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Abstract

There are two major pathways leading to induction of NF-kB subunits. The classical (or canonical) pathway typically leads to
the induction of RelA or c-Rel containing complexes, and involves the degradation of IkBa in a manner dependent on IkB
kinase (IKK) b and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible
processing of p100 to p52, leading to the induction of NF-kB2(p52)/RelB containing complexes, and is dependent on IKKa
and NF-kB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-kB pathway
subunits NF-kB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive
oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western
blot analyses and chromatin immunoprecipitation (ChIP) show that NF-kB2 regulates the expression of CDK4 and CDK6,
while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour
suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb
protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-kB target gene. Microarray
analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the
senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk
between the alternative NF-kB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we
find that activation of NF-kB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia
patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-kB
can inhibit tumor suppressor function and promote tumorigenesis.

Citation: Iannetti A, Ledoux AC, Tudhope SJ, Sellier H, Zhao B, et al. (2014) Regulation of p53 and Rb Links the Alternative NF-kB Pathway to EZH2 Expression and
Cell Senescence. PLoS Genet 10(9): e1004642. doi:10.1371/journal.pgen.1004642

Editor: Marshall S. Horwitz, University of Washington, United States of America

Received April 2, 2014; Accepted July 28, 2014; Published September 25, 2014

Copyright: � 2014 Iannetti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files expect the microarray data, which has been submitted to ArrayExpress with accession number E-MTAB-1593, and the ChIP-seq
datasets, which have been published and are deposited in the gene expression omnibus, accession code GSE55105.

Funding: AI was funded initially by the European Union FP7 ‘Inflacare’ consortium (http://inflacare.imbb.forth.gr/) and is now funded by the Association of
International Cancer Research (AICR) grant 13-1150 (http://www.aicr.org.uk/). HS and AM are funded by the Wellcome Trust (grant 094409) (http://www.wellcome.
ac.uk/). ACL was funded by a Cancer Research UK PhD studentship (C1443/A9215) (http://www.cancerresearchuk.org/science/) and by the European Union FP7
‘Inflacare’ consortium (http://inflacare.imbb.forth.gr/). Additional NDP lab funding was received from Cancer Research UK (http://www.cancerresearchuk.org/
science/) programme grant C1443/A12750. BZ and BEG are funded by US National Institutes of Health (grants K08 CA140780 and RO1 CA12850), and by a
Burroughs Wellcome Medical Scientist career award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: neil.perkins@ncl.ac.uk

¤ Current address: Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France

Introduction

In mammalian cells the NF-kB family of transcription factors

consists of five subunits, RelA (p65), c-Rel, RelB, NF-kB1 (p105/

p50) and NF-kB2 (p100/p52), which form a wide variety of

homodimeric and heterodimeric complexes [1,2]. In most normal,

unstimulated cells, NF-kB complexes are held in an inactive form,

bound to one of a family of inhibitory proteins, termed IkBs. The

precursor proteins p100 and p105 can also function as IkBs, prior

to their processing to p52 and p50, which function as nuclear

regulatory subunits. The classical (or canonical) NF-kB pathway

typically leads to the induction of RelA or c-Rel containing

complexes and involves the degradation of IkBa in a manner

dependent on IkB kinase (IKK) b and the IKK regulatory subunit

NEMO (IKKc). The alternative (or non-canonical) pathway,

involves the inducible processing of p100 to p52, leading to the

induction of p52/RelB containing complexes, and is dependent on

IKKa and NF-kB inducing kinase (NIK).

Aberrantly active NF-kB is associated with many diseases,

including cancer [3]. The ability to both respond to and induce
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inflammatory stimuli is an important component of NF-kB’s role

in disease [3]. NF-kB also has other functions and can contribute

to tumorigenesis through inducing proliferation, metastasis as well

as resistance to apoptosis [4]. However, NF-kB can also exhibit

apparently contradictory functions, more akin to those of a tumor

suppressor. These include pro-apoptotic activity in response to

some stimuli and induction of cellular senescence [4,5]. NF-kB is

also associated with the senescence associated secretory phenotype

(SASP), which can exhibit tumor promoting properties but also

contribute to the effectiveness of cancer therapy [6,7]. Other

studies have suggested a role for NF-kB in protecting against

senescence [8]. One common feature of these studies has been a

focus on the classical branch of the NF-kB pathway and any role

for the alternative NF-kB pathway has not generally been

considered or functionally analyzed.

A possible explanation for apparently contradictory functions of

NF-kB lies in the ‘tumor suppressor status’ of the cell. A number of

studies have shown that tumor suppressors can modulate NF-kB

activity and function [4]. The most studied example of tumor

suppressor crosstalk with NF-kB involves p53 [2,4,9–11]. NF-kB

and p53 can both be activated by many of the same stimuli with a

common link frequently being DNA damaging agents, which

include reactive oxygen species (ROS) [2,9–12]. Crosstalk between

these factors can take many forms, with reports indicating both

antagonistic and co-operative behavior. Although often appearing

contradictory, one conclusion of these studies is that p53 and NF-

kB can modulate each-others activity, and consequently cell

survival, but that the exact outcome is dependent upon the cell

context. As many of these studies have been performed in cancer

cell lines exhibiting a variety of genetic backgrounds, with a range

of different stimuli, variability in the nature and outcome of any

crosstalk might be expected. We have previously identified

crosstalk between the alternative NF-kB pathway subunit p52

and p53, involving p53 modulation of p52 homodimer transcrip-

tional activity, by inducing a change from p52/Bcl3 to p52/

HDAC complexes, in addition to direct recruitment of p52 to p53

target gene promoters [13,14]. However, there remain many

unanswered questions, including how the effectors of the

alternative NF-kB pathway, p52 and RelB can affect p53

dependent senescence. Moreover, whether there also exists

crosstalk between these NF-kB proteins and another important

tumor suppressor, the retinoblastoma gene product, Rb, is largely

unexplored.

Genes whose promoters and enhancers are regulated by both

p53 and NF-kB have the potential to act as ‘nodes of integration’

between these pathways. That is, they form a route through

which both factors come together to influence cell fate. A

number of such genes have been identified, including DR5 and

Caspase 10 [15,16]. We were interested in identifying genes

encoding chromatin remodellers and transcriptional co-regula-

tors that exhibited co-operative or antagonistic regulation by

NF-kB and p53 as these have the potential to re-program the

transcriptional ‘landscape’ of the cell [17]. A candidate gene that

fitted this category was the Polycomb protein enhancer of zeste

homolog 2 (EZH2), a histone H3 K27 methylase and component

of the PRC2 complex, which previously has been shown to be

repressed by p53 [18]. p53 repression of EZH2 expression is

thought to be indirect, resulting from transcriptional upregula-

tion of p21WAF1 expression [18]. This in turn leads to Rb

mediated repression of E2F activity, a key transcription factor

driving EZH2 expression [19].

EZH2 is a tumor promoter and is found over-expressed or

mutated in many solid tumors and hematological malignancies

[20]. A component of its ability to drive tumorigenesis derives

from its ability to suppress cellular senescence [21–23]. This is

achieved, in part, through EZH2 repression of the CDKN2A locus

[21,24], encoding the CDK inhibitor p16Ink4a and the tumor

suppressor p14ARF, which can induce p53 activity through binding

its inhibitor Mdm2. p16Ink4a and p14ARF are both important

regulators of cell senescence [25]. EZH2 has also been previously

linked to NF-kB activity, where in ER negative breast cancer it

can function as a coactivator, independent of its methylase activity,

for both RelA and RelB [26].

In this report, we define a regulatory network through which the

alternative NF-kB pathway regulates Rb activity and consequently

EZH2 expression. We demonstrate that EZH2 functions as a

critical ‘node’ of crosstalk between NF-kB and p53 that controls a

gene regulatory network through which p52 and RelB act to

suppress p53 and Rb mediated cellular senescence.

Results

Human dermal fibroblasts grown under normoxic
conditions contain a basal level of NF-kB2 and p53
activity

To investigate the function of the alternative NF-kB pathway in

untransformed cells, we analyzed its expression in non-immortal-

ized, normal human dermal (NHD) fibroblasts, cultured for a

limited number of passages. This revealed constitutive processing

of the p100 NF-kB subunit to p52 as well as a basal level of the

p53 tumor suppressor (Fig. 1A). To determine if these resulted

from oxidative stress due to normoxic culture conditions, the

NHD fibroblasts were grown under low oxygen tension (3% O2 or

treated with the antioxidant epigallocatechin-3-gallate (ECGC).

This resulted in loss of p53 while processing of p100 to p52 was

unaffected, suggesting the latter effect results from factors present

in the media (Fig. 1A & S1A). The Ataxia Telangiectasia Mutated

(ATM) kinase can be activated by ROS, independently of DNA

damage [27] and consistent with this we found that the basal levels

Author Summary

Although the classical NF-kB pathway is frequently
associated with the induction of cellular senescence and
the senescence associated secretory phenotype (SASP),
the role of the alternative NF-kB pathway, which is
frequently activated in hematological malignancies as well
as some solid tumors, has not been defined. We therefore
investigated the role of the alternative NF-kB pathway in
this process. Here we report that NF-kB2 and RelB, the
effectors of the alternative NF-kB pathway, suppress
senescence through inhibition of p53 activity. Using
primary human fibroblasts, we demonstrate that this is
accomplished through NF-kB2/RelB dependent control of
a previously unknown pathway, incorporating regulation
of CDK4 and 6 expression as well as regulators of p21WAF1
and p53 protein stability. Loss of NF-kB2/RelB results in
suppression of retinoblastoma (Rb) tumour suppressor
phosphorylation, which in turn leads to inhibition of EZH2
expression and de-repression of p53 activity. Interestingly,
we find that CD40 ligand stimulation of cells from Chronic
Lymphocytic Leukemia patients, which strongly induces
the alternative NF-kB pathway, also induces EZH2 expres-
sion. We propose that the alternative NF-kB pathway can
promote tumorigenesis through suppression of p53
dependent senescence, a process that may have relevance
to cancer cells retaining wild type p53.

