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Abstract

All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major
challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a
major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes.
Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-
signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of
animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate
by immunocytochemical means that p38 is expressed in Drosophila melanogaster’s clock neurons and that it is activated in a
clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation,
additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type
timing of evening activity and for maintaining ,24 h behavioral rhythms under constant darkness: flies with reduced p38
activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore,
nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of
p38b in Drosophila’s most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of
Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot
results and point to p38 as a potential ‘‘clock kinase’’ phosphorylating Period. Taken together, our findings indicate that the
p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-
input pathways.

Citation: Dusik V, Senthilan PR, Mentzel B, Hartlieb H, Wülbeck C, et al. (2014) The MAP Kinase p38 Is Part of Drosophila melanogaster’s Circadian Clock. PLoS
Genet 10(8): e1004565. doi:10.1371/journal.pgen.1004565
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Introduction

Circadian clocks provide a key advantage to organism allowing

them to prepare in advance for daily environmental changes. They

control daily rhythms in physiology and behavior, as locomotor

activity, sleep-wake cycles and hormonal secretion. A hallmark

feature of these clocks is that they oscillate with free-running

periods of ,24 h, even in absence of external time cues.

Molecularly, circadian clocks depend on species-specific clock

genes and proteins that interact in complex feedback loops to

rhythmically control gene transcription (reviewed in [1–2]).

However, research of the last few years demonstrated that not

only rhythmic gene expression but also post-translational modi-

fications, especially protein phosphorylation, play a crucial role in

generating and maintaining circadian rhythms and most impor-

tantly in determining the speed of the oscillations [3–9].

Studies in Drosophila melanogaster have been instrumental in

our understanding of clock mechanisms in general and mamma-

lian ones in particular. In Drosophila’s main feedback loop, the

core clock genes period (per) and timeless (tim) are rhythmically

transcribed and translated into the proteins PER and TIM.

Following phosphorylation by kinases (and/or dephosphorylation

by phosphatases), both proteins accumulate in the cytoplasm and

finally translocate back to the nucleus to inhibit their own

transcription as well as that of clock-controlled genes (reviewed in

[10]). Even if most of the clock proteins are phosphorylated within

this molecular machinery, PER seems to be the clock component

behaving as the primary ‘‘phospho-timer’’ [4,6]. Recent findings

indicate that PER proteins in animals possess up to 25–30

phosphorylation sites [5,11] many of which undergo daily changes

in phosphorylation. These temporal changes in PER phosphor-

ylation are crucial for a functioning clock, since they modulate the

stability of PER as well as the time of its nuclear entry, and in this

way determine the pace of the clock [11–13]. While in the past it

was thought that the amount of phosphate residues of clock

proteins determines their degradation, studies nowadays show that

it is rather site-directed phosphorylation that modulates clock

protein function and stability [11–14]. So far, in Drosophila just a

few kinases have been identified that interact with PER: DBT [15–

17], SGG [12], CK2 [18–20] and proline-directed kinases as
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NEMO/NLK [12–13]. The latter belong to the CMGC family of

kinases that also includes the evolutionarily conserved superfamily

of mitogen-activated protein kinases (MAPKs) [21].

Sanada et al. [22] consider that mammalian extracellular signal-

regulated kinase (ERK), a member of the MAPK superfamily,

function in the circadian system either regulating biochemical

activities and stabilities of clock components via phosphorylation

or mediating coupling of pacemakers among clock cells. Interest-

ingly, the modulation (phosphorylation) mechanism in Drosoph-
ila’s core clock was only recently linked to MAPK signaling

pathways. Several studies in Drosophila reported an ERK-binding

domain in the kinase S6KII, a homologue of the mammalian p90

ribosomal S6 kinase (RSK), and claimed the importance of this

ERK-binding domain for the interaction of S6KII with CK2 and

the modulation of circadian behavior [23–24]. These findings

strongly point to an involvement of MAPKs in the circadian clock

of organisms.

The MAP Kinase p38 is a serine/threonine kinase that is

activated by a variety of external stressors, including changes in

osmolarity, heat shock and UV-irradiation [25–26]. Like all

MAPKs, p38 contains a canonical TGY dual phosphorylation

motif and requires phosphorylation of both the Thr184 and

Tyr186 residue to achieve full enzymatic activity [25]. Intensive

research in the last years revealed a wide spectrum of both nuclear

and cytoplasmatic targets of p38, ranging from transcription

factors like Mef2 [27] and ATF2 [28–29], growth factors and

regulatory cell cycle proteins [30–31] to a limited number of

subordinate kinases, such as MK2 [32–33], CK2 [34–35] and

MSK [36]. Considering the variety and diversity of p38 targets, an

extent and complex signaling network arises that regulates diverse

cellular processes depending on cell type, tissue and stimuli.

The complexity of this p38 MAPK signaling network becomes

even more elaborate as many cells express diverse isoforms of p38.

The genome of the fruit fly encodes two functional p38

orthologues - p38a and p38b [25–26]. Phosphorylation of both

is well described in respect of Drosophila development [27–28,37],

stress and immune response [25–27], [38–40]. Interestingly,

various studies in mammals [41–42] and fungi [43–44] addition-

ally revealed a light-dependent as well as circadian activation of

p38 and further linked this to a role within the circadian system.

This link is very interesting, since at least in mammals the stress

system and circadian system are mutually linked [45–46].

Furthermore, as stated above phosphorylation of the core clock

proteins is a crucial step in circadian rhythm generation in all

organisms, and MAPKs could potentially participate in this

process. Nevertheless, the function of p38 MAPK within the

circadian clock remains largely unknown.

Here, we show for the first time p38 MAPK expression in

Drosophila clock neurons and further confirm a darkness- and

clock-dependent activation of p38 in these cells. Behavioral data of

flies with modified p38 levels in clock neurons clearly indicate a

role for p38 MAPK signaling in wild-type timing of evening

activity in LD 12:12 (12 hours light: 12 hours darkness) as well as

in maintaining 24 h behavioral rhythms in constant conditions.

The observed behavioral effects are consistent with a delayed

nuclear entry of PER in flies expressing a dominant negative form

of p38b, even placing p38 function into the core circadian clock.

Finally, Western Blot analysis and in vitro kinase assays give first

hints that p38 might modulate circadian rhythmicity by

phosphorylating PER.

Results/Discussion

p38 MAPK localizes in clock neurons
Although p38 MAPK is expressed in the hamster SCN [41] and

regulates the chick pineal circadian clock [42], expression in the

fly’s clock has not been reported so far. The endogenous clock of

Drosophila consists of approximately 150 clock neurons in the

brain that are largely subdivided into 9 subgroups: small ventral

lateral neurons (s-LNvs), large ventral lateral neurons (l-LNvs), 5th

small ventral lateral neuron (5th s-LNv), dorsal lateral neurons

(LNds), 4 clusters of dorsal neurons (DN1as, DN1ps, DN2s and

DN3s) and lateral posterior neurons (LPNs) [47–49]. To investi-

gate whether the clock neurons utilize p38 MAPK signaling

pathways, we did immunohistochemistry on adult brains using the

enhancer trap line p38b-Gal4 in combination with a UAS-GFP
transgene. GFP-expressing brains were immunolabelled with anti-

GFP, anti-PER and anti-PDF at ZT21 (3 h before lights-on), when

PER is mainly nuclear. Interestingly, p38b-driven GFP showed a

broad expression within the brain as reported in Vrailas-Mortimer

et al. [27] and colocalized with anti-PER and anti-PDF in at least

four clock neurons, the large ventral lateral neurons (l-LNv, Fig.

S1). Although, we were not able to reliably co-stain more clock

neurons, our p38b-Gal4-staining pattern suggests that p38 is likely

expressed in further clock neurons. To verify this we performed

p38 antibody staining on Canton S wildtype brains using three

different antibodies – two raised against Drosophila p38 (not

distinguishing between the isoforms and between active/phos-

phorylated and inactive/unphosphorylated p38) and one raised

against the dually phosphorylated isoforms of human p38

recognizing also phosphorylated Drosophila p38 (Cell Signaling

Technology). The two Drosophila p38 antibodies, p38b (kindly

provided by T. Adachi-Yamada) and p38 (Santa Cruz Biotech-

nologies), gave rather broad staining with several cell bodies

labeled in the region of the clock neurons resembling the staining

pattern of the p38b-driven GFP (Fig. 1A–C; Fig. S1). Double-

labeling with anti-VRI and anti-PDF showed that both antibodies

reliably labeled the PDF-positive l-LNvs as well as the PDF-

positive s-LNvs (as depicted for anti-p38b in Fig. 1A–C). In

addition, there was staining in the entire cortex of the dorsal brain

including the region of the dorsal neurons (Fig. S1). In

comparison, immunostaining with phospho-p38 MAPK antibody

Author Summary

The circadian and the stress system are two distinct
physiological systems that help the organism to adapt to
environmental challenges. While the latter elicits reactive
responses to acute environmental changes, the circadian
system predicts daily occurring alterations and prepares
the organism in advance. However, these two responses
are not mutually exclusive. Studies in the last years prove a
strong interaction between both systems showing a
strong time-related stress response depending on the
time of day of stressor presentation on the one hand and
increased disturbances of daily rhythms, like sleep disor-
ders, in consequence of uncontrolled or excessive stress on
the other. Here, we show that the mitogen-activated
protein kinase p38, a well characterized component of
immune and stress signaling pathways is simultaneously a
part of the core circadian clock in Drosophila melanogaster.
Our results demonstrate that p38 is activated in a circadian
manner and that under constant darkness normal p38
signaling is necessary for the maintenance of 24 h rhythms
on the behavioral and molecular level. Together, this
strongly indicates a role of p38 in the core clock and
further suggests that it is a possible nodal point between
the circadian and the stress system.
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(hereafter also referred as p-p38) also showed clear labeling in the

protocerebrum (Fig. 1F), but p-p38 staining of clock neurons was

restricted to much fewer cells. We found reliable staining only in

the DN1as (Fig. 1F, G) and in one experiment also in the l-LNvs

(not shown). This discrepancy might be due to the specificity of p-

p38 antibody, which rather represents the current activation

pattern than expression pattern of p38. Generally, tiny amounts of

activated kinases are sufficient for effective signaling in transduc-

tion cascades. Thus, the amount of activated p38 might be well

below the detection limit of the p-p38 antibody in the majority of

clock neurons. In addition, p38 may be temporally phosphorylated

as shown for the hamster SCN, where activated p38 was only high

in the late day and early night [41]. Indeed, we noticed that p-p38

levels in the DN1as as well as staining in the entire cortex of the

brain depended also on the time of day and were only high

towards the end of the night (Fig. 1D,E2 compared to Fig. 1F,G2).

