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Abstract

Quantifying the proportion of polymorphic mutations that are deleterious or neutral is of fundamental importance to our
understanding of evolution, disease genetics and the maintenance of variation genome-wide. Here, we develop an
approximation to the distribution of fitness effects (DFE) of segregating single-nucleotide mutations in humans. Unlike
previous methods, we do not assume that synonymous mutations are neutral or not strongly selected, and we do not rely
on fitting the DFE of all new nonsynonymous mutations to a single probability distribution, which is poorly motivated on a
biological level. We rely on a previously developed method that utilizes a variety of published annotations (including
conservation scores, protein deleteriousness estimates and regulatory data) to score all mutations in the human genome
based on how likely they are to be affected by negative selection, controlling for mutation rate. We map this and other
conservation scores to a scale of fitness coefficients via maximum likelihood using diffusion theory and a Poisson random
field model on SNP data. Our method serves to approximate the deleterious DFE of mutations that are segregating,
regardless of their genomic consequence. We can then compare the proportion of mutations that are negatively selected or
neutral across various categories, including different types of regulatory sites. We observe that the distribution of intergenic
polymorphisms is highly peaked at neutrality, while the distribution of nonsynonymous polymorphisms has a second peak
at s&{10{4. Other types of polymorphisms have shapes that fall roughly in between these two. We find that
transcriptional start sites, strong CTCF-enriched elements and enhancers are the regulatory categories with the largest
proportion of deleterious polymorphisms.
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Introduction

Genetic variation within species is shaped by a variety of

evolutionary processes, including mutation, demography, and

natural selection. With the advent of whole-genome sequencing,

we can make unprecedented inferences about these and other

processes by analyzing population genomic data. An important goal

is to understand the extent to which segregating genetic variants are

impacted by natural selection, and to quantify the intensity of

natural selection acting genome-wide. Understanding the preva-

lence of different modes of selection on a genomic scale has wide-

ranging implications across evolutionary and medical genetics. For

instance, genome-wide association studies (GWAS) are searching

for mutations associated with disease in large samples of humans

[1]. Because mutations associated with disease are a priori likely to

be deleterious, quantifying the portion of mutations that are

deleterious along with their average effects could have significant

implications for the design and interpretation of GWAS. Moreover,

the ENCODE project has recently claimed that much of the

genome is involved in some form of functional activity [2,3].

However, the extent to which molecular signals identified by this

project are actually produced by biological processes affecting

fitness has been disputed [4,5]. Indeed, comparative genomics

studies suggest that only a small proportion of the human genome

(5–10%) is under purifying selection, based on signals detectable on

phylogenetic timescales [6–8]. Quantifying the DFE in noncoding

regions is a first step toward understanding the fitness implications of

functional activity at the genomic level.

Traditionally, studies have sought to estimate the distribution of

fitness effects (DFE) for nonsynonymous mutations by using

summary statistics based on the number of polymorphisms and

substitutions [9–11] and/or the full frequency spectrum [12–14].

These studies typically assumed that synonymous variation is

neutral or under weak selection. Many of these analyses suggest

that while a large proportion of nonsynonymous mutations are

nearly neutral, there is also a significant probability that an amino

acid changing mutation will be strongly deleterious. While these

studies were limited to analysis of protein-coding genes, recent

work has focused on quantifying the DFE in regulatory regions,

including short interspersed genomic elements such as enhancers

[15,16] and cis-regulatory regions [17]. Reviews of these and other

approaches can be found in ref. [18,19].
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There are several obstacles to quantifying the DFE of new or

segregating mutations genome-wide. First, inferences about the

DFE are confounded by demography [20]. For example, a high

proportion of low frequency derived alleles is a signature of

negative selection, but can also be caused by recent population

growth [21]. Hence, a well-supported demographic model must be

used to appropriately control for population history when inferring

the DFE. Second, most current methods rely on dividing up

polymorphisms into either putatively selected sites or putatively

neutral (or less selected) sites (for example, nonsynonymous and

synonymous sites, respectively). These studies have relied on fitting

a demographic model to the neutral class of sites and then fitting

the DFE of new mutations to a probability distribution, typically

an exponential or gamma distribution [9,13] to the class of sites

that are putatively under selection (e.g. nonsynonymous sites).

While flexible, these distributions may miss some important

features of the DFE [22]. For example, mutation accumulation

experiments suggest that the DFE may be bimodal for at least

some species, with most mutations either having nearly neutral or

strongly deleterious effects, and very few mutations falling in

between [23,24]. Thus, assuming two classes of sites may not serve

to capture all the relevant information about the DFE (but see [25]

for an example of fitting a multimodal DFE to population genetic

data and [22,26] for nonparametric approaches to estimating the

DFE of new amino-acid changing mutations). Finally, previous

studies have been restricted to analyzing specific subclasses of

mutations (e.g. nonsynonymous, enhancers, etc.) because until

recently, no single metric existed that could serve to compare the

disruptive potential of any type of variant, regardless of its genomic

consequence.

Recently, Kircher et al. [27] developed a method to synthesize a

large number of annotations into a single score to predict the

pathogenicity or disruptive potential of any mutation in the

genome. It is based on an analysis comparing real and simulated

changes that occurred in the human lineage since the human-

chimpanzee ancestor, and that are now fixed in present-day

humans. The method relies on the realistic assumption that the set

of real changes is depleted of deleterious variation due to the

action of negative selection, which has pruned away disruptive

variants, while the simulated set is not depleted of such variation.

