. 1F & S2_Fig in S1 Text). Most importantly, however,
it should be clear that the effect of cell type compositional changes on inferred DNA methyla-
tion patterns will depend on two main factors: the tissue type and the phenotype being consid-
ered. Thus, when comparing patterns of DNA methylation in blood tissue between cancer
patients and healthy controls, there is a strong need for adjustment because the presence of the
tumour induces dramatic changes in blood-cell type composition [12, 14, 15]. Likewise, when
comparing DNAm patterns in blood of Rheumatoid Arthritis (RA) patients to that of controls,
adjustment is critical as demonstrated by Liu et al [11]. Our data strongly supports the view
that age has a much less dramatic effect on changes in blood cell type composition, compared
to cancer-presence or RA.

Another important contribution is the demonstration of large megabase-scale blocks of age-
associated hypomethylation, covering 14% of the genome, and, importantly, that only a subset
of these blocks are enriched for age-associated CGI hypermethylation (Fig. 2, Table S1 in S1
Text). Interestingly, we also found that age-associated hypomethylated blocks preferentially
undergo hypomethylation in cancer compared to other open sea regions which do not change
with age (Fig. 3). However, we also observed some differences in relation to what has been ob-
served in cancer. Notably, in cancer most hypomethylated blocks are enriched for CGI hyper-
methylation [18]. In contrast, CGI hypermethylation within age-hypomethylated blocks was
only seen for a relatively small fraction of blocks. Given that most of the age-associated CGI
hypermethylation is independent of blood cell subtype, it is highly plausible that these specific
changes are also present in other tissue types. Indeed, that the age-hypermethylated component
of drift appears to be specially independent of tissue type was an observation made by us previ-
ously with Illumina 27k beadarrays [2] and further confirmed by others [28]. Thus, it is of in-
terest to consider the specific genes targeted for aberrant DNAmethylation within these
blocks. For instance, we identified a hypomethylated block on chromosome-4, containing age-
hypermethylated CGIs targeting the promoter of the HAND2 gene. This transcription factor
has been shown to be causally implicated, through DNAm induced silencing, in the develop-
ment of endometrial cancer [29]. SpecificallyHAND2mediates the tumour suppressive effects
of progesterone [29]. Interestingly, age is also one of the main risk factors for endometrial can-
cer, hence it is plausible that age-associatedHAND2 promoter methylation, if present in endo-
metrial tissue, could be a contributing factor to endometrial cancer risk. Indeed, there is
already prior evidence that HAND2’s promoter undergoes age-associated DNA hypermethyla-
tion in epithelial tissues [1]. Interestingly, the effect of HAND2methylation on endometrial
cancer risk is mediated by methylation and silencing of HAND2 in endometrial stromal non-
immune cells, increasing paracrine signaling through release of fibroblast growth factors thus
sensitizing the endoemtrial epithelial cells to oncogenic estrogen [29]. That the DNAmethyla-
tion ofHAND2 in cancer tissue is not attributable to immune cell infiltration, is an important
observation because it suggests that some of the common hypermethylation seen in aged blood
tissue and in cancer tissue may not be due to immune-cell activation and tumour-infiltration
of these activated immune cells.

In this work we also performed an integrative analysis of epigenetic drift, as measured with
Illumina 450k beadarrays, with ENCODE data, and specifically with ChIP-Seq transcription
factor binding site data for a total of 58 TFs as determined in a human embryonic stem cell
line. This analysis not only identified specific polycomb factors (SUZ12, EZH2), previously al-
ready known to be targeted by age-associated DNA hypermethylation [2, 3], but also several in-
teresting regulatory factors, including RBBP5, NRSF, SIN3A, TAF1, EGR1 and CTBP2, some of
which (e.g. RBBP5) have not been previously implicated in aging. For instance, RBBP5 (retino-
blastoma binding protein-5), a protein whose role in aging is only implied from homology
(JenAge AgeFactDB database) [45], is part of the MLL1/MLL complex, whose role is to
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methylate/di-methylate lysine-4 of histone H3, which is a tag for epigenetic transcriptional
activation. Thus, age-induced impairment of RBBP5 binding could lead to functional disrup-
tion of the MLL complex and hence to loss of H3K4 methylation, a well-known aging effect
[46, 47]. Interestingly, RBBP5 has also been shown to interact with TAF1, TAF7 and TBP, all
members of the transcription factor IID (TFIID) multiprotein complex, and all of which had
binding sites enriched among age-hyperM DMRs, even in the multivariate analysis (Fig. 6B &
S8_Fig in S1 Text). Both TAF1 and TBP have entries in the GenAge HAGR database [48], with
TAF1 being essential for cell cycle progression. Another TF with an entry in the GenAge
HAGR database is SIN3A: interestingly, SIN3A has been shown to function in histone deacety-
lase pathways [49] (S9_Fig in S1 Text), as well as in the deacetylation of the c-MYC protein,
thus contributing to its repression [50]. Of note,MXI1, an interacting partner of SIN3A, was
also enriched in our TFBS analysis (Table S4 in S1 Text), although it lost the enrichment in the
multivariate analysis (Fig. 6B). Yet another TF with enriched binding sites among age-hyperM
DMRs and with an entry in the GenAge database is EGR1. This gene is an important regulator
of the cell-cycle, with pro-apoptotic functions and acting upstream of TP53 (S9_Fig in S1 Text).
Finally, our list also included NRSF/REST, which has a role in suppressing genes which promote
Alzheimer’s disease [40]. Thus, our data suggests age-associated functional disruption of REST,
which may allow Alzheimer promoting genes to be expressed. In addition, we observed that
CTCF was one of a few number of transcription factors whose binding sites were enriched
among both age-hypomethylated DMRs, suggesting a global redistribution of chromatin pat-
terns with age. Thus, overall, our integrative analysis points towards an age-associated disrup-
tion of DNA binding of transcription factors with important roles in histone deacetylation,
histone methylation, chromatin architecture and tumour suppressor pathways. In this regard, it
is worth emphasizing some of the key differences with the corresponding integrative ENCODE
analysis performed in the context of cellular differentiation. For instance, pluripotency factors
such asNANOG or OCT4. and chromatin factors such asHDAC2 or CTCF2, all of which play
key roles in differentiation from hESCs, played a much less significant role in the context of
aging, wheras the opposite is true for the polycomb factors EZH2 and SUZ12.