NF-kB Regulation of EZH2 Suppresses Senescence
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of p53 seen in this experiment as well as inducible levels seen in

later experiments were reduced by treatment with an ATM kinase

inhibitor (Fig. S1B). Interestingly we observed that 7 days after

treatment of these cells with hydrogen peroxide (H2O2) to induce

cellular senescence, a significant reduction in the processing of

p100 to p52 occurred, concomitant with activation of p53

suggesting a possible antagonistic relationship between these

factors in these cells (Figs. S1C&D).

Figure 1. EZH2 is an NF-kB regulated target gene. (A) The basal level of p53 protein in NHD fibroblasts is ROS dependent. NHD fibroblasts were
grown under normoxia at 3% O2 for 7 days before western blot analysis. (B & C) siRNA mediated knock-down of NF-kB2 and RelB leads to a reduction
in EZH2 mRNA and protein levels. RNA (B) or protein (C) was prepared from NHD fibroblasts treated with the indicated siRNAs 48 hours after
transfection and Q-PCR or western blot analysis was performed to determine EZH2 expression. *** P#0.001. (D & E) Lymphotoxin b receptor
stimulation leads to induction of EZH2 expression. NHD fibroblasts were treated with LTbR agonist antibody for the times indicated and either Q-PCR
(D) or western blot analysis (E) was performed to determine the expression of EZH2 (D) or EZH2, p52/p100, RelB and p53 (E). * P#0.05.
doi:10.1371/journal.pgen.1004642.g001

NF-kB Regulation of EZH2 Suppresses Senescence
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Depletion of NF-kB2 or RelB results in repression of EZH2
expression

We decided to exploit the observation that NHD fibroblasts

exhibited activation of both the alternative NF-kB pathway and

p53 to determine how these pathways might be integrated in a

non-cancerous, non-immortalized cellular context. Consequently,

we used siRNAs to deplete p53 and the alternative NF-kB

pathway subunits p52/p100 (encoded by the NFKB2 gene) and

RelB in the NHD fibroblasts. siRNA knockdowns of p52/p100

expression will henceforth be referred to as NF-kB2, while analysis

of the individual proteins will refer to either p52 or p100.

As described above, a candidate target for NF-kB/p53 crosstalk

was EZH2, a histone H3 K27 methylase and component of the

PRC2 complex, previously shown to be repressed by p53 [18]. As

expected siRNA knockdown of p53 resulted in an increase in

EZH2 RNA and protein levels 48 hours after transfection

(Fig. 1B&C). However, siRNA depletion of both alternative NF-

kB pathway subunits and the p52 coactivator Bcl3 had the

opposite effect, leading to almost complete loss of EZH2

expression (Fig. 1B&C, Fig. S1E–G). Knockdown of NF-kB2/

RelB or Bcl3 with p53 resulted in a partial rescue of EZH2 protein

levels. These effects were also seen with an EZH2 promoter

luciferase construct, where loss of NF-kB2/RelB resulted in less

promoter activity, while depletion of p53 had a strong stimulatory

effect (Fig. S1H). As reported previously [18], depletion of the p53

target, the CDK inhibitor p21WAF1, also induced EZH2 promoter

activity (Fig. S1H). These data suggested that the alternative NF-

kB pathway and p53 antagonistically regulate EZH2 expression

and that this is mediated, at least in part, through direct effects on

EZH2 transcription driven by its promoter.

We next determined if induction of the alternative NF-kB

pathway by a physiological stimulus would also regulate EZH2

expression. To achieve this NHD fibroblasts were treated with a

lymphotoxin b receptor (LTbR) agonist antibody. Consistent with

the results obtained with basal level activity of the alternative

pathway, LTbR activation resulted in increased levels of EZH2

protein and mRNA (Fig. 1E & F).

In many experiments, with different siRNAs, we noted a partial

depletion of RelB levels seen upon NF-kB2 knockdown. However,

as there is no effect of NF-kB2 siRNAs on RelB mRNA levels and

vice versa (Fig. S1F) this probably represents RelB protein

instability due to an inability to form homodimers, with the

remaining RelB dimerized to p50 with which it forms an active

complex [28].

EZH2 expression is induced upon CD40L stimulation of
primary B-cell chronic lymphocytic leukemia (CLL) cells

To extend our observation that LTbR stimulation induced

EZH2 expression, we were interested in whether this pathway was

also associated with activation of the alternative NF-kB pathway in

a pathological setting. Primary chronic lymphocytic leukemia

(CLL) cells from patients can be cultured in vitro and induced to

proliferate when stimulated with CD40 ligand (CD40L), which

induces both the classical and alternative NF-kB pathways [29,30]

(Fig. S2A). Significantly, we observed a CD40L dependent

increase in EZH2 mRNA and protein levels that was seen up to

7 days after plating (Fig. 2A&B). The reproducibility of this effect

between patients was confirmed with analysis of 4 different isolates

(Fig. S2B). Western blot analysis confirmed activation of the

alternative NF-kB pathway, with both an increase in nuclear and

overall levels of NF-kB2 and RelB being observed (Fig. 2B & S2B).

The latter likely results from activation of the classical pathway by

CD40L, which can ‘prime’ the alternative NF-kB pathway

through inducing NF-kB2 and RelB expression levels [1]. We

exploited this characteristic to confirm the role of NF-kB in EZH2

induction in CLL cells: treatment with the IKKb inhibitor TPCA-

1 efficiently blocked the induction of NF-kB2/RelB protein and

mRNA levels and also abolished induction of EZH2 (Fig. 2C &

D).

In addition to further confirmation of EZH2 regulation by a

physiological inducer of the alternative NF-kB pathway this data

also demonstrated that this pathway is not restricted to fibroblasts.

Interestingly, we also observed that in most patient cells (except

0205 where p53 appears to be mutant), CD40L stimulation also

induced p53 protein levels (Fig. 2A & B, S2B), an effect also seen

with LTbR stimulation (Fig. 1E). As these CLL cells are being

induced to proliferate (Fig. S2A) this suggests ongoing suppres-

sion/modulation of p53 activity and function.

NF-kB2 and RelB suppress p53 dependent senescence
When analyzing siRNA depletion of NF-kB2 and RelB in NHD

fibroblasts, we also observed that cells ceased to proliferate,

changed morphology and after 7 days in culture, using the acidic b
galactosidase assay, were found to enter a senescent state

(Fig. 3A&B). This effect was confirmed with different NF-kB2

and RelB siRNAs (Fig. S3A). These effects were also associated

with induction of reaction oxygen species (ROS) and loss of Lamin

B1, both markers of senescence [12,31] (Fig. 3C, Fig. S3B).

Treatment of cells with the antioxidant N-acetyl cysteine (NAC)

prevented senescence induced upon NF-kB2 and RelB depletion,

an effect also seen with an ATM inhibitor, or ECGC (Fig. 3A, Fig.

S3C–E). By contrast, depletion of the NF-kB1 (p50/p105) subunit

had no detectable effect on senescence in this system (Fig. S3F).

Importantly induction of senescence and ROS upon depletion of

NF-kB2, RelB and Bcl-3 was p53 dependent (Fig. 3D, S3G). p53

dependent senescence was also observed upon depletion of the p52

coactivator Bcl3 (Fig. 3D). Activation of the alternative NF-kB

pathway through LTbR stimulation also inhibited the basal level

of senescence in NHD fibroblasts (Fig. 3E). Therefore we

concluded that in NHD fibroblasts, the basal level of p53 activity

induced by oxidative stress is suppressed by the alternative NF-kB

pathway. Depletion of either of 3 components of this pathway,

results in loss of this suppression leading to p53 dependent

production of ROS and senescence.

EZH2 is a major effector of alternative NF-kB pathway
transcriptional effects

We next examined the effect of depleting EZH2 itself. Since

EZH2 can act to suppress senescence [21–23] we were interested

in whether regulation of its expression provided a mechanism

through which the alternative NF-kB pathway and p53 could

exert antagonistic effects on senescence. Consistent with this

hypothesis we observed that cells treated with an EZH2 siRNA

became senescent and also showed elevated levels of ROS (Fig. 4A

& B, S4A). Co-depletion of EZH2 with NF-kB2, RelB, Bcl-3 and

p53 revealed that while EZH2 associated ROS production and

senescence is p53 dependent, no additional effects were seen with

the NF-kB subunits (Fig. 4A & B). This is consistent with EZH2

being a downstream ‘effector’ and master regulator of NF-kB2/

RelB’s ability to suppress p53 dependent senescence.

EZH2 represses expression from the CDKN2A locus encoding

the CDK inhibitor p16Ink4a and the tumor suppressor p14ARF,

both of which are important regulators of senescence [21,24].

Interestingly, 48 hours after siRNA transfection, when we

analyzed effects on gene expression, no changes in p16Ink4a or

p14ARF protein or mRNA levels could be observed (Fig. S4B & C).

