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Abstract

During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal
skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex
are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has
been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in
NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC
development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point
mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is
widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal
arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of
Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and
protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed
in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar
proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43
in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins
Syndrome.
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Introduction

Neural crest cells (NCCs), a transient cell type that is unique to

vertebrates, originate from the dorsal aspect of the neural tube

during embryogenesis. After undergoing an epithelial-to-mesen-

chymal transition (EMT), NCCs migrate along well defined

pathways, and eventually inhabit peripheral destinations where

they differentiate into diverse derivatives, including melanocytes,

craniofacial cartilage and bone, smooth muscle, and neuronal

lineages. In the head region, cranial neural crest cells (CNCC) give

rise to nearly all craniofacial structures, including the facial

skeleton and the vast majority of facial connective tissues [1,2].

Defects in CNCC development are associated with craniofacial

malformations, one of the most common of human birth defects

[3].

Treacher-Collins syndrome (TCS), an autosomal dominant

congenital disorder of craniofacial development, characterized by

mandibulofacial dysostosis including cleft palate and hypoplasia of

the facial bones, is most commonly associated with mutations in

the TCOF1 gene [4]. Treacle, the protein encoded by the TCOF1

gene, is a nucleolar phosphoprotein [5,6] that plays a key role in

ribosome biogenesis via involvement in both rDNA methylation

and rRNA transcription [7–10]. Extensive research in the mouse

model has shown that mutations in Tcof1 disrupt ribosome

biogenesis, resulting in impaired proliferation and subsequent

apoptosis of neuroepithelial and NCC precursors, which in turn

results in reduced numbers of NCCs migrating into the developing

craniofacial complex [10]. Interestingly, inhibition of p53 function

can rescue craniofacial abnormalities in mouse Tcof1 mutants,

without rescuing ribosome biogenesis defects [11].

The question of how ribosome biogenesis defects can preferen-

tially affect NCC proliferation and differentiation remains to be

elucidated. In eukaryotic cells, ribosome biogenesis begins with the

transcription of rRNA from rDNA located in the nucleolus, the

most prominent visible structure in the nucleus. Ribosome

biogenesis is extremely complex, requiring the accurate processing

of pre-rRNAs into four different ribosomal RNAs (28S, 18S, 5S

and 5.8S in vertebrates) and complex formation with about 80

constituent ribosomal proteins. In addition, more than 200

nucleolar ribosome biogenesis factors are required to complete
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the entire ribosome biogenesis process. All ribosomal RNAs,

except the 5S rRNA, are initially transcribed as a 47S polycistronic

precursor, which subsequently becomes cleaved, folded and

modified into the 28S, 18S and 5.8S mature rRNAs prior to

being incorporated into functional ribosomes [12,13].

The cleavage and modification of rRNA is directed by small

nucleolar RNAs (snoRNAs). U3, one of the most extensively studied

snoRNA, is an essential component of the small subunit (SSU)

processome, a large ribonucleoprotein (RNP) complex that is

required for the maturation of the 18S rRNA and formation of the

ribosomal small subunit (40S) [14]. The SSU processome can be

further subdivided to three sub-complexes, UTPB, UTPC and

UTPA/t-Utp [14]. The t-Utp complex contains seven proteins

(Utp4, Utp5, Utp8, Utp9, Utp10, Utp15 and Utp17) [15,16]. In

yeast, depletion of individual t-Utp members commonly is

associated with both pre-rRNA synthesis and processing defects

[14,16,17], although another group reported that the t-Utp

subcomplex plays a role in pre-rRNA stabilization rather than

transcription [18]. Although the functions of t-Utp components

appear to be conserved in eukaryotes, some human UTP orthologs

have not yet been identified [19], indicating that Utp proteins in

higher eukaryotes may have evolved specific functions. Recently, a

new metazoan specific protein, NOL11, has been characterized as a

hUTP4 interacting partner via yeast two hybrid (Y2H) analysis [20].

Although ubiquitously expressed in virtually all eukaryotic cells,

mutations in ribosome biogenesis proteins often result in tissue-

specific developmental defects [21]. For example, hUTP4/Cirhin

is associated with North American Indian childhood cirrhosis

(NAIC) [22]. Mutation of zebrafish Bap28, the ortholog of human

UTP10, results in excess apoptosis primarily in the central nervous

system [23], while mutation in WDR36/UTP21, a modifier

protein to human primary open angle glaucoma (POAG), results

in mouse embryonic lethality [24]. Mutation of Wdr36 in

zebrafish doesn’t produce any obvious defects in the first three

days of development, while later developmental defects include

small eyes and head combined with upregulation of the p53

stress-response pathway [25]. Developmental defects in other

organs have also recently been reported [26–28].