Conclusions
In summary, this work has shown that age-associated DNA methylation changes seen in blood
are largely independent of changes in blood cell type composition, and reflect patterns of
change at different genomic length scales which are reminiscent of those seen in cancer. By in-
tegrating Illumina 450k with ENCODE data we have furthermore identified a number of can-
didate key transcription factors whose regulatory potential may be disrupted during aging.

Methods

DNAmethylation data sets
For the analysis of aging we used one of the largest available data sets, which profiled over 656
whole blood samples using Illumina Infinium 450k beadarrays [5]. Data was downloaded from
GEO and subjected to a stringent quality control analysis, including imputation of missing val-
ues, type-2 probe bias correction using BMIQ [51], as well as assessment of the sources of
inter-sample variation using a Singular Value Decomposition [12]. The top component of vari-
ation correlated with Source site of samples (i.e. laboratory sample was processed), plate and
ethnicity. Lower ranked components correlated with gender and age. Samples came from 4 dif-
ferent labs, were processed on 9 different plates (indexed here as 1,2,3,5,6,8,9,10,11) and came
from 2 different ethnic groups (white caucasian and hispanic) [5].
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For the analysis relating to cellular development and differentiation, we downloaded the
Illumina 450k data of GSE31848 from the GEO website. This data consisted of a total of 153
samples, encompassing human embryonic stem cell lines, induced pluripotent stem cells, pri-
mary cell lines and somatic differentiated samples from a range of different tissue types. Probes
with more than 5% missing values across the samples were removed from analysis. Rest of
missing data was imputed using the k-nearest neighbour procedure, as implemented in the im-
pute R-package [52]. Because of the inherent bias of type-2 probes and our desire to analyse
DNAmethylation patterns spatially, we also adjusted this data using the BMIQ algorithm [51].

Cross-reactive probes and probes with SNPs in them were kept in the DNAmethylation
data analysis. We verified that the main results of this work are independent of whether these
probes are included or removed.

ENCODE data
Transcription Factor ChIP-seq Uniform Peaks .narrowPeak files were downloaded from the
UCSC ENCODE website (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/). This track contains 690 ChIP-seq datasets representing 161 unique
regulatory factors (generic and sequence-specific factors). The dataset spans 91 human cell
types and various treatment conditions. These datasets were generated by the five ENCODE
TFBS ChIP-seq production groups: Broad, Stanford/Yale/UC-Davis/Harvard, HudsonAlpha In-
stitute, University of Texas-Austin and University of Washington, and University of Chicago.
Some TFs were generated by more than one group, or selected by different antibodies. In all
cases, human Illumina 450K CpGs were mapped to TF binding sites. Only CpGs falling within
the ChIP-Seq peak boundaries were considered as defining an overlap. Here we considered
mainly two cell-lines: H1-hESC and HepG2. The number of profiled TFs were 58 (H1-hESC)
and 75 (HepG2).

mRNA expression data
To integrate the blood DNA methylation data from Hannum et al, with gene expression, we
first used a whole blood data set (233 samples) generated using the Illumina HumanRef-12v3
array [33]. The normalized data was provided at the probe-level. Probes mapping to the same
Entrez gene ID were averaged resulting in a 16345×233 gene expression data matrix. This data
matrix underwent further quality control using a Singular Value Decomposition (SVD) meth-
od [12] to assess the sources of inter-sample variation. We found that the top PC correlated
with beadchip and not age. In deriving differentially expressed genes (DEGs) associated with
age using a linear regression model, we also observed statistical confounding, as deduced from
the shape of the P-value histogram [53]. To address this problem, we identified and ranked
age-DEGs using the ISVA-algorithm [53].