To finally exclude any unspecific antibody labeling, antibody

staining on two p38 null mutants, w1118;+;p38aD1 and

yw;p38bD45;+ (from now on referred to as p38aD1 and p38bD45,

respectively), was performed at ZT21 and p-p38 staining intensity

was measured in DN1as. Both p38 mutants displayed a significant

reduction in phosphorylated p38 to 50% of wildtype level (p,

0.05; Fig. S2). This clearly verifies the authenticity of the p-p38

antibody labeling, but also suggests the existence of both p38

isoforms in these cells.

Taken together, even if we did not get a complete overlap,

p38b-driven GFP expression as well as p38 antibody staining

indicates that both p38a and p38b are expressed in several clock

neurons, most probably in the PDF-positive l-LNvs and s-LNvs as

well as in the DN1as. This finding coincides with other studies:

Microarray studies on LNvs detected enriched p38a mRNA levels

in the s-LNvs as compared to other brain regions [50].

Furthermore, Mef2, a transcription factor well recognized as a

downstream target of p38 MAPK signaling in Drosophila muscle

[27] and mammalian myocytes, lymphocytes and neurons [29,51–

53], was shown to localize in all subgroups of Drosophila clock

neurons [54] indicating p38 MAPK signaling in these cells.

Darkness and clock dependent phosphorylation of p38
MAPK in DN1as

So far, Drosophila studies mainly focused on p38 MAPK

expression over a longer period of time, especially with regard to

development [26,37,55]. Since the observed changes in the amount

of phosphorylated p38 in the DN1as at ZT9 and ZT21 (Fig. 1D–G)

might also point to daily oscillating gene expression, we examined

mRNA levels of p38a and p38b in the course of a day.

Quantitative real-time PCR (qPCR) from head extracts of

Canton S wildtype flies revealed an allover higher expression level

of p38b compared to p38a throughout the day (p,0.001; Fig. 2A).

This is consistent with data published in a microarray-based atlas

of gene expression in Drosophila (Flyatlas - http://www.flyatlas.

org). Moreover, we did not discover any circadian oscillations of

p38 isoforms on the transcriptional level, which is reminiscent on

findings in fungi [44] and mammals [41,56]. Very similar to our

study, the latter papers demonstrated rhythmic phosphorylation of

p38 throughout the day while total protein levels remained

constant. This clearly indicates that activation and not expression

of p38 is clock-controlled.

For studying oscillations in active p38 in more detail,

immunohistochemistry on Canton S wildtype brains was carried

out in LD 12:12 at different times of day. Triple-labeling with anti-

p-p38, anti-VRI and anti-PDF revealed daily oscillation in p38

phosphorylation in DN1as, with low levels during the light phase

(ZT1-9) and significantly higher levels in the dark (ZT13-21) (p,

0.05; Fig. 2B). Furthermore, the average number of p-p38-positive

DN1as per hemisphere was significantly higher at night than

during the day (p,0.05; Fig. S3). The diurnal oscillation in

phosphorylated p38 in DN1as strongly points to a clock-mediated

activation of p38 within the circadian system. To test whether

these diurnal variations in active p38 are indeed clock-controlled

or just represent a direct response to darkness, p-p38 staining

intensity in the DN1as was measured under constant conditions at

CT6 and CT18. Interestingly, similar to our observations in LD,

the level of active p38 was significantly lower in the subjective day

than subjective night confirming our hypothesis of a clock-

controlled phosphorylation of p38 (p,0.001; Fig. 2C). Since

previous studies in mice [57–59] and hamsters [41] also suggested

a light dependent regulation of ERK and p38 activity in the SCN,

we further exposed flies at CT6 and CT18 for 15 minutes to light

and dissected brains before and after light pulse treatment. While

levels of active p38 at CT 6 remained constant, light pulse at CT

18 led to a significant decrease in p-p38 signal (p,0.05; Fig. 2D).

These results indicate an additional light-induced regulation

(depression) of p38 activity.

Taken together, our findings are in strong favor of a clock-

controlled phosphorylation of p38. Both p38a and p38b are

constantly expressed throughout the day and display no circadian

regulation on transcriptional level. Activation of p38 MAPK,

however, seems to be clock-regulated, showing high levels of active

p38 during the night and low levels during the day as we could show

for the DN1as. This would argue for a night-time specific function of

p38 within the clock of these neurons. Nevertheless, we have to admit

that the DN1as are not the clock neurons that are most important for

the control of behavioral rhythmicity. Future studies have to show,

whether a cyclic activation of p38 does also occur in the s-LNvs.

p38b knockdown and overexpression in clock neurons
induce period lengthening

Locomotor activity recordings are a well-suited technique for

investigating circadian behavioral rhythms in Drosophila melano-
gaster. When entrained to LD cycles wildtype flies display a typical

bimodal activity pattern with an anticipatory morning and evening

activity peak around lights-on and lights-off. In constant darkness

this rhythmic locomotor behavior proceeds with its internal

individual period reflecting the pace of the endogenous clock.

To examine the role for p38 MAPK within the circadian system,

we used transgenic RNA interference (RNAi) to reduce p38b RNA

levels and thus p38b activity in different subsets of clock neurons,

and screened for altered behavioral rhythms in LD as well as in

constant dark conditions (DD). For RNAi-mediated p38b knock-

down a w;UAS-p38bRNAi;+ line was combined with different

drivers as well as a UAS-dicer2;+;+ line (dicer2). We first used

dicer2;tim(UAS)-Gal4;+, a driver line with a broad expression

pattern that allows ubiquitous expression in all clock cells. Daily

activity patterns of dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ flies

were similar to those of control flies showing normal wildtype LD

behavior with activity peaks around lights-on and lights-off

(Fig. 3A). To test the effectiveness of p38b transgenic RNAi, we

performed qPCR on head extracts and found no significant

reduction in p38b mRNA level in our experimental line. This may

be due to a small number of p38b-positive clock neurons

compared with the total number of p38b-expressing neurons

within the brain (Fig. S1 compared to Fig. 1). Thus, w;UAS-
p38bRNAi;+ was additionally combined with da-Gal4, a line that

expresses Gal4 in most tissues throughout development [60].

Using the broader driver, we finally observed a significant decrease

in p38b mRNA level in w;UAS-p38bRNAi/+;da-Gal4/+ compared

to respective controls, confirming the effectiveness of our p38bRNAi

MAPK p38 and Drosophila’s Circadian Clock
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Figure 1. p38 MAPK expression pattern in adult male Canton S brains. p38 MAPK distribution within the circadian clock was investigated
immunohistochemically with an antibody directed against Drosophila p38b (A–C) and against phosphorylated human p38 (D–G). A–C: Staining with
anti-p38b (green) in Canton S wildtype brains was visible in many cell bodies close to the lateral clock neurons, but co-labeling with anti-VRI

MAPK p38 and Drosophila’s Circadian Clock
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construct (p,0.05; Fig. S4). Since we found no behavioral

phenotype in LD, we next focused on locomotor behavior of

dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ flies under constant con-

ditions using x2-periodogram analysis. Surprisingly, 93% of the

flies were arrhythmic (Table 1) and only 7% showed rhythmic

locomotor behavior with a prolonged free-running period of

25.3 h (p,0.001; Fig. 3A; Table 1). Considering the fact that

besides clock neurons dicer2;tim(UAS)-Gal4;+ additionally drives

expression in glia cells, we wanted to rule out a glia-specific effect

on rhythmicity and period length. Therefore, we restricted p38b

knockdown solely to the PDF-expressing clock neurons, the s-LNvs

and the l-LNvs, using the more specific clock driver dicer2;Pdf-
Gal4;+. Dicer2;UAS-p38bRNAi/Pdf-Gal4;+ flies showed a later

onset of evening activity and a higher activity after lights-off than

control flies in LD (Fig. 3B) as well as a significantly prolonged

free-running period of 24.8 h in DD (p,0.05; Fig. 3B; Table 1).

Only about half of the flies were arrhythmic as opposed to 93% of

dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ flies (Table 1). These

findings suggest that p38 has indeed a functional role within the

circadian system and that its specific knockdown in the clock

neurons mainly delays evening activity and lengthens the free-

running period.

