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Abstract

In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is
coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for
decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help
address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus
subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-
mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the
endogenous replication origin. We go on to report connections between DNA replication and several essential cellular
activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis,
phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are
involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while
others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication
in response to diverse physiological and chemical changes.

Citation: Murray H, Koh A (2014) Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis. PLoS Genet 10(10): e1004731.
doi:10.1371/journal.pgen.1004731

Editor: William F. Burkholder, A*STAR, Singapore

Received March 4, 2014; Accepted September 3, 2014; Published October 23, 2014

Copyright: � 2014 Murray, Koh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Royal Society University Research Fellowship to HM. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: heath.murray@newcastle.ac.uk

Introduction

DNA replication must be coordinated with the cell cycle to

ensure proper genome inheritance. For many bacteria cellular

physiology dictates the rate of growth and division. In nutrient-rich

media that support rapid growth rates, bacteria synthesize DNA

more rapidly by increasing the frequency of DNA replication

initiation [1–3]. This control system is termed nutrient-mediated

growth rate regulation and although it has been appreciated for

decades, the molecular mechanisms that connect cell physiology

with DNA replication initiation remain debatable.

Historically it has been thought that there is a constant cell mass

or cell size at the time of bacterial DNA replication initiation and it

has been proposed that a positive regulator would accumulate in a

growth-dependent manner to trigger DNA replication initiation

when cells attained a critical size [4]. However, modern

quantitative analysis of single bacterial cells within steady-state

populations has shown that the relationship between DNA

replication initiation and cell mass is variable, indicating that the

control for timing of DNA replication initiation is not governed by

a direct connection with mass accumulation [5].

DnaA is the master bacterial DNA replication initiator protein

and is a candidate factor to connect cell physiology with DNA

synthesis. DnaA is a member of the AAA+ family of ATPases and

shares homology with archaeal and eukaryotic initiator proteins.

DnaA directly stimulates DNA replication initiation from a single

defined origin of replication (oriC) once per cell cycle. Multiple

ATP-bound DnaA molecules bind to an array of recognition

sequences (DnaA-box 59-TTATCCACA-39) within oriC where

they assemble into a helical filament that promotes duplex DNA

unwinding [6,7].

Studies in Escherichia coli have suggested that the amount of

ATP-bound DnaA dictates the rate of DNA replication initiation.

Artificial overexpression of DnaA increases the frequency of DNA

replication initiation [8,9]. Conversely, decreasing the amount of

DnaA per cell by synthetically promoting early cell division delays

DNA replication initiation and modest increases in DnaA levels

alleviate this delay, supporting the view that growth-dependent

accumulation of DnaA is the trigger for replication initiation in E.
coli [10]. However, it remains uncertain whether the amount of

ATP-bound DnaA is the primary regulator that coordinates DNA

replication initiation with cell growth in wild-type E. coli cells [11].

In contrast to E. coli, studies in Bacillus subtilis have suggested

that the amount of DnaA may not dictate the rate of DNA

replication initiation. Artificially decreasing cell size by stimulating

cell division (thereby lowering the amount DnaA per cell to ,70%

of wild-type) did not affect DNA replication initiation [10].

Moreover, results from overexpression of DnaA in B. subtilis are

not clear. Increased expression of DnaA alone causes cell

elongation, cell growth inhibition, and induction of the SOS

DNA damage response due to depletion of DnaN because of

autoregulation of the dnaA-dnaN operon by DnaA [12]. To

circumvent this problem DnaA was co-overexpressed with DnaN,

and under this condition DNA replication initiation does increase

[12]. However, subsequent experiments demonstrated that over-

expression of DnaN alone increases DNA replication initiation by
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repressing the activity of the regulatory protein YabA (an inhibitor

of DnaA)[13], suggesting that this could account for the effect on

DNA replication initiation when DnaA and DnaN were co-

overexpressed.

In this study we have investigated nutrient-mediated growth

rate control of DNA replication initiation in B. subtilis. We find

that changes in DnaA protein level are not sufficient to account for

nutrient-mediated growth rate regulation of DNA replication

initiation, although this regulation does require both DnaA and

oriC. We then present evidence suggesting that multiple regulatory

systems are involved in coordinating DNA synthesis with cell

physiology, and that depending on the nature of the growth

limitation, control of DNA replication acts through either oriC-

dependent or oriC-independent mechanisms.

Results

Changes in DnaA levels cannot account for nutrient-
mediated growth rate regulation of DNA replication
initiation in B. subtilis

Steady-state bacterial growth rates can be manipulated by

culturing cells in media that contain differing amounts of nutrients,

with rich media supporting faster growth because resources are not

required to synthesize cellular building blocks de novo. In response

to different nutrient-mediated steady-state growth rates, bacteria

control DNA synthesis by varying the frequency of DNA

replication initiation while maintaining a constant speed of

elongation [1–3,14]. The rate of DNA replication initiation can

be determined by marker frequency analysis (i.e. - measuring the

ratio of DNA at the replication origin (ori) versus the replication

terminus (ter) using quantitative PCR), and Figure 1A shows the

positive correlation between DNA replication initiation and

nutrient-mediated growth rates (cell doublings per hour measured

using spectrophotometry). It is important to state that experimen-

tal approaches which change bacterial growth rates without

altering the chemical composition of the cell (e.g. – varying

temperature) do not influence the rate of DNA replication

initiation (Figures 1B, S1; [15,16]). Thus, varying nutrient

availability modulates bacterial physiology, in turn affecting cell

growth and DNA replication initiation [3].

It has been reported that DnaA protein level determines the

frequency of DNA replication initiation in E. coli [8,9], therefore

we wondered whether the amount of DnaA could account for

nutrient-mediated growth rate regulation of DNA replication

initiation in B. subtilis [14]. Western blot analysis shows that

DnaA concentration increases with faster steady-state growth rates

(Figure 1C; the tubulin homolog FtsZ was used as a loading

control because its concentration is growth-rate independent

[17,18]). Since B. subtilis cell size increases as a function of growth

rate, the number of DnaA molecules would also be greater in

larger cells formed during fast growth (Figure S2)[14]. This

conclusion is in agreement with absolute quantification of DnaA

proteins per cell determined at different growth rates using mass

spectrometry (163-337 molecules at 0.5 doublings/hr; 875-1791

molecules at 1.0 doublings/hr)[18]. These results indicate that the

amount of DnaA protein could account for nutrient-mediated

growth rate regulation of DNA replication initiation in B. subtilis.
To directly test whether the amount of DnaA protein

determines the rate of DNA replication initiation, the endogenous

dnaA gene was placed under the control of an IPTG-inducible

promoter (this also alleviated autoregulation of the dnaA-dnaN
operon [12]). At near wild-type DnaA levels growth rates were

normal, ori:ter ratios were unchanged, and the distribution of

origin regions per cell visualized using a TetR-YFP/tetO reporter

system was equivalent to wild-type (Figures 2A-C, S4A). In

contrast, when the amount of DnaA fell significantly (between

,50–30% of wild-type, depending upon the media), growth rates

slowed, ori:ter ratios dropped, DNA replication was inhibited as

judged by origin region localization, and cells became elongated

(Figures 2A–C, S4A). As noted above dnaA is located in an operon

upstream of dnaN (encoding the sliding clamp component of the

replisome) in B. subtilis, and Western blot analysis confirmed that

the level of DnaN correlated with the level of DnaA (Figure S3B).

Depletion of DnaN can cause replication fork stalling and

induction of the SOS DNA damage response, which likely

contributes to the slow growth and cell elongation phenotypes

observed at low IPTG concentrations [12]. However, replication

fork stalling would also be expected to cause an increase in the

ori:ter ratio, suggesting that the observed decreases may be an

overestimate of the true initiation frequency. We conclude that

wild-type DnaA levels are necessary to achieve the proper

frequency of DNA replication initiation at both slow and fast

steady-state growth rates.