A support vector machine (SVM) was trained to distinguish the

real from the simulated changes using a kernel of 63 annotations

(including conservation scores, regulatory data and protein

deleteriousness scores), and then used to assign a score (C-score)

to all possible single-nucleotide changes in the human genome,

controlling for local variation in mutation rates. These C-scores

are meant to be predictors of how disruptive a given change may

be, and are comparable across all types of sites (nonsynonymous,

synonymous, regulatory, intronic or intergenic). Thus, they allow

for a strict ranking of predicted functional disruption for mutations

that may not be otherwise comparable. C-scores are PHRED

scaled, with larger values corresponding to more disruptive effects.

Importantly, human-specific genetic variation patterns are not

used as input to train the C-score SVM. In this work, we make use

of the C-scores to provide a fine-grained stratification of the

deleteriousness of variants segregating in modern human popula-

tions. We take advantage of the Poisson random field model

[28,29] with a realistic model of human demographic history to fit

a maximum likelihood selection coefficient for each C-score,

creating a mapping from C-scores to selection coefficients.

Results

A mapping from C-scores to selection coefficients
To map C-scores to selective coefficients, we obtained allele

frequency information from 9 Yoruba (YRI) individuals (18

haploid sequences) sequenced to high-coverage using whole-

genome shotgun sequencing as part of a dataset produced by

Complete Genomics (CG) [30]. We removed sites that had a Duke

Uniqueness 20 bp-mapability score ,1 (downloaded from the

UCSC Genome Browser, [31]), to avoid potential errors due to

mismapping or miscalling in regions of the genome that are not

uniquely mapable.

When inferring the DFE, we focused only on models of neutral

evolution and negative selection, because C-scores are uninfor-

mative about adaptive vs. deleterious disruption (i.e. a high C-

score could either reflect a highly deleterious change or a highly

adaptive change). Additionally, because we are using polymor-

phism data only, positive selection should contribute little to the

site-frequency spectrum [32].

We first binned polymorphisms into C-scores rounded to the

nearest integer and computed the site frequency spectrum for each

bin (Figure S1). We then fit the lowest possible C-score (C = 0),

presumed to be neutral, to different models of demographic

history. We computed the likelihood of the SFS in this bin for a

constant population size model, a range of exponential growth

models, the model inferred by Tennessen et al. [33] and the model

inferred by Harris and Nielsen [34] from the distribution of tracts

of identity by state (IBS) (Figure S2), and used an EM algorithm to

correct for ancestral state misidentification (Figure S3, see

Materials and Methods). We find that a model of exponential

growth at population-scaled rate = 1 for 13,000 generations is the

best fit to the corrected SFS, although the Tennessen model is

almost as good a fit (Figure S2).

Using the best-fitting demography, we next fit a range of models

with different selection coefficients to the EM-corrected site

frequency spectrum for each C-score bin, using maximum

likelihood (Figure 1.A) (see Methods). We restricted to C#40,

because very few sites have larger C-scores, and hence estimates of

the selection coefficients for those C-scores are unreliable. We

tested the robustness of the mappings to different levels of

background selection, by partitioning the data into deciles of

Author Summary

The relative frequencies of polymorphic mutations that are
deleterious, nearly neutral and neutral is traditionally
called the distribution of fitness effects (DFE). Obtaining
an accurate approximation to this distribution in humans
can help us understand the nature of disease and the
mechanisms by which variation is maintained in the
genome. Previous methods to approximate this distribu-
tion have relied on fitting the DFE of new mutations to a
single probability distribution, like a normal or an
exponential distribution. Generally, these methods also
assume that a particular category of mutations, like
synonymous changes, can be assumed to be neutral or
nearly neutral. Here, we provide a novel method designed
to reflect the strength of negative selection operating on
any segregating site in the human genome. We use a
maximum likelihood mapping approach to fit these scores
to a scale of neutral and negative fitness coefficients.
Finally, we compare the shape of the DFEs we obtain from
this mapping for different types of functional categories.
We observe the distribution of polymorphisms has a
strong peak at neutrality, as well as a second peak of
deleterious effects when restricting to nonsynonymous
polymorphisms.

Fitness Distribution across Functional Categories
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B-scores [35] and re-computing the C-to-s mapping for each

decile. We observe that the mapping is generally robust to

background selection, with substantial differences only observed at

the lowest two B-score deciles, which correspond to high

background selection (Figure S4). For this reason, and so as to

obtain reliable DFEs at exonic sites (where background selection is

generally higher than in the rest of the genome), we also performed

a neutral demographic fitting and a C-to-s mapping while

restricting only to sites in the exome (Figure 1.C). This mapping

has a steeper decline than the genomic mapping, reflecting

patterns of background selection which are not fully controlled by

C-scores but that affect the SFS. We therefore show estimated

DFEs using both the genome-wide and the exome-wide fittings

below. After removing the C-score bins that best fit the neutral

model, we fit a smoothing spline with 20 degrees of freedom to the

remaining C-scores, so as to produce a continuous mapping of

C-scores to selection coefficients (Figure 1.A).

