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Recovery from an Acute Infection in C. elegans Requires
the GATA Transcription Factor ELT-2
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The mechanisms involved in the recognition of microbial pathogens and activation of the immune system have been
extensively studied. However, the mechanisms involved in the recovery phase of an infection are incompletely characterized
at both the cellular and physiological levels. Here, we establish a Caenorhabditis elegans-Salmonella enterica model of acute
infection and antibiotic treatment for studying biological changes during the resolution phase of an infection. Using whole
genome expression profiles of acutely infected animals, we found that genes that are markers of innate immunity are down-
regulated upon recovery, while genes involved in xenobiotic detoxification, redox regulation, and cellular homeostasis are
up-regulated. In silico analyses demonstrated that genes altered during recovery from infection were transcriptionally
regulated by conserved transcription factors, including GATA/ELT-2, FOXO/DAF-16, and Nrf/SKN-1. Finally, we found that
recovery from an acute bacterial infection is dependent on ELT-2 activity.
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Introduction

The course of human bacterial infections is controlled by a
combination of immune responses, physiological changes, and, if
necessary, antibiotic treatment. To recover from an infection and
return to homeostasis, the host must activate mechanisms capable
of controlling the damage caused by pathogen virulence factors,
inflammation, and a potentially toxic antibiotic exposure. If these
alterations in host physiology are not handled appropriately, the
host risks entering a state of reduced fitness. This reduced fitness
manifests in the form of recurrent infections, inappropriate wound
healing, autoimmune diseases, and chronic inflammatory disor-
ders. While the mechanisms involved in the recognition of
microbial pathogens as such and the subsequent activation of
the immune system have been extensively studied, the pathways
involved in host recovery after an infection remain understudied.

To examine the biological changes that take place during the
recovery phase of an acute bacterial infection, we decided to use
the nematode Caenorhabditis elegans as a simple model host.
Various human bacterial pathogens, including Pseudomonas
aeruginosa, Salmonella enterica, Staphylococcus aureus, and
Enterococcus faecalis, have been shown to colonize and kill C.
elegans using conserved virulence mechanisms [1-4]. Moreover,
C. elegans responds to infections using an inducible innate
immune system that is controlled by several evolutionary
conserved signaling cascades including the p38-MAPK (PMK-1),
insulin-IGF (DAF-16), GATA (ELT-2), and TGF-B (SMA-6)
pathways [5-8]. It is therefore likely that investigating C. elegans
recovery from bacterial infection would shed light on host
responses that reestablish homeostasis post-infection.
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In this study, we established a C. elegans-S. enterica pathogen-
esis system as a model of acute infection by infecting nematodes
with S. enterica and subsequently resolving the infection by
treatment with the antibiotic Tetracycline. Using this acute
infection model, we profiled gene expression changes in the host
over the course of the infection and during the recovery phase of
the infection. We found that during recovery, certain components
of the host innate immune response were dampened, while
mechanisms involved in xenobiotic detoxification, redox regula-
tion, and cytoprotection were activated. A large number of the
genes altered during recovery corresponded to intestinal genes
regulated by ELT-2, which is a conserved GATA transcription
factor that plays a key role in the control of intestinal functions in
C. elegans. Further studies indicated that the recovery from acute
S. enterica infection required ELT-2, indicating that ELT-2
controls not only induction of innate immune response genes but
also genes that play a crucial role in the resolution of an infection.

Results

Use of a C. elegans-S. enterica pathogenesis system to
model acute infections

Although host responses that limit microbial infection have been
extensively studied, the mechanisms involved in the recovery
phase of an infection are incompletely characterized at both the
cellular and physiological level. We decided to use Caenorhabditis
elegans as a simple model host for assessing biological changes
during the recovery phase from an acute infection. C. elegans is
propagated in the laboratory by feeding them E. coli strain OP50.
E. coli is effectively disrupted by the C. elegans pharyngeal grinder
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Author Summary

Infections by bacterial pathogens often produce substan-
tial tissue damage and alter metabolism in the host that, if
left unchecked, could be detrimental to overall fitness. The
cellular and systemic responses that resolve these alter-
ations in the host are not well defined. Here, we examine
transcriptional networks in an animal host that are
modulated during the resolution phase of an intestinal
infection treated with an antibiotic. Up-regulation of genes
involved in detoxification and cellular homeostasis during
the resolution phase is controlled by the conserved
endodermal GATA transcription factor ELT-2. GATA tran-
scription factors are known to be involved in the
development, differentiation, and function of a diverse
array of metazoan tissue types. Therefore, our results
ascribe a new role to GATA transcription factors in
recovery from an acute infection. Fully characterizing the
host response during resolution of an infection will lead to
a better understanding of human health concerns related
to recurrent infections, wound healing, autoimmune
diseases, and chronic inflammatory disorders.

and essentially no intact bacterial cells can be found in the
intestinal lumen of young, immunocompetent animals. However,
pathogenic bacteria such as Salmonella enterica are capable of
killing C. elegans by infectious processes that correlate with the
accumulation of bacteria in the intestine. As in mammalian hosts,
a small inoculum of S. enferica is capable of establishing a
persistent infection in C. elegans that does not require constant
exposure to bacteria and cannot be prevented by transferring the
infected animals to plates containing E. coli [2,9].

To determine whether a long-lasting, chronic S. enterica
infection could be easily reversed by antibiotic treatment to model
a short, acute infection we used fer-1(b232ts) animals, which are
fertilization defective at the restrictive temperature. This prevents
losing track of the initially infected animals in the morass of
progeny that would be otherwise generated following an acute
infection. We first established that transferring S. enterica-infected
animals to plates containing the bacteriostatic antibiotic Tetracy-
cline and seeded with Tet® E. coli was sufficient to significantly
reduce bacterial burden (Figure S1). Subsequently, we decided to
use 50 pg/ml Tetracycline treatment to reduce S. enterica burden
to model an acute infection in C. elegans.