However, 7 days after transfection, when cells begin to senesce,

NF-kB Regulation of EZH2 Suppresses Senescence
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this had changed with induction of the mRNAs for both factors

being seen (Fig. S4C). Moreover, siRNA depletion of p14ARF

activity confirmed its requirement for NF-kB2, RelB and EZH2

induced senescence (Fig. S4D). Therefore, while these proteins are

required, as expected, for eventual induction of the senescent

phenotype, they did not seem to be directly involved in the early

regulatory events linking NF-kB2, RelB to EZH2 and p53

function that are the focus of this study.

To further investigate the significance of this regulatory

pathway and gain insights into the early mechanisms through

which these effects were achieved prior to induction of p16Ink4a or

p14ARF, gene expression profiling was performed on cells 48 hours

after transfection with siRNAs targeting NF-kB2, RelB, EZH2

and p53 (accession number for microarray data is E-MTAB-1593).

Significantly, a cluster of genes co-regulated by EZH2, NF-kB2

and RelB were also antagonistically regulated by p53, and co-

depletion of p53 generally abolished these effects (Fig. 5A&B, see

also Figure S5A and Table S1). More detailed analysis of the 975

genes significantly (.1.5 fold) affected by p53 depletion revealed a

group of genes normally repressed by p53 (which are therefore

induced upon p53 siRNA treatment), antagonistically regulated by

EZH2, NF-kB2 and RelB (Fig. 5C, full gene list in Table S2). The

potential importance of EZH2 regulation as an ‘effector’ of

antagonistic crosstalk between NF-kB and p53 was demonstrated

by analysis of the genes where NF-kB and p53 depletions had

directly opposing effects: of the 142 RelB/p53 genes in this

category, 93 were also regulated by EZH2, while of the 82 genes

similarly regulated by NF-kB2/p53, 60 genes were also regulated

Figure 2. CD40 stimulation leads to NF-kB activation and CLL induction in Chronic Lymphocytic Leukemia cells. (A) Analysis of EZH2
mRNA expression in CLL cells. RNA was prepared from CLL cells stimulated with CD40L/IL4 expressing mouse fibroblasts or with untransfected
fibroblasts (NTL) and IL4 for the indicated times and Q-PCR analysis of EZH2 expression was performed. (B) Analysis of EZH2 protein level in CLL cells.
Western blot analysis of nuclear extracts from CLL cells stimulated with CD40L/IL4 or untransfected fibroblasts (NTL) and IL4 for the indicated times.
(C & D) EZH2 protein and RNA levels in CLL cells is NF-kB dependent. Whole cell protein lysates (C) and RNA (D) were prepared from CLL cells
stimulated for 24 hours with CD40L/IL4 and treated with the IKKb inhibitor TPCA-1 where indicated.
doi:10.1371/journal.pgen.1004642.g002

NF-kB Regulation of EZH2 Suppresses Senescence
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by EZH2 (Table S2). Interestingly, of the smaller subset of genes

regulated in the same manner by NF-kB and p53, that is where

both either induce or repress, EZH2 depletion was found to have

generally minimal effects (7/54 for RelB/p53 and 1/17 for NF-

kB2/p53) (Table S2). The overlap between NF-kB2 and RelB

regulated genes was less than expected, given that these factors are

often depicted as being favored dimer partners. This most

probably results from circumstances where the effect of one dimer

partner fell below the 1.56 effect cut off used in this analysis.

However, it may also result from compensation by other NF-kB

dimer complexes in which these proteins participate, such as p52

homodimer/Bcl3 or p50/RelB complexes.

Genes regulated by NF-kB/EZH2/p53 are part of a
senescence associated gene signature

An NF-kB associated gene signature has been previously

described in a study of senescence induced in conditionally

immortalized human fibroblasts upon activation of the p16-pRB

and p53-p21 tumor suppressor pathways [32]. We were therefore

interested in any similarities between the gene signature we had

identified and that seen by Rovillain et al., especially as EZH2

expression was also downregulated in this study [32]. Therefore,

we integrated our gene expression signature with that of Rovillain

et al., to produce a combined heat map (Fig. S5B). This exercise

confirmed that a significant proportion of the genes we had

previously identified as belonging to the NF-kB2/RelB/EZH2

regulatory network also formed part of the previously identified

NF-kB dependent senescence gene signature. Importantly, the

heat map reveals that genes co-regulated by EZH2, NF-kB2 and

RelB were also antagonistically regulated by p53, and that co-

depletion of p53 generally abolished these effects.

To confirm that genes identified as being regulated by the NF-

kB/EZH2 pathway did contribute towards suppression of p53

mediated cell senescence, we analyzed the DEK oncogene and

histone chaperone that also been described as an inhibitor of

senescence [33,34]. Our microarray analysis revealed its

expression to be down-regulated upon NF-kB2, RelB or EZH2

depletion but induced upon treatment with the p53 siRNA,

which we confirmed by Q-PCR and western blot analysis

(Fig. 5D&E). siRNA depletion of DEK resulted in a striking, p53

dependent induction of senescence (Fig. 5F) but did not affect

EZH2 or p53 mRNA levels, consistent with it being a

downstream effector of this regulatory pathway (Fig. S5C–E).

By contrast, as a control, siRNA depletion of tp53INP1, which is

induced upon NF-kB2, RelB or EZH2 depletion but down-

regulated upon treatment with the p53 siRNA did not induce

Figure 3. The alternative NF-kB pathway suppresses p53 mediated senescence in primary fibroblasts. (A & B) Senescence induced by
siRNA knock down of NF-kB2 and RelB is ROS dependent. NHD fibroblasts were transfected with the siRNAs shown and treated, where indicated, 2
days later with the anti-oxidant N-Acetyl cysteine (NAC). 7 days after transfection cells analyzed for senescence by acidic b-galactosidase staining (A).
An image of RelB siRNA transfected cells after staining is shown (B). (C) siRNA mediated knock down of NF-kB2 and RelB induces ROS production.
NHD fibroblasts were transfected with the siRNAs shown and treated, where indicated, 2 days later with NAC. After 7 days they were incubated for
30 minutes with 5 mM DCF-DA and analyzed by FACs. The percentage of cells with higher than baseline ROS levels are shown. (D) siRNA knock down
of NF-kB2, RelB and Bcl3 induce cellular senescence in a p53 dependent manner. NHD fibroblasts were transfected with the listed siRNAs and
analyzed for senescence by b-galactosidase staining after 7 days. (E) Lymphotoxin b receptor stimulation represses basal level senescence in
fibroblasts. NHD fibroblasts were treated with LTbR agonist antibody and after 7 days analyzed for senescence by b-galactosidase staining. * P#0.05.
doi:10.1371/journal.pgen.1004642.g003

NF-kB Regulation of EZH2 Suppresses Senescence
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senescence or affect senescence induced upon NF-kB2 or RelB

depletion (Fig. S5F&G).

The importance of both EZH2 and DEK as regulators of

senescence was confirmed by performing a reconstitution exper-

iment, using the conditionally immortalized fibroblast cells

described in [32]. Lentiviral gene transfer was used to express

DEK and EZH2 in cells at 34uC, before being shifted to 38uC to

induce Rb and p53 dependent cellular senescence. A constitutively

active FOXM1DNDKEN mutant was included as a positive

control [32]. Expression of both EZH2 and DEK proteins was

found to suppress p53 and Rb induced senescence, as seen by the

formation of colonies in the clonogenic assay (Fig. 5G).

NF-kB2/RelB/EZH2 regulation of ROS production requires
RAC1 and CDC42 activity

As described above, p53 dependent generation of ROS is a

requirement for senescence induced upon depletion of NF-kB2,

RelB and EZH2. We therefore investigated if any of the genes

regulated by this pathway could account for these effects.

Although NF-kB activity has previously been associated with

regulation of ROS levels, we did not find any well-known target

genes in our list, such as Manganese Superoxide Dismutase

(MnSOD, also known as SOD2). Further analysis using Q-PCR

and western blot confirmed that its levels were not significantly

changing upon the treatments used in this study (Fig. S6A&B).

However, analysis of the genes in Table S2 revealed that

expression of Rac GTPase Activating Protein 1 (RACGAP1) fell

into the category of genes whose expression was downregulated

upon depletion of NF-kB2/RelB/EZH2 and were antagonisti-

cally regulated by p53 (Fig. 6A), a result confirmed by Q-PCR

(Fig. 6B). Moreover, analysis of the senescence gene expression

signature of obtained by Rovillain et al., also showed that

RACGAP1 expression was down-regulated upon senescence

arrest and reversed upon senescence bypass but was not

commented on or further analyzed in that study [32].

RACGAP1 regulates the activity of RAC1 (ras-related C3

botulinum toxin substrate 1) and CDC42 (Cell Division Cycle

42), both members of the RHO family of small GTP binding

proteins [35]. Importantly, in the context of this study, both

RAC1 and CDC42 can regulate the NADPH oxidase and

thereby ROS production [36,37]. Consistent with the hypothesis

that down regulation of RACGAP1 could account, at least in

part, for the effects seen on ROS levels, its siRNA depletion

resulted in an increase in ROS, while MnSOD did not (Fig. 6C).

Moreover, depletion of either RAC1 or CDC42 both inhibited

the increases in ROS levels seen upon down regulation of NF-

kB2 or RelB, to a similar level seen with the p53 siRNA

(Fig. 6D). As a control, no effect was seen with PUMA, a

downstream p53 target previously linked to ROS production

(Fig. 6D) [12].

