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Abstract

During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the
seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid
development to proceed without interference of the host immune system. A key feature of the BTB is its continuous
remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is
necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier
properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-
WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data
suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of
BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB
components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-
localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments
result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the
seminiferous tubules in germ cell maturation.
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Introduction

Production of sperm in mammals takes place within the

seminiferous tubules of the testis. A prominent aspect of this

process is a complex series of interactions between the maturing

germ cells and the somatic Sertoli cell epithelium, which performs

a variety of guidance and protective roles critical for spermato-

genic differentiation [1]. A striking example of Sertoli cell support

is formation of a blood-testis barrier (BTB) between neighboring

Sertoli cells, at the basal aspect of the seminiferous epithelium

[2,3]. The purpose of this barrier is to act as an effective seal

between the external environment and the ‘‘immune privileged’’

interior of seminiferous tubules, thereby allowing the maturing

germ cells to express necessary antigens, without provoking an

autoimmune response.

The BTB is composed of a unique combination of junctional

and cytoskeletal structures, making it one of the tightest blood-

tissue barriers in the mammalian body [2,4]. Tight junctions (TJs),

gap junctions (GJs), and desmosomes all contribute to the barrier.

In addition to these junctional complexes, which can be found in a

wide variety of epithelial settings, the BTB harbors unique

structures termed ectoplasmic specializations (ES) [5]. Apposing

ES are present at the cell bases of both members of neighboring

Sertoli-cell pairs, and are composed of highly organized arrays of

microfilament bundles, that lie perpendicular to the Sertoli cell

plasma membranes, and are sandwiched between the plasma

membrane and cisternae of the endoplasmic reticulum [2,4]. A

second, apical ES structure, bearing highly similar ultrastructural

features to the basal ES, is found within Sertoli cells at the

interface with maturing spermatids, and functions to anchor the

spermatids onto the epithelium during spermiogenesis [4–6].

A key feature of spermatogenesis is the vectorial journey of

maturing spermatocytes, which differentiate from type B sper-

matogonia residing at the base of the seminiferous epithelium,

where the spermatogonial stem-cells are located. With the essential

aid of the encompassing Sertoli epithelium, the immotile, inter-

connected and differentiating spermatocytes are transported

between the Sertoli cells towards the tubule interior. The

spermatocytes encounter the BTB as they reach the preleptotene

phase of meiosis, at which time they undergo a remarkable

‘‘seamless’’ passage through the barrier [7]. The essence of this

process, which takes place during stage VIII of the seminiferous
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epithelial cycle [8], is a dynamic modification of the BTB,

involving dismantling of the existing barrier apical to the

preleptotene spermatocytes, closely coupled to formation of a

new BTB at a slightly more basal position. Interestingly, this event

takes place simultaneously with the release of mature sperm into

the tubule lumen at the opposite, luminal edge of the epithelium,

suggesting close coordination between restructuring events of the

basal and apical ES [9].

We have recently proposed a model for the molecular

mechanism underlying spermatogenic transport through the

BTB [10], on the basis of the dynamic expression and localization

patterns of Arp3, a subunit of the Arp2/3 complex, the primary

nucleator of branched-actin arrays in eukaryotic cells. We reported

that Arp3 becomes prominent and transiently localizes to the BTB

at the time of restructuring, suggesting that Arp2/3-dependent

branched-actin arrays form at this critical juncture. These arrays

were proposed to promote breakdown of the ‘‘old’’ BTB, and

construction of a new barrier via endocytosis-based recycling of

existing junctional components. Notably, transient localization of

Arp3 is similarly observed at the apical ES, implying that an

Arp2/3-dependent mechanism resembling BTB restructuring is

employed during dismantling/reformation of this structure as well.

Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP, also

known as WASL), the ubiquitous and broadly expressed member

of the WAS protein family [11], is one of the major nucleation

promoting factors responsible for activation of the microfilament-

nucleation capacity of the Arp2/3 complex [12–14]. We have

previously reported that N-WASP is expressed in Sertoli cells, and

that Sertoli-cell-specific knockout of N-WASP results in sterility

due to an early arrest in murine spermatogenesis [15]. Here we

provide a detailed characterization of the effects of N-WASP

disruption in Sertoli cells, thus critically examining and refining

the proposed molecular model for BTB restructuring via a genetic

approach. Our data implies a requirement for N-WASP in the

dynamic remodeling of the BTB during passage of preleptotene

spermatocytes at the BTB, and suggests a cascade of events for

breakdown of junctional structures and their recycling via activity

of Arp2/3-dependent branched-actin arrays.

Results

Disruption of N-WASP in Sertoli cells leads to a complete,
stage-specific arrest in spermiogenesis

Tissue specific disruption of N-WASP in Sertoli cells (see also

[15]) was achieved using a (loxP-based) conditional knock-out

(cKO) allele of murine N-WASP [16], and the Sertoli-cell Cre-

driver Desert Hedgehog (Dhh)-Cre [17–19]. Notably, N-WASP levels

in testes of these N-WASPSC-cKO males were strongly reduced to

,5% of age-matched controls (Fig. 1A), as monitored using

specific antibodies (Table 1). The residual N-WASP protein is

likely to represent germ cell expression [10], which is not affected

in this setting. Disrupting N-WASP function in the somatic

support cells had a dramatic effect on spermatogenesis. Testes of

8-week-old N-WASPSC-cKO mice weighed ,20% of age-matched

controls. Seminiferous tubule diameter was shrunk by ,30% and

the tubules were virtually devoid of advanced stage germ cells

(Fig. 1B). Round and elongating spermatids could only be

detected in less than 3% of tubules from 8-wk old mice (n = 4 mice,

a total of 200 randomly selected tubules scored), and more mature

(step 13–16) elongating/elongated spermatids were completely

absent (Fig. 1B), indicating that while meiosis could take place,

spermiogenesis failed to go to completion. The histological analysis

was further supported and complemented by the absence of

laminin-c3, a specific marker of late spermatids in mouse [20] and

rat [21] testes (Fig. 1B). It is noteworthy that the spermatogonia/

spermatogonial stem-cell (SSC) population is decreased in N-

WASPSC-cKO tubules, as assessed using the spermatogonia/SSC

marker Utf1 [22,23] (,0.2 Utf-1-positive cells/section in mutant

testes versus ,1.1 cell/section in wild-type controls), a feature that

we ascribe to the overall smaller size of the Sertoli cell population

(described below).