To further confirm our hypothesis of p38 functioning in the

clock three additional constructs were expressed to interfere with

endogenous p38b: two UAS-p38b kinase-dead transgenes (UAS-
p38bKD3 and UAS-p38bKD8) and a dominant-negative UAS-p38b
transgene (UAS-p38bDN-S). Interestingly, simultaneous expression

of UAS-p38bKD3 and UAS-p38bKD8 in either PDF- or TIM-

(magenta) and anti-PDF (blue) revealed clear p38b expression in the l-LNvs (white stars in B3) and the s-LNvs (white stars in C3). B1–B4 represents a
close-up of l-LNvs, C1–C4 a shows close-up of s-LNvs. Furthermore, we found staining in the entire cortex including the region of the dorsal neurons
(see Fig. S1). D–G: Staining with anti-p-p38 (green) was restricted to fewer neurons, but revealed again staining in the entire cortex that was stronger
at night (F, ZT21) than during the day (D, ZT9). Double-labeling with anti-VRI (magenta) and anti-p-p38 antibody (green) revealed active p38 only in 2
clock neurons, the DN1as (white stars in G2). Also in these cells, p-p38 staining intensity depended on the time of day, showing a higher level of active
p38 at ZT 21 (G2, white stars) than at ZT9 (E2). E1–E3 and G1–G3 represent a close-up of DN1as. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1004565.g001

Figure 2. Daily p38 mRNA (A) and protein expression (B–D) in Canton S wildtype. A: Quantitative real-time PCR on head extracts revealed
constant mRNA expression throughout the day with allover higher levels of p38b compared to p38a (p,0.001). B: Antibody staining with anti-p-p38
on adult brains displayed rhythmic phosphorylation of p38 in DN1as in LD with significant higher p-p38 levels occurring during the night than in the
day (p,0.05). C: A highly significant reduction of active p38 in DN1as at CT6 compared to CT18 in DD indicates a clock-controlled activation of p38
(p,0.001) D: Only a 15 minute light pulse (LP) during subjective night (CT18) and not during the subjective day (CT6) leads to a reduction in active
p38 in DN1as, suggesting a clock-dependent photic reduction of active p38. The ‘‘C’’ in D indicates control brains without 15 minute light pulse (LP).
Error bars show SEM. Significant differences (p,0.05) are indicated by *, highly significant differences (p,0.001) by **.
doi:10.1371/journal.pgen.1004565.g002
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expressing neurons resulted in a delayed onset of evening activity

and a prolonged free-running period under DD compared to

respective controls, but did not cause any arrhythmicity (p,0.001;

Fig. S5; Table 1). This phenotype became even more obvious

when the dominant-negative p38b transgene was expressed in all

clock cells (using w;tim(UAS)-Gal4;+) or only in the LNvs (using

yw;Pdf-Gal4;+): evening activity was delayed in LD and, in DD,

free-running period was lengthened for about 2 h in UAS-

p38bDNS;tim(UAS)-Gal4/+;+ flies (p,0.001; Fig. 4A; Table 1)

and for about 2.5 h in UAS-p38bDNS;Pdf-Gal4/+;+ flies as

compared to controls (p,0.001; Fig. 4B; Table 1). Again, no

higher fraction of arrhythmic flies was observed (Table 1).

The high number of arrhythmic flies after knockdown of p38b,

which was not observed with any of the other constructs, points to

putative off-target effects of the p38bRNAi construct. Off-target

effects can never be excluded with the RNAi technology and are

Figure 3. Locomotor activity rhythms of p38b knockdown flies with respective controls. Flies were recorded in LD 12:12 for 6 days and
subsequently in DD for at least 14 days. A daily average activity profile for day 2–7 in LD was calculated for each genotype and is shown above the
double-plot of a representative actogram (left panels in A and B). In addition, for each genotype the onset of evening activity in LD (upper right panel
in A and B) as well as the average free-running period in DD (lower right panel in A and B) was determined and is depicted as boxplot in the right
panel. While average activity profiles of dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ (A) displayed wildtype-like behavior in LD with activity bouts around
lights-on and lights-off, evening activity onset of dicer2;UAS-p38bRNAi/Pdf-Gal4;+ flies (B) was significantly delayed compared to respective controls.
When transferred to DD, dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ mainly became arrhythmic (see Table 1 and lower left panel in A), just 7% remained
rhythmic displaying a significant longer free-running period than UAS- and Gal4-controls (lower right panel in A). p38b knockdown in PDF-expressing
neurons also significantly lengthened the free-running period in DD as compared to respective controls (lower panels in B), and 58% of the flies
remained rhythmic (see Table 1). Bars above the daily average activity profiles and actograms depict the light regime of the LD 12:12 cycle and black
arrowhead indicate the shift to constant DD. Black lines in daily average activity profiles represent mean relative activity, gray lines SEM and dotted
grey lines the calculated evening activity onset. Gray lines in boxplots illustrate the median, boxes 25–75%, and whiskers 10–90% of the data. UAS
refers to respective UAS-control, GAL4 to respective Gal4-control and UAS.GAL4 to the experimental line. Significant differences (p,0.05) are
indicated by *, highly significant differences (p,0.001) by **. Numbers in brackets indicate n.
doi:10.1371/journal.pgen.1004565.g003
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more likely to occur if the RNAi construct is expressed in many

neurons as was the case with the tim-gal4 driver. When p38bRNAi

was expressed with pdf-gal4, that drives in only 16 neurons in the

brain, the number of arrhythmic flies was significantly lower (x2-

test: x2 = 17.02; p,0.001). Thus, it is most likely that the p38bRNAi

construct has off-target effects causing arrhythmicity in addition to

its specific effects on clock speed. To test, whether the molecular

clock is still running in DD after knockdown of p38b, we

immunostained brains of dicer2;UAS-p38bRNAi/Pdf-Gal4;+ flies

with anti-PER and anti-TIM throughout the circadian cycle on

day 4 in DD (Fig. S6). We found that the molecular cycling

persisted, just the phase of the oscillation was delayed in

comparison to controls, which is consistent with the long period

of the flies. We conclude that p38 mainly affects the speed of the

clock and has little if any effects on the stability and robustness of

the molecular clock cycling.

Since p38bRNAi knockdown and expression of non-functional p38b

cause period lengthening of locomotor free-running rhythms, we next

wondered what would happen if we overexpress wildtype p38b

(UAS-p38b+) in different subsets of clock neurons. Surprisingly,

although p38b overexpression might have been expected to give the

opposite effect of p38bRNAi (i.e., short locomotor free-running period),

UAS-p38b+;Pdf-Gal4/+;+ and UAS-p38b+;tim(UAS)-Gal4/+;+ ex-

hibited significantly later evening activity in LD and longer locomotor

free-running rhythms in DD that were similar to those of p38bRNAi

and p38bKD flies (p,0.001 and p,0.001 respectively; Fig. S7 and

Table 1). This suggests that there is an optimal level of p38b for

provoking locomotor activity rhythms with normal period.

Taken together our results indicate that wildtype levels of

functional p38b are required for wildtype timing of evening

activity and normal/wildtype free-running rhythms under con-

stant conditions. Furthermore, already p38b knockdown or

overexpression restricted to the LNvs (PDF-neurons) is sufficient

to cause free-running rhythms with long period. This is well

consistent with the dominant role of the s-LNvs, in which we found

p38 expression, in controlling rhythms under constant darkness

(reviewed in [61]). Since the oscillation speed was significantly

affected by p38b manipulation, we rather assume a function of p38

MAPK in the core of the clock than in its input pathway.

p38a knockdown recapitulates the p38b knockdown
phenotype

As shown before, the p38a isoform appeared to be co-expressed

in the clock neurons (Fig. S2) raising the question whether p38a

Table 1. Rhythmicity and period length of all investigated genotypes in constant darkness (DD) according to x2-periodogram
analysis.

Genotype n arrhythmic1 (%) rhythmic (%) Period (hr± SEM) Power2 (%V ± SEM)

w;UAS-p38bRNAi/+;+ 32 3 97 23.460.04 35.461.49

dicer2;Pdf-Gal4/+;+ 31 0 100 24.360.05 38.561.84

dicer2;tim(UAS)-Gal4/+;+ 32 3 97 24.160.06 38.561.91

dicer2;UAS-p38bRNAi/Pdf-Gal4;+ 31 42 58 24.860.11 38.363.23

dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;+ 28 93 7 25.360.35 42.468.00