Only modest overexpression of DnaA could be achieved using

the IPTG-inducible promoter (Figure 2A), much lower than the

changes in DnaA concentration observed at different nutrient-

mediated growth rates (Figure 1C). Therefore, to further increase

DnaA protein levels a second copy of the dnaA gene was

integrated at an ectopic locus under the control of a xylose-

inducible promoter (again the endogenous dnaA-dnaN operon

was expressed using an IPTG-inducible promoter to avoid

autorepression). This strain was grown in media that supported

a slow growth rate and varying amounts of xylose were added to

induce DnaA (.10 fold overexpression was achieved, which was

in the range observed for different nutrient-mediated growth rates;

Figures 2E, 4D). When DnaA levels were elevated ,2–4 fold a

modest increase in the ori:ter ratios was observed, although

critically the resulting initiation frequencies remained well below

the rate generated in rich media (Figures 2D, S4B). These results

indicate that changes in DnaA protein levels are not sufficient to

Author Summary

DNA replication must be coordinated with cellular phys-
iology to ensure proper genome inheritance. Model
bacteria such as the soil-dwelling Bacillus subtilis can
achieve a wide range of growth rates in response to
nutritional and chemical signals. In order to match the rate
of DNA synthesis to the rate of nutrient-mediated cell
growth, bacteria regulate the initiation frequency of DNA
replication. This control of bacterial DNA replication
initiation was first observed over forty years ago, however
the molecular basis for this regulation has remained hotly
debated. In this paper we test one of the leading models
for nutrient-mediated growth rate regulation in bacteria,
namely that the abundance of the master DNA replication
initiation protein DnaA dictates the frequency of DNA
replication events. Critically, our results show that changes
in DnaA protein level are not sufficient to account for
nutrient-mediated growth rate regulation of DNA replica-
tion initiation in B. subtilis. We then go on to show that
there are strong connections between DNA replication and
several essential cellular activities, which unexpectedly
indicates that there is likely more than one single
regulatory pathway involved in coordinating DNA replica-
tion with cell physiology. We believe that our work
changes thinking regarding this long-standing biological
question and reinvigorates the search for the molecular
basis of these critical regulatory systems.

Growth Control of Bacterial DNA Replication
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account for nutrient-mediated growth rate regulation of DNA

replication initiation in B. subtilis.
Surprisingly, further overexpression of DnaA lead to a dramatic

decrease in the ori:ter ratios. To determine whether this inhibition

was specific, DnaA was overexpressed in a strain where oriC was

inactivated by partial deletion (DoriC), the endogenous dnaA-
dnaN operon was expressed using a constitutive promoter to avoid

autorepression, and genome replication was driven by a plasmid-

derived replication origin (oriN; integrated ,1 kb to the left of

oriC) that is recognized and activated by its cognate initiator

protein (RepN). It is important to note that while initiation at oriN
does not require either oriC or DnaA, the downstream B. subtilis
initiation proteins DnaD, DnaB and DnaC (helicase) are necessary

for oriN activity [19]. Therefore, if overexpression of DnaA was

either inhibiting the expression of genes required for DNA

replication (e.g. – nucleotide biosynthesis [20]) or sequestering

essential replication factors, then DNA replication initiation from

oriN would be expected to decrease. However, overexpression of

DnaA in the DoriC oriN+ background did not alter ori:ter ratios,

showing that high overexpression of DnaA specifically inhibits

DNA replication initiation at oriC (Figure S4C).

Neither Soj nor YabA nor (p)ppGpp are required for
nutrient-mediated growth rate regulation of DNA
replication initiation in B. subtilis

We hypothesized that nutrient-mediated growth rate control of

DNA replication initiation could act via regulation of DnaA

activity rather than protein abundance. There are two known

trans-acting regulators of B. subtilis DnaA during steady-state

growth, Soj and YabA. Soj is a dynamic protein that can act as

either a negative or a positive regulator of DnaA, depending upon

its quaternary state [21–23]. YabA is a negative regulator of DnaA

that forms a protein bridge between the initiator DnaA and the

DNA polymerase sliding clamp processivity factor, DnaN, and is

thought to inhibit DNA replication by spatially sequestering DnaA

away from the replication origin and by inhibiting DnaA

oligomerization [24–27]. Interestingly, the number of both

proteins per cell was found to positively correlate with growth

rate [18].

To determine whether either of these regulatory proteins is

required for nutrient-mediated growth rate regulation of DNA

replication initiation, single knockout mutants were cultured in a

range of media and analyzed using marker frequency analysis. It

was found that both of the mutant strains retained the ability to

coordinate DNA replication initiation with nutrient-mediated

changes in growth rate (Figures 3A, S5A). To test whether Soj and

YabA acted redundantly to control the nutrient-mediated activity

of DnaA, the double mutant was constructed and analysed by

marker frequency analysis. Again proper regulation of DNA

Figure 1. Nutrient-mediated growth rate regulation of DNA
replication initiation in B. subtilis. (A) Culturing B. subtilis in a
different media generates a range of steady-state growth rates and
affects the frequency of DNA replication initiation. A wild-type strain
(HM222) was grown overnight at 37uC in minimal media supplemented
with succinate and amino acids (20 mg/ml). The culture was diluted
1:100 into various media to generate a range of steady-state growth
rates and grown at 37uC until an A600 of 0.3–0.4. Genomic DNA was
harvested from cells and marker frequency analysis was determined
using qPCR. The ori:ter ratios are plotted versus growth rate (error bars
indicate the standard deviation of three technical replicates). Repre-
sentative data are shown from a single experiment; independently
performed experiments are shown in Figures 4 and S5. (B) Culturing B.
subtilis at different temperatures generates a range of steady-state
growth rates but does not affect the frequency of DNA replication
initiation. A wild-type strain (HM715) was grown overnight at 23uC in
LB. The culture was diluted 1:100 into LB and incubated at different
temperatures to generate a range of steady-state growth rates until an
A600 of 0.2–0.3. Genomic DNA was harvested from cells and marker
frequency analysis was determined using qPCR. The ori:ter ratios are

plotted versus growth rate (error bars indicate the standard deviation of
three technical replicates). Representative data are shown from a single
experiment; an independently performed replicate of the experiment is
shown in Figure S1. (C) Measurement of DnaA protein levels at various
growth rates in wild-type B. subtilis (HM715). Cultures were grown at
37uC overnight as in (A) and diluted 1:100 into various media (succinate,
glycerol, glycerol + amino acids, LB). to generate a range of steady-state
growth rates until an A600 of 0.6–0.8. Cells were lysed and DnaA protein
was detected using Western blot analysis (FtsZ protein was likewise
detected and used as a loading control). For each culture media the
average amount of DnaA (+/2 standard deviation) from at least three
biological replicates was determined using densitometry; values were
normalized to LB.
doi:10.1371/journal.pgen.1004731.g001

Growth Control of Bacterial DNA Replication

PLOS Genetics | www.plosgenetics.org 3 October 2014 | Volume 10 | Issue 10 | e1004731