Taken together, these observations suggest a complete failure of

spermiogenesis in N-WASPSC-cKO mice, beyond early meiotic

phases. To verify this assertion, and rule out the possibility that the

observed phenotypes reflect secondary consequences of spermato-

genic arrest, we compared the morphologies of seminiferous

tubules from younger (21- and 35-day-old) control and mutant

mice, closer to the onset of sexual maturity (Fig. 1C). A substantial

amount of round spermatids were present in N-WASPSC-cKO

tubules in 21-day-old mice when meiosis is known to occur,

implying that germ cells in these tubules were capable of entering

meiosis, and properly initiated spermiogenesis. However, degen-

eration at both spermatid and spermatocyte stages is readily

apparent, such as the presence multi-nucleated round spermatids

and multi-nucleated spermatocytes by 21 and 35 dpp versus 8-wk

old mutants (Fig. 1C vs. 1B), implying a block to maturation at

these stages of spermiogenesis.

Disorganization of the Sertoli-cell actin cytoskeleton and
functional impairment of the BTB in N-WASPSC-cKO

tubules
We next turned to a detailed analysis of Sertoli cell features in

N-WASPSC-cKO mice in order to understand the basis for the

dramatic impact on spermiogenesis. We had previously demon-

strated that N-WASPSC-cKO mice possess an outwardly intact

Sertoli cell epithelium (15). This was now supported by assessing

the size of the Sertoli cell population in sectioned tubules using

GATA-1, a nuclear Sertoli cell marker [24]. The total number of

Sertoli cells within the epithelium is somewhat smaller in mutant

tubules (,4 Sertoli cells/cross-section) in comparison to wild-type

controls (,8 Sertoli cells/cross-section) due to shrinkage in tubule

diameter. Similar population-size values were obtained, however,

regardless of age, consistent with a generally healthy epithelium

Author Summary

Mammalian spermatogenesis takes place within a shel-
tered environment, whereby somatic Sertoli cells protect
and guide germ cells as they mature and differentiate. A
key structure generated by the protective Sertoli cell
epithelium is the blood-testis barrier (BTB), a composite of
junctional and cytoskeletal elements, which prevents
exposure of post-meiotic spermatids to the immune
system. The BTB is a highly dynamic structure, which
needs to be dismantled and rapidly rebuilt, in order to
allow passage of maturing preleptotene spermatocytes,
without compromising their isolation. Here we show that
N-WASP, a conserved facilitator of formation of branched
actin microfilament arrays, provides a function that is
essential for maintenance of an intact BTB. Genetic
disruption of N-WASP in mouse Sertoli cells leads to loss
of BTB impermeability, resulting in a complete arrest of
spermatogenesis at early and post-meiotic stages. Based
on the localization patterns of key elements, we propose
that branched-actin filaments participate in recycling of
BTB materials to ensure the dynamic and efficient
maintenance of this structure, one of a series of blood-
tissue barriers that preserve privileged organ environ-
ments.

N-WASP Maintains BTB Integrity
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Figure 1. Spermatogenetic arrest and abnormal actin microfilament organization in the seminiferous epithelium of N-WASPSC-cKO

mouse testes. (A) Lysates (,50 mg protein) from 8-wk-old testes of N-WASPSC-cKO mice (Dhh-Cre; N-WASPflox/N-WASP2) and age-matched wild-type
(WT) control mice (N-WASPflox/NWASP2) were used for immunoblotting, to assess changes in the expression of N-WASP, with GAPDH serving as a
protein loading control. Histograms in this and subsequent figures are composites of quantified immunoblot data (mean 6 SD) from n = 4 mice,
normalized for the loading control. WT protein levels in these graphs were arbitrarily set at 1, against which statistical comparison was performed. **,
P,0.01. (B) (Left panels) Hematoxylin and eosin (H&E) staining of paraffin sections, illustrating that specific disruption of N-WASP in Sertoli cells led
to major defects in spermiogenesis. N-WASPSC-cKO tubules (bottom) were shrunk in diameter and lacked the normal spermatid-filled seminiferous
epithelium seen in control (WT) mouse testes (top). Magnified images of mutant tubules (bottom center and right panels) demonstrate the presence
of meiotic round spermatids (red arrowheads) and rare step 11 or 12 spermatids (green arrowhead). Scale bars: 240 mm (left column), and 60 mm
(magnified columns). (Right panels) Laminin-c3 chain (green fluorescence), a specific marker of step 13–16 spermatids at the apical ES [20,21], was
not detected in the seminiferous epithelium of N-WASPSC-cKO mouse testes. Absence of advanced-stage spermatids is indicative of a full failure of
spermiogenesis in these mutant mice. Scale bar: 50 mm, which applies to other micrographs. (C) Histological analysis of age-matched control (WT)
and N-WASPSC-cKO tubules from 21- and 35-D (day)-old mice. At 21D and 35D, round spermatids (annotated by blue arrowheads) were found in some
tubules from N-WASPSC-cKO testes, illustrating the occurrence of meiosis. However, abnormal multinucleated spermatocytes (annotated by yellow
arrowheads) derived from normal spermatocytes (green arrows), were found in 21D N-WASPSC-cKO-testes, presumably giving rise to the degenerated
spermatocytes (red arrow). Degenerating round spermatids were also noted (blue arrow) in 21D N-WASPSC-cKO-testes. In 35D N-WASPSC-cKO-testes,
elongating spermatids were occasionally found (red arrowhead) and also abnormal multinucleated round spermatids as annotated by blue
arrowheads in the yellow boxed area. The lack of elongating spermatids at different stages supports the notion of a full failure of spermiogenesis in
N-WASPSC-cKO-testes. Scale bars: 120 mm, and 40 mm in insets.
doi:10.1371/journal.pgen.1004447.g001
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that does not succumb to cell death over time. Examination of

microfilament distribution via staining with fluorescent FITC-

phalloidin suggested, however, major disturbances to Sertoli cell

cytoplasmic organization (Fig. 2A, B). The F-actin network in the

seminiferous epithelium of 8 week-old N-WASPSC-cKO mice was

considerably disrupted, as F-actin was no longer confined to the

basal ES at the BTB, but was instead diffusely localized

throughout the basal compartment (Fig. 2A). A similar lack of

organization was observed in tubules from younger (35 day old)

mutant mice (Fig. 2B), implying that, similar to the effects on the

germline, the somatic phenotypes do not result from tissue

deterioration over time, but rather reflect fundamental and

persistent defects in spermatogenesis.