We monitored bacterial accumulation over the course of a 120
hour infection in synchronized larval stage 1 (L1) fer-1(b232ts)
animals continuously grown on plates seeded with S. enterica-GFP
or transferred to Tetracycline-containing plates seeded with Tet®
E. coli. Consistent with previous findings indicating that C. elegans
larvae are highly resistant to pathogen-mediated killing and that
death does not occur during the first several days of an S. enterica
infection [9,10], we observed that only 4.1% of the animals
exposed to S. enterica-GFP starting at the L1 stage were colonized
72 hours later (Figure 1A). In contrast, at 96 and 120 hours post-
exposure, 41.9% and 71.4% of the animals were colonized by S.
enterica-GFP (Figure 1B-C). We found that transferring animals
from S. enterica at 72 or 96 hours to Tetracycline-containing
plates for 24 hours reduced bacterial burden (Figure 1B-C).
Quantification of the number of live bacteria in animals that
were infected with S. enterica-GFP for 72 hours and treated with
Tetracycline for 24 hours showed a significant reduction of
bacterial burden (Figure 1D), confirming that Tetracycline treat-
ment can prevent S. enterica from persistently colonizing the C.
elegans intestine and causing a chronic infection.
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Even though our results indicate that Tetracycline can prevent
S. enterica from causing a persistent colonization of the C. elegans
intestine, it was unclear whether acute pathogenic challenge would
damage the animal and translate into an associated reduction in
survival. As shown in Figure 1E, we found that the survival of
animals infected with S. enterica and then treated with Tetracy-
cline is significantly higher than that of animals continuously
infected (Figure 1E; yellow vs. red lines). Also, survival of infected
and then Tetracycline-treated animals is nearly equivalent to
animals that were never infected (Figure 1E, yellow vs. black lines).
Treatment with Tetracycline in the presence of killed bacteria only
increased C. elegans mean lifespan from 14.2 to 14.9 days (Figure
S2). Taken together, these studies show that an S. enterica
infection can be resolved by treating the animals with Tetracycline
and indicate that this type of treatment can be used to model an
acute S. enterica infection that progresses towards chronicity if the
animals were to remain untreated.

Recovery from an acute S. enterica infection results in the
down-regulation of immune responses and up-
regulation of cellular homeostatic mechanisms

To investigate cellular mechanisms potentially involved in
recovery after an infection, we utilized Agilent C. elegans gene
expression microarrays to identify changes in gene expression
during infection and changes that take place after the infection is
reversed by treatment with Tetracycline (Figure 2A, Tables Sl
and S2). Initially, we focused our analysis on animals that were
infected with S. enterica for 96 hours vs. animals that were
infected for 72 hours and treated with Tetracycline for 24 hours to
resolve the infection. At 96 hours, 99% of the animals were alive
in both conditions (Figure 1E, Day 1). Overall, 243 genes, or
approximately 1% of the C. elegans genome, were altered more
than 2-fold (p<<0.05) when comparing the 96-hour cohorts. Of
these altered genes, 126 were down-regulated and 117 were up-
regulated (Table S2).

To identify related gene groups that are transcriptionally
controlled by pathways potentially involved in the changes that
take place after infection, we performed an unbiased gene
enrichment analysis using the database for annotation, visualiza-
tion and integrated discovery (DAVID, http://david.abcc.nciferf.
gov/) [11]. The 10 gene ontology (GO) clusters with the highest
DAVID enrichment score are shown in Figure 2B and Table S3.
For the subset of down-regulated genes that respond to the
resolution of the infection, the 2 top-scoring GO clusters, c-type
lectins and lysozyme groupings, have previously been described as
part of an inducible C. elegans immune response to a variety of
pathogens [12-15]. For the subset of up-regulated genes that
respond to the resolution of the infection, 4 of the top 10 highest
scoring ontology clusters are associated with xenobiotic detoxifi-
cation, redox regulation, or cytoprotection [16,17]. These results
indicate that the activation of the innate immune system of C.
elegans by S. enterica infection is attenuated once the infection is
resolved and that certain cellular homeostatic pathways are
activated during recovery.

Since only 42% of the animals exposed to S. enterica for
96 hours exhibited visible bacterial colonization (Figure 1B), we
decided to examine gene expression profiles of animals that were
infected for 120 hours, which exhibited an even higher degree of
bacterial colonization (Figure 1C). A comparison of gene expres-
sion profiles from animals that were infected with S. enterica for
120 hours vs. animals that were infected for 96 hours and treated
with Tetracycline for 24 hours identified 57 and 72 genes that are
down- or up-regulated greater than 2-fold (p<<0.05), respectively
(Table S2). Analysis of GO terms in these gene sets via DAVID
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Figure 1. Tetracycline treatment models S. enterica acute infection in C. elegans. (A) fer-1(b232ts) L1 animals were exposed to S. enterica—
GFP for 72 hours. (B) fer-1(b232ts) L1 animals were exposed to S. enterica—GFP for 72 hours and transferred to the indicated plates for 24 hours. (C)
fer-1(b232ts) L1 animals were exposed to S. enterica—GFP for 96 hours and transferred to the indicated plates for 24 hours. At each time point, overall
GFP intensity in the intestinal lumen was determined using an MZFLIIl Leica stereomicroscope. Three levels of colonization were determined as
heavy, weak, or none as described in Materials and Methods. N=104-150 animals per condition. The graph represents the combined results of 2
independent experiments. (D) Quantification of colony forming units of fer-1(b232ts) L1 animals exposed to S. enterica—GFP for 72 hours, S.
enterica—GFP for 96 hours, or S. enterica—GFP for 72 hours and then treated with Tetracycline for 24 hours. N= 10 animals per condition. The graph
represents the combined results of 4 independent experiments. (E) fer-1(b232ts) L1 animals were exposed to E. coli or S. enterica—GFP for 72 hours
and then transferred to E. coli plus Tetracycline or S. enterica—GFP. Animals were scored for survival 72 hour post initial exposure to S. enterica. N = 60

animals per condition. The graph represents the combined results of 5 independent experiments.