Figure 2. Changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate regulation of DNA
replication initiation in B. subtilis. (A) The endogenous dnaA gene was placed under the control of the IPTG-inducible promoter Pspac to generate
a range of DnaA protein levels. Strains were grown overnight at 37uC in minimal media supplemented with succinate and amino acids (20 mg/ml);
IPTG (400 mM) and erythromycin was added to HM742. The cultures were diluted 1:100 into various media (glycerol, glycerol + amino acids, LB) to
generate a range of steady-state growth rates and grown at 37uC until an A600 of 0.5–0.6; in each medium HM742 was supplemented with
erythromycin and a range of IPTG (800, 400, 200, 100, 50 mM). Cells were lysed and DnaA protein was detected using Western blot analysis (FtsZ
protein was likewise detected and used as a loading control). The amount of DnaA was determined using densitometry; values were normalized to
wild-type. Wild-type (HM222), Pspac-dnaA (HM742). (B) DNA replication was measured at over a range of DnaA protein levels. Strains were grown as
described in (A). Genomic DNA was harvested from cells and marker frequency analysis was determined using qPCR. For each growth media, the
ori:ter ratios are plotted versus IPTG concentration (error bars indicate the standard deviation of three technical replicates). Representative data are
shown from a single experiment; an independently performed replicate of the experiment is shown in Figure S4A. Wild-type (HM222), Pspac-dnaA
(HM742). (C) Measurement of replication origins number per cell. An array of ,150 tetO sites was inserted near the replication origin and visualized
using TetR-YFP. Strains were grown as described in (A), except that overnight cultures were only diluted into a single medium (glycerol + amino
acids); AK652 was supplemented with erythromycin and a range of IPTG concentrations. Samples were taken at mid-exponential phase for
microscopy and membranes were stained to identify single cells (scale bar = 5 mm). Histogram colour corresponds to the respective strain/IPTG
concentration and the average number of origins per cell is indicated (n. 300). Wild-type (AK647), Pspac-dnaA (AK652). (D) To strongly overexpress
DnaA the endogenous dnaA gene was placed under the control of Pspac and an ectopic copy of dnaA was integrated at the amyE locus under the
control of the xylose inducible promoter Pxyl (HM745). The strain was grown overnight at 37uC in minimal media supplemented with glycerol, amino
acids (20 mg/ml), IPTG (800 mM), and erythromycin. The culture was diluted 1:100 into media containing IPTG (800 mM), erythromycin, either glycerol
minimal media supplemented with a range of xylose (1, 0.5, 0.25, 0.125, 0.063, 0.031, 0.016, 0.008, 0.004, 0%) or LB, and grown at 37uC until an A600 of
0.2–0.4. Genomic DNA was harvested from cells and marker frequency analysis was determined using qPCR. For each growth media, the ori:ter ratios
are plotted versus xylose concentration (error bars indicate the standard deviation of three technical replicates). Representative data are shown from
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replication initiation was maintained in the Dsoj DyabA mutant,

indicating that neither regulatory protein is required (Figures 3A,

S5B). Interestingly, both the single and double mutants displayed a

reduced growth rate in rich media, suggesting that the burden of

overactive DNA replication initiation may be exacerbated during

multifork replication. In the case of the soj mutant it is also possible

that the slow growth phenotype is related to its role in

chromosome origin segregation [28–30].

We also determined whether the alarmone (p)ppGpp, a small

molecule induced during nutrient limitation, is required for

nutrient-mediated growth rate regulation of DNA replication

initiation in B. subtilis. Marker frequency analysis was performed

on a strain lacking the three known (p)ppGpp synthases (RelA,

YwaC, YjbM). It was found that regulation of DNA replication

initiation was unaffected by the absence of (p)ppGpp, suggesting

that (p)ppGpp is not involved in the regulatory mechanisms

coordinating DNA replication with nutrient availability during

steady-state cell growth (Figures 3B, S5C).

DnaA and oriC are necessary for nutrient-mediated
growth rate regulation of DNA replication initiation in B.
subtilis

Since both overexpression of DnaA and deletion of DnaA

regulatory proteins did not alter nutrient-mediated growth rate

regulation of DNA replication initiation, it was unclear

whether DnaA was actually a component of this system. To

determine whether DnaA activity at oriC is required, marker

frequency analysis was performed in a strain where oriC was

inactivated (DoriC) and DNA replication initiates from the

plasmid-derived oriN. It was found that ori:ter ratios remain

constant over a wide range of growth rates in the DoriC
mutant, indicating that nutrient-mediated growth rate regula-

tion of DNA replication was lost (Figures 4A, S6A). Critically,

DNA replication initiation from oriC is unaffected by the

addition of oriN (Figures 4B, S6B). This shows that it is the

absence of DnaA activity at oriC, rather than the presence of

oriN, which accounts for the loss of nutrient-mediated growth

rate regulation in the DoriC mutant.

However, it could not be concluded whether the DoriC
mutation acted by removing replication origin function or by

deleting a site that is required for the nutrient-mediated growth

rate regulation. Therefore, a mutation was introduced into dnaA
that alters the critical ‘‘arginine finger’’ residue (Arg264RAla),

thereby disabling DnaA filament assembly and initiation activity

(note that a DnaA arginine finger mutant remains competent for

DNA binding and ATP binding) [22,31]. Again the dnaAR264A

mutant strain contains oriN in order to maintain viability. Like the

DoriC mutant the DnaAR264A variant also lost growth rate

regulation in response to nutrient availability, indicating that

DnaA activity at oriC is necessary for growth rate regulation in B.
subtilis (Figures 4C, S6C). Moreover, since the ori:ter ratios of the

DoriC and dnaAR264A mutants remains constant during nutrient-

mediated growth rate changes and since DNA replication

elongation speed is independent of the nutrient-mediated growth

rate [2,14], the results suggest that within a population of cells the

average frequency of DNA replication initiation at oriN is

independent of the nutrient-mediated growth rate.

Western blot analysis showed that in rich media there was less

DnaA and DnaN in the DoriC strain, whereas conversely there

was more DnaA and DnaN in the dnaAR264A mutant (Figure

S3C). The latter result suggests that autoregulation of the dnaA
promoter requires ATP-dependent filament formation by DnaA,

however, the former result was more puzzling. To investigate this

further the amount of DnaA in the DoriC strain was determined

over a range of nutrient-mediated growth rates. While the

concentration of DnaA was observed to increase as a function of

growth rate in the wild-type strain, DnaA levels did not display the

same correlation with growth rate in the DoriC mutant

(Figure 4D). This suggests that in the DoriC mutant nutrient-

mediated growth rate-dependent expression of DnaA is lost either

because DNA replication initiation from oriN is constitutive or

because the deletion within oriC affects dnaA expression (although

this region is downstream of the dnaA gene).

The apparent decrease in growth rates observed for strains

initiating DNA replication solely through oriN, particularly in rich

media (Figures 4A, 4C, S6A, S6C), is likely due to the formation of

cells lacking DNA as a direct consequence of decoupling DNA

replication initiation from growth rate (Figure 4E). This result

underscores the importance of growth rate regulation of DNA

replication initiation to ensure bacterial fitness.

Slowing growth rate by limiting essential cellular
activities inhibits DNA replication

Since nutrient-mediated growth rate regulation of DNA

replication initiation did not appear to act through either DnaA

protein accumulation or known DnaA regulators, we considered

alternative possibilities for how DNA replication could be

connected to cell physiology. One hypothesis was that this

regulation could be linked to metabolism, either through the

amount of a metabolic intermediate or the activity of a critical

enzyme. Genetic evidence has suggested a relationship between

several glycolytic enzymes and DNA replication in B. subtilis and

E. coli [32,33], but it has not been established whether these

connections act directly at the level of DnaA-dependent initiation.

ATP would be another rational candidate since DnaA is an ATP-

dependent protein, but it has been found that the concentration of

ATP in B. subtilis (as well as in E. coli) is invariant over a wide

range of growth rates (L. Krasny and R. Gourse, personal

communication; [34,35]). Another hypothesis was that this

regulation could be linked to the synthesis of an essential cellular

complex, such as the ribosome or the cell membrane [36,37]. In

this way a bacterial cell would integrate nutritional information

based on the availability of multiple substrates required to

construct such macromolecules.