ES structures constitute the primary site of microfilament

concentration within Sertoli cells. The highly disorganized nature

of microfilament distribution within the N-WASPSC-cKO seminif-

erous epithelium suggested therefore that ES-related structures

such as the BTB may be affected in the mutants. Furthermore, N-

WASP is an established promoting factor of Arp2/3-based

branched actin nucleation, and our recent analysis of the

expression and localization patterns of Arp3, a subunit of the

Arp2/3 complex, led us to propose a model for the involvement of

this primary nucleator of branched actin arrays in the cyclical

dismantling and restructuring of the BTB [10]. We therefore

sought to examine whether the barrier function of the BTB is

compromised following Sertoli-cell disruption of N-WASP.

Towards this end we employed an in vivo BTB integrity assay,

which is based on the capacity of a functional BTB to block

passage of a fluorescent marker (FITC-inulin) from basal to

adluminal tubule compartments [25,26]. In control adult mice

(n = 5 mice), FITC-inulin failed to penetrate the BTB, which lies

close to the basement membrane, and no fluorescence was found

inside the adluminal compartment (Fig. 3). In contrast, FITC-

inulin readily penetrated into the adluminal compartment in the

tubules of age-matched N-WASPSC-cKO mouse testes (n = 5 mice),

and could be detected as far as the tubule lumen (Fig. 3), implying

a breakdown of the BTB.

Widespread abnormalities of BTB junctional components
in N-WASPSC-cKO seminiferous tubules

The observed impairment of BTB barrier function led us to

examine possible structural defects in this complex system, by

assessing the localization patterns of major constituent proteins.

Connexin-43, a transmembrane protein, is an established

Table 1. Antibodies used for different experiments in this report.

Antibody Host species Vendor Catalog no. Application (Dilution)

Actin Goat Santa Cruz Biotechnology sc-1616 IB (1:200)

Arp3 Mouse Sigma-Aldrich A5979 IB (1:3000), IF (1:100)

Rabbit Proteintech 13822-1-AP IF (1:100)

b1-Integrin Rabbit Millipore AB1952 IB (1:2000), IF (1:100)

CAR Rabbit Santa Cruz Biotechnology sc-15405 IB (1:200), IF (1:100)

Connexin 43 Rabbit Cell Signaling Technology 3512 IB (1:200), IHC (1:100)

Drebrin E Rabbit Abcam ab11068-50 IB (1:1000)

Rabbit Proteintech 10260-1-AP IF (1:100)

FAK Rabbit Millipore 06-543 IB (1:1000)

GATA-1 Rat Santa Cruz Biotechnology sc-266 IF (1:50)

p-FAK-Y438 (407)* Rabbit Invitrogen 44-650G IB (1:1000), IF (1:100)

p-FAK-Y614 (576)* Rabbit Millipore 07-157 IB (1:1000), IF (1:100)

GAPDH Mouse Abcam ab8245 IB (1:1000)

ICAM-2 Rabbit Santa Cruz Biotechnology sc-7933 IB (1:200), IF (1:100)

Laminin-c3 Rabbit Cheng Lab [21] IF (1:300)

N-Cadherin Rabbit Santa Cruz Biotechnology sc-7939 IB (1:200), IF (1:100)

Nectin-3 Rabbit Santa Cruz Biotechnology sc-28637 IB (1:200)

Goat Santa Cruz Biotechnology sc-14806 IF (1:50)

N-WASP Rabbit Santa Cruz Biotechnology sc-20770 IB (1:200), IF (1:100)

Occludin Rabbit Invitrogen 71-1500 IB (1:250), IF (1:100)

Utf1 Rabbit Millipore AB3383 IF (1:800)

Goat IgG-Alexa Fluor 488 Donkey Invitrogen A11055 IF (1:250)

Mouse IgG-Alexa Fluor 488 Goat Invitrogen A11029 IF (1:250)

Rabbit IgG-Alexa Fluor 488 Goat Invitrogen A11034 IF (1:250)

Rabbit IgG-Alexa Fluor 555 Goat Invitrogen A21429 IF (1:250)

Biotin-Rat IgG Goat Zymed-Invitrogen 62-9540 IF (1:100)

Streptavidin, FITC conjugated Pierce 21224 IF(1:150)

Abbreviations used: IB, immunoblotting; IHC, immunohistochemistry; IF, immunofluorescence analysis.
*, the number bracketed represents the corresponding Tyr residue of p-FAK in the rat testis.
doi:10.1371/journal.pgen.1004447.t001
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Figure 2. Sertoli cell-specific knockout of N-WASP leads to disorganization of F-actin in the seminiferous epithelium. (A)
Immunofluorescence analysis of sectioned seminiferous tubules from 8W (week)-old control (WT) and N-WASPSC-cKO testes, showing the expression
and localization patterns of N-WASP (green fluorescence, left) and F-actin (FITC-phalloidin, green fluorescence, right). Yellow arrowheads in the
control panels point to the localization of either N-WASP or F-actin at the site of the BTB near the basement membrane of the tunica propria, which is
annotated by a broken white-line. Cell nuclei were visualized by DAPI staining. Scale bars: 80 mm in the first two rows, and 240 mm in the third row.
(B) A similar analysis was performed on testes from younger, 35D (day)-old mice. Actin microfilament organization in N-WASPSC-cKO tubules was
strongly disrupted at this stage as well. Scale bar: 80 mm.
doi:10.1371/journal.pgen.1004447.g002
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structural and functional constituent of Sertoli cell gap junctions

[27,28], while occludin, an integral member of intercellular TJs,

including the TJ portion of the BTB, acts to stabilize TJs and to

optimize their function as barriers [29–31]. Remarkably, both

connexin-43 and occludin were virtually undetectable in N-

WASPSC-cKO tubules (Fig. 4A,C), implying a major disruption of

the tight and gap junction components of the N-WASPSC-cKO

BTB.