Here, we report a novel zebrafish mutant, fantome (fan),

characterized by a variety of early developmental defects including

eye, hindbrain, forebrain, cardiac, neurocranium, fin, and NCC

derived pharyngeal arch cartilage development. NCCs in fan

mutants fail to differentiate, and NCC precursors undergo p53

mediated cell apoptosis. fan mutants contain a point mutation in

the zebrafish wdr43 gene, which encodes Wdr43, the ortholog of

yeast Utp5. We demonstrate that, similar to the yeast ortholog,

zebrafish and human WDR43 localize to the nucleolus. We also

show that the C-terminal of Wdr43, truncated in fan mutants,

mediates its localization to nucleoli, and is both necessary and

sufficient to mediate its interaction with other t-UTP subcomplex

members. Interestingly, blocking WDR43 expression in HeLa cells

results in nucleolar maturation defects, together with abnormal

localization of other nucleolar proteins, including TCOF1.

Together, our data suggest that loss function of Wdr43 results in

ribosome biogenesis defects that induce the p53 signaling pathway,

triggering cell death of NCC precursors. We introduce the fan

mutant as a valuable model to provide insight into a variety of

human craniofacial neurocristopathy diseases.

Results

Phenotype of the fantome (fan) mutant
The fan mutant, identified in a large scale ENU chemical

mutagenesis screen conducted by the Yelick Lab [29], was notable

by its distinctive lack of pharyngeal arch cartilages at 4 days post

fertilization (dpf) (Fig. 1D9, arrow). Subsequent developmental

analyses showed that fan mutants are first identifiable at 16 hpf by

a distinct area of necrotic cells present in the neural ectoderm of

the presumptive eye (Fig. 1A9, arrow). At 24 hpf, a larger area of

necrosis was detected mainly in neural tissues (Fig. 1B9, bracket),

while at 30 hpf, fan mutants displayed distinct hydrocephaly in

hind brain ventricles (Fig. 1C9, arrow), incomplete closure of the

choroid fissure, and lack of pigmented retinal epithelium in the

ventral eye (Fig. 1C9, arrowhead). Preliminary whole mount in situ

hybridization (WISH) analyses of NCC marker gene expression

revealed that fan mutants exhibited reduced snail2 and dlx2a

expression at 12 and 24 hpf, respectively, as compared to age

matched wild type sibling (Fig. 1E9, I9 vs. E, I). At 96 hpf, Alcian

blue staining revealed that homozygous fan mutants lacked

virtually all pharyngeal arch cartilages (Fig. 1D9, arrow) as

compared to age matched wild type siblings (Fig. 1D). Early

lethal homozygous recessive fan mutants die at approximately 5–6

dpf, while heterozygous fan embryos and adults appear normal

and are viable and fertile.

In normal zebrafish development, NCCs originating from the

dorsal aspect of the neural tube migrate ventrally to the

pharyngeal pouches and give rise to a variety of structures

including pharyngeal arch cartilages [30] [31] [32]. To more

carefully characterize the pharyngeal arch phenotype observed in

fan mutants, we used WISH to examine the developmental

expression of additional NCC markers, including: sox9a, essential

for proper morphogenesis and differentiation of pharyngeal arch

cartilages [33,34]; the pan-NCC marker crestin, expressed in pre-

migratory and migratory NCCs [35]; hand2, expressed in branchial

arch mesenchyme [36]; and dlx2a, which is expressed in migrating

CNC that contribute to the pharyngeal arches [37]. We detected

reduced expression of all NCC marker expression in fan mutants as

compared to age matched wild type sibling embryos (Fig. 1F–K9).

To better visualize and study NCC defects in fan mutants, we also

created a Tg(fli1a:EGFP)/fan mutant reporter line, which expresses

EGFP in the derivatives of the cranial neural crest until at least

7dpf, and in developing vasculature [38]. We found that fan

Author Summary

Here, we describe the identification and characterization of
a novel zebrafish craniofacial mutant, fantome (fan),
caused by a point mutation in the wdr43 gene. Although
previously characterized as UTP5 in yeast, a nucleolar
protein functioning in ribosome biogenesis, here we show
that Wdr43 also regulates early zebrafish development,
including NCC specification and differentiation. Mutations
in nucleolar proteins have been found to be causative for a
variety of human craniofacial syndromes including Trea-
cher-Collins Syndrome (TCS), often caused by mutations in
TCOF1, which also plays important roles in ribosome
biogenesis. However, the underlying mechanisms linking
ribosomal biogenesis and NCC specification and differen-
tiation into pharyngeal arch cartilages remains poorly
understood. Here we describe the fan/wdr43 mutant
phenotype, and present functional characterizations of
Wdr43 in craniofacial development. We show that WDR43
is required for the proper nucleolar localization of a variety
of nucleolar proteins, including TCOF1/Treacle. These
studies provide new insight into ribosomal protein
function in early zebrafish development, with focus on
NCC derived craniofacial development, as a model for
human craniofacial neurocristopathies.