In order to identify possible routes through which nutrient

availability could impact DNA replication we analyzed a range of

genetically altered strains, targeting respiration, central carbon

metabolism, protein synthesis, fatty acid synthesis, and phospho-

lipid synthesis (Table 1), that all manifest decreased steady-state

growth rates in rich complex media. Genes were either disrupted

by antibiotic cassettes or depleted using regulated expression

systems; importantly, depletion of essential genes was not lethal

under the experimental conditions used. Knock-out strains were

compared to wild-type while depletion strains were analyzed

a single experiment; an independently performed replicate of the experiment is shown in Figure S4B. (E) HM745 was grown as described in (D) until
cultures reached an A600 of 0.6–0.9, cells were lysed, and DnaA protein was detected using Western blot analysis (FtsZ protein was likewise detected
and used as a loading control). The open arrowhead highlights that overexpressed DnaA ran as a doublet (similar results have been observed for
other overexpressed proteins in B. subtilis; HM). For each condition the average amount of DnaA (+/2 standard deviation) from three biological
replicates was determined using densitometry; values were normalized to the cultures without xylose.
doi:10.1371/journal.pgen.1004731.g002

Growth Control of Bacterial DNA Replication

PLOS Genetics | www.plosgenetics.org 5 October 2014 | Volume 10 | Issue 10 | e1004731



without and with inducer (indicated in Figures 5, 6, S7, S8 with

‘‘-’’ and ‘‘+’’, respectively). DNA replication was measured using

marker frequency analysis. Strikingly, in all of the strains examined

the ori:ter ratio decreased to match the slower growth rates caused

by gene disruption/depletion (Figures 5–6, S7–S8; black symbols).

Evidence for an oriC-independent response to changes in
growth rate

The uniform response of DNA replication in slow growing

mutants suggested that a single mechanism might account for this

regulation, in accord with nutrient-mediated regulation of DNA

replication initiation (Figures 4, S6). To examine this hypothesis

the deletion and depletion strains were crossed into the DoriC
strain that initiates DNA replication using oriN. For several

mutants (ndh, gapA, pdhB, fabHA, plsC and ltaS) the ori:ter ratio

was not significantly affected (#1/10 of the percentage decrease

observed for oriC+), suggesting that the regulatory signal specif-

ically targeted DNA replication initiation at oriC (Figures 5, S7;

red symbols). However, there were a number of mutants (pykA,
pgsA, and multiple ribosomal protein genes) that produced a

marked decrease in the ori:ter ratio of the DoriC strain ($1/2 of

the percentage decrease observed for oriC+), suggesting that in

these cases DNA replication was being regulated through an oriC-

independent mechanism (Figures 6A–C, S8A-C; red symbols).

Interestingly, in some cases manipulation of different genes within

a single biological pathway (e.g. – carbon metabolism or

phospholipid synthesis) resulted in the regulation of DNA

replication through the different regulatory systems.

Evidence for a DnaA-independent response to changes
in growth rate

Since the DoriC oriN+ strain does not require DnaA activity to

initiate DNA replication, it suggested that the observed oriC-

independent growth rate regulation might be DnaA-independent.

To address this possibility the oriC-independent mutants (Figur-

es 6A–C, S8A–C) were crossed into a DdnaA strain that initiates

DNA replication using oriN (Figure S3C). When PykA was

depleted in the DdnaA mutant the ori:ter ratio no longer

decreased, indicating that DnaA was required for this response,

although apparently not for its role in origin recognition and DNA

unwinding (Figures 6D, S8D; green symbols). In contrast, when

either ribosomal genes were deleted or PgsA was depleted in the

DdnaA mutant the ori:ter ratios did decrease, suggesting that

DnaA-independent mechanisms act under these conditions

(Figures 6E–F, S8E–F; green symbols). Taken together, the

genetic analysis reveals that in B. subtilis there is likely more than

one regulatory system linking DNA replication with cell growth.

Slowing growth rate by targeting essential cellular
activities with small molecules inhibits DNA replication
initiation

The importance of growth rate regulation of DNA replication in

response to nutrient availability is self-evident, but the biological

relevance of growth rate regulation of DNA replication in response

to genetic manipulations is less clear. To address this issue we

evaluated the response of DNA replication to sublethal concen-

trations of antibiotics that produced slow steady-state growth rates.

We chose small molecules that inhibit either fatty acid synthesis

(cerulenin) or protein synthesis (chloramphenicol) because our

genetic analyses indicated that the former regulated DNA

replication through oriC while the latter acted independently of

both oriC and DnaA. Incubation with either antibiotic caused a

decrease in the ori:ter ratios in the wild-type strain, showing that

Figure 3. Nutrient-mediated growth rate regulation of DNA
replication initiation is independent of Soj, YabA, and
(p)ppGpp. (A) Growth rate regulation of DNA replication initiation is
maintained in either Dsoj or DyabA mutants. Strains were grown
overnight at 37uC in minimal media supplemented with succinate and
amino acids (20 mg/ml). The culture was diluted 1:100 into various
media (succinate, glycerol, glycerol + amino acids, LB) to generate a
range of steady-state growth rates and grown at 37uC until an A600 of
0.3–0.4. Genomic DNA was harvested from cells and marker frequency
analysis was determined using qPCR. The ori:ter ratios are plotted versus
growth rate (error bars indicate the standard deviation of three
technical replicates). Representative data are shown from a single
experiment; an independently performed replicate of the experiment is
shown in Figures S5A-B. Wild-type (HM222), Dsoj (HM227), DyabA
(HM739), Dsoj DyabA (HM741). (B) Growth rate regulation of DNA
replication initiation does not require (p)ppGpp. Strains were grown
overnight at 37uC in minimal media supplemented with succinate and
amino acids (200 mg/ml). The culture was diluted 1:100 into various
media (succinate + amino acids, glycerol + amino acids, LB, PAB) to
generate a range of steady-state growth rates and grown at 37uC until
an A600 of 0.2–0.6. Genomic DNA was harvested from cells and marker
frequency analysis was determined using qPCR. The ori:ter ratios are
plotted versus growth rate (error bars indicate the standard deviation of
three technical replicates). Representative data are shown from a single
experiment; an independently performed experiment is shown in
Figure S5C. Wild-type (HM222), D(p)ppGpp (HM1230).
doi:10.1371/journal.pgen.1004731.g003

Growth Control of Bacterial DNA Replication

PLOS Genetics | www.plosgenetics.org 6 October 2014 | Volume 10 | Issue 10 | e1004731



Figure 4. Nutrient-mediated growth rate regulation of DNA replication initiation requires oriC and DnaA. (A) oriC is required for growth
rate regulation of DNA replication initiation. Strains were grown overnight at 37uC in minimal media supplemented with succinate and amino acids
(20 mg/ml). The culture was diluted 1:100 into various media (succinate, glycerol, glycerol + amino acids, LB, PAB) to generate a range of steady-state
growth rates and grown at 37uC until an A600 of 0.3–0.4. Genomic DNA was harvested from cells and marker frequency analysis was determined using
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growth rate regulation of DNA replication in response to genetic

perturbations of essential cellular activities is physiologically

relevant (Figures 7A–B, S9A–B; black symbols).

To further assess whether changes in DNA replication caused

by these small molecules reflected the results using genetic

approaches, the DoriC oriN+ strain was analyzed. Only chloram-

phenicol elicited a significant decrease in the ori:ter ratios in the

DoriC strain (Figures 7A–B, S9A–B; red symbols). Finally, the

DdnaA oriN+ strain was analyzed in the presence of chloram-

phenicol and again the ori:ter ratio decreased (Figures 7B, S9B).

This result is fully consistent with the data from ribosomal gene

deletions and indicates that regulation of DNA replication in

response to perturbed ribosome activity is DnaA-independent.

Discussion

We have found that nutrient-mediated growth rate regulation of

DNA replication initiation in B. subtilis requires both DnaA and

oriC. To our knowledge this is the first time that a specific DNA

replication initiation protein has been shown to play an essential

role in this regulatory system, and because DnaA is the earliest

acting initiation factor we propose that DnaA is the target for the

nutrient-mediated growth rate regulatory system. Critically

however, we show that changes in DnaA protein level are not

sufficient to account for nutrient-mediated growth rate regulation

of DNA replication initiation in B. subtilis. This is in contrast to

the generally accepted mechanism for control of bacterial DNA

replication initiation based on work using E. coli [8,9].