doi:10.1371/journal.pgen.1004609.g001

gives a shorter but similar list of enriched gene clusters (Figure 2B
and Table S3), confirming that, as the infection resolves, marker
genes of immune activation are down-regulated while genes that
correspond to cellular homeostatic pathways are up-regulated.
Moreover, the significant overlap between 96 and 120 hour
treatment gene sets indicates that the changes that take place after
an infection is resolved are reproducible and that similar
transcriptional profiles are elicited at different times (Figure 2C
and Table S4). The smaller number of genes down- and up-
regulated by the resolution of the infection at 120 hours compared
to 96 hours could be a consequence of the higher heterogeneity of
S. enterica colonization in the 120-hour population (comparison of
Figures 1B and 1C). It is also possible that as the infection
progresses, the animals suffer irreversible damage that makes them
less responsive to antibiotic treatment.
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To wvalidate the results of the microarrays, we performed
quantitative real-time PCR (QRT-PCR) on a subset of the 243
genes that change upon Tetracycline treatment of infected
animals. This subset includes 11 up-regulated genes and 6
down-regulated genes that were either present in a high scoring
GO cluster, were highly misregulated, or both. We performed
gRT-PCR on RNA harvested from C. elegans that were subjected
to the same conditions as in the microarray studies. As shown in
Figure 3A and 3B, the changes in gene expression as assessed by
qRT-PCR were comparable to those observed by microarray
profiling. Further analysis indicated that 16 of the 17 genes had
statistically significant expression changes during Tetracycline-
mediated recovery from S. enlerica infection (Figure 3A and 3B).
Thus, the microarray data accurately reflects the majority of gene
expression differences between treated and non-treated animals.
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Figure 2. Whole genome expression analysis reveals down-regulated immune response genes and up-regulated detoxification
genes during resolution of acute S. enterica infection. (A) Flowchart of animal cohorts collected for the microarray analysis. (B) Gene ontology
analysis of genes regulated during recovery at the 96 and 120 hour time points using the DAVID Bioinformatics Database. Enrichment scores of the
96-hour and 120-hour down-regulated clusters are shown in the left panel. Enrichment scores of the 96-hour and 120-hour up-regulated clusters are
shown in the right panel. (C) Venn diagrams showing the overlap of the 96-hour and 120-hour down-regulated genes, left, and overlap of the 96-hour
and 120-hour up-regulated genes, right. Representation factors are 43.5 and 64.3, respectively.

doi:10.1371/journal.pgen.1004609.g002

Resolution of S. enterica infection by treatment with Tetracy-
cline results in the down-regulation of genes that are markers of
innate immunity and the up-regulation of genes that function in
xenobiotic detoxification, redox regulation, and cytoprotection
(Figure 2B). While the resolution of the infection may be
responsible for altering the expression of these genes, it is also
possible that Tetracycline is directly inducing these changes. To
distinguish between these two possibilities, we compared changes
in gene expression due to Tetracycline alone vs. changes in gene
expression due to recovery from infection by treatment with
Tetracycline. We found that expression of 8 out of 16 tested genes
were significantly different (Figure 3C-D), highlighting the role of
these 8 recovery genes in pathways that are altered during the
resolution of the S. enferica infection. Considering that the
genome wide microarray shows that 243 genes change their
expression upon recovery at 96 hours, we estimate that approx-
imately 122 genes are regulated by recovery from infection
independently of Tetracycline while the remaining genes are
regulated by the inclusion of Tetracycline alone. This suggests that
Tetracycline may be directly inducing gene expression changes in

PLOS Genetics | www.plosgenetics.org

the host that may help clear an infection independently of its
antimicrobial activity.

To confirm the finding that a subset of genes is altered upon
resolution of an S. enterica infection independent of Tetracycline,
we performed equivalent experiments using the antibiotic Kana-
mycin. These studies indicate that Kanamycin alone did not alter
the expression of 9 tested genes in uninfected animals (Figure
S3A-B). Furthermore, 8 of the 9 alterations in gene expression
seen in infected animals treated with Kanamycin are similar to
those seen in infected animals treated with Tetracycline (Figure
S3C-D).

To provide further insight into the behavior of genes altered
during antibiotic-mediated recovery, we examined gene expres-
sion profiles over the course of the 96-hour infection (Table S1).
We focused our analysis on qRT-PCR-confirmed genes that are
known markers of immune activation and genes that correspond
to cellular homeostatic pathways. The expression of innate
immunity genes diminished significantly after the infection was
resolved by Tetracycline treatment (Figure 3C and E). In contrast,
genes involved in regulating cellular homeostasis were significantly

October 2014 | Volume 10 | Issue 10 | 1004609
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Figure 3. Gene expression changes in infected animals treated with Tetracycline. (A-B) Transcript levels of 6 selected down-regulated
genes (A) and 10 selected up-regulated genes (B) from L1 animals grown on S. enterica for 72 hours and then treated with Tetracycline for 24 hours
relative to L1 animals grown on S. enterica for 96 hours. Out of the 17 studied genes, only the 16 validated genes are shown. Gray bars represent fold
change as determined using qRT-PCR. White bars represent fold change as determined using microarrays. (C-D) Transcript levels of 6 selected down-
regulated genes (C) and 10 selected up-regulated genes (D) as determined using gRT-PCR. Black bars represent gene expression changes in L1
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time course. The expression values of animals grown on S. enterica for 72 hours and then treated with Tetracycline for 24 hours are denoted with
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doi:10.1371/journal.pgen.1004609.9003
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up-regulated upon recovery from infection (Figure 3D and F). As a
control, the expression of 3 select housekeeping genes remained
relatively constant both during the course of the infection and
during recovery (Figure 3G). Overall, these studies suggest that as
the infection resolves, cellular homeostatic mechanisms are
activated while elements of the immune response are attenuated.