Given the prominent effects observed, we extended our analysis

to include two additional transmembrane BTB elements, the basal

ES component N-cadherin, an integral constituent of the BTB,

and the TJ integral membrane protein coxsackievirus and

adenovirus receptor (CAR) [32,33]. In contrast to the tight basal

localization normally observed for these proteins, their distribution

in the seminiferous epithelium of N-WASPSC-cKO tubules was no

longer restricted, and they were detected throughout the Sertoli

cell epithelium (Fig. 4A,C), further strengthening the notion of an

impaired BTB, supporting the functional data shown in Fig. 3.

Both the general disruption of microfilament organization and

the relatively early arrest in the progress of spermatogenesis suggest

that the second Sertoli cell ES structure, the apical ES, would not

form properly - if at all - in the N-WASPSC-cKO seminiferous

epithelium. We examined this issue directly by assessing the

localization patterns of representative apical ES components.

Nectin-3, a spermatid-specific adhesion molecule that mediates

Sertoli cell-spermatid attachment at the apical ES [34], was

undetectable in the mutant tubules (Fig. 5A,B), consistent with

the arrest of spermiogenesis at immature, early spermatid stages.

Furthermore, both b1-integrin, a Sertoli cell-specific adhesion

protein [35,36], and ICAM-2, an adhesion protein normally found

in both Sertoli cells and spermatids [37], were mis-localized in N-

WASPSC-cKO Sertoli cells, and no longer restricted to the adluminal

compartment (Fig. 5A,B). Taken together, these observations

confirm the expectation of a severely disrupted apical ES.

BTB restructuring in N-WASPSC-cKO seminiferous tubules
arrests at the phase requiring branched-actin nucleation

In contrast to the widespread disturbances to junctional and

cytoskeletal BTB components in the N-WASPSC-cKO seminiferous

epithelium, we found that two elements of the branched-actin

nucleation machinery, namely Arp3 and drebrin E, were properly

localized and robustly expressed (Fig. 6A, B). In particular, the

Arp3 subunit of the Arp2/3 complex, which normally localizes to

the BTB vicinity during the restructuring phase of stage VIII,

displayed a tightly restricted localization to the basal ES in the

seminiferous epithelium of mutant mice, analogous to the age-

matched control mouse testis (Fig. 6A, B). We have recently

demonstrated that drebrin E, the non-neuronal isoform of the

actin-binding element drebrin [38], acts to recruit Arp3 to the

BTB [39]. Examination of N-WASPSC-cKO tubules revealed that,

like Arp3, drebrin E retained its basally restricted expression

pattern, similar to WT control mouse testes (Fig. 6B). Taken

together, the defects in BTB structure, coupled with the observed

basal localization of Arp3 and its recruiting partner drebrin E,

Figure 3. BTB integrity is compromised in testes of N-
WASPSC-cKO mice. Images show localization within seminiferous
tubules of FITC-inulin (green), a small fluorescent molecule injected
into the blood system of control (WT) and N-WASPSC-cKO mice (see
Materials and Methods for detailed experimental protocol). In control
mouse testes, the functional BTB blocked FITC-inulin from entering into
the apical (adluminal) compartment, and the distance traveled by the
marker was limited to the basal compartment (annotated by a white
bracket). The lower magnification inset shows four seminiferous tubules
(white asterisks) that are devoid of green fluorescence inside the

epithelium. In N-WASPSC-cKO mouse tubules, the marker penetrated
deep inside the seminiferous epithelium (yellow arrows), reaching the
tubule lumen (annotated by yellow bracket). The lower magnification
inset shows five such tubules (yellow asterisks), demonstrating that
disruption of BTB integrity is a common feature of N-WASPSC-cKO mouse
testes. Scale bars: 50 mm (magnified image), and 200 mm in insets. Data
from BTB integrity assays were semi-quantified and are shown in the
bar graph, which displays the distance traveled by FITC-inulin vs. the
tubule radius for n = 5 mice (8–14 weeks old) in each group. *, P,0.01.
doi:10.1371/journal.pgen.1004447.g003

N-WASP Maintains BTB Integrity
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suggest a molecular scenario in which dismantling of the

BTB is properly initiated in the seminiferous epithelium of N-

WASPSC-cKO mouse testes during the epithelial cycle, but is

arrested at a relatively late stage of the process, when the Arp2/3

actin-nucleation promoting activity of N-WASP must come into

play, in order to enable recycling of ‘‘old’’ BTB components and

formation of a ‘‘new’’ barrier.

Disruption of spatiotemporal expression of p-FAK-Tyr438

and -Tyr614 in the seminiferous epithelium of
N-WASPSC-cKO testes

Studies in the rat testis have shown that the non-receptor

protein tyrosine kinase FAK, a regulator of cell adhesion in a wide

variety of cellular contexts [40], functions to coordinate events at

the basal and apical ES. Key features of FAK activity in the

Figure 4. BTB junctional and basal ES proteins are absent or abnormally localized in the seminiferous epithelium of N-WASPSC-cKO

mouse testes. (A) Immunoblotting data using lysates of testes from N-WASPSC-cKO and age-matched control mice, to examine changes in the
expression of integral membrane proteins of GJs (connexin 43), TJs (occludin, CAR), and the basal ES (N-cadherin). b-Actin served as a protein loading
control. Histogram generated as in Figure 1. **, P,0.01. N.D., not detectable. (B) Immunohistochemical localization of connexin 43 in the
seminiferous epithelium of mouse testes. In WT testes, connexin 43 appears as a reddish brown precipitate, prominently expressed near the BTB, as
well as at the apical ES (near lumen) at early stage VIII. Connexin 43 was virtually undetectable in the N-WASPSC-cKO epithelium, consistent with the
immunoblot analysis shown in (A). Scale bars, 80 mm in the first two rows; 240 mm in the third row. (C) Immunofluorescence analysis of occludin (red
fluorescence, left), N-cadherin (red fluorescence, middle) and CAR (red fluorescence, right) in the seminiferous epithelium of N-WASPSC-cKO and WT
control mice. Yellow arrowheads indicate the localization of occludin, N-cadherin or CAR at the BTB, which is located near the basement membrane at
the tunica propria, annotated by a white broken-line. In the micrographs illustrating localization of CAR (right), the boxed area was magnified and
shown in insets, illustrating that CAR was also associated with the apical ES at the elongating/elongated spermatid/Sertoli cell interface. Cell nuclei
were visualized by DAPI staining. Scale bars: 80 mm in the first two rows, 240 mm in the third row, and 15 mm in insets.
doi:10.1371/journal.pgen.1004447.g004