B. subtilis contains a bipartite origin that flanks the dnaA gene

(incA and incB regions containing the dnaA promoter lie 1.3 kb

upstream of the incC region which contains the DNA unwinding

element) [38]. When the expression of the dnaA-dnaN operon was

placed under the control of the inducible Pspac promoter in order

to test the effect of DnaA overexpression on DNA replication

initiation, a ,9kb plasmid was recombined upstream of dnaA by

single cross-over. Therefore, integration of this vector resulted in

the considerable displacement of the two origin regions from one

another without any significant consequence. It will be extremely

interesting to determine the maximum and minimum distances

that the inc regions can be moved, as well as ascertaining the role

of the upstream region in DNA replication initiation.

We have shown that neither of the known DnaA regulatory

proteins present during vegetative growth, Soj and YabA, are

required for nutrient-mediated growth rate regulation of DNA

replication initiation. We have also determined that the alarmone

(p)ppGpp is not required for this regulation, consistent with a

previous report that induction of the stringent response inhibits

DNA replication elongation but not initiation in B. subtilis

qPCR. The ori:ter ratios are plotted versus growth rate (error bars indicate the standard deviation of three technical replicates). Representative data are
shown from a single experiment; an independently performed replicate of the experiment is shown in Figure S6A. Wild-type (HM222), DoriC oriN+

(HM228). (B) Integration of oriN into the B. subtilis chromosome does not eliminate growth rate regulation of DNA replication initiation. Strains were
grown as in (A) and the overnight culture was diluted 1:100 into various media (succinate, glycerol, glycerol + amino acids, LB). Genomic DNA was
harvested from cells and marker frequency analysis was determined using qPCR. The ori:ter ratios are plotted versus growth rate (error bars indicate
the standard deviation of three technical replicates). Representative data are shown from a single experiment; an independently performed replicate
of the experiment is shown in Figure S6B. Wild-type (HM715), oriC+ oriN+ (HM949). (C) DnaA activity is required for growth rate regulation of DNA
replication initiation. Strains were grown as in (B). Genomic DNA was harvested from cells and marker frequency analysis was determined using qPCR.
The ori:ter ratios are plotted versus growth rate (error bars indicate the standard deviation of three technical replicates). Representative data are
shown from a single experiment; an independently performed replicate of the experiment is shown in Figure S6C. Wild-type (HM715), DnaAR264A

oriN+ (HM1122). (D) Measurement of DnaA protein levels at various growth rates in a DoriC oriN+ strain (HM950). Cultures were grown as described in
(B). Cells were lysed and DnaA protein was detected using Western blot analysis (FtsZ protein was likewise detected and used as a loading control).
For each culture media the average amount of DnaA (+/2 standard deviation) from at least three biological replicates was determined using
densitometry; values were normalized to LB. (E) Subcellular localization of DNA over a range of growth rates in the wild-type (HM715) and DoriC oriN+

(HM950) strains. Cells were grown as in (B) and the overnight culture was diluted 1:100 into various media (succinate, glycerol, or glucose + amino
acids). Samples were taken at an A600 of 0.3–0.5 at which point membranes and DNA were stained. Arrows indicate cells without DNA and asterisks
indicate space within the cell that does not contain DNA. Scale bar represents 3 mm.
doi:10.1371/journal.pgen.1004731.g004

Table 1. Genes manipulated to limit essential cellular processes.

Gene Protein Cellular Activity

ndh NADH dehydrogenase respiration

gapA glyceraldehyde-3-P dehydrogenase central carbon metabolism

pykA pyruvate kinase central carbon metabolism

pdhB pyruvate dehydrogenase (E1 b subunit) central carbon metabolism

fabHA b-ketoacyl-acyl carrier protein synthase III fatty acid synthesis

ltaS lipoteichoic acid synthase lipoteichoic acid synthesis

plsC acyl-ACP:1-acylglycerolphosphate acyltransferase phospholipid synthesis

pgsA phosphatidylglycerophosphate synthase phospholipid synthesis

rpsU ribosomal protein S21 protein synthesis

rplA ribosomal protein L1 protein synthesis

rplW ribosomal protein L23 protein synthesis

rpmJ ribosomal protein L36 protein synthesis

doi:10.1371/journal.pgen.1004731.t001
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[39,40]. This result marks an apparent distinction between the role

of (p)ppGpp in B. subtilis and in proteobacteria such as E. coli and

Caulobacter crescentus where (p)ppGpp has been shown to

regulate DNA replication initiation [41,42].

The use of genetic manipulations and small molecule inhibitors

presented here reinforce and extend previously observed connec-

tions for bacterial DNA replication with central carbon metabo-

lism [32,33] and with phospholipid synthesis [43,44]. In addition

our work identifies new links for B. subtilis DNA replication with

respiration, fatty acid synthesis, lipoteichoic acid synthesis, and

ribosome biosynthesis. The results indicate that growth rate

regulation of DNA replication in B. subtilis can be controlled

through either oriC-dependent, oriC-independent/DnaA-depen-

dent, or oriC-independent/DnaA-independent mechanisms (sum-

marized in Figure 7C). Based on these novel findings we propose

that multiple systems coordinate DNA replication with bacterial

cell growth, with distinct regulators responding to diverse

physiological and chemical changes. This model deviates from

the long-standing concept of a single universal cellular property

utilized to link bacterial DNA replication with cell growth [4].

Since nutrient-mediated growth rate regulation of DNA

replication initiation requires DnaA activity at oriC, this suggests

Figure 5. Analysis of oriC-dependent growth rate regulation through genetic targeting of essential cellular activities. Strains were
grown overnight at 37uC in LB medium; strains harbouring plasmids integrated into the genome by single-crossover were supplemented with
appropriate antibiotics and inducer (0.1 mM IPTG or 0.1% xylose). Overnight cultures were diluted 1:1000 into fresh LB medium and grown at 37uC
until they reached an A600 of 0.3–0.5; strains harbouring plasmids integrated by single-crossover were supplemented with appropriate antibiotics
either without or with the appropriate inducer (1 mM IPTG or 1% xylose). For datapoints ‘‘+’’ indicates the presence of either the wild-type gene
(when comparing with knockout mutants) or the inducer; ‘‘2’’ indicates the absence of either the gene (when comparing with wild-type) or the
inducer. Genomic DNA was harvested from cells and marker frequency analysis was determined using qPCR. The ori:ter ratios are plotted versus
growth rate and the percentage change in the ori:ter ratios comparing each deletion/depletion is indicated (error bars indicate the standard deviation
of three technical replicates). Representative data are shown from a single experiment; an independently performed replicate of the experiment is
shown in Figure S7. (A) Wild-type (HM715), Dndh (HM1318), DoriC oriN+ (HM957), Dndh DoriC oriN+ (HM1319); (B) Pspac-gapA (HM1208), Pspac-gapA
DoriC oriN+ (HM1221); (C) Cultures were supplemented with 0.2% sodium acetate. Wild-type (HM715), DpdhB (HM1248), DoriC oriN+ (HM950), DpdhB
DoriC oriN+ (HM1266); (D) Pspac-fabHA (HM964), Pspac-fabHA DoriC oriN+ (HM966); (E) Pxyl-plsC (HM1080), Pxyl-plsC DoriC oriN+ (HM1086); (F) Wild-type
(HM715), DltaS (HM1168), DoriC oriN+ (HM957), DltaS DoriC oriN+ (HM1244).
doi:10.1371/journal.pgen.1004731.g005
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that factors affecting DNA synthesis through an oriC-independent

mechanism (PykA, PgsA, and ribosomal proteins) are unlikely to

be responsible for the nutrient sensing system. We suspect that

nutrient-mediated regulation may be influenced by more than one

control system, thereby forming a robust network capable of

integrating information from multiple metabolic and cellular

sources.