The GATA transcription factor ELT-2 is required for the
resolution of the S. enterica infection

Several of the GO clusters identified in the set of genes up-
regulated during resolution of the infection correspond to genes
whose products are involved in detoxification. We therefore
hypothesized that the reduction of the pathogenic insult during the
recovery phase of an infection may trigger processes involved in
detoxification and clearance of immune effectors that, while
necessary to combat pathogens, can have deleterious effects on the
host. Recently, it was demonstrated that reactive oxygen species
(ROS), a component of the C. elegans immune response to S.
enterica and other pathogens [18-20], contributes to infectious
pathogenicity (i.e., damage to the host). Thus, we decided to study
gsto-1, which is an up-regulated gene that encodes an omega-class
glutathione S-transferase that protects C. elegans from oxidative
stress under non-infected conditions [21]. We found that survival
of gsto-1(RNAi) animals infected with S. enterica and treated with
Tetracycline was not significantly different from that of control
animals (Figure S4).

The lack of a significant effect by gsto-I RNAi could be
attributed to incomplete RNAi or to functional redundancy
among the multitude of detoxification genes that are up-regulated
during recovery (Figure 2B and Table S3). The gsto-1 locus is
transcriptionally regulated by the GATA transcription factor EL'T-
2 [21], leading us to consider a role for ELT-2 in controlling the
expression of a set of genes required for resolution of an infection.
Consequently, we applied several in silico approaches to
determine whether ELT-2-regulated genes are present in the
genes whose expression changes by the resolution of an infection.
We compared the set of genes altered during recovery to
previously identified ELT-2-regulated gene sets and to other
control data sets. The ELT-2-regulated gene sets were among the
10 data sets with the strongest overlap with our recovery gene set
(Figure 4A and Table S5). As ELT-2 regulates the expression of
genes in the C. elegans intestine via trans-acting activity at
TGATAA (extended GATA) cis-regulatory motifs [22,23], we
looked for the presence of TGATAA binding sites in the putative
promoter regions of the down- and up- regulated genes.
Approximately 63% of the 243 genes regulated by recovery
contain at least 1 TGATAA site within the 1.5 kb sequence
upstream of their transcriptional start site (Figure 4B). By
comparison, only 54% of genes in 3 randomly selected gene sets
(n=243 each) have at least 1 TGATAA sequence in the
equivalent 1.5 kb region (Figure 4B). Additionally, we observed
that at least 1 TGATAA site is present in the putative promoter
region of 7 of the 8 recovery genes verified by qRT-PCR (Table
S6). While gsto-1 does not contain a TGATAA site in this 1.5 kb
region, it does have a single site 3.8 kb upstream of the
transcriptional start site. Moreover, it has been experimentally
demonstrated that ELT-2 regulates the transcription of gsto-1
[21].

Consistent with the post-developmental role of ELT-2 in the
regulation of adult intestinal functions [5,6,24-26], another in
silico approach showed that 17 out of 32 (53%) recovery genes
with at least 1 TGATAA site and for which the data is available
are expressed in the intestine (Table S7). Only 1 out of these 32
genes is expressed in the hypodermis where other GATA
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transcription factors function [27]. This analysis also showed that
4 out of 8 recovery genes verified by qRT-PCR are expressed in
the intestine (Table S7). Taken together, our in silico analyses
leads to the hypothesis that ELT-2 controls the expression of a
subset of genes during the recovery phase of an infection.

To further substantiate a role for ELT-2 in the transcriptional
regulation of genes during recovery, we studied the effect of elt-2
RNAI on the expression of recovery genes. As ELT-2 is essential
for C. elegans larval development [22], RNAi was performed on
late larval stage 4 (L4) animals. This approach has been used
successfully to inhibit elt-2 expression for at least 6 days [28,29]. As
shown in Figure 4D, RNAI of e/t-2 inhibited the expression of the
5 studied genes that are up-regulated during recovery from the
infection by treatment with either Tetracycline (Figure 3D) or
Kanamycin (Figure S3B). Inhibition of eli-2 by RNAI also further
down-regulated the expression of iys-3 and lys-9 (Figure 4C).
However, RNAI of eli-2 does not result in the unselective down-
regulation of recovery genes as acdh-1 is not down-regulated
(Figure 4C). In addition, certain ELT-2-controlled immunity and
structural genes [12,28] are not significantly altered during
recovery from S. enlerica infection (Figure S5A-B). We further
confirmed by qRT-PCR that transcript levels of ¢clec-67, which is a
known marker of immunity controlled by ELT-2 [12], are not
altered upon recovery (Figure S5C). We conclude that expression
of a specific intestinal gene program during resolution of an
infection is dependent upon the action of the GATA transcription
factor ELT-2.

To test whether ELT-2 is required for recovery after infection,
we studied the survival of elt-2(RNAi) animals infected with S.
enterica and treated with Tetracycline. RNAI inhibition of eli-2
starting at the L4 stage did not alter the survival of animals
growing on live E. coli (Figure 5A; black lines), nor did it alter
survival in the presence of Tetracycline (Figure S6). This data
indicates that L4 elt-2(RNAi) animals are not sick merely due to
disruptions in basal immunity or intestinal function. However,
RNAI of elt-2 prevented the recovery of infected animals by
treatment with Tetracycline (Figure 5B; yellow lines), highlighting
the role of EL'T-2 during the recovery phase of the infection. In
agreement with previously published reports that ELT-2 regulates
innate immunity [12,28], RNAi of elt-2 did significantly reduce
survival of animals continuously infected with S. enterica
(Figure 5A; red lines). To address whether genes crucial for
Immunity are generally required for recovery, we studied pmk-1,
which encodes a p38 mitogen-activated protein kinase that is a
major regulator of innate immunity in C. elegans [14,30,31]. Even
though RNAI of pmk-1 elicited sensitivity to S. enterica-mediated
killing (Figure 5C; red lines), it did not prevent the recovery of
infected animals by treatment with Tetracycline (Figure 5D).
Taken together, these results indicate that ELT-2 is required for
both early immune responses against pathogens and responses that
are activated upon recovery from an infection by S. enterica.