We were concerned that our binning-based mapping would

miss important features about the distribution of coefficients within

each bin. To address this, we also fitted individual gamma

distributions of selection coefficients to each of the bins. We show

the mean, standard deviation (SD) and ancestral misidentification

rate of each gamma fitting in Figure S3. The shape of the fitted

gammas vary from an L-shape (Mean/SD ,1) at low C bins, to a

shape resembling a skewed normal distribution at intermediate C

bins (Mean/SD.1) to a shape resembling an exponential

distribution at high C bins (Mean/SD<1) (Figure 1.D). We

performed a likelihood ratio test comparing the gamma model to

the single-coefficient model, and find that only 4 out of the 40 bins

(containing only 0.5% of all polymorphisms and 4.7% of

nonsynonymous polymorphisms) are significantly supportive of

the gamma model (Figure 1.E). A chi-squared test of the fit to the

data shows both models perform similarly well, though both result

in significant chi-squared scores at low C-score bins when using

the genome-wide data (Figure 1.F). This also occurs if we use the

human demography model from [33] (Figure S6). We attribute

this to the large amount of data present in those bins as well as

complex details of demographic history that affect neutral sites but

Figure 1. Mapping of C-scores to selection coefficients. A) We first fit a single coefficient to each bin using data from all autosomes in the
genome. Red dots represent the maximum likelihood selection coefficient corresponding to each C-score bin. The blue line is a smooth spline fitted
to the discrete mappings of C-scores to log-scaled selection coefficients after excluding the neutral bins (degrees of freedom = 20). The grey shade is
a 95% confidence interval obtained from bootstrapping the data 100 times in each bin. B) To verify the shape of the mapping was not a result of the
number of sites in each bin, we randomized the C-score labels across polymorphisms, and recomputed the mapping. C) To account for exonic
patterns of conservation and background selection that may not have been captured by C-scores, we computed a mapping based solely on exonic
sites. D) We fitted gamma distributions of selection coefficients to each bin, and computed the mean divided by the standard deviation of each
distribution, which is indicative of its shape (see Results). E) To test whether the gamma distributions were a significantly better fit than the single-
coefficient mapping, we computed log-likelihood ratio statistics of the two models at each bin. The black line denotes the Bonferroni-corrected
significance cutoff. F) To test how well we were fitting the data at each bin, we computed chi-squared statistics of the fitted SFS to the observed SFS
at each bin. The black line denotes the Bonferroni-corrected significance cutoff.
doi:10.1371/journal.pgen.1004697.g001
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that we did not model in our neutral fitting. In contrast, when

mapping using only the exome, almost all bins have non-

significant statistics, suggesting that selection dominates over

demography in these regions. Based on these results, we decided

to use the smoothed single-coefficient fitting for estimating the

DFE in most downstream analyses (Figure 2), although we may be

missing a small proportion of within-bin variability. Additionally,

we show the inferred DFE of each functional class obtained from

the gamma-fitted mapping in Figure S5.

We aimed to test the robustness of the selection coefficient

estimates within each bin. We were specifically concerned about

highly deleterious bins, which are composed of a smaller number

of segregating sites than neutral or nearly neutral bins, and could

produce unstable or biased estimates. We obtained bootstrapped

confidence intervals for each bin and observe that the mappings

are relatively stable up to C = 35 (Figure 1.A). As expected, the

standard deviation of the bootstrap estimates is strongly negatively

correlated with the sample-size per bin (Figure S7, Pearson

Figure 2. Distribution of fitness effects among YRI polymorphisms in the Complete Genomics dataset, partitioned by the genomic
consequence of the mutated site. The right panels show a zoomed-in version of the distributions in the left panels, after removing neutral
polymorphisms and log-scaling the x-axis. A) DFE obtained from the genome-wide mapping. B) Zoomed-in version of panel A. C) DFE obtained from
the exome-wide mapping. D) Zoomed-in version of panel C. E) DFEs for exonic sites (nonsynonymous, synonymous, splice sites) obtained from the
exome-wide mapping and DFEs for non-exonic sites (intergenic, UTR, regulatory) obtained from the genome-wide mapping. F) Zoomed-in version of
panel E. Consequences were determined using the Ensembl Variant Effect Predictor (v.2.5). Codon and degeneracy information was obtained from
snpEff. If more than one consequence existed for a given SNP, that SNP was assigned to the most severe of the predicted categories, following the
VEP’s hierarchy of consequences. NonSyn = nonsynonymous. Syn = synonymous. Syn to unpref. codon = synonymous change from a preferred to
an unpreferred codon. Syn to pref. codon = synonymous change from an unpreferred to a preferred codon. Syn no pref. = synonymous change
from an unpreferred codon to a codon that is also unpreferred. Splice = splice site.
doi:10.1371/journal.pgen.1004697.g002

Fitness Distribution across Functional Categories
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correlation coefficient = 20.89). Thus, most of the increase in the

width of the confidence intervals observed at higher C-score bins

can be explained by the small number of polymorphisms available

in those bins, and is likely not the result of other unaccounted

processes, such as positive selection, operating exclusively on

highly scored polymorphisms. To verify that our mapping was not

an artifact of the different number of C-scores within each bin, we

also performed 100 randomizations of the C-score assignments to

each SNP in the genome. For each randomization, we re-

computed the C-to-s mapping. When doing so, the bootstrap

confidence intervals increase in size with increasing C scores, but

the mapping remains flat, as expected (Figure 1.B).

Further, we verified that the mapping did not change

considerably when filtering for sites in regions with low CpG

density (,0.05), defined as the proportion of CpG dinucleotides in

a window of +/2 75 bp around the site [27] (Figure S8.A). This is

expected, as the C-score model accounts for differential mutation

rates at CpG sites and the resulting scores are generally robust to

them [27]. As before, the gamma model is a significantly better fit

than the single-coefficient model at only 4 out of the 40 bins

(Figure S8.B).

Additionally, we re-mapped the scores using a constant-size

model, and verified that the mapping does not change consider-

ably if we assume a different demographic history than the best fit

(Figure S9). The mappings are highly similar in shape, with the

exception that, because the constant-size model is depleted of

singletons relative to the best-fit model, it takes more bins to reach

an SFS that is deleterious enough to map to s=0, and so more C-

scores map to s = 0.

To test the dependence of our mapping on the choice of score

used to estimate selection coefficients, we performed the same

fitting procedure on a variety of other conservation and

deleteriousness scores (see Methods). We note, however, that all

of these scores are included as input in the C-score SVM. Figure

S10 shows that the shape of the mapping is fairly consistent across

different choices of scores, except for highly deleterious bins, which

contain very few sites. When comparing different categories of sites

in the Results, we show their distribution of selection coefficients

obtained from the C-score mapping, as this score has been shown

to be a better correlate to functional disruption than all the other

scores mentioned above, and also controls for mutation rate

variation across the genome, while other scores do not [27].