We note that for deletion/depletion mutants regulating DNA

replication through oriC-dependent and oriC-independent/DnaA-

dependent mechanisms, ori:ter ratios either remained constant or

slightly increased in the DoriC and DdnaA strains, respectively

(Figures 5, 6D, S7, S8D). Because the average initiation frequency

of oriN appears to be growth rate independent (Figures 4A, 4C,

S6A, S6C), the measured ori:ter ratios of these strains indicates

that replication elongation speeds are either not being affected or

are slightly decreasing. Therefore, for both oriC-dependent and

oriC-independent/DnaA-dependent regulatory mechanisms, the

observed decrease in ori:ter ratios in the oriC+ strain most likely

reflects inhibition of DNA replication initiation. In contrast, for the

oriC-independent/DnaA-independent mutants where the ori:ter
ratio was decreased when DNA replication initiated from oriN,

this difference could be due to a change in DNA replication

elongation (although this would mean that the elongation speed

was increased).

Our current aim is to determine the molecular mechanisms

underlying each system that coordinates DNA replication with cell

growth. We hypothesize that the oriC-dependent regulatory

system targets DnaA activity at oriC. We speculate that the

oriC-independent/DnaA-dependent regulatory system could in-

fluence DNA replication initiation by affecting the abundance or

Figure 6. Analysis of oriC-independent growth rate regulation through genetic targeting of essential cellular activities. Strains were
grown and data presented as described for Figure 5, except that the depletion of PgsA required supplementation with 1 mM IPTG to overexpress the
xylose repressor. The ori:ter ratios are plotted versus growth rate and the percentage change in the ori:ter ratios comparing each deletion/depletion is
indicated (error bars indicate the standard deviation of three technical replicates). Representative data are shown from a single experiment; an
independently performed replicate of the experiment is shown in Figure S8. (A) Pspac-pykA (HM1176), Pspac-pykA DoriC oriN+ (HM1186); (B) Pxyl-pgsA
(HM1365), Pxyl-pgsA DoriC oriN+ (HM1374); (C) Wild-type (HM715), DrpsU (HM1150), DrplA (HM1151), DrplW (HM1152), DrpmJ (HM1154), DoriC oriN+

(HM950), DrpsU DoriC oriN+ (HM1156), DrplA DoriC oriN+ (HM1157), DrplW DoriC oriN+ (HM1158), DrpmJ DoriC oriN+ (HM1160). (D) Pspac-pykA
(HM1176), Pspac-pykA DdnaA oriN+ (HM1425); (E) Pxyl-pgsA (HM1365), Pxyl-pgsA DdnaA oriN+ (HM1433); (F) Wild-type (HM715), DrpsU (HM1150), DrplA
(HM1151), DrpmJ (HM1154), DdnaA oriN+ (HM1423), DrpsU DdnaA oriN+ (HM1429), DrplA DdnaA oriN+ (HM1430), DrpmJ DdnaA oriN+ (HM1432).
doi:10.1371/journal.pgen.1004731.g006
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activity of a downstream replication initiation factor. For example,

DnaA is also a transcription factor that is thought to directly

regulate the expression of.50 genes, including dnaB [20,45].

Alternatively, DnaA could act by titrating initiation factors away

from oriN. Lastly, in the case of the oriC-independent/

DnaA-independent regulatory system it needs to be established

whether DNA replication is affected at the step of initiation or

elongation, after which the role of appropriate candidate proteins

can be investigated.

Materials and Methods

Strains and plasmids
Strains are listed in Table S1. Plasmids are listed in Table S2

and Table S3.

Media and chemicals
Nutrient agar (NA; Oxoid) was used for routine selection and

maintenance of both B. subtilis and E. coli strains. For

experiments in B. subtilis cells were grown using a range of

media (using the following concentrations unless otherwise noted):

Luria-Bertani (LB) medium, Antibiotic 3 (PAB) medium, Brain-

Heart Infusion (Bacto), or defined minimal medium base (Spizizen

minimal salts supplemented with Fe-NH4-citrate (1 mg/ml),

MgSO4 (6 mM), CaCl2 (100 mM), MnSO4 (130 mM), ZnCl2
(1 mM), thiamine (2 mM)) supplemented with casein hydrolysate

(200 mg/ml) and/or various carbon sources (succinate (1%),

glycerol (0.5%), glucose (0.5%)). Supplements were added as

required: tryptophan (20 mg/ml), phenylalanine (40 mg/ml),

chloramphenicol (5 mg/ml), erythromycin (1 mg/ml), kanamycin

(2 mg/ml), spectinomycin (50 mg/ml), tetracycline (10 mg/ml),

zeocin (10 mg/ml). Unless otherwise stated all chemicals and

reagents were obtained from Sigma-Aldrich.

Marker frequency analysis
Sodium azide (0.5%; Sigma) was added to exponentially

growing cells to prevent further metabolism. Chromosomal

DNA was isolated using a DNeasy Blood and Tissue Kit (Qiagen).

The DNA replication origin (oriC) region was amplified using

primers 59-GAATTCCTTCAGGCCATTGA-39 and 59-

GATTTCTGGCGAATTGGAAG-39; the DNA replication ter-

minus (ter) region was amplified using primers 59-TCCA-

TATCCTCGCTCCTACG-39 and 59-ATTCTGCTGATGTG-

CAATGG-39. Either Rotor-Gene SYBR Green (Qiagen) or

GoTaq (Promega) qPCR mix was used for PCR reactions. Q-

PCR was performed in a Rotor-Gene Q Instrument (Qiagen). By

use of crossing points (CT) and PCR efficiency a relative

quantification analysis (DDCT) was performed using Rotor-Gene

Software version 2.0.2 (Qiagen) to determine the origin:terminus

Figure 7. Analysis of oriC-dependent and oriC-independent growth rate regulation through small molecule targeting of fatty acid
synthesis and protein synthesis. Strains were grown overnight at 37uC in LB medium. Overnight cultures were diluted 1:1000 into fresh LB
medium either without or with antibiotics (2 mg/ml cerulenin (A), 1 mg/ml chloramphenicol (B)) and grown at 37uC until they reached an A600 of 0.3–
0.5. For datapoints ‘‘+’’ indicates the presence of the small molecule inhibitor and ‘‘2’’ indicates the absence. Genomic DNA was harvested from cells
and marker frequency analysis was determined using qPCR. The ori:ter ratios are plotted versus growth rate and the percentage change in the ori:ter
ratios comparing each deletion/depletion is indicated (error bars indicate the standard deviation of three technical replicates). Representative data
are shown from a single experiment; an independently performed replicate of the experiment is shown in Figure S9. Wild-type (HM715), DoriC oriN+

(HM950), DdnaA oriN+ (HM1423). (C) Summary of growth rate control systems affecting DNA replication described in this report.
doi:10.1371/journal.pgen.1004731.g007
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(ori:ter) ratio of each sample. These results were normalized to the

ori:ter ratio of a DNA sample from B. subtilis spores which only

contain one chromosome and thus have an ori/ter ratio of 1.

Microscopy
To visualize cells during exponential growth starter cultures

were grown overnight and then diluted 1:100 into fresh medium

and allowed to achieve at least three doublings before observation.

Cells were mounted on ,1.2% agar pads (0.256minimal medium

base) and a 0.13–0.17 mm glass coverslip (VWR) was placed on

top. To visualize individual cells the cell membrane was stained

with either 2 mg/ml Nile Red (Sigma) or 0.4 mg/ml FM5-95

(Molecular Probes). To visualize nucleoids DNA was stained with

2 mg/ml 49-6-diamidino-2-phenylindole (DAPI) (Sigma). Micros-

copy was performed on an inverted epifluorescence microscope

(Nikon Ti) fitted with a Plan-Apochromat objective (Nikon DM

100x/1.40 Oil Ph3). Light was transmitted from a 300 Watt xenon

arc-lamp through a liquid light guide (Sutter Instruments) and

images were collected using a CoolSnap HQ2 cooled CCD

camera (Photometrics). All filters were Modified Magnetron ET

Sets from Chroma and details are available upon request. Digital

images were acquired and analysed using METAMORPH

software (version V.6.2r6). Analysis was performed using ImageJ

software: foci counting utilized the particle analysis plugin; cell

lengths and widths were measured using the ObjectJ plugin.