Wdr43 Regulation of NCC Differentiation
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mutants exhibited fewer GFP-positive NCCs, and abnormal NCC

migration and pharyngeal arch formation, as compared to age

matched wild type siblings (Fig. 1L–L9).

fan locus encodes zebrafish Wdr43/Utp5
Using bulk segregant analyses, we determined that the fan locus

mapped between SSLPs z8774 and z9831 on zebrafish Linkage

Group (LG) 17 (Fig. 2A), to an interval of 3.93 Mb containing 11

genes. Further analyses of cDNA and genomic DNA sequences of

these genes identified a cytosine to thymidine mutation at

nucleotide 1066 of the wdr43 gene in this interval, which

introduced a premature stop codon at amino acid 356 in exon 9

(Arg356Stop) (Fig. 2A). This mutation was confirmed by

sequencing full length wdr43 cDNA amplified from fan mutant

mRNA, and sequence analysis of exon 9 of the wdr43 gene in

PCR amplified genomic DNA isolated from six individual

homozygous fan mutants. This mutation was not present in wild

type sibling cDNA or genomic DNA, and was detected along

with wild type sequence in heterozygous fan family members. Full

length zebrafish Wdr43 contains 650 amino acid and is well

conserved from yeast to human (Data not shown). Domain

analysis of the zebrafish Wdr43 protein reveals that it is

composed of three WD40 repeats and one Utp12 domain

(http://pfam.sanger.ac.uk) (Fig. 2A). The truncated form of

Wdr43 encoded in the fan mutant lack the C-term 294 aa,

including the Utp12 domain (Fig. 2A).

The identified gene mutation in fan/wdr43 mutants was

confirmed using two approaches. We used single cell injections

of titrated amounts of wdr43 antisense morpholino oligomers

(MOs) to test whether targeted depletion of Wdr43 in wild type

embryos resulted in embryos that phenocopied the fan mutant. We

first confirmed the functional targeting of anti-sense wdr43 MOs

by demonstrated quenching of the wdr43-GFP mRNA construct

fluorescence in vivo (Fig. S1). We next injected wdr43 MOs into

clutches of fan mutants and wild type single cell stage embryos,

which were then raised to 3–5 dpf and stained with Alcian blue to

examine pharyngeal arch cartilage formation. Our results showed

that wild type embryos injected wdr43 MOs exhibited early neural

tissue necrosis similar to that observed in fan mutants (Fig. 2C, E,

arrows). When wdr43 MOs were injected into single cell stage fan

mutant embryos, we observed no apparent exacerbation of the fan

mutant phenotype, suggesting that the fan mutation is a functional

null (data not shown). WISH analyses of wdr43 MO injected

embryos revealed similar reduction in NCC marker gene

expression, as observed in fan mutants (Figure S2).

Secondly, we performed rescues by injecting full length wild type

wdr43 mRNAs into single cell stage fan mutant and wild type sibling

embryos. Analyses of injected embryos at 5 dpf via Alcian blue

staining revealed rescue of the pharyngeal arch cartilage formation,

although full rescue was not observed (Fig. 2, I versus G, F).

Together, these data provide strong evidence that the identified

wdr43 gene mutation results in the fan mutant phenotype.

Figure 1. Phenotype of fan mutants. (A–C9) Live images of developmentally staged wild type (A–C) and fan mutant (A9–C9) zebrafish. Arrow in A9

indicates necrotic cells in the presumptive eye region. Bracket in B9 shows necrosis in neural and pharyngeal arch tissues. Arrow in C9 points to the
distinct hydrocephaly in fan mutant hind brain ventricles, arrowhead indicates incomplete choroid fissure closure and craniofacial defects. (D–D9)
Alcian blue stained pharyngeal arch cartilages in 4dpf wild type (D) and fan mutant (D9). (E–K9) Whole mount ISH images of wild type (E–K) and fan
mutants (E9–K9) for neural crest markers at indicated developmental stage. Arrows in (E9–G9) and asterisks in (I9–K9) indicate reduced gene expression
in fan mutant embryos. Interestingly, fan mutant embryos exhibit similar crestin expression in the trunk NCCs (asterisks in H, H9) but reduced
expression in cranial NCCs. (L–L9) Tg(fli1a:EGFP)/fan mutants (L9) exhibit reduced GFP expression in the pharyngeal arch region as compared to wild
type embryos (L).
doi:10.1371/journal.pgen.1004074.g001
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Developmental and tissue specific expression of wdr43
We next examined the developmental expression pattern of