Taking these results together with those from Figures 1–5, this

demonstrated that regulation of EZH2 by the alternative NF-kB

pathway provides a mechanism to control p53 dependent cellular

senescence. We next investigated the mechanisms through which

regulation of EZH2 by NF-kB is achieved.

p52 and RelB regulate EZH2 expression through
modulation of Rb activity

EZH2 expression is regulated by Rb/E2F signaling [19]. We

therefore investigated the effect of NF-kB2 and RelB siRNA

depletion, and found strong inhibition of Rb phosphorylation, as

well as reductions in the levels of Rb family members p107 and

p130, (Fig. 7A, Fig. S7A). Moreover, LTbR stimulation also

induced Rb phosphorylation (Fig. S7B), consistent with the

induction of EZH2 seen before (Fig. 1D & E). Confirming the

importance of this pathway, co-depletion of Rb rescued loss of

EZH2 expression after treatment with both NF-kB2 and RelB

siRNAs (Fig. 7A). Therefore NF-kB2 and RelB regulation of

EZH2 is Rb dependent.

RelB regulates p21WAF1 and p53 protein stability
Further investigation revealed unexpected differences between

the pathways controlled by RelB and NF-kB2. Interestingly, loss of

RelB but not NF-kB2 resulted in a strong induction of p21WAF1

and p53 protein (Fig. 7B but see also Fig. 1C). Additional

investigation revealed that this was a consequence of an effect of

RelB on p21WAF1 and p53 protein stability rather than gene

transcription: Q-PCR analysis showed that RelB depletion did not

significantly affect p21WAF1 (CDKN1A) or p53 mRNA levels

(Fig. 7C&D, see also Table S3), despite the increase in p53 protein

levels. However depletion of p53 in these cells did reduce overall

p21WAF1 expression (Fig. 7C). This suggested two effects. Firstly

that the basal level of p53 in these cells is required for the basal

level of p21WAF1 expression, while secondly RelB acts to suppress

p53 and p21WAF1 protein stability, thereby permitting cell

proliferation. In this model loss of RelB leads to stabilization of

p21WAF1 protein, thus inhibiting Rb phosphorylation by Cyclin/

CDK complexes, which in turn suppresses E2F induction of EZH2

expression.

Figure 4. EZH2 siRNA associated senescence and ROS produc-
tion is p53 dependent. (A & B) NHD fibroblasts were transfected with
the siRNAs shown and analyzed for senescence (A) and ROS production
(B) after 7 days.
doi:10.1371/journal.pgen.1004642.g004
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Figure 5. EZH2 is a critical effector of an antagonistic cross-talk between NF-kB and p53. (A) Heatmap showing effects on gene
expression of NHD fibroblasts depleted for EZH2, NF-kB2, RelB and p53. NHD fibroblasts were transfected in triplicate with the listed siRNAs. After
48 hours RNA was extracted for microarray analysis. Shown with a bar is the group of genes where EZH2, NF-kB2 and RelB antagonize p53
dependent gene expression. (B) A subset of genes is co-regulated by NF-kB2, RelB, EZH2 and p53 in NHD fibroblasts. (C) Graphical representation of
the 975 p53 regulated genes whose expression changes .1.5 fold that are also regulated (.1.56) by NF-kB2, RelB and Ezh2. (D–E) NF-kB2, RelB,
EZH2 regulate DEK expression in NHD fibroblasts. RNA (D) and whole cell protein lysates (E) was prepared from NHD fibroblasts treated with the
indicated siRNAs and Q-PCR or western blot analysis of DEK expression was performed. Note that (E) is a reprobing of blots used in Fig. 1C and the b-
actin blot shown here is the same as in that figure. (F) siRNA mediated knock down of DEK induces cellular senescence. NHD fibroblasts were
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NF-kB2 regulates CDK4 and CDK6 expression
Since depletion of NF-kB2 did not lead to induction of p53 or

p21WAF1 (Fig. 7B) we investigated if there was an alternative

explanation for its effect on Rb phosphorylation. Analysis of our

microarray data confirmed that there were no effects on the CDK

inhibitors analyzed (Table S3). However, effects on other cell cycle

regulatory proteins were seen (Table S4), and in particular we

observed NF-kB2 specific downregulation of CDK4 and CDK6,

both of which are known to directly phosphorylate Rb [38]. Q-

PCR and western blot analysis confirmed that CDK4 and CDK6

expression is selectively lost upon NF-kB2 depletion in NHD

fibroblasts, with no effect being seen with the RelB siRNA

(Fig. 8A–C). Interestingly, in U2OS cells, we have also observed

that CDK4 expression is lost upon siRNA depletion of NF-kB2

[39]. CDK4’s key regulatory role as an effector of the effects seen

upon depletion of NF-kB2 was confirmed when its siRNA

depletion resulted in loss of Rb phosphorylation, reduction in

EZH2 expression and induction of senescence (Fig. 8D&E, S8A &

B). Furthermore, CDK4 re-expression partially recovered the loss

of RB phosphorylation and downregulation of EZH2 expression

seen upon depletion of NF-kB2 (Fig. 8F). This was not seen with

RelB siRNA treatment.

transfected with the siRNAs shown and analyzed for senescence after 7 days. (G) EZH2 and DEK alone can rescue senescence. Fibroblasts
conditionally immortalized with temperature sensitive T antigen (described in Rovillain et al.) were shifted to the non-permissive temperature and
subjected to a clonogenic assay with and without expression of the indicated genes. The panel shows an image of cells upon completion of the
assay.
doi:10.1371/journal.pgen.1004642.g005

Figure 6. The alternative NF-kB pathway suppresses ROS production through the regulation of RacGAP. (A) Table summarizing the fold
effect on RACGAP1 expression induced by transfection of the listed siRNAs in the microarray analysis. (B) NF-kB2, RelB and EZH2 regulate RACGAP1
expression in NHD fibroblasts. RNA was prepared from NHD fibroblasts treated with the indicated siRNAs and Q-PCR analysis of RACGAP1 expression
was performed. (C) siRNA mediated knock-down of RACGAP1 induces ROS production. NHD fibroblasts were transfected with the siRNAs shown and
analyzed for ROS production after 4 days. (D) ROS production induced by siRNA mediated knock down of NF-kB2 and RelB is dependent upon Rac1
and Cdc42. NHD fibroblasts were transfected with the siRNAs shown and analyzed for ROS production after 4 days.
doi:10.1371/journal.pgen.1004642.g006
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Chromatin Immunoprecipitation (ChIP) analysis confirmed that

both CDK4 and CDK6 are direct p52 target genes in NHD

fibroblasts (Fig. S8C&D). Furthermore, demonstrating the gener-

ality of this effect, data extracted from a ChIP-Seq analysis of the

EBV-transformed human lymphoblastoid B-cell line (LCL)

GM12878 [40] confirmed both CDK4 and CDK6 as NF-kB

Figure 7. NF-kB2 and RelB regulate EZH2 in an Rb/E2F dependent manner. (A) siRNA mediated knock-down of NF-kB2 and RelB leads to a
reduction of Rb- phosphorylation. Western blot analysis of whole cell lysates prepared from NHD fibroblasts 48 hours after transfection with the
indicated siRNAs. (B) siRNA mediated knock down of RelB leads to accumulation of p53 and p21WAF1 protein level. Western blot analysis of NHD
fibroblasts treated with the indicated siRNAs. Whole cell lysates were prepared 48 hours after transfection. (C & D) NF-kB2 and RelB depletion does
not affect p21WAF1 or p53 mRNA levels. RNA was prepared from NHD fibroblasts treated with the indicated siRNAs and Q-PCR analysis of p21WAF1 (C)
or p53 (D) expression was performed.
doi:10.1371/journal.pgen.1004642.g007
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regulated genes (Figs. S8E&F). In GM12878, the EBV-encoded

membrane protein LMP1 mimics activated CD40 to stimulate

canonical and non-canonical NF-kB pathway activity [40].

Interestingly, this ChIP-Seq analysis revealed that although

multiple NF-kB subunits bind the promoters of these genes,

including p52, RelB was not found to significantly bind the

CDK4 promoter, while p50 was not seen at the CDK6 promoter

(Fig. S8E&F). Such differential subunit binding may explain

Figure 8. NF-kB2 controls Rb phosphorylation, EZH2 expression and senescence through CDK4 and CDK6 regulation. (A & B) NF-kB2
regulates CDK4 & 6 expression. RNA was prepared from NHD fibroblasts treated with the indicated siRNAs and Q-PCR analysis of CDK4 (A) and CDK6
(B) expression was performed. (C) NF-kB2 regulates CDK4 expression. Western blot analysis of NHD fibroblasts treated with the indicated siRNAs. Note
that this is a reprobing of blots used in Fig. 2A and the b-actin blot shown here is the same as in that figure. (D) siRNA mediated knock down of CDK4
and CDK6 results in loss of Rb phosphorylation and EZH2 expression. Western blot analysis of NHD fibroblasts treated with the indicated siRNAs. (E)
siRNA mediated knock down of CDK4 induces cellular senescence. NHD fibroblasts were transfected with the listed siRNAs and analyzed for
senescence by b-galactosidase staining after 7 days. (F) Re-expression of CDK partially recovers the effects of NF-kB2 siRNA depletion. 96 hours after
the transfection of NHD fibroblasts treated with the indicated siRNAs, cells were further transfected with CDK4 and CDK6 expression plasmids. After
an additional 24 hours, protein extracts were prepared and western blot analysis performed.
doi:10.1371/journal.pgen.1004642.g008
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some of the differential effects seen with NF-kB2 and RelB

siRNAs.