w;UAS-p38bKD3/+;UAS-p38bKD8/+ 31 13 87 23.860.04 33.961.52

w;Pdf-Gal4/+;+ 30 3 97 24.060.07 35.662.25

w;tim(UAS)-Gal4/+;+ 32 0 100 24.160.04 40.162.05

w;UAS-p38bKD3/Pdf-Gal4;UAS-p38bKD8/+ 32 6 94 25.160.07 35.561.48

w;UAS-p38bKD3/tim(UAS)-Gal4; UAS-p38bKD8/+ 30 3 97 25.160.08 35.661.89

UAS-p38bDN-S;+;+ 32 6 94 24.060.04 34.261.56

UAS-p38bDN-S;Pdf-Gal4/+;+ 32 3 97 26.560.09 30.060.93

UAS-p38bDN-S;tim(UAS)-Gal4/+;+ 30 3 97 25.960.06 34.161.93

UAS-p38b+;+;+ 32 22 78 23.260.06 22.261.07

UAS-p38b+;Pdf-Gal4/+;+ 31 0 100 25.360.04 35.561.85

UAS-p38b+;tim(UAS)-Gal4/+;+ 29 0 100 25.560.06 41.762.24

w;+;UAS-p38aRNAi/+ 32 0 100 23.860.05 44.762.57

dicer2;Pdf-Gal4/+;UAS-p38aRNAi/+ 32 0 100 24.660.06 47.962.62

dicer2;tim(UAS)-Gal4/+;UAS-p38aRNAi/+ 32 6 94 24.560.07 39.161.81

dicer2;UAS-p38bRNAi/+;UAS-p38aRNAi/+ 32 12 88 23.960.05 26.361.37

dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;
UAS-p38aRNAi/+

27 41 59 24.960.08 26.361.99

w1118 32 10 90 23.360.07 24.561.05

p38aD1 29 47 53 23.260.10 23.761.35

p38bpex41 29 14 86 23.660.08 32.461.30

p38bD45 28 21 79 23.760.07 28.361.91

n indicates the number of tested flies per genotype that survived locomotor recordings. Power and period values were averaged over all rhythmic flies for each
genotype.
1Flies with power values ,20 were defined as arrhythmic.
2Power is a measure of rhythmicity and is given in % of variance.
doi:10.1371/journal.pgen.1004565.t001
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has also a possible function within the circadian system. To test

this, we down-regulated p38a either in all clock cells (using

dicer2;tim(UAS)-Gal4;+) or only in the LNvs (using dicer2;Pdf-
Gal4;+), as done before for p38b. The effectiveness of p38a
transgenic RNAi was successfully confirmed via qPCR on

w;+;UAS-p38aRNAi/da-Gal4 fly heads (p,0.001; Fig. S4).

Down-regulation of p38a had generally weaker effects than

down-regulation of p38b: it did not significantly delay evening

activity in LD and, in DD, period was not lengthened as

dramatically as after manipulation of p38b protein level (Fig. 5).

Nevertheless, x2-periodogram analysis revealed that both exper-

imental lines (dicer2;tim(UAS)-Gal4/+;UAS-p38aRNAi/+ and di-
cer2;Pdf-Gal4/+;UAS-p38aRNAi/+) had significantly longer free-

running periods than the respective controls (p,0.001 and p,

0.05 respectively; Fig. 5A,B; Table 1). This result strongly argues

for a clock-related role for p38a besides p38b.

Complete loss of either p38b or p38a does not disturb
circadian rhythms

After we found that down-regulation of p38b or p38a

significantly affected the flies’ free-running rhythms, we aimed to

test whether a complete loss of either isoform does affect

rhythmicity in a similar way. To our surprise this was not the case.

Although p38bD45, a p38b null mutant, displayed a slightly

enhanced percentage of arrhythmic flies in DD, this was also the

case for its precise excision line p38bpex41, indicating some

background effect on rhythmicity (Table 1). Additionally, both

Figure 4. Locomotor activity rhythms of flies expressing a dominant-negative form of p38b (p38bDN-S) in Drosophila clock neurons
and respective controls. Both, expression of a dominant negative form of p38b in either all clock neurons (UAS-p38bDN-S;tim(UAS)-Gal4/+;+) or just
in a subset of clock cells, the PDF-positive LNvs (UAS-p38bDN-S;Pdf-Gal4/+;+), resulted in a diurnal activity profile with a significantly delayed evening
activity onset in comparison with respective controls (upper panels in A and B). This delay in evening activity is accompanied by a significantly
prolonged free-running period in UAS-p38bDN-S;tim(UAS)-Gal4/+;+ (lower panels in A) as well as in UAS-p38bDN-S;Pdf-Gal4/+;+ flies(lower panels in B),
when released into constant darkness. For recording and processing of activity data as well as for figure labeling see Figure 3.
doi:10.1371/journal.pgen.1004565.g004
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lines showed similar activity profiles under LD conditions and did

not differ in their free-running period (Fig. 6A; Table 1). Even if

p38a null mutants, p38aD1, showed a later onset of evening activity

and a higher fraction of arrhythmic flies than the w1118 controls

(Fig. 6B and Table 1), the free-running period of the rhythmic flies

was not different from that of the controls. The higher percentage of

arrhythmic flies might be associated with the prominent role of p38a

in immune stress response [39–40], inflammation [26,62] and

lifespan [27]. Therefore flies lacking this isoform might be less

healthy and display disrupted behavioral rhythms.

Our results suggest that the two isoforms might replace each

other under certain conditions. According to Han et al. [26] p38a

and p38b appear to have partial functional redundancy, because

both isoforms are similarly activated in response to stress-inducing

or inflammatory stimuli in cell culture experiments. This

compensatory mechanism may be vital for the flies, when one of

the two isoforms lacks completely. But the compensatory

mechanism may be elusive when one isoform is only down-

regulated in specific neurons that are not necessary for survival

(e.g. the clock neurons): Lengthened free-running rhythms in DD

just occurred, when either p38b or p38a levels in clock neurons

were reduced, but not completely absent from the entire fly. We

therefore suppose that either isoform overtakes the clock specific

function of the other one only in its complete absence. As p38a
mRNA levels were not increased in p38bD45 flies and p38b mRNA

levels were not elevated in p38aD1 (Fig. S8), normal wildtype p38a

or p38b levels seem to be sufficient to drive circadian rhythms in

complete absence of the other isoform.

Figure 5. Locomotor activity rhythms of p38a knockdown flies and respective controls. Average activity profiles of dicer2;UAS-p38bRNAi/
tim(UAS)-Gal4;+ (upper panel in A) and dicer2;UAS-p38bRNAi/Pdf-Gal4;+ (upper panel in B) displayed wildtype-like behavior in LD with activity bouts
around lights-on and lights-off and did not differ from those of control flies. Evening activity onset was not delayed in the two mutant strains.
However, when released into constant darkness both, p38a knockdown in TIM- (lower panels in A) and PDF-expressing neurons (lower panels in B)
resulted in significant prolonged free-running rhythms in comparison to respective controls. For recording and processing of activity data as well as
for figure labeling see Figure 3.
doi:10.1371/journal.pgen.1004565.g005
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If our hypothesis is true, p38bD45;p38aD1 double mutants

should show long free-running periods. Unfortunately, the

combination of both null alleles turned out to be lethal. Similarly,

double mutants lacking the p38a gene and carrying a hypomor-

phic p38b allele (p38bD25;p38aD1) were hardly viable. Further-

more, flies that hatched had a very short life-span dying 3–6 days

after emergence of the pupa, making it hard to investigate their

free-running rhythms. Nevertheless, we were able to record the

locomotor activity of two p38bD25;p38aD1 mutants for 5–6 days,

which were entrained to LD 12:12 during pupal stage and

immediately transferred into DD after eclosion (Fig. 6C). These

flies free-ran with a long period until they died. In addition, we

Figure 6. Locomotor activity rhythms of p38b and p38a null mutants and hypomorphic double mutant flies. Both p38 null mutants,
p38bD45 (upper panels in A) and p38aD1 (upper panels in B), displayed wildtype-like behavior with activity bouts around lights-on and lights-off when
recorded in LD 12:12. Even if evening activity onset of p38aD1seems to be delayed compared to w1118, this delay did not result in a longer free-
running period under constant darkness (lower panels in B). Similarly, flies, lacking the p38b gene, also showed comparable free-running rhythms as
their respective controls (lower panels in A). Activity data in C show two representative single actograms of a double mutant strain with a
hypomorphic p38b allele (p38bD25;p38aD1). Since these flies are hardly viable and die within 3–6 days after emergence of the pupa, flies were already
entrained to LD12:12 during pupal stage and subsequently monitored in DD conditions after eclosion. Even if periodogram analysis was not possible
due to the short recording period, p38bD25;p38aD1 flies clearly showed a long free-running period when kept in constant darkness (C). For recording
and processing of activity data as well as for figure labeling see Figure 3.
doi:10.1371/journal.pgen.1004565.g006
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could simultaneously down-regulate p38a and p38b in TIM-

positive neurons (dicer2;UAS-p38bRNAi/tim(UAS)-Gal4;UAS-
p38aRNAi/+). Such flies exhibited also significant longer free-

running periods in DD than the relevant controls (p,0.001;

Table 1).Together, our findings strongly indicate that both p38

isoforms are involved in the control of locomotor activity rhythms

under constant conditions and that they can partly replace each

other.

Expression of the dominant negative form of p38b phase
delays the molecular circadian clock

Delayed evening activity and long free-running rhythms are often

associated with a delayed nuclear entry of PER and TIM, an event

in the molecular cycle which is mainly regulated via phosphoryla-

tion of PER by proline-directed kinases and SGG [12] as well as of

TIM by SGG [63]. To see whether the nuclear entry of PER is

affected by p38 MAPK, we immunostained respective controls and

flies, in which the dominant-negative form of p38b was expressed in

the LNvs (UAS-p38bDN-S;Pdf-Gal4/+;+), in 1-hour intervals in LD

and quantified the amount of nuclear PER in the s-LNvs and l-LNvs

(Fig. 7). We chose UAS-p38bDN-S;Pdf-Gal4/+;+ since the delay in

evening activity under LD conditions was most prominent

compared to other p38 mutant strains. Interestingly, we found a

significant delay of nuclear entry of PER in both types of clock

neurons that perfectly matched the delayed evening activity.

p38b affects the degree of PER phosphorylation
There are several ways, how p38 could influence the

phosphorylation degree of PER and this way influence the

efficiency and speed of nuclear translocation: p38 may directly

phosphorylate PER or it may activate or inhibit already known

key kinases of PER. Accordingly, p38 was shown to phosphorylate

and activate CK2 [34–35] making it possible that p38 lengthens

the period of the molecular oscillations via CK2 finally leading to a

delayed nuclear translocation of the PER-TIM heterodimer.