N-WASP Maintains BTB Integrity
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seminiferous epithelium are the restricted spatiotemporal patterns

of the phosphorylated forms p-FAK-Tyr407 (i.e., p-FAK-Tyr438 in

mouse testes) [41] and p-FAK-Tyr576 (i.e., p-FAK-Tyr614) [42].

The implication is that p-FAK-Tyr407 serves as a molecular switch

regulating BTB adhesion capacities, via changes in actin

polymerization kinetics [41,43]. We therefore used general and

form specific antibodies to assess FAK (Table 1) expression and

localization patterns in the tubules of N-WASPSC-cKO mice.

Expression levels of the p-FAK-Tyr614 form were significantly

lower, while the key phosphorylated form p-FAK-Tyr438 was

practically undetectable via either immunoblot or immunofluo-

rescence microscopy (Fig. 7A–C). Absence of Tyr-phosphorylated

FAK proteins from the BTB microenvironment thus considerably

impaired the adhesive capacity of this key ES structure, and this

notion was also supported by data shown in Fig. 3.

Discussion

Blood-tissue barriers are designed to protect sensitive organ

environments from infiltration by harmful substances. Efficient

barrier properties need to be coupled, however, with a degree of

permeability, and a capacity for selective passage of factors

essential for tissue differentiation and function. The dynamic

behavior of the BTB, which governs the initial phases of

spermatogenesis in the seminiferous tubules of the testis, provides

a striking example of such situations. In this instance, the BTB is

required to act as an efficient barrier, while enabling passage not

only of molecular elements, but also of entire cells, namely, the

differentiating preleptotene spermatocytes. This is made possible

by a tissue remodeling process, involving near simultaneous

dismantling and construction of the barrier at positions ahead and

in the wake of transiting spermatocytes, making their way towards

the adluminal compartment of the seminiferous epithelium.

In the current study, we demonstrate that the nucleation

promoting factor N-WASP is required in murine Sertoli cells for

maintenance of a properly structured BTB. Sertoli cell-specific

disruption of N-WASP results in abnormal spatiotemporal

expression patterns of key BTB elements, and in loss of barrier

impermeability, suggesting major impairment of BTB structure

and function. Key constituents of both the tight junction (occludin,

Figure 5. Abnormal localization and expression patterns of apical ES proteins in the seminiferous epithelium of N-WASPSC-cKO

mouse testes. (A) Immunoblotting data using lysates of testes from N-WASPSC-cKO and age-matched control mice, to examine changes in the
expression of the apical ES integral membrane proteins nectin-3, b1-integrin, and ICAM-2. b-Actin served as a protein loading control. Histogram
generated as in Figure 1. **, P,0.01. N.D., not detectable. (B) Immunofluorescence analysis of nectin-3 (green fluorescence, left), b1-integrin (green
fluorescence, middle) and ICAM-2 (green fluorescence, right) in the seminiferous epithelium of control (WT) and N-WASPSC-cKO mice. Boxed areas are
magnified and shown in insets. Nectin-3, b1-integrin and ICAM-2 were associated with apical ES in control (WT) testes. In N-WASPSC-cKO mouse testes,
nectin-3 was considerably diminished to a level almost undetectable in the seminiferous epithelium, consistent with the immunoblotting data shown
in (A). While b1-integrin and ICAM-2 were detectable in the mutant testes, they were mis-localized and were both found near the disrupted BTB (see
yellow arrowheads that annotate ICAM-2 in the mutant testes). Relative location of the basement membrane is annotated by a white broken-line).
Cell nuclei were visualized by DAPI staining. Scale bars: 80 mm in the first two rows, 240 mm in the third row, and 15 mm in insets.
doi:10.1371/journal.pgen.1004447.g005
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CAR) and gap junction (connexin-43) components of the BTB are

either significantly mis-localized or absent altogether. Importantly,

major structural abnormalities are apparent in organization of the

basal ES, the unique, hallmark component of the BTB. In

particular, the tightly packed arrangement of basal ES microfil-

aments is disrupted, and this key cytoskeletal structure becomes

dispersed in the Sertoli cell cytoplasm. Similar dispersal is observed

for N-cadherin, an adherens junction component that normally

displays tight association with the basal ES. Impairment of the

adhesive properties of the BTB are further implied by the marked

reduction in levels of phospho-FAK proteins, key regulators of ES-

based adhesion. Taken together, these data present a substantial

list of defects in BTB structure and functional properties,

demonstrating that disruption of N-WASP in Sertoli cells results

in significant deterioration of BTB barrier capabilities.