Discussion

Using gene expression profiling, in silico analysis, and reverse
genetic approaches, we have defined a novel post-developmental
role for the GATA transcription factor ELT-2 during the
resolution of an infection. ELT-2 was originally identified as a
key regulator of C. elegans intestinal specification during
development [22]. However, it is now becoming clear that ELT-
2 has an extensive post-developmental role in the regulation of a
plethora of adult intestinal functions. Under the control of ELT-2,
the 20 cells of the adult intestine in C. elegans function in nutrient
uptake, synthesis and storage of macromolecules, epithelial
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doi:10.1371/journal.pgen.1004609.g004

immunity, and host-microbial communication [5,6,24-26]. There
are several additional GATA transcription factors encoded in the
C. elegans genome, including ELT-4 and ELT-7, which regulate
intestinal gene expression programs [32]. Further studies will be
required to determine their possible contribution to the recovery
process.

Owing to the multi-functional nature of the intestine and due to
the fact that ELT-2 regulates nearly all intestinal genes [33], it is
not surprising that half of the genes in the C. elegans genome have
putative ELT-2 binding sites (Figure 4B). Thus, it is logical to
conclude that the specification of different functional outputs that
takes place in the C. elegans intestine during the complete course
of an infection is controlled by additional co-factors that act
together with ELT-2. Recent work has demonstrated that GATA
transcription factors, including ELT-2, act coordinately with the
msulin-IGF pathway transcriptional regulator DAF-16 in a cell-
autonomous manner to regulate lifespan extension in C. elegans
[34]. It is therefore plausible that DAF-16 acts with ELT-2 to co-
regulate genes important for infection resolution. Indeed, we
observed a significant enrichment of both ELT-2- and DAF-16-
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controlled targets in our set of genes altered during recovery from
infection (Figure 4A and Table S5). An emerging theme is that
coordinated transcriptional activity of DAF-16 and ELT-2 would
be necessary for the modulation of cytoprotective pathways that, in
turn, are required for a majority of cellular stress response
pathways [16].

Another candidate factor that may regulate damage response
genes in conjunction with ELT-2 and/or DAF-16 is the Nrfl/
SKN-1 transcription factor. Previous work has demonstrated that
signaling cascades downstream of reactive oxygen species (ROS)
induce a cytoprotective SKIN-1 pathway [35,36]. SKN-1 might
regulate cytoprotective genes downstream of or in parallel to ELT-
2 and/or DAF-16 to mediate resolution of an infection. Indeed,
SKN-1-positively regulated targets are significantly enriched in the
set of genes that are up-regulated during infection resolution
(Table S5).

Mounting evidence indicates that ELT-2 activity is modulated
under a variety of environmental conditions or physiological states.
ELT-2-mediated immunity to a variety of pathogens is activated
by currently unknown mechanisms. Interestingly, a paper by Lee
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exposed to E. coli or S. enterica—GFP for 36 hours and then transferred to E. coli or S. enterica—GFP and scored for survival. (B) Control fer-1(b232ts) or
fer-1(b232ts) elt-2(RNAi) animals were exposed to E. coli or S. enterica—GFP for 36 hours and then transferred to E. coli or E. coli plus Tetracycline and
scored for survival. (C) Control fer-1(b232ts) or fer-1(b232ts) pmk-1(RNAI) young adult animals were exposed to E. coli or S. enterica—GFP for 36 hours
and then transferred to E. coli or S. enterica—GFP and scored for survival. (D) Control fer-1(b232ts) or fer-1(b232ts) pmk-1(RNAi) animals were exposed
to E. coli or S. enterica—GFP for 36 hours and then transferred to E. coli or E. coli plus Tetracycline and scored for survival. N=60 animals per
condition. The graphs represent the combined results of 3 independent experiments.
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and colleagues demonstrates that the intestinal pathogen B.
pseudomallei can actively target and degrade ELT-2 to prevent
host immune responses [29]. We failed to observe any alterations
in ELT-2 protein localization or abundance caused by S. enterica
infection or recovery. These pathogens, which kill C. elegans at a
distinctly different rate, must utilize different mechanisms to
overcome the host immune system.

Signals during the initial decline in infection may function to
reprogram the transcriptional activity of ELT-2 from an innate
immune program to a cytoprotective one. These unidentified
signals may be bacterial- and/or host-derived. Specific bacterial-
derived signals, such as those involved in biofilm formation or
quorum sensing, may be the primary trigger for the ELT-2 switch
[26]. These bacterial-derived signals might act directly on ELT-2
or they may transit through host-encoded genes. Alternatively,
host-encoded regulators that normally function during develop-
ment, such as the END-1/END-3 specification factors, might be
re-activated during the resolution of infection to direct the
transcription of detoxification genes by ELT-2. Interestingly, the
END-1/END-3 system lies downstream of the oxidative stress
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(ROS) response protein SKN-1 in the development of the C.
elegans intestine [24]. Alternatively, changes in ELT-2 activity
may be controlled by local chromatin remodeling in a manner
similar to the regulation of DAF-16 transcriptional activity [37].
In summary, our results identified a new, key role for ELT-2
during recovery from a bacterial infection. We revealed that
during recovery from an infection, genes that are markers of
innate immunity are down-regulated, while the expression of genes
involved in xenobiotic detoxification, redox regulation, and
cytoprotection is enhanced. Interestingly, a number of genes
encoding antibacterial factors (ABFs) are up-regulated during the
course of the S. enferica infection (Table S1). However, the
expression of abf genes is not down-regulated once the infection is
resolved. This could be due to a mechanism used by C. elegans to
maintain  high levels of abf genes throughout reproductive
adulthood. It is also possible that ABFs have a high specificity
for damaging prokaryotic cells, having little or no impact on host
cells. Thus, there would be no immediate need to reverse their up-
regulation once the infection is resolved, unlike the case of
lysozyme-encoding genes, which could potentially damage host
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cells. The ELT-2 interaction with the aforementioned co-factors
may dictate the specificity of the expression profile during the
different phases of an infection. A number of microbial killing
pathways and cellular homeostatic pathways are controlled by the
nervous system in infected C. elegans [38-46]. An important
question that remains to be evaluated is whether the nervous
system also plays a role in the control of the mechanisms involved
in recovery after infections have been cleared.