As a validation of the gene expression analysis, we also downloaded another relatively large
gene expression data of 198 whole samples [36]. This data was generated with Agilent Whole
Human Genome Microarrays [36]. The normalized data was provided at the probe-level.
Probes mapping to the same Entrez gene ID were averaged resulting in a 19751×198 gene ex-
pression data matrix. This data matrix underwent further quality control using a Singular
Value Decomposition (SVD) method [12] to assess the sources of inter-sample variation. In
deriving differentially expressed genes (DEGs) associated with age using a linear regression
model, we adjusted for sex, case/control status and smoking status.

In order to obtain estimates of baseline levels of gene expression in blood we collected an ex-
pression data of cord blood and placenta samples [35]. This data was generated with Illumina
Human Ref-8 beadarrays [35]. The normalized data was provided at the probe-level. Probes
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mapping to the same Entrez gene ID were averaged resulting in a 18342×183 gene expression
data matrix. This data matrix underwent further quality control using a Singular Value Decom-
position (SVD) method [12] to assess the sources of inter-sample variation. In this data set
there were 64 cord blood samples, 54 placenta samples and 65 maternal blood samples. We re-
stricted to analysis of cord blood and placenta samples from non-smokers (n = 45 cord blood,
n = 37 placenta).

Age-DMR analysis
To identify age-DMRs in the Hannum et al data [5], we used linear regressions with plate and
gender as covariates. Note that we did not include source and ethnicity as covariates because
these were fully correlated with plate. Indeed, plates-1, 2, 3, 8, 10 and 11 contained only cauca-
sian samples, specifically their numbers were 90, 84, 69, 81, 17 and 85. The other plates, i.e.
plates-5, 6 and 9 only contained hispanics (90, 92 and 48). It follows from this design that ad-
justing for plate automatically adjusts for ethnicity, but not vice-versa. Similarly, plate and lab
were fully correlated, thus adjusting for plate also adjusts for source-site. Moreover, it is well
known that adding highly correlated covariates in multivariate regressions may cause singular
or near-singular predictor matrices and thus compromise statistical inference. For these rea-
sons, and given that lower ranked SVD components also correlated with gender (gender was
equally distributed across plates, with each plate containing males and females), we used as co-
variates plate and gender.

The linear regressions above were performed at the level of regional probe clusters, follow-
ing the procedure of Aryee et al [26]. Specifically, 450k probes were first divided into 3 regional
classes: open-sea, shore/shelves and CpG Islands (CGIs). We then used the boundedCluster-
Maker function withmaxGap = 500 andmaxClusterWidth = 1500 on probes within each of
these 3 classes, separately, resulting in probe clusters within each class. Beta-values for probes
within a cluster were averaged, and linear regressions were performed for these averaged val-
ues, i.e one linear regression for each probe cluster.Finally, we also remark that we chose a line-
ar model, mainly because previous works have shown how well linear models are able to
predict age across a wide range of tissue types [2, 6].

Correction for cellular heterogeneity
We followed the reference-based procedure of Houseman et al [15], using the R-scripts and ref-
erence CpG list provided in that publication. To clarify, we ran the Reference-Based method
using reference profiles for CD8+ T-cells, NK-cells, Monocytes, CD4+ T-cells, B-cells and
Granulocytes, to infer cell-type proportions in the individual samples. These were subsequently
used as covariates in the linear regression analysis.

Block Age-DMR analysis
In order to see if age-associated DMRs occur on longer length (i.e megabase) scales, we followed
the procedure of Aryee et al [26], focusing on the previously constructed regional clusters map-
ping only to open-sea probes. To define blocks we used the clusterMaker function of the bum-
phunter package [26, 27] withmaxGap = 250000 and using the previously constructed regional
open sea clusters as input. To find extended DMRs (specifically hypomethylated block regions)
we used the bumphunter algorithm with bpSpan = 250000 and 500 bootstrap iterations.

Association of transcription factor binding sites with age-DMRs
To test enrichment of transcription factor binding sites among age-hypermethylated and age-
hypomethylated DMRs we used a one-tailed Fisher’s exact test. However, since two
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transcription factors can share the same binding sites, we devised a simple mulitvariate frame-
work to assess if the association of a given TF binding site profile with age-DMRs is indepen-
dent of the other TF binding site profiles. Specifically, denoting by tr the t-statistic derived
from a linear regression of a regional cluster’s (r) average DNA methylation level against age,
and denoting by bf the binding site profile of a given transcription factor f (so that bfr = 1 if a
binding site of the TF falls within region r, bfr = 0 otherwise), we performed the multivariate re-
gression

t ¼ a0 þ
P

f

bfaf þ � ð1Þ

It follows from standard multivariate regression analysis, that the t-statistics associated with
the estimated parameters â

f
assess the association of any given TF’s binding profile with age-

DMRs independently of other TF’s binding profiles.
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