The generally disorganized spatial distribution of junctional and

cytoskeletal BTB components in N-WASPSC-cKO tubules is in

marked contrast to elements of the branched-actin nucleation

system, which retain their proper spatiotemporal localization

patterns. Both Arp3, a subunit of the Arp2/3 complex, and

drebrin E, a factor that mediates Arp3 localization in Sertoli cells,

preserve their tight basal localization during stage VIII of the

seminiferous epithelial cycle in the mutant tubules. These

observations are significant for several reasons. First, they argue

that abnormal localization patterns do not result from a general

disruption of cytoplasmic organization in N-WASPSC-cKO tubules,

Figure 6. The branched microfilament regulators Arp3 and drebrin E are properly localized to the BTB in N-WASPSC-cKO tubules. (A)
Immunoblotting data using lysates of testes from N-WASPSC-cKO and age-matched control mice demonstrate up-regulation in Arp3 and drebrin E
expression in mutant mouse testes vs. the age-matched control testes with b-actin served as a protein loading control. Histogram generated as in
Figure 1. **, P,0.01. (B) Immunofluorescence analysis of Arp3 (green fluorescence, left) and drebrin E (green fluorescence, right) in the seminiferous
epithelium of control (WT) and N-WASPSC-cKO mice. Yellow arrowheads mark the localization of either Arp3 or drebrin E at the BTB, which is near the
basement membrane of the tunica propria (annotated by a broken white-line). Unlike basal ES proteins (see Figure 4) and apical ES proteins (see
Figure 5), which were mis-localized in the seminiferous epithelium of mutant testes, these branched actin regulatory proteins remained properly
localized to the damaged BTB. Cell nuclei were visualized by DAPI staining. Scale bars: 80 mm in the first two rows, and 240 mm in the third row.
doi:10.1371/journal.pgen.1004447.g006
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but are likely to arise from specific defects caused by the absence of

actin nucleation. This assertion is also supported by the morpho-

logical similarities between N-WASPSC-cKO tubules at different

ages, implying that mutant phenotypes are a primary consequence

of disrupting N-WASP function, and not a result of tissue

degeneration over time. Second, our observations identify a

particular juncture during which lack of N-WASP function becomes

apparent. A timeline consistent with the various observations

suggests proper localization of the Arp2/3 complex (mediated in

part by drebrin E) to the basal aspect of Sertoli cells, at the stage

when BTB restructuring is required. Under normal circumstances,

N-WASP then acts to stimulate Arp2/3 and promote nucleation of

branched actin arrays necessary for BTB restructuring. The actual

involvement of the N-WASP-Arp2/3 machinery is likely to take

place after restructuring is underway, and when many of the BTB

components are transiently displaced, to allow the dynamic events

of the process to unfold. Arrest of restructuring in the N-WASPSC-

cKO mutant tubules occurs therefore at a critical phase, when the

BTB has been dismantled, but is now incapable of forming a new

intact barrier, such as at the rear end of the preleptotene

spermatocytes under transport at the immunological barrier.

Identification of the juncture at which the branched actin

polymerization system contributes to BTB remodeling allows

for informed speculation regarding the underlying molecular

Figure 7. Modifications in the localization and expression patterns of the ES regulatory protein FAK and its phosphorylated forms
in N-WASPSC-cKO tubules. (A) Immunoblotting data using lysates of testes from N-WASPSC-cKO and age-matched control mice, to examine changes
in the expression of the non-receptor protein tyrosine kinase FAK and its phosphorylated/activated forms p-FAK-Tyr438 and -Tyr614. b-Actin served as
a protein loading control. Histogram generated as in Figure 1. **, P,0.01. N.D., not detectable. (B) Immunofluorescence analysis of p-FAK-Tyr438

(green fluorescence, top) and p-FAK-Tyr614 (green fluorescence, bottom), in the seminiferous epithelium of mouse testes in both animal groups.
Yellow arrowheads annotate p-FAK-Tyr438 that was normally localized to the BTB, which was located near the basement membrane at the tunica
propria (annotated by white broken-line). Unlike p-FAK-Tyr438 which was localized both at the BTB and the apical ES, p-FAK-Tyr614 was restrictively
expressed at the apical ES, analogous to p-FAK-Tyr576 in the rat testis [42]. Boxed areas were magnified and shown in insets, illustrating that p-FAK-
Tyr438 and -Tyr614 were normally associated with the apical ES at the elongating/elongated spermatid/Sertoli cell interface. The expression of p-FAK-
Tyr438 was considerably diminished in the seminiferous epithelium of N-WASPSC-cKO mouse testes, consistent with the immunoblot data shown in (A).
While the expression p-FAK-Tyr614 was considerably down-regulated, yet it remained detectable in the seminiferous epithelium of N-WASPSC-cKO

mouse testes, and its spatiotemporal expression was considerably altered. For instance, p-FAK-Tyr614 was no longer restricted to the apical ES at the
elongating/elongated spermatids but associated with round spermatids and spermatocytes and also at the damaged BTB. Cell nuclei were visualized
by DAPI staining. Scale bars: 80 mm, and 15 mm in insets.
doi:10.1371/journal.pgen.1004447.g007
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mechanism. The highly dynamic nature of the restructuring

process, the involvement of multiple components, and the

availability of ‘‘building blocks’’ for BTB formation following

dismantling of the ‘‘old’’ structure all suggest that recycling of

existing components should play a prominent role in ‘‘new’’ BTB

formation. An involvement of Arp2/3-based branched actin

polymerization in endocytic recycling of proteins and membrane

has been demonstrated in a wide variety of cellular systems [44–

46]. Based on these precedents and on our analysis of defective

spermatogenesis in N-WASPSC-cKO seminiferous tubules, we

propose the following model for branched actin mediation of

BTB restructuring (Figure 8). By stage VIII of the epithelial cycle,

developing spermatocytes, derived from spermatogonial stem cells

and being transported between Sertoli cells, have progressed to the

preleptotene phase of meiosis, and encounter the BTB. In order to

allow passage of the germ cells towards the tubule interior,

dismantling of the barrier is initiated, via dispersal of basal ES

microfilaments and endocytosis of junctional components. The

Arp2/3 complex is recruited by drebrin E to the BTB at this time.

N-WASP stimulation of Arp2/3 nucleation activity leads to

formation of branched actin arrays on the endocytic vesicles,

which are now directed basally, to deposit their cargo (e.g., tight

and gap junction proteins) at the site of new BTB construction. In

the absence of branched actin functionality, such as in the case of

N-WASP disruption in Sertoli cells, vesicles containing ‘‘old’’ BTB

elements are not properly directed and either become mis-

localized, or diverted towards lysosomal degradation.