Additionally, we plotted the mapped density of selection coeffi-

cients for each functional category, using each of the other scores

(with smoothing bandwidth = 0.000005 in Figure S11, 0.0000025

in Figure 3 and 0.000001 in Figure S12). We observe that, while

all scores easily distinguish genic sites, PhastCons scores have

difficulty distinguishing between synonymous and nonsynonymous

sites, which we believe is due to PhastCons scores being regional,

rather than position-specific scores. Additionally, while bimodality

at nonsynonymous sites is most prominent when using C-scores, it

also is apparent in other position-specific scores when plotting the

Figure 3. Distribution of fitness effects at different classes of polymorphisms in Yoruba, using different types of conservation
scores for mapping. A) C-Scores. B) Primate PhastCons scores. C) Mammal PhastCons scores. D) Vertebrate PhastCons scores. E) Primate PhyloP
scores. F) Mammal PhyloP scores. G) Vertebrate PhyloP scores. H) Gerp S scores. We attempted to equalize the range of all scores by converting each
score to –log10(p) where p is the probability of observing a change as or more disruptive/conserved (based on that particular score scale) among all
polymorphic YRI sites. We note that this is different from the natural PHRED scale of C-scores (where p is the the probability of observing a score as or
more disruptive among all possible, but not necessarily realized, mutations in the human genome), and so we also re-scaled the C-scores to produce
a fair comparison. We then repeated the maximum likelihood mapping for each PHRED-scaled score in bins of 0.25 units (e.g. 0–0.125, 0.125–0.375,
0.375–0.625, etc). We only mapped sites with PHRED-scaled scores #5 (regardless of the score), because the mappings become erratic for higher
values, due to the small number of sites per bin (Figure S10).
doi:10.1371/journal.pgen.1004697.g003
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density with a fine smoothing bandwidth. Below, we focus on the

DFE obtained from C-scores, but draw comparisons with other

DFEs to verify the robustness of particular patterns across

annotations.

The distribution of fitness effects of segregating
mutations

Using the C-score-to-selection coefficient mapping, we obtained

the DFE of segregating polymorphisms in Yoruba individuals.

This distribution is highly peaked when all polymorphisms are

considered (Figure 2, black dashed line), with a large proportion of

neutral changes and a long tail of deleterious mutations, as has

been observed before when estimating the DFE of coding

sequences [9,11–13,20]. Interestingly, we observe a pronounced

drop in frequency for values of sv{10{4. We note that this is not

due to our capping our mapping at C~40 as the selection

coefficients we are able to map are of a greater magnitude than

this drop (Figure 1, S13).

We partitioned the data by the genomic consequence of the

polymorphisms, using the Ensembl Variant Effect Predictor (v.2.5)

[36]. Some classes exhibit a peak of highly deleterious changes for

sv{10{5. This peak results in a bimodal distribution that is

especially pronounced for nonsynonymous sites (Figure 2, top row,

red line), and is almost non-existent for intergenic sites (Figure 2,

top row, pink line). Other types of polymorphisms—like splice site,

synonymous, 39 UTR, 59 UTR and regulatory mutations—have

less deleterious peaks than the one observed at nonsynonymous

polymorphisms (Figure 2, top row). The C-to-s mapping comput-

ed from all genome-wide sites differs from the C-to-s mapping

computed from exonic sites only (Figure 1.C), which is likely due

to C-scores not being able to fully account for differences in

conservation and background selection in the exome (Figure S4).

To correct for this, we also computed DFEs obtained from the

exome mapping (Figure 2, middle row). Here, bimodality is

weaker (though still present) at putatively functional sites. Finally,

we plotted a ‘‘hybrid’’ set of DFEs where we show DFEs for exonic

sites (nonsynonymous, synonymous, splice sites) computed from

the exome-wide mapping and DFEs for non-exonic sites (UTR,

regulatory, intergenic) computed from the genome-wide mapping

(Figure 2, bottom row).

We can compare the selection coefficient distributions to the

distributions of unmapped C-scores (Figure S13) which are much

less tightly peaked at intermediate C-score values and do not show

a sharp decrease in density for high values, as does the s

distribution in Figure 2. We show various statistics calculated on

each of the selection coefficient distributions in Table 1 with the

genome-wide mapping and in Table S1 with the exome-wide

mapping.

Next, we partitioned the data by whether the polymorphisms

were found in the GWAS database [37] or not (Figure S14,

Tables 1, S1). While we observe a second deleterious peak among

the GWAS SNPs as well, these SNPs seem to be highly enriched

for neutral polymorphisms.

Finally, we classified polymorphisms by different regulatory

categories. We used two regulatory tracks. First, we partitioned

the genome by regulatory regions identified by RegulomeDB

[38], which predicts regulatory activity in noncoding regions

based on different types of experimental evidence (Figure S15,

Tables 1, S1). Second, we used the Segway regulatory segment

tracks [39], which are the product of an unsupervised pattern

discovery algorithm that serves to identify and label regulatory

regions along the genome, including genic regions (Figure 4,

Tables 1, S1).

Discussion

The distribution of fitness effects (DFE) describes the proportion

of mutations with given selection coefficients. Knowledge of the

DFE has profound implications for our understanding of evolution

and health. We infer a highly peaked distribution for all

polymorphisms, with a drop in density at s&{10{4, which

may be the cutoff between weakly deleterious mutations that

segregate in human populations and highly deleterious mutations

that are easily pruned away by negative selection.