Western blot analysis
Proteins were separated by electrophoresis using a NuPAGE 4-

12% Bis-Tris gradient gel run in MES buffer (Life Technologies)

and transferred to a Hybond-P PVDF membrane (GE Healthcare)

using a semi-dry apparatus (Hoefer Scientific Instruments).

Proteins of interest were probed with polyclonal primary

antibodies and then detected with an anti-rabbit horseradish

peroxidase-linked secondary antibody using an ImageQuant LAS

4000 mini digital imaging system (GE Healthcare). Quantification

was determined by densitometry using Image J software. Figure

S3A shows that detection of DnaA, FtsZ and DnaN was within a

linear range.

Supporting Information

Figure S1 Culturing B. subtilis at different temperatures

generates a range of steady-state growth rates but does not affect

the frequency of DNA replication initiation. A wild-type strain

(HM715) was grown overnight at 23uC in LB. The culture was

diluted 1:100 into LB and incubated at different temperatures to

generate a range of steady-state growth rates until an A600 of 0.2-

0.3. Genomic DNA was harvested from cells and marker

frequency analysis was determined using qPCR. The ori:ter ratios

are plotted versus growth rate (error bars indicate the standard

deviation of three technical replicates). Representative data are

shown from a single experiment; an independently performed

replicate of the experiment is shown in Figure 1B.

(PDF)

Figure S2 Cell measurements as a function of nutrient-mediated

growth rate. (A) Measurement of replication origins per cell. An

array of ,25 tetO sites was inserted near the replication origin and

was visualized using TetR-GFP. Strain AK47 was grown

overnight at 37uC in minimal media supplemented with succinate

(2%), amino acids (0.2%), spectinomycin (50 mg/ml) and erythro-

mycin (1 mg/ml). Cultures were washed twice and diluted 1:100

into various chemically defined media supplemented with either

succinate (2%), glucose (1.5%), or glucose (1.5%) with amino acids

(200 mg/ml) and grown at 37uC until they reached an A600 of 0.3–

0.5. Samples were taken for microscopy and membranes were

stained. Scale bar represents 3 mm. (B) Quantification of the

number of origins per cell at different growth rates. The average

number of origins per cell is indicated above each histogram.

(C,E) Cell lengths were grouped according to the number of

origins, measurements were binned in 0.5 mm steps, and data

plotted as a percentage within each population. (D,F) The

average cell lengths and widths (+/2 standard deviation) were

grouped according to the number of origins per cell.

(PDF)

Figure S3 Western blot analysis of wild-type, oriN, and Pspac-

dnaA-dnaN strains. Strains were grown overnight at 37uC in LB

medium. Overnight cultures were diluted 1:1000 into fresh LB

medium and grown at 37uC until an A600 of 0.5-0.7 was attained.

Cells were lysed and proteins were detected using Western blot

analysis. (A) A two-fold dilution series of a cell lysate was used to

determine the linear range for each antibody. (B) The endogenous

dnaA-dnaN operon was placed under the control of the IPTG-

inducible promoter Pspac to generate a range of expression levels.

HM742 was supplemented with IPTG (400 mM) and erythromy-

cin. The cultures were diluted 1:100 into LB and grown at 37uC
until an A600 of 0.5–0.6; HM742 was supplemented with

erythromycin and a range of IPTG (800, 400, 200, 100,

50 mM). Cells were lysed and DnaN protein was detected using

Western blot analysis (FtsZ protein was likewise detected and used

as a loading control). The amount of DnaN was determined using

densitometry; values were normalized to wild-type. Wild-type

(HM222), Pspac-dnaA-dnaN (HM742). (C) Analysis of oriN
strains. Wild-type (HM715), oriC+ oriN+ (HM949), DoriC oriN+

(HM957), DdnaA oriN+ (HM1423), dnaAR264A oriN+ (HM1122).

(PDF)

Figure S4 Changes in DnaA protein level are not sufficient to

account for nutrient-mediated growth rate regulation of DNA

replication initiation in B. subtilis. (A) The endogenous dnaA gene

was placed under the control of the IPTG-inducible promoter

Pspac to generate a range of DnaA protein levels. Strains were

grown overnight at 37uC in minimal media supplemented with

succinate and amino acids (20 mg/ml); IPTG (400 mM) and

erythromycin was added to HM742. The cultures were diluted

1:100 into various media (glycerol, glycerol + amino acids, LB) to

generate a range of steady-state growth rates and grown at 37uC
until an A600 of 0.5–0.6; in each medium HM742 was

supplemented with erythromycin and a range of IPTG (800,

400, 200, 100, 50 mM). Genomic DNA was harvested from cells

and marker frequency analysis was determined using qPCR. For

each growth media, the ori:ter ratios are plotted versus IPTG

concentration (error bars indicate the standard deviation of three

technical replicates). Representative data are shown from a single

experiment; an independently performed replicate of the exper-

iment is shown in Figure 2B. Wild-type (HM222), Pspac-dnaA
(HM742). (B) To strongly overexpress DnaA the endogenous

dnaA gene was placed under the control of Pspac and an ectopic

copy of dnaA was integrated at the amyE locus under the control

of the xylose inducible promoter Pxyl (HM745). The strain was

grown overnight at 37uC in minimal media supplemented with

glycerol, amino acids (20 mg/ml), IPTG (800 mM), and erythro-

mycin. The culture was diluted 1:100 into media containing IPTG

(800 mM), erythromycin, either glycerol minimal media supple-

mented with a range of xylose (1, 0.5, 0.25, 0.125, 0.063, 0.031,

0.016, 0.008, 0.004, 0%) or LB, and grown at 37uC until an A600

of 0.2–0.4. Genomic DNA was harvested from cells and marker

frequency analysis was determined using qPCR. For each growth

media, the ori:ter ratios are plotted versus xylose concentration
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(error bars indicate the standard deviation of three technical

replicates). Representative data are shown from a single

experiment; an independently performed replicate of the exper-

iment is shown in Figure 2D. (C) To determine whether

overexpression of DnaA specifically inhibits DNA replication

initiation from oriC, the endogenous dnaA gene was placed under

the control of Pspac, an ectopic copy of dnaA was integrated at the

amyE locus under the control of the xylose inducible promoter

Pxyl, oriC was inactivated by partial deletion (DincAB), and DNA

replication was driven by oriN (HM1467). The strain was grown

overnight at 37uC in minimal media supplemented with glycerol,

amino acids (20 mg/ml), IPTG (800 mM), and erythromycin. The

culture was diluted 1:100 into glycerol minimal media containing

IPTG (800 mM), erythromycin, supplemented with a range of

xylose (1, 0.5, 0.25, 0.125, 0.063, 0.031, 0.016, 0.008, 0.004, 0%),

and grown at 37uC until an A600 of 0.2–0.4. Genomic DNA was

harvested from cells and marker frequency analysis was deter-

mined using qPCR. The ori:ter ratios are plotted versus xylose

concentration (error bars indicate the standard deviation of three

technical replicates).

(PDF)

Figure S5 Nutrient-mediated growth rate regulation of DNA

replication initiation is independent of Soj, YabA, and (p)ppGpp.

(A) Growth rate regulation of DNA replication initiation is

maintained in either Dsoj or DyabA mutants. Strains were grown

overnight at 37uC in minimal media supplemented with succinate

and amino acids (20 mg/ml). The culture was diluted 1:100 into

various media (succinate, glycerol, glycerol + amino acids, LB) to

generate a range of steady-state growth rates and incubated at

37uC until an A600 of 0.3–0.4. Genomic DNA was harvested from

cells and marker frequency analysis was determined using qPCR.

The ori:ter ratios are plotted versus growth rate (error bars

indicate the standard deviation of three technical replicates).

Representative data are shown from a single experiment; an

independently performed replicate of the experiment is shown in

Figure 3A. Wild-type (HM222), Dsoj (HM227), DyabA (HM739).