Materials and Methods

Nematode and bacterial strains

C. elegans strain HH142 fer-1(b232ts) was provided by the
Caenorhabditis Genetics Center. C. elegans were maintained at
15°C on NGM—OP50 plates without antibiotics. The following
bacterial strains were used for experiments: Escherichia coli strain
OP50-1 [Sm®] [47], E. coli—dsRed strain OP30 [Amp®, CbX]
[47], E. coli strain HT115 [Tet®] [48], E. coli strain HT115
pL4440 [Amp®, Tet™] [48], E. coli strain DH50 pSMC21 [Kan®]
[49], Salmonella enterica enterica serovar Typhimurium strain
1344 [Sm®] [50], S. enterica—GFP strain SM022 [Sm®, Kan®]
[51]. Bacteria were grown overnight for 14 hours in 3 ml LB
broth at 37°C.

Visualization of bacterial accumulation in the nematode

intestine

fer-1(b2321s) animals were synchronized by treating gravid
adults with sodium hydroxide and bleach. About 2,000 synchro-
nized L1 animals were grown on full lawn S. enterica—GFP plates
at 25°C for 36, 72, 96, or 120 hours. At designated transfer time
points, animals were rinsed off S. enterica—GFP plates, washed
with M9 (4 changes X15 minutes), concentrated, and then
transferred to plates with or without 50 pg/ml Tetracycline that
were seeded with E. coli HT'115 or S. enterica-GFP. At designated
visualization time points, animals were picked to an NGM—OP50
plate for 1 hour before being picked to a new NGM—OP50 plate.
Animals were then visualized at 20X using a Leica MZ FLIII
fluorescence stereomicroscope. In heavily colonized animals
(heavy) GFP fluorescence was visible in the presence of halogen
white light set at 60%, while in weakly infected animals (weak)
GFP fluorescence was only visible in the absence of white light.
Animals where GFP fluorescence was not detected even in the
absence of white light were scored as not infected (none).

Quantification of intestinal bacterial loads

For the quantification of colony forming units (CFUs), fer-
1(b2321s) animals were synchronized by treating gravid adults
with sodium hydroxide and bleach. About 2,000 synchronized L1
animals were grown on full lawn S. enterica—GFP plates at 25°C
for 72 hours. At the designated transfer time points, animals were
rinsed off S. enterica—GFP plates, washed with M9 (4 changes
x15 minutes), concentrated, and then transferred to S. enterica-
GFP or E. coli plus 50 pg/ml Tetracycline plates. At designated
CFU time points, animals were picked to 3 NGM—OP50 plates
(20 minutes each) before being picked to a 1.5 ml eppendorf tube
with 50 pl of PBS plus 0.1% Triton-X-100. A total of 10 animals
per condition were mechanically disrupted using a mini-pestle.
Serial dilutions of the lysates were spread onto LB/Kanamycin
(50 pug/ml) plates to select for S. enterica—GFP cells and grown
for 24 hours at 37°C.

Survival assays
Bacteria — E. coli HT'115 or S. enlerica were grown overnight
for 14 hours in 3 ml LB broth at 37°C. A total of 50 pl (scoring) or
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500 pl (exposure) of the resulting cultures were spread onto
modified (0.35% peptone) NGM plates with or without 50 pg/ml
Tetracycline and allowed to grow for 1-2 days at 25°C to produce
a thick lawn. fer-1(b232ts) animals were synchronized by treating
gravid adults with sodium hydroxide and bleach. Synchronized L1
animals were grown on full lawn S. enterica—GFP plates at 25°C
for 72 hours before being transferred to the appropriate (treatment
or not) plates. The assays were performed at 25°C. Animals were
scored every day and were considered dead when they failed to
respond to touch. Animals were transferred to fresh plates every
other day for the entire length of the experiment. Survival was
plotted using Kaplan-Meier survival curves and analyzed by the
logrank test using GraphPad Prism (GraphPad Software, Inc., San
Diego, CA). Survival curves resulting in p values of <0.05 were
considered significantly different. A total of 60 animals per
condition per experiment were used.

Longevity assays

E. coli was grown as described above. A 50- ul drop of the
bacteria was plated on a 3.5-cm plate of modified NGM agar
containing 40 pg/ml fluoro-deoxyuridine with or without 50 ug/
ml Tetracycline. A total of 100 animals per condition per
experiment were used. The assays were performed at 25°C.
Survival curves were analyzed as described above.