Our inferred non-synonymous distribution is bimodal and looks

very similar to the one obtained for nonsynonymous mutations in

Drosophila in ref. [11], with a peak at neutrality and another peak

at s&{10{4. Several experimental studies have also shown that

non-synonymous non-lethal mutations tend to have a multimodal

DFE in model organisms [40,41] (see ref. [18] for a comprehensive

review). We note that it is impossible to obtain such kinds of

distributions using a gamma or lognormal probability distribution

unless one approximates bimodality by assuming a second,

separate class of nonsynonymous mutations that are completely

neutral and do not follow the best-fitting probability distribution

[11,13,20,25].

We also tested the precision of the C-scores by fitting gamma

distributed DFEs to each C-score bin. While only very few bins

were fit by a highly peaked gamma distribution (Figure 1.D), the

increased variation offered by the gamma distribution rarely

improved the likelihood significantly (Figure 1.E). This suggests

that the C-scores are precise quantifications of negative selection,

and that mutations with similar C-scores are likely to have similar

selection coefficients.

Interestingly, we found that for many low C-score bins, a chi-

squared test would reject the fit of the demographic model to the

data. This is possibly because these low C-score bins have a

significant number of sites, and hence subtle features of the

demography and quality control are relevant. Nonetheless, we

note that for moderate-to-high C-score bins and for exonic data,

we were not able to reject the fit of the predicted site frequency

spectrum from the data. While these bins have fewer sites, it is also

likely that stronger selection is obscuring some of the signal of

subtle demographic events.

Our novel expectation-maximization approach to quantifying

ancestral state misidentification allows us to assess differential

misidentification rates across C-score categories. Ancestral state

misidentification occurs because a site is hit by more than one

mutation, hence obscuring the identity of the ancestral allele.

Here, we found that low C-score bins are enriched with ancestral

state misidentification, with rates in excess of 5% for some bins

(Figure S3). This may reflect a bias induced by the C-scores

themselves, because C-scores are trained to distinguish classes of

sites that have relatively few substitutions between humans and

chimpanzees. Because the signal of ancestral state misidentification

and positive selection are very similar [42], it is possible that low

C-score bins are enriched for positive selection, although we did

not pursue that direction any further. For larger C-score bins, we

infer misidentification rates along the lines of those obtained in

simulation studies by ref. [42].

Importantly, unlike previous studies, we also obtain DFEs for

other types of mutations, including synonymous, splice site, 39

UTR, 59 UTR and regulatory polymorphisms, which exhibit

bimodality to a lesser degree than the nonsynonymous DFE. In

particular, 59 UTR changes constitute the category with the

smallest proportion of neutral or nearly neutral (DsDv10{5)

polymorphisms after nonsynonymous changes, likely reflecting

selection on gene regulation upstream of coding sequences.

Fitness Distribution across Functional Categories
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Futhermore, distributions corresponding to mutations in UTR and

regulatory regions have a less pronounced trough between the two

peaks than the ones observed among coding mutations, suggesting

that the magnitude of deleterious effects is more uniformly

distributed in non-coding regions. In contrast, missense mutations

appear to have more of an ‘‘all-or-nothing’’ effect, as would perhaps

be expected when replacing an amino acid inside a protein.

Our method does not use synonymous sites as a neutral

benchmark, as do other studies [9,11,20]. In fact, our inferred

DFE suggests that a considerable number of synonymous

polymorphisms may not be neutral, as we observe a second

deleterious peak in them too, albeit less deleterious than the one

observed at nonsynonymous polymorphisms. We caution, howev-

er, that this second peak is less promient when using an exome-

specific mapping (Figure 2) or when using other position-specific

scores (Figures S11, 3, S12), which suggests that at least part of this

peak may be caused by regional patterns of conservation or

background selection in the exomes. Instead, intergenic polymor-

phisms are the class of sites most likely to evolve neutrally. Because

this class is so abundant, most of the signal observed when all

polymorphisms are pooled together closely reflects the distribution

observed for intergenic polymorphisms (Figure 2).

Our results have implications for GWAS, as we find a high

proportion of GWAS SNPs to be neutral or nearly neutral, which

could suggest a high rate of false positives in this type of association

studies. On the other hand, GWAS studies only aim to find

polymorphisms linked to causative variants, and so GWAS SNPs

need not have strongly deleterious effects. Alternatively, if the

effect size of many GWAS SNPs are sufficiently small, it is possible

that many of them are not subject to strong selection.

Additionally, by stratifying our results based on different

ENCODE categories, we can elucidate the fitness consequences

of molecular activity signals detected by ENCODE [2,3,38]. We

find the category with the lowest proportion of neutral polymor-

phisms to be the one corresponding to sites that have eQTL

evidence as well as evidence for transcription factor (TF) binding, a

matched TF motif, a matched DNase footprint and that are

located in a DNase peak. In general, categories that combine

many regulatory signals tend to show lower proportions of neutral

mutations than those that do not, suggesting that data integration

across distinct approaches to detecting selection and functionality

is likely to do better than any individual approach [43]. Moreover,

this suggests that much of the molecular activity detected by

ENCODE may not have significant fitness consequences.

Figure 4. Distribution of fitness effects among YRI polymorphisms, partitioned by Segway regulatory segments, obtained using the
C-to-s genome-wide mapping. Panel B shows a zoomed-in version of the distribution in panel A, after removing neutral polymorphisms and log-
scaling the x-axis.
doi:10.1371/journal.pgen.1004697.g004
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Stratification by Segway regions allows us to look at a different

aspect of regulatory activity in the genome. Interestingly, we

observe that polymorphisms in Transcription Start Sites (TSS) are

the ones containing the largest proportion of deleteriousness. This

echoes results from analyses of variation at transcription factor

binding sites, which have been found to be under stronger

constraint when found near TSS than when found far from them

[44]. Other regions with high proportions of deleterious polymor-

phisms include Gene Body (Start), strong CTCF and Enhancer/

Gene Middle. This suggests that regions with strong repressor,

insulator or enhancer activity, as well as near the start of genes, are

particularly important for biological function, perhaps unsurpris-

ingly given our knowledge of the molecular role that these regions

play in the regulation of transcription.