Alternatively or in addition, p38 may work on phosphatases that

reduce phosphorylation. Previous studies revealed that both, p38

[64] and CK2 [65], stimulate the activity of the protein

phosphatase 2A (PP2A) in mammalian fibroblasts. PP2A on the

other hand was shown to dephosphorylate and stabilize PER,

thereby promoting PER’s nuclear translocation in Drosophila
clock cells [66]. Consequently, reduction of PP2A activity resulted

in long free-running periods, the same phenotype we observed

after manipulation of p38 levels.

To test whether p38b affects the degree of PER phosphoryla-

tion, we performed Western Blots on head extracts of flies, in

which the dominant-negative p38b transgene (UAS-p38bDN-S) was

driven in all clock cells including the photoreceptor cells (in LD

12:12). This time, we did not use Pdf-gal4, since Western Blots

mainly reflect PER oscillations of the compound eyes (the

oscillations of the 150 PER-expressing clock neurons can barely

be seen behind the oscillations of the ,1600 PER-expressing

photoreceptor cells). Indeed, PER seemed to be less phosphory-

lated in flies with impaired p38b signaling (Fig. 8A). For a better

comparison we repeated the Westerns blotting control and

experimental flies for each ZT side by side (Fig. 8B). We found

that PER was clearly less phosphorylated in the flies with impaired

p38b signaling at all time points. This was most evident during the

night being well consistent with the postulated high activity of p38

MAPK during darkness. We conclude that p38 promotes PER

phosphorylation during the night. The lack of this phosphorylation

may delay nuclear entry of PER during constant darkness and in

this way lengthen the free-running period of the clock significantly.

p38b phosphorylates PER in vitro
The next question to ask was, whether p38 can phosphorylate

PER directly. PER becomes phosphorylated at multiple sites, some

of which could be identified as predicted MAPK target sites [14].

Furthermore, Nemo/NLK, an evolutionarily conserved MAPK-

related kinase, was shown to function as a priming kinase

phosphorylating PER at the recently identified per-short phospho

clusters and thereby stimulating phosphorylation of PER by DBT at

several nearby sites [11,13]. In addition, Ko et al. [12] could show

that phosphorylation of serine 661 (Ser661) is a key phospho-signal

on PER regulating the timing of PER’s nuclear accumulation and

that this phosphorylation event can be performed by proline-

directed kinase(s), as could be shown for ERK in vitro. Mutant flies

with blocked S661 phosphorylation site, display a delay in PER’s

nuclear entry in pacemaker neurons as well as long behavioral

rhythms. Moreover, abolishing phosphorylation at Ser661 also

diminishes the extent of hyperphosphorylation of PER in vivo,

suggesting that the phosphorylated state of Ser661 regulates

phosphorylation at other sites on PER. With Ser657 the authors

also identified a phosphorylation target site of SGG, which seems to

be phosphorylated in a manner dependent on priming at Ser661.

Due to the similar phenotypes on molecular as well as behavioral

level of period mutants lacking the phosphorylation site at Ser661

and p38 mutants, we aimed to test whether p38 might also

phosphorylate PER. Therefore, we created hexa-histidine tagged

p38b (His6-p38b) and two GST tagged, truncated PER isoforms

carrying GST amino-terminal fused either to amino acids 1–700

(GST-PER1–700) or to amino acids 658–1218 (GST-PER658–1218),

and performed in vitro kinase assays. For visualization of protein

phosphorylation, samples were subsequently separated on 9% urea-

polyacrylamide gels followed by Coomassie staining. We chose

urea-PAGE for protein separation, since urea does not mask the

charge of the protein and therefore leads to longer runs of

phosphorylated proteins due to the negative charges of phosphate

residues (Fig. 9A, C). As we wanted to confirm the PER signal on

the Coomassie gel, two samples of the gel were additionally blotted

to nitrocellulose membrane following gel electrophoresis and

detected by immunolabeling (Fig. 9B, D). Both, GST-PER1–700

and GST-PER658–1218, displayed obvious band shifts after 60 min-

utes of incubation with His6-p38b, while substrate controls without

kinase did not shift in the appropriate time (Fig. 9A–D). Even if

shifts are not extensive they are clearly visible. The appearance of

several shifted bands (Fig. 9C, D) indicates that p38 might

phosphorylate PER at several sites and thereby prime it for further

phosphorylation. This could explain the overall amount of less

phosphorylated PER we found in flies with impaired p38b signaling.

Indeed, sequence analysis revealed two putative p38 consensus

phosphorylation sites (PXS*P) in PER (Fig. S9): Ser661, that was

shown to be phosphorylated by a proline-directed kinase and led to

long free-running rhythms when mutated [12], and Ser975. To test

whether p38 MAPK, which also belongs to the family of proline-

directed kinases, phosphorylates PER at one of these sites, we

mutated GST-PER658–1218 by replacing Ser with Gly either at

position 661 (S661G), or at position 975 (S975G) or at both

positions (S661G/S975G). Radioactive in vitro kinase assays were

performed with bacterially expressed and purified GST-p38b

together with wild-type and mutant forms of PER as substrates

(Fig. 9E, F). Although p38b phosphorylated all forms of PER,

phosphorylation was significantly reduced in the two single mutants

and even further reduced in the S661/975G double mutant. Thus,

we conclude that p38b can phosphorylate PER at S661 and at S975

- at least in vitro. Future studies have to show whether p38 does

phosphorylate PER also in vivo at both sites and whether p38 may

compete with other kinases at S661 (e.g. Nemo/NLK, ERK). The
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complex behavioral phenotypes (period-lengthening after down-

regulation and overexpression of p38, as well as no effects of null

mutations in p38a and p38b) argue for the putative interaction of

several kinases in PER phosphorylation at S661.

In summary, our results demonstrate direct effects of p38 on

circadian rhythms in behavior as well as on the molecular clock.

Besides affecting the phosphorylation degree and nuclear entry of

PER, p38 may influence the clock machinery in several ways due

Figure 7. Daily oscillations of nuclear PER in s-LNvs and l-LNvs of flies expressing a dominant negative form of p38b in these cells.
Flies were entrained in LD 12:12, dissected every one to two hours and staining intensity of nucleus and cell body was measured as described in
Material and Methods. Nuclear PER staining intensities were normalized to total staining and tested for statistically significance. Expression of the
dominant negative form of p38b phase delayed nuclear accumulation of PER in the s-LNvs (A) and l-LNvs (B). Arrows indicate the maxima of nuclear
PER staining that occurred significantly later in UAS-p38bDN-S;Pdf-Gal4/+;+ flies than in control flies. This delay in nuclear PER accumulation in PDF-
positive clock neurons is well consistent with the shifted evening activity in these flies. Bars above the graphs depict the light regime of the LD 12:12.
doi:10.1371/journal.pgen.1004565.g007
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to its many putative targets in Drosophila’s clock neurons. As we

show here, one of the major p38 targets may be PER itself.

Altogether, this places p38 in the center of multiple pathways that

can affect circadian rhythms. Regarding its known role in

transmitting cellular stress responses, p38 MAPK may even act

as a factor that integrates responses of the circadian clock and the

acute stress system to external stimuli. However, future studies

have to reveal the exciting connection between the two systems in

more detail.

Materials and Methods

Fly strains and constructs
Flies were raised on a standard cornmeal/agar medium at 25uC

in LD 12:12. To investigate locomotor activity in p38 mutant flies,

we recorded two p38 knockout strains: w1118;+;p38aD1 and

yw;p38bD45;+(kindly provided by R. Cagan and A. Vrailas-

Mortimer). The latter carries a 1065bp deletion in the coding

region of p38b, while w1118;+;p38aD1 flies completely lack the

p38a locus. In addition the precise excision line yw;p38bpex41;+ (a

gift of A. Vrailas-Mortimer) served as control for yw;p38bD45;+.

w1118 flies served as control for the w1118;+;p38aD1 mutants. Two

double mutant strains, p38bD45;p38aD1 and p38bD25;p38aD1 (both

provided by A. Vrailas-Mortimer; the latter exhibits a hypomor-

phic p38b allele) were used to knockout both p38 isoforms; but

these turned out to be either lethal or only weakly viable in our

hands. Therefore, we could not perform any statistical analysis of

their locomotor activity rhythms. For studying p38 knockdown

exclusively within the circadian clock, we used two different RNAi

lines, w;+;UAS-p38aRNAi (Vienna Drosophila RNAi Center;