RNAi-coupled survival assays

gsto-1(RNAi). E. coli HT'115(DE3) bacterial strains expressing
double-stranded RNA [48] were grown for 9 hours in 5 ml LB
broth containing Ampicillin (50 pg/ml) at 37°C. The resulting
cultures were seeded onto NGM plates containing Carbenicillin
(50 ug/ml) and isopropyl-1-thio-p-D-galactopyranoside (3 mM).
dsRNA-expressing bacteria were allowed to grow for 2 days at
25°C to produce a thick lawn. fer-1(b232ts) 14 animals were
placed on RNAI or vector control plates for 5 days at 15°C until
F1 animals developed. fer-1(b232ts) F1 L4 animals were placed
on a second RNAI or vector control plate and incubated for
another 5 days at 15°C until adult F2 animals developed. Gravid
F2 RNAi animals were picked to full lawn E. coli or S. enterica—
GFP plates and allowed to lay eggs for 3 hours at 25°C to
synchronize a third generation population. These third generation
animals were kept on E. coli or S. enterica—GFP plates for
72 hours before being transferred to plates with or without 50 pg/
ml Tetracycline that were seeded with E. coli or S. enterica-GFP.
unc-22(RNA1) was used as positive control in all experiments to
account for RNAI efficiency. The gsto-1 (mv_C29E4.7) RNAi
vector was verified by DNA sequencing. A total of 60 animals per
condition per experiment were scored for survival.

elt-2(RNAi) and pmk-1(RNAi). Production of RNAI plates
was the same as described above. Gravid fer-1(b232ts) animals
were allowed to lay eggs for 3 hours at 25°C on NGM-HT115
plates. Gravid animals were removed and the eggs/plates were
incubated for 36 hours at 25°C. Synchronized L4 animals were
then transferred to RNNAI or vector control plates and incubated
for an additional 36 hours at 25°C. Young adult RNAI or vector
control animals were then transferred to and grown on full lawn E.
coli or S. enterica—GFP plates for 36 hours at 25°Cl. Adult worms
were then transferred to plates with or without 50 pg/ml
Tetracycline that were seeded with E. coli or S. enterica-GFP.
unc-22(RNAi) was used as positive control in all experiments to
account for RNA efficiency. The ell-2 (mv_AAC36130) and pmk-
1 (sjj_B0218.3) RNAI vectors were verified by DNA sequencing. A
total of 60 animals per condition per experiment were scored for
survival.
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RNA isolation for gRT-PCR

fer-1(6232ts). Animals were synchronized by treating gravid
adults with sodium hydroxide and bleach. Synchronized L1 animals
were grown on full lawn E. coli or S. enterica—GFP plates for
72 hours. At 72 hours, animals were rinsed off E. coli or S.
enterica—GFP plates, washed with M9 (4 changes x15 minutes),
concentrated, and then transferred to E. coli, E. coli plus 50 pg/ml
Tetracycline, E. coli plus 50 pg/ml Kanamycin, or S. enterica—
GFP plates. At 24 hours post-transfer, animals were rinsed off plates,
washed with M9 (4 changes X 15 minutes), and flash-frozen in Trizol
(Life Technologies, Carlsbad, CA). Total RNA was extracted using
the RNeasy Plus Universal Kit (Qiagen, Netherlands).

elt-2(RNAi); fer-1(b232ts). Animals were synchronized by
treating gravid adults with sodium hydroxide and bleach.
Synchronized L1 animals were grown on full lawn E. coli plates
for 36 hours. At 36 hours, animals were rinsed off E. coli, washed
with M9 (4 changes x15 minutes), concentrated, and then placed
on RNAIi or vector control plates for 36 hours. At 72 hours,
animals were rinsed off these plates washed with M9 (4 changes
x15 minutes), concentrated, and then placed on S. enterica—
GFP plates for 36 hours. At 108 hours, animals were rinsed off S.
enterica—GFP plates, washed with M9 (4 changes x15 minutes),
concentrated, and then transferred to E. colt, E. coli plus 50 pg/ml
Tetracycline, or S. enterica—GFP plates for 24 hours. Animals
were rinsed off plates, washed with M9 (4 changes x15 minutes),
and flash-frozen in Trizol (Life Technologies, Carlsbad, CA).
Total RNA was extracted using the RNeasy Plus Universal Kit
(Qiagen, Netherlands). All studies were performed at 25°C.

Quantitative Real-Time PCR (qRT-PCR)

Total RNA was obtained as described above. A total of 1 pg
total RNA was oligo(dT) primed and reverse transcribed in a 50 pl
volume using the SuperScript III First-Strand Synthesis System
(Life Technologies, Carlsbad, CA). Reactions without the addition
of reverse transcriptase (RT) were also performed and served as
controls for contaminating genomic DNA in quantitative PCR
experiments. Two pl of the resulting plus or minus RT reactions
served as templates in quantitative PCR experiments using Power
SYBR Green PCR Master Mix (Life Technologies, Carlsbad, CA)
and the StepOnePlus Real-Time PCR System (Life Technologies,
Carlsbad, CA). For each sample, 3 technical replicates were
performed. Pan-actin-normalized Ct values were determined using
the StepOnePlus Software (Life Technologies, Carlsbad, CA).
Primer sequences are available upon request. When applicable a
one or two variable {-test was performed.

RNA isolation for microarray analysis

fer-1(b232ts) animals were synchronized by treating gravid
adults with sodium hydroxide and bleach. Synchronized LI
animals were grown on full lawn E. coli OP50 (uninfected) or full
lawn S. enterica plates at 25°C for 36, 72, 96, or 120 hours. At
designated transfer time points, animals were rinsed off S. enterica
plates, washed with M9 (4 changes x15 minutes), concentrated,
and then transferred to S. enterica or E. coli plus 50 pg/ml
Tetracycline plates. At designated harvesting time points, animals
were rinsed off plates, washed with M9 (4 changes X15 minutes),
and flash-frozen in Trizol (Life Technologies, Carlsbad, CA).
Total RNA was extracted using the RNeasy Plus Universal Kit
(Qiagen, Netherlands).