DFEs produced from different conservation scores reveal

interesting properties about each score (Figures S11, 3). For

example, because PhastCons scores are regional and not position-

specific, they do not perform well at distinguishing between different

classes of genic polymorphisms. Bimodality at nonsynonymous sites

is observed to a lesser or greater extent in almost all scores, and it is

especially prominent when using C-scores, but bimodality at

synonymous sites is only observed in PhastCons scores and C-

scores, which suggests it may be caused by regional patterns of

background selection. Finally, we note that high PhyloP scores

computed from deeper phylogenetic (e.g. Vertebrate) alignments

tend to be more deleterious than high PhyloP scores computed from

shallower phylogenetic (e.g. Primate) alignments. This likely reflects

the higher resolution one can obtain by using deeper alignments to

find extremely deleterious sites.

There are several limitations to our method. First, we have

restricted ourselves to estimating the DFE of segregating mutations

that have reached appreciable frequencies in the population. An

extension of this approach would be to infer the DFE of new

mutations from the DFE of segregating mutations genome-wide.

Second, we assumed no dominance, epistasis or positive selection,

which future studies could attempt to incorporate into our

approach. In addition, we have assumed sites are independent

and have therefore ignored the covariance between linked sites,

which likely leads to an underestimatation of confidence intervals

obtained from the bootstrapping. The free-recombination as-

sumption may also affect inference due to Hill-Robertson

interference between mutations subject to selection [45] as well

as linked background selection affecting the SFS of neutral sites in

the human genome [35]. This may be a more important issue in

our case than other genic-only approaches because we are also

including intergenic mutations in our analysis, so the space

between analyzed polymorphisms is on average smaller than if we

were only looking at coding polymorphisms [20]. We also assume

no positive selection. This, however, should not be a major

problem, because we are only basing our inferences on polymor-

phic sites and advantageous mutations contribute little to

polymorphism, assuming Nesw25 [32].

One final limitation is that the type of inference performed here

is only possible in species from which accurate deleteriousness

scores can be obtained, and that it relies on these scores being able

to correctly rank sites throughout the genome. As the amount of

genomic data increases, new and better scores will likely emerge in

the near future for both humans and other species, and so we

expect our method could be re-implemented once better proxies

for deleteriousness become available.

Materials and Methods

Computing the theoretical site frequency spectrum
We used the theory developed by Evans et al. [46] to obtain the

expected population site frequency spectrum with non-equilibrium

demography. We assume a Wright-Fisher population in the limit

of large population size and use diffusion theory to model this

process. Writing f (x,t) for the frequency spectrum at frequency x

and time t~t=2N(0) where t is in units of generations and

g(x,t) : ~x(1{x)f (x,t), we can approximate the dynamics of

g(x,t) with genic selection and mutation by solving the following

partial differential equation:

L
Lt

g(x,t)~{Sx(1{x)
L
Lx
½g(x,t)�z x(1{x)

2r(t)

L2

Lx2
½g(x,t)� ð1Þ

subject to the boundary condition:

lim
x?0

g(x,t)~hr(t) ð2Þ

where S is the population-scaled selection coefficient (S~2N(0)s),

h is the population-scaled mutation rate (h~4N(0)m) and

r(t)~N(t)=N(0) is the effective population size at time t relative

to the population size at time 0.

We assume N(0) to be 10,000 for all exponential and constant

models. For the constant population size model, r(t)~1. For the

exponential growth model r(t)~ert where r~2N(0)R is the

population-scaled growth rate and R is the per-generation growth

rate. For models taken from the literature, we use the N(0)

assumed by the corresponding paper. For the model of Harris and

Nielsen, r(t) is piece-wise defined according to their Figure 7. The

Tennessen model is similarly defined in a piece-wise fashion

according to their Figure 2, although it also includes periods of

exponential growth, as opposed to simply being piece-wise

constant as in the Harris and Nielsen model.

We solve for g(x,t) numerically in Mathematica, and can then

compute the expected number of segregating sites with i copies of

the derived allele out of a sample of n genes. Denoting by gs(x,t)
the theoretical SFS with selection coefficient s, this quantity is

fn,i(t)~

ð?
0

ð1

0

n

i

� �
xi{1(1{x)n{i{1g{s(x,t)dx

� �
p(s)ds: ð3Þ

where p(s) is the parameterized distribution of selection coeffi-

cients. For gamma distributed fits,

p(s)~
xa{1e{xb

b{aC(a)

where a and b are the shape and rate parameters of the gamma

distribution and C(:) is the gamma function. For a point mass at ŝs,

p(s)~d(s{ŝs)

where d(:) is the usual Dirac delta function.

We focused on fitting the shape of the SFS, and hence worked

with the probability that a given site in a sample of n has i copies of

the derived allele,
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pn,i(t)~
fn,i(t)Pn{1

j~1 fn,j(t)
: ð4Þ

The Mathematica code used for obtaining the theoretical SFS

can be found online at: http://malecot.popgen.dk/schraiber/.

Expectation maximization algorithm to fit ancestral state
misidentification rates

We observed that the SFS showed signs of ancestral state

misidentification, in particular an excess of high frequency derived

alleles (Figure S2). To account for ancestral state misidentification

errors, we developed an expectation maximization (EM) algo-

rithm. In the E step, we estimate the posterior probability that a

site at frequency i out of n is misidentified given the current

estimated site frequencies, fp(k)
n,i ,1ƒivng, and the current

estimate of the misidentification rate, p
(k)
mis, as

mi!p
(k)
n,i p

(k)
mis: ð5Þ

Then, during the M step, we re-estimate the misidentification rate

as

p
(kz1)
mis !