RelB regulation of PSMA5 regulates p21WAF1 protein
stability

A potential explanation for the effects of RelB on p53 protein

stability could result from regulation of Mdm2 levels. Mdm2 is a

ubiquitin ligase that induces degradation of p53 and has also been

shown to be an NF-kB target gene [41]. However, RelB depletion

was seen to consistently induce Mdm2 protein levels (Fig. 1C, 7B),

suggesting it is not acting as a RelB effector in this case. We

therefore again analyzed our microarray data for RelB regulated

genes, whose products are known to have effects on protein

stability (Table S5). A number of such genes were identified and a

mini-siRNA screen was performed in NHD fibroblasts to ascertain

if any had the potential to regulate p53 and p21WAF1 stability

(Fig. 9A and S9A–C). Particularly striking effects were observed

with siRNAs targeting PSMA5 (proteasome (prosome, macropain)

subunit, a type, 5) and ANAPC1 (APC1, Anaphase Promoting

Complex Subunit 1). Notably, knock down of PSMA5 was the

only one to significantly stabilize p21WAF1 levels, with the effect of

ANAPC1 depletion specifically affecting p53 protein levels

(Fig. 9A and S9A). PSMA5 has been previously shown to be

transcriptionally upregulated by the antioxidative nuclear Factor

E2-related factor 2 (Nrf2) [42] but has not, to the best of our

knowledge, been linked to p21WAF1 or p53 protein stability, EZH2

or senescence. The Anaphase Promoting Complex (APC/C), of

which ANAPC1 is a component, is a cell cycle-regulated E3

ubiquitin ligase. It controls progression through the G1 and M

phases of the cell cycle and has been previously associated with

senescence induced upon acute loss of the tumour suppressor

PTEN [43].

Further analysis confirmed that depletion of RelB but not NF-

kB2 resulted in reduced levels of PSMA5 and ANAPC1 (Fig. 9B–

D). Interestingly, PSMA5 siRNA depletion resulted in almost

complete loss of Rb phosphorylation and a significant reduction in

EZH2 mRNA levels (Fig. 9E&F, S9C). By contrast, depletion of

ANAPC1 and another control siRNA from our initial screen,

CDC16, had no effect on Rb phosphorylation (Fig. 9E) although

the former did also affect EZH2 expression (Fig. 9F). This implies

that the increase in p53 levels alone seen upon depleting ANAPC1

may also repress EZH2 in an Rb independent manner. Consistent

with these effects, siRNA depletion of both PSMA5 and ANAPC1

resulted in significant p53 dependent senescence (Fig. 9G&H).

Similar to our previous results with CDK4/6, ChIP analysis of

NHD fibroblasts and analysis of ChIP-Seq data from the EBV-

transformed human lymphoblastoid B-cell line (LCL) GM12878

[40] demonstrated that PSMA5 and ANAPC1 are direct NF-kB

target genes (Fig. S10A–D).

These results indicate that RelB can regulate numerous genes

associated with protein stability. Of these PSMA5 is a key effector

of RelB regulation of p21WAF1 protein stability, Rb phosphory-

lation and EZH2 levels, while ANAPC1 contributes to p53

stability and EZH2 repression through an independent pathway.

EZH2 is a direct NF-kB target gene
Although these results provided an explanation for the Rb

dependent regulation of EZH2 expression by the alternative NF-

kB pathway, we also investigated whether EZH2 is also be a direct

target for p52 and RelB. ChIP analysis of the EZH2 promoter in

NHD fibroblasts confirmed binding by E2F and Rb, as previously

reported [19] (Fig. 10A&B). Moreover, this analysis also revealed

recruitment of p52 and RelB. This result was confirmed by mining

of ChIP-Seq data from GM12878 B-cells [40], where binding of

all NF-kB subunits to the EZH2 promoter was seen (Fig. 10C).

Taken together these results indicate that p52 and RelB induce

EZH2 expression both through regulation of Rb/E2F activity and

also directly, through binding the EZH2 promoter.

Discussion

NF-kB and senescence
NF-kB activation has previously been associated with induction

of senescent cells and the senescence associated secretory

phenotype [5–7]. However, these studies have focused on the

canonical NF-kB pathway and have generally been performed in

immortalized or transformed cells. Here we have described a

previously unknown pathway through which the alternative NF-

kB pathway can suppress cellular senescence. We show that both

NF-kB2 and RelB regulate pathways leading to control of Rb

phosphorylation and hence determine the level of EZH2

expression (summarized in Fig. 11). Notably, this is achieved

through separate but complementary routes, with NF-kB2

regulating expression of CDK4 and CDK6 and RelB regulating

the stability of p53 and p21WAF1 protein. We demonstrate that this

latter effect is achieved through RelB specific regulation of PSMA5

and ANAPC1. It is possible that other NF-kB2 and RelB regulated

genes contribute to this process. We then demonstrate that EZH2

antagonizes a subset of p53-regulated genes associated with cell

senescence. This included RACGAP1, which through regulating

the activity of Rac1 and CDC42, mediated induction of ROS,

required for the senescent phenotype. Moreover, through regu-

lating EZH2 expression, this pathway represents the major route

of crosstalk between the alternative NF-kB pathway and p53

under these experimental conditions.

Both ChIP analysis of NHD fibroblasts as well as mining of

ChIP-Seq data from GM12878 B-cells [40] revealed that CDK4,

CDK6, PSMA5 and ANAPC1, together with EZH2 itself, are

direct NF-kB target genes. However, it is not clear if this

recruitment is a result of direct binding to kB elements or occurs

through ‘piggy-backing’ on other transcription factors, such as

E2F. The presence of multiple NF-kB subunits on these promoters

may also explain why we see differential effects upon knockdown

of NF-kB2 and RelB, as there is the potential for other subunits to

compensate in ways that may be promoter specific. Moreover,

ChIP-Seq analysis showed a lack of recruitment of RelB to the

CDK4 promoter (Fig. S8F) in B-cells that may account for why

this gene was not seen to be RelB regulated in our experiments. In

addition, although p52 and RelB are frequently found in the same

NF-kB complex, removal of either subunit will not have the same

effect. For example, loss of RelB can still leave p52 homodimers or

alternative p52 heterodimers active in the cell. By contrast, RelB

does not homodimerise [44] and so loss of p52 can only be

potentially compensated for by the activity of p50/RelB hetero-

dimers or other NF-kB complexes.

Crosstalk between NF-kB and p53
Under normal circumstances, cross regulation between NF-kB

and p53, leading to modulation of activity and transcriptional

output, also has the potential to influence physiological responses

to stress and determine cell fate or behavior under circumstances

where both pathways are active. There are a number of situations

where such simultaneous activation of both pathways may occur,

including many types of DNA damage and oncogene activation.

Furthermore, where NF-kB is activated during chronic inflam-

mation, a process shown to promote tumorigenesis, p53 will likely

also be induced due to production of ROS [2,9–11]. Indeed we see

induction of p53 by both LTbR activation and CD40L
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stimulation, both inducers of the NF-kB pathway (Fig. 1E, 2B&C,

S2B). The consequences of such dual activation may depend on

the relative levels of activity of both pathways. In this study, we

focused our analysis on the ability of NF-kB to modulate basal

level of p53 activity, induced by chronic oxidative stress. Under

these conditions, NF-kB activity appears dominant and acts to

promote proliferation and suppress senescence. However, under

circumstances where p53 is induced to a high level, either by acute

administration of a DNA damaging agent or activation of potent

oncogene, we propose that the balance would shift and that p53

activity would dominate. Indeed, we have previously observed

such an effect where artificial induction of p53 or treatment with

ultraviolet light can induce a switch from p52/Bcl-3 complexes to

p52/HDAC1 complexes, resulting in a change from activation of

Cyclin D1 expression to repression [13]. Both aspects of NF-kB/

p53 behavior have physiological relevance and reflect the complex

nature of crosstalk between these pathways.

Data in this report also underlines the impact that the activity

of tumor suppressors can have on NF-kB dependent gene

expression. For example, the effects we see in NHD fibroblasts

are dependent upon Rb expression (Fig. 7A) and would not be

seen in an Rb null tumor cell line. Similarly, the transcriptional

consequences of activation of the alternative NF-kB pathway will

differ in cells either with mutant or absent p53. That much

research on NF-kB activity in cancer occurs in such cell lines, or

is not taken into consideration in model systems, might account

for some of the apparently contradictory effects reported in the

literature.

The alternative NF-kB pathway and cancer
The alternative NF-kB pathway can become deregulated in

hematological malignancies such as multiple myeloma, through

mutation of upstream regulators such as NF-kB inducing kinase

(NIK) [45–47]. Indeed the NF-kB2 gene itself is subject to

translocation, leading to truncation and constitutive processing to

p52, in a subset of B and T cell lymphomas [48,49]. Moreover, the

tumor microenvironment can induce alternative NF-kB pathway

Figure 9. RelB controls Rb phosphorylation, EZH2 expression and senescence through PSMA5 induced regulation of p21WAF1 and
p53 protein stability. (A) PSMA5 and ANAPC1 regulate p21WAF1 and p53 protein stability. Western blot analysis of NHD fibroblasts treated with the
indicated siRNAs. (B & C) RelB regulates PSMA5 expression. Whole cell protein lysates (B) or RNA (C) was prepared from NHD fibroblasts treated with
the indicated siRNAs and western blot or Q-PCR analysis of PSMA5 expression was performed. (D) RelB regulates ANAPC1 expression. RNA was
prepared from NHD fibroblasts treated with the indicated siRNAs and Q-PCR analysis of ANAPC1 was performed. (E) siRNA mediated knock down of
PSMA5 results in loss of Rb phosphorylation. Western blot analysis of NHD fibroblasts treated with the indicated siRNAs. (F) siRNA mediated knock
down of PSMA5 results in loss of EZH2 expression. RNA was prepared from NHD fibroblasts treated with the indicated siRNAs and Q-PCR analysis of
EZH2 was performed. Psma5: (*** p#0.001) Anapc1: (* p#0.05). (G & H) siRNA mediated knock down of PSMA5 (G) or ANAPC1 (H) induces p53
dependent cellular senescence. NHD fibroblasts were transfected with the listed siRNAs and analyzed for senescence by b-galactosidase staining after
7 days.
doi:10.1371/journal.pgen.1004642.g009
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activity through, for example, the CD40 receptor [45,46,50].