#52277) and w;UAS-p38bRNAi;+ (Vienna Drosophila RNAi

Center; #108099), as well as a combination of both (w;UAS-

Figure 8. p38b promotes PER phosphorylation during the dark phase. To analyze daily phosphorylation of PER in flies that express the
dominant-negative form of p38b in clock neurons and photoreceptor cells, we performed Western blots on head extracts after 4 days entrainment to
LD 12:12 cycles. According to our behavioral data, timing of PER accumulation was not affected in experimental flies (UAS-p38bDN-S;cry-Gal4/+;+) in
comparison with their respective control (A). However, regarding the degree of PER phosphorylation we observed differences at all time points when
we compared both genotypes. For better comparison Western blots were repeated and samples of control and UAS-p38bDN-S;cry-Gal4/+;+ flies were
plotted side by side for each ZT (B). Interestingly, flies with impaired p38 signaling indeed had less phosphorylated PER, showing the largest
differences to the controls at the end of the night. Western blots were repeated 4 times and always gave similar results. Bars above the blots depict
the light regime of the LD 12:12. The ‘‘C’’ refers to respective control, DNS to UAS-p38bDN-S;cry-Gal4/+;+.
doi:10.1371/journal.pgen.1004565.g008
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Figure 9. p38b phosphorylates PER in vitro. To test whether p38b phosphorylates PER in vitro, either non-radioactive kinase assays followed by
urea-PAGE (A–D) or radioactive kinase assays with autoradiography (E–F) were performed. A–D: Non-radioactive kinase assays were conducted with
poly-histidine tagged p38b (His6-p38b) and two truncated GST-tagged PER isoforms, GST-PER1–700 (A,B) and GST-PER658–1218 (C,D). Samples were
subsequently separated with urea-PAGE and visualized by Coomassie staining (A,C). To further confirm PER’s position in the gel two samples of the
same gel were additionally blotted onto nitrocellulose membrane and immunolabeled using an anti-PER antibody and a secondary fluorescent
antibody (B,D). While GST-PER1–700 without kinase did not shift within 60 minutes, the addition of His6-p38b induced a downward shift of GST-
PER1–700 indicating phosphorylation of PER (A; dotted line). Immunoblots with anti-PER further confirmed the size as well as the shift of the
GST-PER1–700 band (B). In addition to GST-PER1–700, GST-PER658–1218 also displayed band shifts after incubation with His6-p38b (C). This was most
prominent after 60 minutes, when addition of His6-p38b resulted in two distinct shifted bands (black arrowheads), which could be additionally
confirmed by Western blots (D). Time scale below graphs represents minutes after addition of His6-p38b, the ‘‘C’’ refers to control and represents
substrate samples without kinase and ATP. (E) Radioactive in vitro kinase assays were conducted with the indicated GST-PER fusion proteins and
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p38bRNAi;UAS-p38aRNAi). To restrict RNAi-mediated gene

silencing to specific subsets of clock neurons, RNAi lines were

crossed to a w;tim(UAS)Gal4;+ (kindly provided by Michael W.

Young) as well as a yw;Pdf-Gal4;+ driver line (kindly provided by

Jeffrey C. Hall) and combined with a UAS-dicer2;+;+ line (Vienna

Drosophila RNAi Center; #60012) to further strengthen RNAi

knockdown. In addition yw;Pdf-Gal4;+ and w;tim(UAS)-Gal4;+
flies were used to specifically overexpress wildtype p38b

(UASp38b+ kindly provided by T. Adachi-Yamada) as well as

two non-functional p38b isoforms: a dominant-negative UAS-
p38b transgene, UAS-p38bDN-S (donated by T. Adachi-Yamada),

and an UAS-p38b kinase-dead transgene, UAS-p38bKD(a gift of A.

Vrailas-Mortimer). The dominant-negative p38b allele was

generated by replacing the Thr184 of the MAPKK target site

with Ala leading to a complete loss of enzymatic activity [28]. The

UASp38bKD transgenic line, however, was made by exchanging a

Lys residue at 53 in the catalytic domain with Arg [27]. This single

amino acid substitution still allows target binding, but blocks

kinase activity (A. Vrailas-Mortimer, personal communication).

Here we used flies with two UAS-p38bKD transgenes, a weaker

UAS-p38bKD3 and a stronger UAS-p38bKD8 (UAS-p38bKD3/CyO-
GFP;UAS-p38bKD8/TM3Ser-GFP). For studying the expression

pattern of p38 within the brain of Drosophila melanogaster a

Canton S (CS) wildtype strain was chosen as wildtype control for

immunohistochemistry. In addition a p38b-Gal4 enhancer trap

line (kindly provided by A. Vrailas-Mortimer) was used in

combination with w;+;UAS-GFPS65T (Bloomington Stock Center,

#1522; donated by Karl Fischbach) to express green fluorescent

protein (GFP) in the p38b-neurons revealing p38b expression in

detail. To analyze PER cycling on Western Blots, we used a w;cry-
Gal4;+ driver line (kindly provided by F. Rouyer) to impair p38b

signaling in p38bDN-S-flies.

For in vitro kinase assays, N-terminal hexa-histidine or GST-

tagged p38b fusion proteins (His6-p38b and GST-p38b) were

created by first PCR amplifying the full-length p38b open reading

frame (ORF) using the cDNA clone as template and following

primers: 59-CCGATCGAAATGTCGCGCAAAATGGCCAAA-

TTC-39 and 59-GGCGGCCGCGATTACTGCTCTTTGGGC-

AGGAGCTCA-39. After digestion with PvuI and NotI, the PCR

product was inserted into the multiple cloning site of E. coli

expression vector pH6HTN His6HaloTag T7 (Promega) and

further subcloned as an EcoRI/NotI fragment into the pGEX 4T3

vector (GE Life Sciences). In order to generate recombinant GST-

PER fusion construct, two truncated sequences of per, either

encoding amino acids 1–700 (PER1–700) or amino acids 658–1218

(PER658–1218), were subcloned into the pGEX 6P vector (GE Life

Sciences). All constructs were confirmed by DNA sequencing

before use.

GST-PER658–1218S661G (pGEX6P-perS661G) and GST-

Per658–1218S975G (pGEX6P-perS975G) constructs were generated

by mutagenesis PCR using pGEX6P-per658–1218 as template. The

primers 59-CTCGTGGACGGGACCCATGGGCCCACTGGC-

GCCACTG-39 and 59-CAGTGGCGCCAGTGGGCCCATGG-

GTCCCGTCCACGAG-39 were used to generate GST-pGE
X6P-perS661G and the primers 59-CTTGACGCCCACCGGGC-

CCACGCGCTCTCC-39 and 59GGAGAGCGCGTGGGCCC-

GGTGGGCGTCAAG-39 were used for pGEX6P-perS975G

generation. To generate the double mutant GST-

PER658–1218S661/975G we performed a second mutagenesis

PCR using pGEX6P-perS661G as template and the pGEX6P-
perS975G mutagenesis primers as described above.

Behavioral analysis
Locomotor activity of individual flies was recorded using the

Drosophila Activity Monitoring (DAM) System (Trikinetics) as

previously described [67]. Briefly, to investigate locomotor behavior

3–7 day old male flies were monitored in LD 12:12 for 7 days (with a

light intensity of 100 lux in the light phase) followed by additional 14

days in constant darkness (DD). In case of p38bD25;p38aD1, flies

were entrained in LD 12:12 during pupal stage and monitored

directly after eclosion in DD conditions. All recordings took place

under constant 20uC in a climate–controlled chamber. Raw data of

individual light beam crosses were collected in 1-minute bins and

displayed as double-plotted actograms using ActogramJ [68], a

freely available Java plug-in of ImageJ (freely available at http://rsb.

info.nih.gov/ij/). We generally excluded data of the first experi-

mental day from analysis to exclude side effects of fly handling. For

generating average daily activity profiles for single genotypes, first

raw data of day 2–7 in LD were averaged for each single fly.

Thereafter, single activity profiles were averaged across all entrained

flies of each genotype and smoothed by applying a moving average

of 11. For determining the individual free-running period (t) of

rhythmic flies, DD data from day 2–12 were analyzed using x2-

periodogram analysis and average period length of each genotype

was calculated. To analyze timing of evening activity, raw LD data

were converted into 15 minutes bins and evening activity onset was

determined after generation of average days for each single fly.

Finally, data were averaged across the genotype and tested for

statistically significance.

Immunohistochemistry
To investigate p38 expression and oscillations in nuclear PER in

adult Drosophila brain, 5–10 days old male flies were entrained to

LD 12:12 for at least 4 days and collected at indicated Zeitgeber

Times (ZT; ZT0 indicates lights-on and ZT12 lights-off). To

analyze nuclear PER and TIM localization under free-running

conditions, flies were first entrained to LD 12:12 for 4 days followed

by 4 days in constant darkness and collected 96 hours after lights-on

(ZT1) of the last day LD every 4 hours. Time points of collections

were afterwards converted into Circadian Time (CT) according to

the onset of activity in free-running flies that were monitored in

parallel under the same conditions. Hereby, the activity onset of the

flies on day 4 in DD is defined as CT0 and their activity offset as

CT12. For light pulse (LP) experiments flies were reared in LD12:12

for 4 days, subsequently transferred to DD and collected at CT6

and CT18 on day 1 in DD right before as well as after 15 minute

light-pulse. Flies were fixed in 4% paraformaldehyde (PFA) in 0.1M

phosphate buffer (PB; pH 7.4) with 0.1% Triton X-100 for

2.5 hours. For fixation of flies expressing GFP, no Triton X-100

was used in the PFA solution and fixation time was increased for

additional 30 minutes. The fixation step was carried out on a shaker

at room temperature and, if necessary, in absence of any light. After

fixation flies were rinsed five times for 10 minutes in PB. After

dissection 5% normal goat serum (NGS) in PB with 0.5% Triton X-

GST-p38b. Control reactions were performed in the absence of GST-p38b or with GST in combination with GST-p38b. Coomassie staining proved
loading of the indicated protein combinations. Below, phosphorylation of GST-PER proteins was detected by autoradiography. (F) For quantitative
analysis five independent in vitro kinase assay experiments were performed and analyzed. For each reaction within a single experiment,
autoradiography signal intensities were normalized to the corresponding Coomassie stained protein band. Values in the graph are shown as
percentages of GST-PER658–1218 phosphorylation (100%; * p,0.05, ** p,0.005).
doi:10.1371/journal.pgen.1004565.g009
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100 was used for blocking samples overnight at 4uC. Next, samples

were subsequently incubated with primary antibodies that were

diluted in PB with 0.5% Triton X-100, 5% NGS and 0.02% NaN3

as follows: chicken anti-GFP 1:1000 (Abcam), rabbit anti-PER

1:1000 (kindly provided by R. Stanewsky), rat anti-TIM 1:1000

(kindly provided by I. Edery), mouse anti-PDF 1:1000 (Develop-

mental Studies Hybridoma Bank; DSHB), guinea pig anti-VRI

1:3000 (kindly provided by P. Hardin), goat anti-p38 1:50 (dN20;