Xn{1

i~1

ximi ð6Þ

where xi is the number of sites at frequency i. We next re-estimate

either the demographic parameters or the parameters of the

selected model using the log-likelihood

log L~
Xn{1

i~1

xi milog p
(k)
n,i z(1{mi)log p

(k)
n,n{i

� �
ð7Þ

to obtain the theoretical SFS for the next iteration,

fp(kz1)
n,i ,1ƒivng.

Maximum likelihood fitting of demographic models
The exponential growth model has two free parameters, r, the

population-scaled growth rate and t, the total time of exponential

growth. We first obtained the site frequency spectrum for all sites

with C = 0. Next we solved g(x,t) for the exponential growth

model across a grid of t and r, as well as the constant, Harris and

Tennessen models, and applied our EM algorithm to estimate the

best fitting demographic model, using a grid search over

demographic models during the M step.

Maximum likelihood fitting of selection coefficients
To find the maximum likelihood estimate of s for each C-score

bin, we first obtained the site frequency spectrum corresponding to

each C-score bin. Next, we solved g(x,t) under the fitted

demography for log10({s)[½{7,{1:3� in steps of 0.005, along

with s = 0. To obtain an estimated SFS under the assumption of

gamma distributed selection coefficients, we used the trapezoid

rule to numerically integrate against a gamma distribution as in

formula 3.

We used our EM algorithm to estimate the best fitting selection

coefficient for each bin. When fitting a single coefficient, we used a

grid search during the M-step, and when fitting gamma distributed

selection coefficients, we used the L-BFGS-B algorithm. To plot

the DFE, we used kernel density estimation with smoothing

bandwith = 0.000005, unless otherwise stated.

Genomic annotations
Consequences for different types of sites were determined using

the Ensembl Variant Effect Predictor (v.2.5) [36]. If more than one

consequence existed for a given SNP, that SNP was assigned to the

most severe of the predicted categories, following the VEP’s

hierarchy of consequences. Codon and degeneracy information

was obtained from snpEff [47]. Segway segmentation information

[39,48] was obtained from ref. [27] and RegulomeDB categories

[38] were obtained from http://www.regulomedb.org/(last ac-

cessed: 24th February 2014).

Reference/alternative bias
We were concerned that reference/alternative bias in PolyPhen

and SIFT – which use humans in their alignments – would lead to

strong biases in C-scores, as the C-score method uses these scores

in its training set. To mitigate this issue, the C-scores we are using

were polarized with respect to the ancestral allele at sites where the

reference differs from the ancestral allele, unlike the standard C-

scores, which are always polarized with respect to the human

reference (Martin Kircher, pers. comm.).

Nevertheless, we aimed to quantify how much bias remained

after this correction. To do so, we obtained PhyloP [49] and

PhastCons [50] scores derived from vertebrate, mammal and

primate alignments, as well as GERP++ rejected substitution

(GERP S) scores [51], for all YRI SNPs. All of these scores were

calculated using human-free alignments [27]. We compared the

bias observed at the C-scores we are using to the bias observed at

the human-free conservation scores. We computed the absolute

difference between the mean of each score at sites where

reference = ancestral and at sites where reference = derived,

divided by the total standard deviation at both types of sites. We

plotted this standardized absolute difference as a function of the

number of derived alleles in YRI (Figure S16). Though we observe

some bias in all the scores, C-scores fall within the range of bias of

human-free conservation scores and are not more biased than

them. We hypothesize this occurs because the fraction of sites in

the training set of the C-score SVM for which SIFT and PolyPhen

scores are available (i.e. their ‘‘relevance’’ score as defined in

Supplementary Table S3 of [27]) is very small (0.0063), as SIFT

and PolyPhen are nonsynoymous-specific scores, and not genome-

wide scores. In contrast, PhastCons, PhyloP and GERP Scores

were all explicitly obtained from human-free alignments [27] and

these are the training annotations with the highest area under the

ROC curve (AUC) that have Relevance = 1 (i.e. they are genome-

wide scores). The sites we used to obtain the C-to-s mapping are

genome-wide polymorphisms, so the bulk of the signal comes from

these scores. Interestingly, GERP scores show the least amount of

bias. C-scores tend to show some bias, but unlike other scores like

PhyloP, the bias is low when the number of derived alleles is high,

and therefore when the reference is more likely to be derived.

Mapping using different scores
To test how robust the mapping of C-scores to selection

coefficients is to different types of conservation scores, we

produced DFEs by using selection coefficient mappings from each

of the aforementioned conservation scores. We attempted to

equalize the range of all scores by PHRED-scaling them, i.e.

converting each score to –log10(p) where p is the probability of

observing a change as or more disruptive/conserved (based on

that particular score scale) among all polymorphic YRI sites. We

note that this is different from the natural PHRED scale of
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C-scores (where p is the the probability of observing a score as or

more disruptive among all possible, but not necessarily realized,

mutations in the human genome), and so we also re-scaled the C-

scores to produce a fair comparison. Then, we repeated the

maximum likelihood mapping for each PHRED-scaled score in

bins of 0.25 units (e.g. 0–0.125, 0.125–0.375, 0.375–0.625, etc). It

is important to note that PhastCons are regional scores, while

PhyloP and GERP S are position-specific scores. Another

difference is that PhastCons scores only measure the probability

of negative selection, while PhyloP and GERP S scores also

measure positive selection (i.e. low/negative scores represent faster

evolution than expected purely under drift), which may be why we

observe an uptick at the lower end of the mapping for those scores

in Figure S10.