Although this branch of NF-kB signalling is associated with the

adaptive immune response, the mechanisms through which it can

promote tumorigenesis have received little attention and remain

poorly defined, compared to the parallel IKKb/RelA dependent

classical pathway. However, due to feed forward mechanisms, in

which the classical pathway can prime the activity of the

alternative pathway through inducing the expression of the NF-

kB2 and RelB genes [4], it is possible that some effects have been

assigned to the former pathway but in fact result from the latter.

This pathway provides a mechanism through which deregu-

lated NF-kB2/RelB activity can promote tumorigenesis in

cancer cells that retain wild type p53. Consistent with this

hypothesis, we show that in CLL, where only 10–15% of tumors

at diagnosis contain mutated p53 [51], stimulation of B-CLL

cells by CD40L receptor, which induces the alternative NF-kB

pathway, results in induction of EZH2 expression (Fig. 2).

Moreover, mining of data from ChIP-Seq analysis of the EBV-

transformed human lymphoblastoid B-cell line (LCL) GM12878

[40] confirmed that EZH2 is an NF-kB target in this cell type

(Fig. 10B). In diffuse large B-cell lymphoma (DLBCL), where

activating mutations in EZH2 occur, EZH2 function is essential

during B-cell activation and clonal expansion in the germinal

center. Recent evidence demonstrated that small molecule

inhibition of EZH2 significantly reduced growth of germinal

center-derived DLBCL cells, and conditional expression of an

EZH2 mutant lymphoma allele was shown to drive lymphoma-

genesis [52]. These studies highlight that EZH2 has a key role

during B-cell activation and together with our data, present the

possibility of interplay between NF-kB signaling and EZH2 to

enhance survival and proliferation of tumor cells. We propose

that this pathway provides a mechanism where activation of NF-

kB, either as consequence of the tumor microenvironment or

through mutation of upstream signaling pathways (such as occurs

in a number of hematological malignancies [53–55]), can

promote tumorigenesis in cells retaining wild type p53 by

suppressing the consequences of p53 activation and providing a

window during which further mutagenesis can occur. These

effects need not be limited to effects on senescence but may also

include suppression of apoptosis, cell cycle arrest and metabolic

effects of p53 activity. Our data suggests that inhibition of the

alternative pathway, through for example inhibitors of the NIK

or IKKa kinases, could have the potential to treat select

hematological malignancies that retain wild type p53 and Rb.

Figure 10. NF-kB subunits bind the EZH2 promoter in fibroblasts and B-cells. (A & B) ChIP analysis of the EZH2 promoter was performed in
NHD fibroblast cells using primers close to the core promoter of the EZH2 gene (A) (+596/+888) or an upstream control region (B) (22802/22600).
Results shown are representative of a minimum of 3 separate experiments. * P#0.05, ** P#0.01, *** P#0.001, **** P#0.0001. (C) ChIP Seq data
showing NF-kB subunit binding in the region of the EZH2 gene in the human EBV-transformed lymphoblastoid B-cell line (LCL) GM12878.
doi:10.1371/journal.pgen.1004642.g010
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Materials and Methods

Cells
Primary normal human juvenile dermal fibroblasts were

purchased from Promocell (c-12300) and maintained in Fibroblast

growth media supplemented with 2% supplement mix (Promocell

c-23010) and 1% Pen/Strep/Fungizone Solution (Promocell c-

42020). Cells were cultured from passage 2 to passage 10 before

being discarded.

CLL cells were cultured with 10 ng/ml IL-4 (R&D Systems,

Abingdon, UK). CD40L cell stimulation of CLL cells was

performed essentially as described (Pepper et al., 2011). Un-

transfected L-cells (NTL) and CD40L-expressing mouse fibroblast

L-cells were cultured in in RPMI-1640 medium supplemented

with 10% foetal bovine serum, 50 units/ml penicillin and 50 mg/

ml streptomycin and seeded into 12-well plates (0.66106/well)

and irradiated with 75 Gy. L cells were left to attach for at least

4 h prior to the addition of the CLL cells. The study was approved

by the UK NHS Research Ethics Service, and samples were

obtained from the Newcastle Haematology Biobank (http://www.

ncl.ac.uk/nbb/collections/nhb). Following written informed con-

sent, patients provided peripheral blood samples, from which CLL

cells were isolated using Lymphoprep (Axis Shield, Cambridge-

shire, UK).

Inhibitors and treatments
Hydrogen peroxide (H2O2) was purchased from Sigma

(H1009). 3-Deazaneplanocin-A (DZNep) was purchased from

Cayman Chemicals (13828). ATM inhibitor was purchased from

Tocris (KU55933), Epigallocatechin-Gallate (ECGC) was pur-

chased from Calbiochem (324880), N-acetyl-L-Cysteine (NAC)

and IKK-b inhibitor (TPCA-1) were purchased from Sigma

(A9165-5gr and T1452).

Concentrations used were: H2O2 (100 & 200 mM), DZNep:

(0.5 mM), KU55933: (10 mM), ECGC: (10 mM), NAC: (5 mM),

TPCA-1: (10 mM).

Figure 11. Summary of the results identified in this manuscript through which NF-kB2 and RelB regulate p53 dependent cellular
senescence in primary human NHD fibroblasts. Depletion of NF-kB2 and RelB leads to a decrease in Rb phosphorylation. Unphosphorylated Rb
represses E2F transcriptional activity and consequently inhibits EZH2 expression (which is negatively regulated by p53). However, this occurs through
distinct pathways. Depletion of NF-kB2 leads to down regulation of CDK4 and CDK6, which are known to phosphorylate Rb directly. RelB depletion
leads to an increase in p53 and p21 protein stability as a consequence of loss of expression of genes such as PSMA5 and ANAPC1. Other gene targets
may be involved in these processes. NF-kB subunits also bind directly to the EZH2 promoter and this may also contribute towards its regulation. As a
consequence of this pathway, down regulation of EZH2 results in numerous changes in gene expression, including p53 dependent repression of a
number of gene targets. These include inhibition of RACGAP1 expression, resulting in Rac1/Cdc42 dependent induction of reactive oxygen species
(ROS). Together with other changes, such as suppression of DEK and ultimately induction of p14ARF and p16INK4a, the ultimate consequence of NF-
kB2 and RelB siRNA depletion and subsequent loss of EZH2 expression is p53 dependent cell senescence. Note, RACGAP1 activity as well as various
inducers/suppressors or senescence may also be regulated by p53. Many of these genes may also be direct targets of NF-kB. Not shown is that
oxidative stress is required to drive the basal level p53 activity seen in these cells.
doi:10.1371/journal.pgen.1004642.g011
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Lymphotoxin b receptor agonist antibody was used at a final

concentration used of 2 mG/mL.

Microarray analysis
Cells were separately transfected in triplicate with siRNAs to

generate biological replicates. After 48 hours, RNA was extracted

using a PeqLab gold total RNA extraction kit (12-6634-02). Q-

PCR and subsequent Principal Components analysis confirmed

consistent levels of depletion in all biological replicates, apart from

one double EZH2/p53 knockdown, where problems were

encountered due to the strong induction of EZH2 levels upon

loss of p53 (Table S1). This sample was not included in subsequent

analysis. Microarray analysis was performed by Cambridge

Genomic Services.

Bioinformatics analysis
The Illumina Human HT12v4 Expression BeadChip data was

background corrected in Illumina Beadstudio, subsequent

analysis proceeded using the lumi and limma packages in R

(Bioconductor) [56–58]. Variant Stabilisation Transform and

Robust Spline Normalisation were applied in lumi. Differential

expression was detected using linear models and empirical Bayes

statistics in limma. A list of genes for each comparison was

generated using a Benjamini Hochberg false discovery rate

correct p-value of 0.05 and a fold change of 1.5 as cut- offs. Gene

lists were integrated with data from Rovillain et al. [32] by

comparison across gene names. Genes found in all experiments

were retained for inclusion in the integrated heat map.

Flow cytometric analysis of ROS production
Cells were incubated for 30 minutes with 5 mM 29,79 –

dichlorofluorescin diacetate (D399 Invitrogen). Cells were then

washed twice in phosphate buffered saline (PBS) and resuspended

in 200 ml PBS. Samples were analyzed using a FacsCanto flow

cytometer (excitation 488 nm, emission 530 nm). Data shown in

figures is the average derived from three separate experiments.

b galactosidase staining
b galactosidase staining was performed according to [59].

Images of senescent stained cells were taken using a Canon power

shot A640 camera. The proportion of cells positive for b-

galactosidase activity was determined by counting the number of

blue cells in the total population, 20 hours after staining. Results

shown are averages derived from three separate experiments and

error bars indicate the standard deviation.