Key open questions raised by this model include the nature of

the signal converting N-WASP to its active form in this context,

the cues by which recycling endosomes are targeted to a particular

membrane domain for new BTB formation, and the reason(s) why

spermatocytes fail to mature properly following BTB failure. The

latter issue may be a reflection of additional impairments to Sertoli

cell function, as these cells guide and nurture sperm differentiation

throughout the process. One aspect to consider in this context is

the involvement of branched actin arrays in the formation of the

apical ES, which displays many structural similarities to the ES

portion of the BTB, and acts to anchor mature spermatids to the

apical end of the Sertoli-cell epithelium just prior to their release

into the tubule lumen. The relatively early arrest of spermatogen-

esis in N-WASPSC-cKO tubules precludes the ability to properly

address this issue following complete elimination of N-WASP

activity in Sertoli cells. However, we previously demonstrated [10]

that partial interference with N-WASP function, following

application of the inhibitor wiskostatin, results in mis-orientation

of spermatid heads, while the BTB remains intact, suggesting

defects in the anchoring capacity of the apical ES.

In conclusion, we describe here an essential requirement for the

molecular machinery promoting polymerization of branched actin

arrays in the events that mediate dynamic formation of the BTB,

and hence, in the proper progress of mammalian spermatogenesis,

particularly spermiogenesis. Our findings suggest that this process

employs a complex interplay between junctional remodeling,

vesicular trafficking and dynamic organization of the actin

cytoskeleton, to ensure differentiation while maintaining the

integrity of a key blood-tissue barrier.

Materials and Methods

Mouse genetics
The use of animals for the studies reported herein was approved

by The Rockefeller University Institutional Animal Care and Use

Figure 8. A model illustrating the suggested roles of N-WASP and branched-actin polymerization in BTB dynamics. (Left) The BTB,
composed of junctional and cytoskeletal structural and regulatory elements, provides a seal between the basal (down) and adluminal (up)
compartments of the epithelium in seminiferous tubules. (Middle) At stage VIII of the epithelial cycle, the BTB undergoes restructuring, involving near
simultaneous dismantling of the ‘‘old’’ BTB via endocytosis, to accommodate the apically directed transport of preleptotene spermatocytes between
neighboring Sertoli cells, and assembly of a ‘‘new’’ BTB, to maintain the barrier. These events are mediated by the branched actin regulators drebrin E
and Arp3, which localize to the BTB, and the nucleation promoting factor N-WASP, which activates branched-actin polymerization. The proposed role
for the branched-actin arrays is to facilitate endocytic vesicle-mediated protein trafficking, so that integral membrane proteins at the ‘‘old’’ BTB can be
recycled to the basal region and contribute to assembly of a ‘‘new’’ BTB. (Right) In N-WASPSC-cKO testes lacking Sertoli-cell N-WASP function, the
branched-actin polymerization machinery can no longer mediate proper endocytic vesicle-mediated protein recycling, and the BTB, once dismantled,
cannot be regenerated.
doi:10.1371/journal.pgen.1004447.g008
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Committee with Protocol Number 12-506. N-WASP was specif-

ically deleted in Sertoli cells of the mouse testis as previously

described [15]. In brief, Dhh-Cre bearing mice [47] were crossed

to heterozygotes for the null allele N-WASP2 [48] to obtain Dhh-

Cre/+; N-WASP2/+ progeny. These F1 mice were then crossed to

mice homozygous for the conditional KO allele N-WASPflox [16],

and Dhh-Cre; N-WASPflox/N-WASP2 males (i.e., N-WASPSC-cKO

male mice) were identified among the progeny. Mice at age 21-

and 35-day postpartum (dpp), as well as at 8-, 9-, and 11-week (wk)

of age were used. Age-matched wild type (WT) N-WASPflox/N-

WASP2 mice served as the corresponding control mice. Data

shown herein are representative findings from single experiments,

but each experiment was repeated with at least n = 3–5 mutant

mice and the corresponding number of WT controls, and yielded

similar results.

Morphometric analysis
Morphometric analysis was performed to score Utf1- or GATA-

1-positive cells in the seminiferous epithelium of mice from Dhh-

Cre; N-WASPflox/N-WASP2 males (i.e., N-WASPSC-cKO male

mice) versus aged-matched N-WASPflox/N-WASP2 WT (control)

mice, as earlier described [23,26]. In brief, serial frozen sections

(7 mm) of testes from these mice were obtained in a cryostat at 2

21uC. During serial sectioning, every fifth section was removed

and collected on microscopic slide, and a total of 5 sections was

collected from each testis from both groups. Data presented were

representative results from a total of 15 cross sections of testes from

3 mice. Utf1- or GATA1-positive cells were scored from randomly

selected 30 tubules per section of testis (i.e., about 150 tubules per

testis and a total of 450 tubules in each mouse group) using the

106 Objective of an Olympus BX 61 fluorescence microscope.

GATA1 (globin transcription factor 1) is a Sertoli cell-specific

marker in the seminiferous epithelium [24], whereas Utf1 is a

marker of spermatogonia/SSC specific to As (Asingle), Apr (Apaired)

and short chain of Aal (Aalinged) spermatogonia including SSC [22].

Positive Utf1 or GATA1 stained cells were further verified using

the 406Objective to ensure that the fluorescence staining was not

an artifact. For GATA1, the number of Sertoli cells in the

epithelium was estimated from both 35-day and 8-wk old mice.,

while for Utf1-positive cells, only 8-wk-old mice were used. Only

round-shaped and not cross sections were used for scoring.

BTB integrity assay
To assess if the disruption of N-WASP in Sertoli cells would

impede BTB integrity in vivo in mice, a functional assay was

performed, as earlier described [25,26]. This assay is based on the

ability of an intact BTB to block the diffusion of a small

fluorescence tag, FITC-conjugated inulin (Mr 4.6 kDa) (Sigma-

Aldrich) from the basal to the apical compartment of the

seminiferous epithelium. Adult mice from 9–14 wk of age (n = 5

control (WT) mice vs. n = 5 N-WASPSC-cKO mice) were under

anesthesia with ketamine HCl (,100 mg/kg b.w.) together with

an analgesic xylazine (,10 mg/kg b.w.), administered intramus-

cularly (i.m.). A small incision, about 0.5-cm, was made in the skin

over the jugular vein to expose the blood vessel, and ,1 mg

FITC-inulin dissolved in ,75 ml PBS (10 mM sodium phosphate,

0.15 M NaCl, pH 7.4 at 22uC) was administered into the jugular

vein via a 28-gauge needle. About 45 min thereafter, mice were

euthanized by CO2 asphyxiation by slow (20–30% per minute)

displacement of chamber air with compressed CO2 for ,12 min.