Santa Cruz Biotechnology), rabbit anti-p38b 1:100 (Adachi-

Yamada et al., 1999; kindly provided by T. Adachi-Yamada) and

rabbit anti-phospho-p38 1:100 (#4631; Cell Signaling Technolo-

gy). Goat anti-p38 and rabbit anti-p38b are directed against

Drosophila p38 and recognize the active (phosphorylated) and

inactive (unphosphorylated) forms of p38a and p38b (http://www.

scbt.com/datasheet-15714-p38-dn-20-antibody.html; T. Adachi-

Yamada personal communication). Rabbit anti-phospho-p38 rec-

ognizes human p38 only when dually phosphorylated at Thr180

and/or Tyr182 and does not cross-react with phosphorylated forms

of neither p42/44 MAPK nor SAPK/JNK. Due to high-sequence-

homology of the p38 phospho sites, the antibody recognizes also

Drosophila phospho-p38 [32]. Furthermore, its specifity for

phospho-p38 has been shown by several studies [69–70]. After

24–48 hours primary antibody incubation samples were rinsed five

times for 10 minutes in PB with 0.5% Triton X-100 before

secondary antibodies were applied. For double or triple immuno-

labeling Alexa Fluor 488, Alexa Fluor 555 and Alexa Fluor 647 (all

from Molecular Probes) were used as secondary antibodies in a

dilution of 1:200 in PB with 5% NGS and 0.5% Triton X-100. After

3 hours at room temperature secondary antibody solution was

removed and samples were rinsed five times for 10 minutes in PB

with 0.5% Triton X-100. After a final wash step in PB with 0.1%

Triton X-100 brains were embedded in Vectashield mounting

medium (Vector Laboratories).

Microscopy and image analysis
The fluorescence signal of immunolabeled brains was visualized

using a laser scanning confocal microscope (Zeiss LSM 510 Meta;

Carl Zeiss MicroImaging Germany) with a 206 objective. To

excite the fluorophores of the secondary antibodies, we used three

different diode laser lines 488 nm, 532 nm and 635 nm. In order

to avoid bleed through, individual channels were scanned

separately, one after another. After confocal stacks of 2 mm

thickness were obtained, stacks were subsequently imported into

ImageJ to measure staining intensities, to crop the images and to

generate overlays. Except of adjustment of brightness and contrast,

we performed no other manipulations on the images. To quantify

p-p38 staining intensity, both hemispheres of 10 brains per

genotype were examined and staining intensity of DN1as was

measured using ImageJ as described previously [71]. In order to

investigate nuclear translocation of PER in LNvs of UAS-
p38bDN-S;Pdf-Gal4/+;+ flies and respective controls, we examined

7 brains per ZT and genotype. This time the parameters area,

integrated density and mean grey value of defined regions

(nucleus, cell body and respective background) were measured

and the corrected total cell fluorescence (CTCF) of nucleus as well

as cell body was calculated using following formula: CTCFNucleus/

Cell = Integrated densityNucleus/Cell – (AreaNucleus/Cell6Mean fluor-

escenceBackground). Finally, nuclear signal (CTCFNucleus) was

normalized to total cell fluorescence (CTCFCell) to determine

nuclear translocation of PER in s-LNvs and l-LNvs.

RNA extraction and quantitative PCR
To analyze p38 mRNA expression, 5–10 days old male adult

flies were synchronized by LD 12:12 for 4 days. On the fifth day

flies were collected according to ZTs and quickly decapitated on

ice. Total RNA from 5 fly heads per genotype and ZT was

extracted using the Quick RNA Micro Prep Kit (Zymo Research).

cDNA derived from this RNA (using QuantiTect Reverse

Transcription Kit from Qiagen) was used as a template for

quantitative real-time PCR (qPCR) in combination with the

SensiFAST SYBR No-Rox Mix (Bioline) and one of the following

primers: 59-GCCCGTAGACAAATGGAAGGA-39 and 59-A-

ACCTGAGCATACGATGGTGG-39 for p38a, 59-GAGATG-

GTCTTCAGCGAGGT-39 and 59-AGCATCATTGAACGGA-

GAGGG-39 for p38b and 59-TCTGCGATTCGATGGTGCC-

CTTAAC-39 and 59-GCATCGCACTTGACCATCTGGTTG-

GC-39 for a-tubulin.

Western blot analysis
5–10 days old flies were entrained to LD 12:12 for at least 4

days and collected every 2 hours. To analyze PER cycling, 25

heads of male flies per ZT were homogenized in protein extraction

buffer (20 mM HEPES pH 7.5; 100 mM KCl; 5% glycerol;

10 mM EDTA; 0.1% Triton X-100; 20 mM b-glycerophosphate;

0.1 mM Na3VO4 pH 11) containing a protease inhibitor cocktail

(cOmplete Mini EDTA-free; Roche) and loaded onto a 6% gel.

SDS-polyacrylamide gel electrophoresis and transfer to nitrocel-

lulose paper were performed according to standard immunoblot-

ting protocols. To minimize differences due to variations in gel

electrophoresis and protein blotting, samples of flies with altered

p38 levels and respective controls were run and blotted to

membrane simultaneously and repeated 4 times. For visualizing

daily PER cycling, membranes were incubated in primary and

secondary fluorescent antibodies which were diluted in tris-

buffered saline with 0.1% Tween-20 (TBST) as follows: rabbit

anti-PER 1:10000 (kindly provided by R. Stanewsky), Alexa Fluor

goat-anti-rabbit 680 1:5000 (Invitrogen). Fluorescent signals were

detected using the Odyssey Imaging System (Li-cor Bioscience).

Protein expression, purification and in vitro kinase assays
To express His6-p38b, the expression construct was introduced

into BL21(DE3)pLYSs competent E. coli cells (Promega) and

protein expression was induced at an optical density of ,0.5

(OD600) with 0.3 mM isopropyl-b-D-thiogalactopyranoside

(IPTG) for 3 hours at 37uC. After induction cells were pelleted,

washed in phosphate-buffered saline (PBS) and pellet was frozen

once overnight. Thawed lysate was then solubilized in lysis buffer

(50 mM NaH2PO4; 300 mM NaCl; 10 mM imidazole; 1 mM

PMSF; 10 mg/ml leupeptin; pH 8.0) containing protease inhibitor

cocktail (complete Mini EDTA-free; Roche) and sonicated 565

seconds with short pauses on ice. After sonication Triton X-100

was added to a final concentration of 1% and lysate was

centrifuged at 10000 g for 30 minutes at 4uC. Purification of

His6-p38b protein kinase from supernatant was subsequently

carried out by column chromatography using His-Select Nickel

Affinity Gel (Sigma) according to manufacturer’s protocol. Finally,

His6-p38b was concentrated and elution buffer (50 mM

NaH2PO4; 300 mM NaCl; 250 mM imidazole) was exchanged

by several centrifugation steps (3 minutes at 4000 rpm) using

Amicon Ultra centrifugal filter units (MWCO 30 kDa; Sigma) and

PBS. For expression of the various GST-PER fusion proteins and

GST-p38b, E. coli DH5a containing the appropriate expression

plasmids were grown at 37uC to an optical density of 1.2 (OD600).

Expression was induced by adding IPTG to a final concentration

of 0.1 mM accompanied by a reduction of the incubation

temperature to 25uC. After 4 hours bacteria were harvested by

centrifugation and solubilized in lysis buffer (137 mM NaCl;

2.7 mM KCl; 10 mM Na2HPO4; 1.8 mM KH2PO4; 100 mM
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EDTA; 1% Triton X-100; pH 7.5) supplemented with protease

inhibitors (Roche Complete Cocktail and 1 mM PMSF). Resus-

pended cells were then lysed by sonication and the lysate was

cleared by 30 minutes centrifugation at 15000 g and 4uC. After

centrifugation, lysates were incubated at 4uC overnight on a rotary

wheel with 1.5 ml glutathione sepharose 4B beads (GE Life

Sciences) to bind the fusion proteins. The beads were then

transferred to a 10 ml Polyprep column (Biorad) and washed once

with lysis buffer and thrice with wash buffer (50 mM Tris;

100 mM EDTA; 0.1% Tween-20; pH 7.5). The fusion protein

was then eluted from the GSH-Sepharose beads using a 100 mM

glutathione solution adjusted to pH 7.5 with 1 M TrisHCl

(pH 8.8). Finally the eluate was dialyzed in 5 mM TrisHCl

(pH 7.5) for 48 hours and stored at 280uC. To perform non-

radioactive phosphorylation assays, 5 mM substrate (GST-

PER1–700 and GST-PER658–1218) was incubated in kinase buffer

(50 mM Tris-HCl; 5 mM DTT; 30 mM Mg2+; 0.1 mM Na3VO4)

containing 1 mM ATP at 30uC. Kinase assays were initiated by

the addition of 1 mM His6-p38b and stopped directly after,

30 minutes or 60 minutes after kinase addition by adding equal

amount of 26 urea-loading buffer (9 M urea; 20 mM Tris;

190 mM glycine; 1.5 mM EDTA pH 7.5; 1 mM DTT; 0.016%

brom phenol blue). After one additional hour incubation at room

temperature, protein separation was examined using urea-PAGE

and visualized by Coomassie staining, except of some samples that

were cut before Coomassie treatment and immunoblotted as

described in the western blot section.