CFSE staining
CLL cells were stained with carboxyfluorescein diacetate

succinimidyl ester (CFSE) (Life Technologies). These cells were

co-cultured, with 10 ng/mL Interleukin 4, on CD40L-expressing

fibroblast cells (or on non-CD40L-expressing control (NTL) cells)

that had been growth-arrested (with 75 Gy ionising radiation).

Quantification of CFSE in CD19+ve cells by flow cytometry [60],

was used to show CLL cell proliferation (seen by sub-peaks of

CFSE fluorescence).

Clonogenic assays
Clonogenic assays to measure recovery from senescence were

performed essentially as described [32]. Briefly, lentiviral gene

transfer was used to express constitutively active FOXM1DND-
KEN mutant, DEK, and EZH2 in conditionally immortalized

fibroblast cells at 34uC. These cells were then shifted to 38uC,

which in control transfected cells induces cellular senescence,

causing no colonies to appear in this assay. Colonies were stained

with methylene blue.

Quantitative PCR analysis
Total RNA was extracted with PeqLab gold total RNA

extraction kit (12-6634-02), according to the manufacturer’s

directions. For reverse transcriptase PCR (RT-PCR), 1 mg RNA

sample were transcribed with Quantitect Reverse Transcription

Kit (QIAgen; 205313). The cDNA stock was diluted by 200 and

5 ml was used for PCR with GoTaq flexi DNA-polymerase

(Promega; M8305).

Quantitative PCR data was generated on a Rotor-Gene Q

(Qiagen) using the following experimental settings: Hold 50uC for

3 min; Hold 95uC 10 min; Cycling (95uC for 20 sec; 58uC for

20 sec; 72uC for 20 sec with fluorescence measurement)645;

Melting Curve 50–99uC with a heating rate of 1uC every 5 sec. All

values were calculated relative to untreated levels and normalized

to GAPDH levels using the Pfaffl method [61]. Each RNA sample

was assayed in triplicate and the results shown are averages

derived from three separate experiments with error bars indicating

the standard deviation.

Luciferase assay
Cells were transfected with siRNAs. 24 hours later, they were

transfected with 0.8 mg of pGL3 luciferase reporter vector

containing the EZH2 promoter region (Tang et al., 2004) (kind

gift of Dr. Tomer Cooks, Weizmann Institute, Israel). After

48 hours, cells were lysed in 100 ml Passive lysis buffer and

luciferase was performed using a Dual- Luciferase Reporter Assay

System kit (Promega E1910). Luciferase activity was read in a

luminometer (Lumat LB9507, Berthold technologies) and nor-

malized to protein content. Results shown are averages derived

from five separate experiments and error bars indicate the

standard deviation.

Chromatin Immunoprecipitation (ChIP)
NHD fibroblasts cells, either grown to 70% confluency or

analysed 48 hours after transfection, were cross-linked with 1%

formaldehyde at room temperature for 10 min. Cells were washed

once with cold glycine and then scraped into 0.5 mL of RIPA

buffer (0.1% SDS, 1% Triton, 0.5% deoxycholate, 0.5% NP40,

50 mM Tris-HCl pH 7.5, 150 mM NaCl, 50 mg/ml PMSF, 1 mg/

ml leupeptin, 1 mg/ml aprotinin, 1 mg/ml pepstatin, Na3VO4,

50 mg/ml & 50 mg/ml NaF) and left on ice for 10 minutes.

Samples were then sonicated on ice nine times. Each sonication

was for 30 seconds with a 30 seconds gap between each

sonication. Supernatants were recovered by centrifugation at

12,000 rpm in an eppendorf microfuge for 10 min at 4uC before

being diluted 1:1 in dilution buffer (1% Triton, 2 mM EDTA,

20 mM Tris-HCl pH 8.1, 150 mM NaCl supplemented with

0.1% NP40, protease and phosphatase inhibitors). Samples were

then precleared for 2 hours at 4uC with sheared salmon sperm

DNA (1 mg/ml) and 20 ml of protein A and G-agarose beads. At

this stage, 20 ml of the material was kept as Input material.

Immunoprecipitations were performed overnight with specific

antibodies (2 mg). The immune complexes were captured by

incubation with 20 ml of protein A and G-agarose beads and

salmon sperm DNA (1 mg/ml) for 1 hour at 4uC. The immuno-

precipitates were washed sequentially for 5 minutes each at 4uC in

TSE 1(0.1% SDS, 1% Triton, 2 mM EDTA, 20 mM Tris-HCl

pH 8.1,150 mM NaCl), TSE 2 (0.1% SDS, 1% Triton, 2 mM

EDTA, 20 mM Tris-HCl pH 8.1,500 mM NaCl), Buffer 3

(250 mM LiCl, 1% NP40, 1% deoxycholate, 1 mM EDTA,
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10 mM Tris-HCl pH 8.1 and TE buffer (1 mM EDTA, 10 mM

Tris-HCl pH = 8.1). Beads were then eluted with 500 ml of Elution

Buffer (1% SDS, 100 mM NaHCO3).

To reverse the crosslinks, samples, including ‘Input’, were

incubated at 65uC overnight in a waterbath with 0.2M NaCl.

DNA was ethanol precipitated following Phenol-Chloroform

extraction. For PCR, 5 ml of DNA was used from an 80 ml

DNA preparation and subjected to 40 cycles of PCR amplifica-

tions.

For all ChIP results shown are averages derived from three

separate experiments and error bars indicate the standard

deviation.

ChIP-Seq
ChIP Seq data shown here was extracted from a previously

published analysis of the EBV-transformed lymphoblastoid B-cell

line (LCL) GM12878 using validated anti-RelA, RelB, cRel, p52

and p50 antibodies [40]. GM12878 are one of three ENCODE

project Tier 1 cell lines. It is an original HapMap cell line used in

many genetic studies including the 1000 Genomes Project and has

a relatively normal karyotype. Reads from biological replicate

ChIP-seq experiments were mapped to the hg19/GRCh37 build

of the human genome using bowtie v0.12.8 [62]. ChIP-Seq

binding profiles were visualized by the Integrated Genome Viewer

(IGV) [63].

Plasmids
Cdk4-HA (no. 1876), Cdk6-HA (no. 1868) and EZH2-HA

(no. 24230) expression plasmids were purchased from Addgene.

Antibodies
Antibodies used were: anti-EZH2 (3147S Cell Signaling), anti-

p52/p100 (05-361 Millipore), anti-RelB (4954S Cell Signaling),

anti-p53 (DO-1 sc-126 Santa Cruz), anti-b- Actin (A5441,

Sigma), anti-p21 (sc-397 Santa Cruz), anti-Rb (sc-50 Santa

Cruz), anti- Cdk4 (sc-260 Santa Cruz), anti-DEK (610948 BD

transduction Laboratories), anti-Bcl3 (PA1-41087 Pierce), anti-

Lamin B1 (sc-374015 Santa Cruz), anti-p50 (3035S Cell

Signaling), anti-MDM2 (OP46 Calbiochem), anti-p130 (610261

BD transduction Laboratories), anti-p107 (sc-318 Santa Cruz),

anti-PSMA5 (2457S Cell Signaling), anti-p14ARF (14PO2

Calbiochem), anti-p16INK4a (sc-56330 Santa Cruz), anti

MnSOD (sc-133134 Santa Cruz). Phospho-antibodies used were

S15-p53 (9284S Cell Signaling) and S780- Rb (8180S Cell

Signaling). Lymphotoxin b receptor agonist antibody (anti-

HuLTbR:Fc Ab) was a kind gift of Prof. Carl Ware (Sanford/

Burnham Medical Research Institute) [64].

Other procedures
Transfections of siRNAs were performed when cells were at low

(,50%) confluency, essentially as described previously [14].

Western blots shown are representative of at least 3 separate

experiment and were performed as described [14] using 15–25 mg

of protein extracts.

Details of oligonucleotides, siRNAs and primer sequences can

be found in Supporting information (Text S1).

Accession numbers
Microarray data has been submitted to ArrayExpress with

accession number is: E-MTAB-1593.

NF-kB ChIP-seq datasets have been published [40] and are

deposited in the gene expression omnibus, accession code

GSE55105.

Supporting Information

Figure S1 (A) The basal level p53 protein in NHD fibroblasts is

ROS dependent, while constitutive processing of p100 to p52 is

ROS independent. NHD fibroblasts were treated with ECGC for

7 days where indicated and Western blot analysis was performed.

(B) p53 protein basal and induced level in fibroblast is ATM

dependent. NHD fibroblasts were transfected with the siRNAs

shown and treated with an ATM inhibitor 48 hours later. 7 days

after the initial transfection, whole cell lysates were prepared and

western blot analysis was performed. (C) Hydrogen peroxide

treatment in NHD fibroblasts induces p53 and reduces the

processing of p100 to p52. NHD fibroblasts were treated with the

indicated doses of hydrogen peroxide. 7 days after the initial

treatment, whole cell lysates were prepared and western blot

analysis was performed. (D) Hydrogen peroxide treatment induces

cellular senescence in NHD fibroblasts. NHD fibroblasts were

treated with the indicated doses of hydrogen peroxide and 7 days

after the initial treatment, senescence was measured by b-

galactosidase staining. (E) Multiple siRNAs targeting NF-kB2

and RelB result in down regulation of EZH2 levels. Whole cell

lysates were prepared 48 hours after siRNA transfection and

20 mg were subjected to SDS- PAGE and western blot analysis. (F)

siRNAs targeting NF-kB2 and RelB are specific. RNA was

prepared from NHD fibroblasts treated with the indicated siRNAs

and Q-PCR analysis of NF-kB2 and RelB expression was

performed. (G) siRNA mediated knock-down of Bcl3 leads to a

reduction in EZH2 mRNA level. RNA was prepared from NHD

fibroblasts treated with the indicated siRNAs and Q-PCR analysis

of EZH2 expression was performed. (H) siRNA mediated knock-

down of NF-kB2 and RelB leads to a reduction of promoter

activity of EZH2. Luciferase assay of NHD fibroblasts treated with

the indicated siRNAs and transfected with a pGL3 luciferase

reporter vector containing the EZH2 promoter region. Due to the

difference in scale, results with p53 and p21WAF1 siRNAs are

plotted separately. * P#0.05, ** P#0.01, *** P#0.001, **** P#

0.0001.