Testes were removed, snap-frozen in liquid nitrogen, and

embedded in Tissue-Tek O.C.T. (optimal cutting temperature)

compound (Sakura). Frozen sections (10 mm) were obtained in a

cryostat at 221uC. Fluorescence images were obtained using an

Olympus BX61 Fluorescence Microscope. Mice from both control

(WT) and conditional KO groups were processed in the same

experimental session for comparison to avoid inter-experimental

variations. To yield semi-quantitative information regarding the

BTB integrity, distance (D) traveled by the fluorescence tag

(DFITC-inulin) from the basement membrane in a seminiferous

tubule versus radius of the tubule (DRadius) in N-WASPSC-cKO testes

was compared to WT control mice. For oblique sections of

tubules, DRadius was obtained by averaging the shortest and the

longest distance from the basement membrane. About 30 tubules

were randomly scored from each mouse testis and a total of 5 mice

from each group was scored and compared.

Immunoblotting
Immunoblotting was performed using lysates from 3–4 mouse

testes, as earlier described [49]. To obtain sample lysates, tissues

from snap-frozen mouse testes stored at 280uC were homoge-

nized and sonicated in ice-cold IP lysis buffer [10 mM Tris,

0.15 M NaCl, 1% NP-40, and 10% glycerol (v/v), pH 7.4 at

22uC, freshly supplemented with protease and phosphatase

inhibitor cocktails (Sigma-Aldrich) at a 1:100 dilution (v/v), as

instructed by the manufacturer]. Total protein concentration was

estimated by using the detergent-compatible DCTM Protein Assay

kit (Bio-Rad), using BSA as a standard. About 30–50 mg of protein

lysate from each sample was used for immunoblotting. Immuno-

blots were visualized by enhanced chemiluminescence (ECL),

using a kit prepared as described [50]. Gel images were obtained

using a Fujifilm LAS-4000 Mini imaging system with Multi Gauge

software (Version 3.1; Fujifilm), and immunoblots were then

analyzed by using Scion Image (Version 4.0.3.2; Scion Corpora-

tion; http://mesonpi.cat.cbpf.br/e2002/cursos/NotasAula/

ScnImage.pdf). Data were normalized against b-actin, which

served as a protein loading control.

Immunofluorescence microscopy
Immunofluorescence microscopy was performed as described

earlier [51] using corresponding antibodies (Table 1). Cryosec-

tions (7-mm-thick) obtained in a cryostat at 221uC from snap-

frozen mouse testes, were fixed at room temperature either in

Bouin’s fixative for 5 min or in 4% paraformaldehyde (PFA) (w/v)

dissolved in PBS (10 mM NaH2PO4 and 0.15 M NaCl, pH 7.4 at

22uC) for 10 min. Sections were permeabilized in 0.1% Triton X-

100 (v/v) in PBS prior to blocking in 10% normal goat serum (v/v)

for 30 min. After overnight incubation with a primary antibody

(Table 1), Alexa Fluor dye-conjugated secondary antibodies

generated in goat (Invitrogen, 1:200 dilution) were used for protein

visualization. Nuclei were stained with DAPI (49,6-diamidino-2-

phenylindole) (Invitrogen). For F-actin staining, frozen cross-

sections of mouse testes were fixed in 4% PFA (w/v) in PBS at

room temperature for 10 min, permeabilized and subsequently

blocked by using 1% BSA (w/v) in PBS for 30 min, followed by an

incubation with FITC-conjugated phalloidin (Sigma-Aldrich, 1:50

dilution) for 30 min. Images were acquired using an Olympus

BX61 fluorescence microscope with the Olympus MicroSuite Five

software package (Version 1224) in TIFF format. Images were

analyzed and overlaid using Photoshop CS3 Extended software

(Adobe Systems). To reduce inter-experimental variations, cross-

sections from testes of N-WASPSC-cKO and control mice were

processed in pairs simultaneously.

Immunohistochemistry
Immunohistochemistry (IHC) was performed using paraffin-

embedded mouse testes as described [49]. In brief, 4-mm thick

sections were cut and placed on Superfrost Plus Micro Slides
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(VWR International). For antigen/epitope retrieval, slides were

microwave-heated twice (5 min each) in 10 mM sodium citrate

(pH 6.0 at 22uC). Thereafter, sections were immersed sequentially

in 3% hydrogen peroxide (v/v) for 20 min and Triton X-100

(0.1%, v/v) and normal goat serum (10%, v/v) in PBS, which were

used as penetration enhancer and blocking solution, respectively.

After overnight incubation with anti-connexin 43 antibody

(Table 1), a biotin-conjugated F(ab9)2 fragment of goat anti-

rabbit IgG and HRP-streptavidin conjugate (Invitrogen) were

added to the sections in succession, and a color reaction was

obtained using 3-amino-9-ethylcarbazole (AEC, red precipitate,

Invitrogen) as the chromogenic substrate.

Hematoxylin and eosin (H&E) staining
Bouin’s solution-fixed 4-mm-thick paraffin sections were used for

H&E staining as described [52]. In brief, sections were rehydrated

through successive xylene and ethanol, tap and deionized water.

Cell nuclei were stained with Hematoxylin 7211 (Richard-Allan

Scientific) for 4–5 min to a blue-purple coloration, followed by

immersing in Clarifier and Scott’s solution for 1 min, respectively.

The cytoplasm was then stained using Eosin-Y for 30 sec to obtain

a pink-red color. Sections were dehydrated and cleared with 100%

ethanol and xylene, sealed in PolyMount (Polysciences), and

examined microscopically.

Statistical analysis
GB-STAT (V7.0, Dynamic Microsystems) was used for

statistical analysis. Student’s t-test was used to compare changes

in protein levels between N-WASPSC-cKO and age-matched

control mice, in which the relative protein level was arbitrarily

set at 1. For immunofluorescence analysis, each time point

represented at least n = 3 mice. For immunoblotting data, each bar

is the mean6SD of 4 mice including control group. P,0.05 was

interpreted as statistically significant.
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