(B) Growth rate regulation of DNA replication initiation is

maintained in a Dsoj DyabA double mutant. Cells were grown as in

(A). Genomic DNA was harvested from cells and marker

frequency analysis was determined using qPCR. The ori:ter ratios

are plotted versus growth rate (error bars indicate the standard

deviation of three technical replicates). Representative data are

shown from a single experiment; an independently performed

replicate of the experiment is shown in Figure 3A. Wild-type

(HM222), Dsoj DyabA (HM741). (C) Growth rate regulation of

DNA replication initiation does not require (p)ppGpp. Strains

were grown overnight at 37uC in minimal media supplemented

with succinate and amino acids (200 mg/ml). The culture was

diluted 1:100 into various media (succinate + amino acids, glycerol

+ amino acids, LB) to generate a range of steady-state growth rates

and incubated at 37uC until an A600 of 0.2–0.6. Genomic DNA

was harvested from cells and marker frequency analysis was

determined using qPCR. The ori:ter ratios are plotted versus

growth rate (error bars indicate the standard deviation of three

technical replicates). Representative data are shown from a single

experiment; an independently performed experiment is shown in

Figure 3B. Wild-type (PY79), D(p)ppGpp (bSS186).

(PDF)

Figure S6 Nutrient-mediated growth rate regulation of DNA

replication initiation requires oriC and DnaA. (A) oriC is required

for growth rate regulation of DNA replication initiation. Strains

were grown overnight at 37uC in minimal media supplemented

with succinate and amino acids (20 mg/ml). The culture was

diluted 1:100 into various media (succinate, glycerol, glycerol +
amino acids, LB) to generate a range of steady-state growth rates

and incubated at 37uC until an A600 of 0.3–0.4. Genomic DNA

was harvested from cells and marker frequency analysis was

determined using qPCR. The ori:ter ratios are plotted versus

growth rate (error bars indicate the standard deviation of three

technical replicates). Representative data are shown from a single

experiment; an independently performed replicate of the exper-

iment is shown in Figure 4A. Wild-type (HM715), DoriC oriN+

(HM950). (B) Integration of oriN into the B. subtilis chromosome

does not eliminate growth rate regulation of DNA replication

initiation. Strains were grown as in (A). Genomic DNA was

harvested from cells and marker frequency analysis was deter-

mined using qPCR. The ori:ter ratios are plotted versus growth

rate (error bars indicate the standard deviation of three technical

replicates). Representative data are shown from a single

experiment; an independently performed replicate of the exper-

iment is shown in Figure 4B. Wild-type (HM715), oriC+ oriN+

(HM949). (C) DnaA activity is required for growth rate regulation

of DNA replication initiation. Strains were grown as in (B).

Genomic DNA was harvested from cells and marker frequency

analysis was determined using qPCR. The ori:ter ratios are plotted

versus growth rate (error bars indicate the standard deviation of

three technical replicates). Representative data are shown from a

single experiment; an independently performed replicate of the

experiment is shown in Figure 4C. Wild-type (HM715),

DnaAR264A oriN+ (HM1122).

(PDF)

Figure S7 Analysis of oriC-dependent growth rate regulation

through genetic targeting of essential cellular activities. Strains

were grown overnight at 37uC in LB medium; strains harbouring

plasmids integrated into the genome by single-crossover were

supplemented with appropriate antibiotics and inducer (0.1 mM

IPTG or 0.1% xylose). Overnight cultures were diluted 1:1000

into fresh LB medium and grown at 37uC until they reached an

A600 of 0.3–0.5; strains harbouring plasmids integrated by single-

crossover were supplemented with appropriate antibiotics either

without or with the appropriate inducer (1 mM IPTG or 1%

xylose). For datapoints ‘‘+’’ indicates the presence of either the

wild-type gene (when comparing with knockout mutants) or the

inducer; ‘‘2’’ indicates the absence of either the gene (when

comparing with wild-type) or the inducer. Genomic DNA was

harvested from cells and marker frequency analysis was deter-

mined using qPCR. The ori:ter ratios are plotted versus growth

rate and the percentage change in the ori:ter ratios comparing

each deletion/depletion is indicated (error bars indicate the

standard deviation of three technical replicates). Representative

data are shown from a single experiment; an independently

performed replicate of the experiment is shown in Figure 5. (A)

Wild-type (HM715), Dndh (HM1318), DoriC oriN+ (HM957),

Dndh DoriC oriN+ (HM1319); (B) Pspac-gapA (HM1208), Pspac-

gapA DoriC oriN+ (HM1221); (C) Cultures were supplemented

with 0.2% sodium acetate. Wild-type (HM715), DpdhB
(HM1248), DoriC oriN+ (HM950), DpdhB DoriC oriN+

(HM1266); (D) Pspac-fabHA (HM964), Pspac-fabHA DoriC oriN+

(HM966); (E) Pxyl-plsC (HM1364), Pxyl-plsC DoriC oriN+

(HM1373); (F) Wild-type (HM715), DltaS (HM1168), DoriC
oriN+ (HM957), DltaS DoriC oriN+ (HM1244).

(PDF)

Figure S8 Analysis of oriC-independent growth rate regulation

through genetic targeting of essential cellular activities. Strains

were grown and data presented as described for Figure S7, except
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that the depletion of PgsA required supplementation with 1 mM

IPTG to overexpress the xylose repressor. Genomic DNA was

harvested from cells and marker frequency analysis was deter-

mined using qPCR. The ori:ter ratios are plotted versus growth

rate and the percentage change in the ori:ter ratios comparing

each deletion/depletion is indicated (error bars indicate the

standard deviation of three technical replicates). Representative

data are shown from a single experiment; an independently

performed replicate of the experiment is shown in Figure 6. (A)
Pspac-pykA (HM1176), Pspac-pykA DoriC oriN+ (HM1186); (B)
Pxyl-pgsA (HM1365), Pxyl-pgsA DoriC oriN+ (HM1374); (C) Wild-

type (HM715), DrpsU (HM1150), DrplA (HM1151), DrplW
(HM1152), DrpmJ (HM1154), DoriC oriN+ (HM950), DrpsU
DoriC oriN+ (HM1156), DrplA DoriC oriN+ (HM1157), DrplW
DoriC oriN+ (HM1158), DrpmJ DoriC oriN+ (HM1160). (D) Pspac-

pykA (HM1176), Pspac-pykA DdnaA oriN+ (HM1425); (E) Pxyl-

pgsA (HM1365), Pxyl-pgsA DdnaA oriN+ (HM1433); (F) Wild-type

(HM715), DrpsU (HM1150), DrplA (HM1151), DrpmJ (HM1154),

DdnaA oriN+ (HM1423), DrpsU DdnaA oriN+ (HM1429), DrplA
DdnaA oriN+ (HM1430), DrpmJ DdnaA oriN+ (HM1432).

(PDF)

Figure S9 Analysis of oriC-dependent and oriC-independent

growth rate regulation through small molecule targeting of fatty

acid synthesis and protein synthesis. Strains were grown overnight

at 37uC in LB medium. Overnight cultures were diluted 1:1000

into fresh LB medium either without or with antibiotics (2 mg/ml

cerulenin (A), 1 mg/ml chloramphenicol (B)) and grown at 37uC
until they reached an A600 of 0.3-0.5. For datapoints ‘‘+’’ indicates

the presence of the small molecule inhibitor and ‘‘-’’ indicates the

absence. Genomic DNA was harvested from cells and marker

frequency analysis was determined using qPCR. The ori:ter ratios

are plotted versus growth rate and the percentage change in the

ori:ter ratios comparing each deletion/depletion is indicated (error

bars indicate the standard deviation of three technical replicates).

Representative data are shown from a single experiment;

independently performed replicates of the experiments are shown

in Figures 7A–B. Wild-type (HM715), DoriC oriN+ (HM950),

DdnaA oriN+ (HM1423).

(PDF)

Table S1 Strain list.

(PDF)

Table S2 Plasmid list.

(PDF)

Table S3 Description of plasmids constructed and primers used.

(PDF)

Text S1 Supplementary references.

(PDF)
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