(TIF)

Figure S2 (A) CD40L stimulation induces CLL cell prolifera-

tion. CFSE-labelled CLL cells were either co-cultured on

irradiated (75 Gy) CD40L expressing fibroblasts and or control

(NTL) cells, both in the presence of IL-4 (10 ng/ml). Each peak, of

decreased fluorescence, represents a round of proliferation. No

proliferation is observed with co-culture with the NTL cells,

remains as the original labelled single peak. CD40L stimulated

cells are shown in black, while NTL control cells are shown

unfilled. Representative data from day 7 and day 9 after

stimulation is shown. (B) Analysis of EZH2 protein level in CLL

cells. Western blot analysis of CLL whole cell lysates derived from

four different patients (0204, 0205, 0206, 0207) stimulated with

CD40L and IL4 where indicated for 24 hours. Cytogenetic

analysis confirmed that patient 0205 has del(17p), removing one

p53 allele, while the high basal level of p53 in these extracts

suggests the other allele is mutant. The identity of the band seen in

control cells for patient 0207 is not known and has an apparent

molecular weight higher than p53 (the p53 band is indicated with

an arrow). Cytogenetically the p53 gene appears normal in these

cells. Extracts were prepared using Phosphosafe buffer (Novagen/

Millipore).

(TIF)

Figure S3 (A) Multiple siRNAs targeting NF-kB2 and RelB

induce cellular senescence. NHD fibroblasts were transfected with

the listed siRNAs and analysed for senescence by b- galactosidase
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staining after 7 days. Blue cells were counted and the percentage of

positively staining cells are shown. (B) siRNAs targeting NF-kB2,

RelB and Bcl3 result in down regulation of Lamin B1 levels.

Western blot analysis of NHD fibroblasts treated with the

indicated siRNAs. (C) siRNA targeting NF-kB2 and RelB induce

cellular senescence in an ATM dependent manner. NHD

fibroblasts were transfected with the listed siRNAs, treated with

ATM inhibitor where indicated and analysed for senescence by b-

galactosidase staining after 7 days. (D) siRNA mediated knock

down of NF-kB2 and RelB induces ROS production. NHD

fibroblasts were transfected with the listed siRNAs and treated

48 hours later with NAC. After 1 week they were incubated for

30 minutes with 5 mM DCF-DA and analysed using a FacsCanto.

The bar divides cells with high levels of ROS (on the right side),

used in data presented in graphical form, from low-level ROS

containing cells (on the left side). (E) siRNA mediated knock down

of NF-kB2 and RelB induces ROS production. NHD fibroblasts

were transfected with the listed siRNAs and treated 48 hours later

with ECGC. After 1 week they were incubated for 30 minutes

with 5 mM DCF-DA and analysed using a FacsCanto. (F) NF-kB1

depletion does not cause senescence. NHD fibroblasts were

transfected with the listed siRNAs. Senescence was measured by

b-galactosidase staining after 7 days. Western blot analysis of

NHD fibroblasts treated with the indicated siRNAs. (G) siRNA

knock down of NF-kB2 and RelB induce ROS production in a

p53 dependent manner. NHD fibroblasts were transfected with

the siRNAs shown and analyzed for ROS production after 2, 4

and 7 days.

(TIF)

Figure S4 (A) Analysis of senescence in NHD fibroblasts using

two different EZH2 siRNAs and a second p53 siRNA. (B) Analysis

of p14ARF and p16Ink4a protein levels. Western blot analysis of

NHD fibroblasts treated with the indicated siRNAs. (C) p14ARF

and p16INK4a RNA level increase after 7days. RNA was prepared

from NHD fibroblasts treated with the indicated siRNAs after

48 hours and 7 days. Q-PCR analysis of p14ARF and p16INK4a

expression was performed. (D) siRNA knock down of NF-kB2,

RelB and Bcl3 induce cellular senescence in an ARF dependent

manner.

(TIF)

Figure S5 (A) Principal component analysis of the biological

replicates used for microarray analysis. (B) The NF-kB2/RelB/

EZH2 regulatory network is part of a senescence gene signature.

Gene lists from the microarray analysis in NHDF cells were

integrated with data from Rovillain et al. by comparison across

gene names. Genes found in all experiments were retained for

inclusion in the integrated heat map. (C–E) siRNA mediated

knock-down of DEK does not affect EZH2 and p53 mRNA levels.

RNA was prepared from NHD fibroblasts treated with the

indicated siRNAs and Q- PCR analysis of EZH2 (A), DEK (B) and

p53 (C) expression was performed. (F) siRNA mediated knock-

down of NF-kB2 and RelB lead to an increase of the RNA level of

TP53INP1. RNA was prepared from NHD fibroblasts treated

with the indicated siRNAs and Q- PCR analysis of TP53INP1 was

performed. (G) siRNA mediated knock-down of TP53INP1 does

not affect senescence induced by siRNA NF-kB2 and RelB.

(TIF)

Figure S6 (A–B) NF-kB2, RelB, EZH2 and p53 do not regulate

the expression of MnSOD. RNA and whole cell protein lysates

were prepared from NHD fibroblasts treated with the indicated

siRNAs and Q-PCR (A) or western blot (B) analysis of MnSOD

expression was performed.

(TIF)

Figure S7 (A) Multiple siRNAs targeting NF-kB2 and RelB

result in down regulation of Rb phosphorylation. Western blot

analysis of NHD fibroblasts treated with the indicated siRNAs.

Whole cell lysates were prepared 48 hours after transfection and

20 mg were subjected to SDS-PAGE. Please note this is a

reprobing of the same blot used in Fig. S1E and so the b-actin

control lane is the same. (B) Lymphotoxin b receptor stimulation

leads to induction of Rb phosphorylation. NHD fibroblasts were

treated with LTbR agonist antibody for the times indicated and

western blot analysis was performed to determine Rb phosphor-

ylation. Please note this is a reprobing of the same blot used in

Fig. 1E and so the b-actin control lane is the same.

(TIF)

Figure S8 (A & B) Multiple siRNAs targeting CDK4 result in

down regulation of EZH2 expression (A) and senescence (B). (C &

D) ChIP analysis of p52/RelB binding to the CDK4 and CDK6

promoters was performed in NHD fibroblasts. * P#0.05, ** P#

0.01, *** P#0.001, NS - not significant. (E & F) ChIP Seq data

showing NF-kB subunit binding in the region of the CDK4 and

CDK6 genes in the human EBV-transformed lymphoblastoid B-

cell line (LCL) GM12878.

(TIF)

Figure S9 (A) PSMA5 and ANAPC1 regulate p21WAF1 and

p53 protein stability. Western blot analysis of NHD fibroblasts

treated with the indicated siRNAs targeting UBE2C, PSMA5,

ANAPC1, CDC16 and FBX5. (B) PSMA5 and ANAPC1

depletion does not affect p21WAF1 and p53 mRNA levels.

RNA was prepared from NHD fibroblasts treated with the

indicated siRNAs and Q-PCR analysis of p21, p53, PSMA5,

ANAPC1 and Cdc16 expression was performed. (C) Multiple

siRNAs targeting PSMA5 result in upregulation of p21WAF1,

down regulation of EZH2 expression and loss of Rb phosphor-

ylation. Western blot analysis of NHD fibroblasts treated with

the indicated siRNAs. Note data in this figure derives from the

same set of protein extracts but resolved on two different gets,

with b-actin controls included for both.

(TIF)

Figure S10 (A & B) ChIP analysis of p52/RelB binding to the

PSMA5 and ANAPC1 promoters was performed in NHD

fibroblasts. * P#0.05, ** P#0.01, NS - not significant. (C & D)

ChIP Seq data showing NF-kB subunit binding in the region of

the CDK4 and CDK6 genes in the human EBV-transformed

lymphoblastoid B-cell line (LCL) GM12878.

(TIF)

Table S1 NHD fibroblasts were transfected in triplicates with

the listed siRNAs and Q-PCR analysis of NF-kB2, RelB, EZH2,

p53 expression was performed. Numbers represent the level of

expression upon siRNA treatment compared to the control = 1.

(DOC)

Table S2 Microarray gene expression data showing those genes

regulated either in antagonistic or co-operative fashion by NF-

kB2, RelB and p53. Values shown are fold effect for control

siRNA versus the siRNA indicated. The cut off got this analysis is

a 1.56 effect. Where more than one probe set was present on the

array, the data shown here is for the one showing the greatest

effect. Data for all probe sets can be found in the original

microarray data.

(XLSX)

Table S3 Microarray gene expression data for Cyclin D1,

Mdm2, and CDK inhibitors.

(DOC)
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Table S4 Microarray gene expression data for NF-kB2

regulated genes associated with the cell cycle.

(DOC)

Table S5 Microarray gene expression data for RelB regulated

genes associated with ubiquitin mediated degradation.

(DOC)

Text S1 Details of oligonucleotides, siRNAs and PCR primer

sequences.

(DOC)
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