Microarray analysis
Total RNA was assessed for quality with an Agilent 2100
Bioanalyzer G2939A (Agilent Technologies, Santa Clara, CA) and

PLOS Genetics | www.plosgenetics.org

10

GATA Transcription Factor Required for Host Recovery from Infection

a Nanodrop 8000 spectrophotomer (Thermo, Wilmington, DE).
100 ng of total RNA was converted to 1.65 pg Cy-3-labeled,
linearly amplified cRNA using the Low Input Quick Amp (LIQA)
Labeling One-Color Microarray-Based Gene Expression Analysis
Kit (Agilent Technologies, Santa Clara, CA). cRNA was
fragmented and added to 44 K feature Agilent C. elegans Gene
Expression Microarray V2 slides (Agilent Technologies, Santa
Clara, CA). Hybridization was performed in the Agilent rotisserie
Hybridization Oven for 17 hours. Arrays were subsequently
washed and scanned with the Agilent B scanner according to
standard Agilent protocols (Agilent Technologies, Santa Clara,
CA). Scanned data was log2 transformed and quantile normalized
using Partek Genomics Suite (St. Louis, MO). Analysis of variance
(ANOVA) t tests and fold-change calculations were also performed
using Partek Genomics Suite (St. Louis, MO). For each of the 5
time points, 2 biological replicates were assessed. The microarray
data was deposited in the Gene Expression Omnibus database:

GSE54212.

Bioinformatics

Gene lists were culled from the literature and passed through
WormBase Converter [52] using the WS220 genome release as
the output (references are noted in Table S3). A total of 20,834
WS220 genes are represented by 1 or more probes in the Agilent
C. elegans V2 array (Agilent Technologies, Santa Clara, CA).
Gene ontology analysis was performed using the DAVID
Bioinformatics Database (david.abcc.nciferf.gov/). The most
significant gene ontology term in each DAVID functional
annotation cluster was set as the significance of the overall cluster.
Statistical significance of the overlap between two gene sets was
calculated using the following on-line program: nemates.org/MA/
progs/overlap_stats.html. Representation Factor represents the
number of overlapping genes divided by the expected number of
overlapping genes drawn from 2 independent groups. A
background gene list of 20,834 was used for the calculation. P
values were calculated using the hypergeometric probability.
1.5 kb cis-regulatory sequences were identified using WormMart
(wormbase.org). Expression patterns were determined using
WormMine (wormbase.org). Detailed bioinformatics protocols
are available upon request.

Supporting Information

Figure S1 Tetracycline effectively limits progression of an S.
enterica infection. fer-1(b232ts) L1 animals were exposed to S.
enterica—GFP for 72 hours and transferred to the indicated
bacteria-antibiotic plates for 48 hours. Overall GFP intensity in
the intestinal lumen was determined using an MZFLIII Leica
stereomicroscope. Three levels of colonization were determined as
heavy, weak, or none as described in Materials and Methods. The
mean of 2 plates is shown. For each condition, we assayed 2040
animals.

(TIF)

Figure 82 Survival of uninfected animals exposed to Tetracy-
cline. fer-1(b232ts) L1 animals were grow on killed E. coli for
72 hours and then transferred to killed E. coli or killed E. coli plus
Tetracycline and scored for survival. Animals were scored for
survival 72 hours after the initial exposure to E. coli. Plates
containing 40 pg/ml 5-fluorodeoxyuridine were used, which is a
standard method in nematode aging research. N =100 animals
per condition. The graphs represent the combined results of 2
independent experiments.

(TIF)
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Figure 83 Gene expression changes in infected animals treated
with Kanamycin mimic gene expression changes in infected
animals treated with Tetracycline. (A-B) Transcript levels of 4
selected down-regulated genes (B) and 5 selected up-regulated
genes (C) as determined using qRT-PCR. Black striped bars
represent gene expression changes in L1 animals grown on E. coli
for 72 hours and then treated with Kanamycin for 24 hours
relative to L1 animals grown on E. coli for 96 hours. Gray striped
bars represent gene expression changes in L1 animals grown on S.
enterica for 72 hours and then treated with Kanamycin for
24 hours relative to animals grown on S. enterica for 96 hours.
(C-D) Comparison of gene expression changes in 4 selected down-
regulated genes (C) and 5 selected up-regulated genes (D) during
recovery with Tetracycline or Kanamycin. Gray bars represent
gene expression changes in L1 animals grown on S. enterica for
72 hours and then treated with Tetracycline for 24 hours relative
to animals grown on S. enterica for 96 hours. Gray striped bars
represent gene expression changes in L1 animals grown on S.
enterica for 72 hours and then treated with Kanamycin for
24 hours relative to animals grown on S. enterica for 96 hours.
qRT-PCR studies were performed in duplicate. SEM is shown.
(TIF)

Figure S4 gsto-1(RNAi1) animals are minimally affected during
resolution of an infection. (A) Control fer-1(b232ts) or fer-
1(b232ts) gsto-1(RNAi) L1 animals were exposed to E. coli or S.
enterica—GTFP for 72 hours and then transferred to E. coli plus
Tetracycline or S. enterica—GFP and scored for survival. (B)
Control fer-1(b2321s) or fer-1(b232ts) gsto-1(RNAi) animals were
exposed to E. coli or S. enterica—GTP for 72 hours and then
transferred to E. coli plus Tetracycline and scored for survival.
N =60 animals per condition. The graphs represent the combined
results of 5 independent experiments.

(TIF)

Figure S5 ELT-2-controlled immunity and structural genes that
are not significantly altered during recovery from S. enterica
infection. (A-B) Transcript levels of ELT-2-regulated immunity
genes (A) or ELT-2-regulated intestinal homeostasis genes (B) over
the infection time course. The expression values of animals grown
on S. enterica for 72 hours and then treated with Tetracycline for
24 hours are denoted with open circles. The expression values of
animals grown on S. enterica for 96 hours are denoted with an X.
(C) Transcript levels of clec-67 as determined using qRT-PCR.
Black bars represent gene expression changes in L1 animals grown
on E. coli for 72 hours and then treated with Tetracycline for
24 hours relative to L1 animals grown on E. coli for 96 hours.
Gray bars represent gene expression changes in L1 animals grown
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