Supporting Information

Figure S1 Observed SFS for sites under different C-score bins

using the Complete Genomics YRI data, for all autosomes in the

genome (left) and the exome (right). Note that the spectrum gets

more skewed towards singletons with increasing C-scores, likely

reflecting the action of negative selection on deleterious mutations.

(TIFF)

Figure S2 Observed SFS of YRI Complete Genomics data for

sites with C = 0. The full SFS was corrected for ancestral state

misidentification using an EM algorithm and fit to different models

of neutral evolution. We show results for both the genome and the

exome.

(TIFF)

Figure S3 Features of fitted single-coefficient and gamma

distributions. A) Fitted single coefficients and means of fitted

gamma distributions for each C-score bin, using genome-wide or

exome-wide polymorphisms. B) Standard deviation of fitted

gamma distributions for each bin. C) Ancestral misidentification

rate obtained from an EM algorithm used to jointly fit the data

and infer this rate at each bin. SD = standard deviation.

(TIFF)

Figure S4 C-to-s mapping stratified by B-score deciles. We

partitioned the genome by deciles of B-scores [35], which reflect

levels of background selection. Then, we recomputed the

demographic fitting and C-to-s mapping for each decile.

(TIFF)

Figure S5 Inferred DFEs for different classes of polymorphisms

obtained from gamma distribution fittings of each C-score bin.

The plot shows, for each category, a weighted sum of gamma

distributions, where each C-score bin contributes its corresponding

genome-wide best-fitting gamma distribution in proportion to the

number of polymorphisms present at that bin.

(TIFF)

Figure S6 Chi-squared test of the fit of the single-coefficient

model to the data at each bin, using the human demography

inferred from ref. [33]. As with simpler models (Figure 1.F), we

observe significant scores at low C-score bins when using the

genome-wide data, but not the exome-wide data.

(TIFF)

Figure S7 Comparison between the size of each C-score bin and

the standard deviation of single-coefficient fits obtained from 100

bootstraps of the data within each bin. Top panel: Standard

deviation per C-score bin plotted as a function of sample size per

bin (log-scale). Bottom panel: Same plot but with the y-axis on a

log-scale.

(TIFF)

Figure S8 Mapping of sites with low CpG density. A) We

filtered for sites with low CpG density, such that the proportion of

CpG sites in a +/2 75 bp window around each site was ,0.05,

and then recomputed the C-to-s mapping. B) We also repeated

the gamma fitting and calculated a likelihood ratio test of the

gamma model against the single-coefficient model at each C-

score bin.

(TIFF)

Figure S9 Comparison between a C-to-s mapping using the

best-fit demographic model and a constant-size model. The best-fit

model is exponential growth with t = 13,000 and r = 1.

(TIFF)

Figure S10 Maximum likelihood mapping of different types of

scores to a selection coefficient scale, excluding bins mapped to

neutrality, using the Complete Genomics data. Before mapping,

scores were re-scaled on a common PHRED scale, by converting

each score to –log10(p) where p is the probability of observing a

change as or more disruptive/conserved (based on that particular

score scale) among all polymorphic YRI sites. Some scores extend

over larger PHRED scores than others because they have a finer

stratification (smaller number of sites with tied scores). The wide

fluctuations to the right of the figures are due to the small number

of sites per bin at highly deleterious bins.

(TIFF)

Figure S11 Distribution of fitness effects at different types of

polymorphisms in Yoruba, using different types of conservation

scores for mapping (smoothing bandwidth = 0.000005). We only

mapped sites with PHRED-scaled scores #5, because the

mappings become erratic for higher values, due to the small

number of sites per bin (Figure S10).

(TIFF)

Figure S12 Distribution of fitness effects at different classes of

polymorphisms in Yoruba, using different types of conservation

scores for mapping (smoothing bandwidth = 0.000001). We only

mapped sites with PHRED-scaled scores #5, because the

mappings become erratic for higher values, due to the small

number of sites per bin (Figure S10).

(TIFF)

Figure S13 Distribution of unmapped C-scores among YRI

polymorphisms, partitioned by the genomic consequence of the

mutated site. Consequences were determined using the Ensembl

Variant Effect Predictor (v.2.5). Codon and degeneracy informa-

tion was obtained from snpEff. NonSyn = nonsynonymous. Syn

= synonymous. Syn to unpref. codon = synonymous change from

a preferred to an unpreferred codon. Syn to pref. codon =

synonymous change from an unpreferred to a preferred codon.

Syn no pref. = synonymous change from an unpreferred codon to

a codon that is also unpreferred. Splice = splice site.

(TIFF)

Figure S14 Distribution of fitness effects among YRI polymor-

phisms, partitioned by whether the SNPs are found in the GWAS

database or not. The right panel shows a zoomed-in version of the

same distributions after removing neutral polymorphisms and log-

scaling the x-axis.

(TIFF)

Figure S15 Distribution of fitness effects among different types

of RegulomeDB regulatory YRI polymorphisms, obtained from

various ENCODE assays. The black dashed line corresponds to

the distribution of all YRI SNPs.

(TIFF)
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Figure S16 Comparison of reference/alternative bias observed

in C-scores and human-free conservation scores. For each score,

we computed the absolute difference in means of scores at sites

where reference = ancestral and at sites where reference = derived,

divided by the total standard deviation at both types of sites, and

plotted as a function of the number of derived alleles. The size of

each circle denotes the proportion of sites where alternative = an-

cestral at each derived allele bin.

(TIFF)

Table S1 Characteristics of fitness effect distributions estimated

for YRI SNPs classified by different genomic consequence

categories, RegulomeDB categories and Segway categories, using

the exome-wide C-to-s mapping. We show quantiles of selection

coefficients, the log base 10 of the mean selection coefficient and

the log base 10 of the standard deviation of coefficients in each

category.

(PDF)
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