Radioactive in vitro kinase reactions were conducted in

standard kinase buffer (20 mM HEPES pH 7.6, 20 mM MgCl2,

10 mM b-glycerophosphate, 0.5 mM Na3VO4) containing 5 mCi

c-32P-ATP per reaction. 20 mg of GST-p38b kinase and of the

indicated GST-PER fusion protein or GST as a control were

added to each reaction and incubated at 30uC for 30 minutes. The

proteins were then separated by SDS-PAGE and phosphorylation

was detected by autoradiography. Gels were stained with

Coomassie brilliant blue to visualize total protein amounts in the

various samples. Relative levels of phosphorylation were quantified

using the open source software Fiji [72].

Statistics
All data were tested for normal distribution by a one-sample

Kolmogorov–Smirnov test (Lilliefors). Normally distributed data

were statistically compared by a one-way analysis of variance

(ANOVA) followed by a post-hoc test with Bonferroni correction

for pairwise comparison. Not normally distributed data were

compared by a Kruskal–Wallis test followed by Wilcoxon analysis

(Systat 11, SPSS, Chicago, IL; USA) with Bonferroni correction.

Data were regarded as significantly different at p,0.05 and as

highly significant at p,0.001.

Supporting Information

Figure S1 Expression pattern of p38 MAPK in adult male

Drosophila melanogaster brains investigated by p38b-Gal4-driven

GFP (A–C) and a Drosophila antibody recognizing all forms of

Drosophila p38 (D–G). A–C: GFP displayed a broad expression

pattern, showing strong expression, amongst others, in the pars

intercerebralis (PI), mushroom body (MB), suboesophageal

ganglion (SOG) as well as in the cortical area between the inner

margin of the medulla (ME) and the central brain (CB). Co-

labeling of GFP (green)-expressing cells with anti-PER (magenta)

and anti-PDF (blue) revealed p38b expression in 4 l-LNvs (white

stars in C2). B1-3 represent an image stack showing s-LNvs and

LNds, C1-3 display close-ups of the l-LNvs. D–G: Anterior (D and

E) and posterior (F and G) view of Canton S wildtype brains

labeled with the Drosophila anti-p38b antibody (green) and two

clock specific antibodies - anti-VRI (magenta) and anti-PDF (blue)

- showing a similar widespread staining pattern as did p38b-
Gal4;UAS-GFPS65T flies (D and E compared to A). Furthermore,

p38b staining was most prominent in regions of lateral neurons

(white arrowheads in D and E1-3; for a more magnified illustration

of LNvs see Fig. 1A–C) as well as in the entire cortex of the dorsal

brain (white arrowheads in F) including the region of the dorsal

neurons (G1-3). Scale bar = 10 mm.

(TIF)

Figure S2 Expression of active p38 in DN1as at ZT21 in Canton
S wildtype, p38bD45 and p38aD1 flies. Both p38 null mutants

displayed a significant reduction of p-p38 to 50% of wildtype level

(p,0.05). Colored bars represent p-p38 levels of the genotypes

normalized to the wildtype level. Error bars show SEM.

Significant differences (p,0.05) are indicated by *.

(TIF)

Figure S3 Number of p-p38 positive DN1as per wildtype brain

hemisphere in course of a day. Daily variations in p38 activity in

DN1as is not solely attributed to decreased or increased total p-p38

levels, it’s additionally the oscillating number of p-p38 stained

DN1as per hemisphere that contributes. Even if in some cases not all

DN1as of a brain hemisphere showed p-p38 staining during the

night (ZT13-21), the average number of p-p38 positive DN1as was

significantly higher than during the day. Colored bars represent

average p-p38 positive DN1a per hemisphere. Error bars show

SEM. Significant differences (p,0.05) are indicated by *.

(TIF)

Figure S4 p38a and p38b mRNA expression in w;+;UAS-
p38aRNAi/da-Gal4 (A) and w;UAS-p38bRNAi/+;da-Gal4/+ (B)

compared to respective controls. Expression data of three biological

replicates were averaged within the genotype and normalized to

wildtype level. A: Quantitative real-time PCR revealed a high

significant reduction in p38a mRNA in w;+;UAS-p38aRNAi/da-
Gal4, confirming the effectiveness of the p38aRNAi transgene (p,

0.001). B: Furthermore, significant reduction of p38b mRNA to

50% of wildtype level in w;UAS-p38bRNAi/+;da-Gal4/+ additionally

proved the effectiveness of the p38bRNAi transgene (p,0.05). Error

bars show SEM. Significant differences (p,0.05) are indicated by *,

highly significant differences (p,0.001) by **.

(TIF)

Figure S5 Locomotor activity rhythms of flies expressing a UAS-
p38b kinase-dead transgene (UAS-p38bKD) in Drosophila clock

neurons and respective controls. In LD, both experimental lines,

w;UAS-p38bKD/tim(UAS)-Gal4;UAS-p38bDN-S/+ (upper panels in

A) and w;UAS-p38bKD/Pdf-Gal4;UAS-p38bDN-S/+ (upper panels

in B), showed a diurnal activity pattern with activity bouts around

lights-on and lights-off, but a significant later evening activity onset

than control flies. This tendency proceeded in a significantly

prolonged free-running rhythm when flies were transferred to DD

(lower panels in A and B). For recording and processing of activity

data as well as for figure labeling see Figure 3.

(TIF)

Figure S6 PER and TIM clock protein cycling in p38b

knockdown flies in DD. Nuclear PER (red) and TIM (blue)

staining intensity was evaluated on the 4th day in DD in the s-LNvs

after down-regulation of p38b with Pdf-gal4 (p38b RNAi = di-
cer2;UAS-p38bRNAi/Pdf-Gal4;+ flies). UAS-p38bRNAi;+ flies

served as control. Interestingly, immunostainings revealed that

the molecular cycling still persists in dicer2;UAS-p38bRNAi/Pdf-
Gal4;+ flies. However, the phase of the clock protein oscillation
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was delayed, which is in line with the long free-running period of

these flies. Grey bars on top of the graphs indicate the subjective

day of the flies, that starts with their activity (act.) onset

( = Circadian Time (CT) 0). Black bars indicate the subjective

night of the flies that begins with the activity offset ( = CT 12). For

better clarity 12 hours before and after the measured day are

repeated to the left and the right (dotted curves). Red and blue

arrows point to peaks in nuclear PER and TIM, respectively.

(TIF)

Figure S7 Locomotor activity rhythms of flies overexpressing

wildtype p38b (p38b+) and respective controls. Flies overexpressing

p38b either in TIM-positive (dicer2;tim(UAS)-Gal4/+;UAS-
p38aRNAi/+, A) or PDF-positive clock neurons (dicer2;Pdf-Gal4/
+;UAS-p38aRNAi/+, B) showed wildtype-like locomotor behavior

in LD with activity bouts around lights-on and lights-off. However,

evening activity onset of both lines was significantly delayed

compared to controls (upper panels in A and B) and resulted in a

prolonged free-running period after transfer to constant darkness.

For recording and processing of activity data as well as for figure

labeling see Figure 3.

(TIF)

Figure S8 p38a (A) and p38b (B) mRNA expression in Canton S
wildtype, p38bD45 and p38aD1 heads. Expression data of three

biological replicates per genotype were averaged within the

genotype and normalized to wildtype level. Quantitative real-time

PCR clearly confirmed our p38a null (A) and p38b null (B)

phenotypes (p,0.05 and p,0.001 respectively). In addition there

was no compensatory effect on the transcription of one p38

isoform, when the other was missing. Error bars show SEM.

Significant differences (p,0.05) are indicated by *, highly

significant differences (p,0.001) by **.

(TIF)

Figure S9 Drosophila PER contains two p38 consensus

phosphorylation sites. Online research (http://www.kinexus.ca/

pdf/graphs_charts/ProteinSerKinaseSpecificity.pdf) and amino

acid sequence comparison revealed that Drosophila PER contains

two predicted p38 consensus phosphorylation sites (PXS*P):

Ser661 and Ser975. The latter has not been described as

phosphorylation site so far. In contrast, there is evidence that a

proline-directed kinases, a family also p38 belongs to, phosphor-

ylates PER at Ser661 and thereby primes it for further

phosphorylation at Ser657 by SGG. Black characters represent

Drosophila PER amino acid sequence, red characters represent

predicted p38 MAPK consensus phosphorylation sites and stars

indicate previous identified PER phosphorylation sites.

(TIF)
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