wdr43 mRNA via whole mount and sectioned in situ hybridization

(ISH). wdr43 is maternally expressed, and maintains a fairly

ubiquitous expression pattern during the first 24 hours of

development (Fig. 3A–J). wdr43 expression becomes restricted to

neural and pharyngeal arch tissues between 24 and 48 hpf

(Fig. 3K), consistent with the pharyngeal arch defects observed in

fan mutants. Sectioned ISH demonstrated discrete wdr43 mRNA

expression in neurepithelium and pharyngeal arches at 48 and 72

hpf (Fig. 3, N, N9, P, P9, arrows), consistent with the observed

hindbrain and pharyngeal arch defects observed in fan mutants.

Strong expression was also observed in the gut epithelium (Fig. 3,

N, P). We examined the expression of fan mutant wdr43 mRNA

using RT-PCR analysis of developmentally staged fan mutant and

wild type siblings followed by digestion with Dde I, a unique

restriction site introduced by the fan allele. These analyses showed

that wild type wdr43 was detectable at all stages examined, and

also that mutant wdr43 was detectable in fan mutants at 48 and 72

hpf, and thus was apparently not targeted for nonsense mediated

decay (Fig. 3, M).

fantome mutants exhibit increased apoptosis and
reduced cell proliferation

To better characterize tissue necrosis and cell proliferation in fan

mutants, TUNEL assay and phosphohistone H3 (pH3) IF analyses

were performed, respectively, on developmentally staged fan

mutant and wild type sibling embryos (Fig. 4). TUNEL revealed

significantly upregulated apoptosis in fan mutants at all develop-

mental staged examined (Fig. 4A, arrows). In contrast, cell

proliferation, indicated via pH3 antibody staining, was decreased

in fan mutants as compared to age matched wild type siblings

(Fig. 4B). Quantification of TUNEL and pH3 immunofluores-

cence showed significantly increased apoptosis in fan mutants as

compared to age matched wild type siblings at all stages examined,

and significantly decreased cell proliferation at 48 hpf (Fig. 4C).

Together, these results are consistent with the observed lack of

NCC derived pharyngeal arch tissues in fan mutants.

Figure 2. fan encodes zebrafish Wdr43/Utp5. (A) Left side: Chromosomal position of the fan locus (left). Sequencing trace data of wild type and
fan mutant alleles, with red arrow indicating a premature stop codon in fan mutants (right). Comparison of the conserved nature of the amino acid
mutated in fan zebrafish (purple) (middle). Schematic of the Wdr43 protein domains and fan mutant predicted premature stop codon (bottom). (B–E)
Live images of zebrafish treated with control MO (CMO) or fan MO at indicated developmental times. (F–I) Alcian blue stained wild type (F, H) and fan
mutant (G, I) embryos injected at the single cell stage with GFP control (ctr) or wild type wdr43 mRNA. (I) Injected wdr43 mRNA rescued fan mutant
cartilage formation. (J) Percentage of control and wdr43 mRNA injected fan mutant clutches exhibiting wild type, intermediate and fan mutant
pharyngeal arch cartilage formation. Numbers of injected embryos scored are indicated at the top of each bar.
doi:10.1371/journal.pgen.1004074.g002
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Nucleolar localization of wild type and fan mutant Wdr43
To better understand the molecular nature of mutant Wdr43

protein, we next examined the subcellular localization of wild type

and fan mutant zebrafish Wdr43 in human cells. First, we

performed immunofluorescence analyses of cultured HeLa cells

using the anti-human WDR43 antibody and demonstrated that

endogenous human WDR43 localized to nucleoli, as shown by

co-localization with the nucleolar marker protein, B23 (Fig. 5, A1–

A4). Next, we generated N-terminal EGFP-tagged wild type and

truncated fan mutant zebrafish wdr43 constructs driven by the

CMV promoter, which we transfected into cultured HeLa cells,

and then visualized chimeric fusion protein using anti-GFP

antibody. The EGFP-tagged wild type Wdr43 protein showed

perfect overlapping expression pattern with B23 (Fig. 5, B1–B4),

Figure 3. Developmental expression pattern of zebrafish wdr43 mRNA. (A–L) Whole mount ISH images of sense and anti-sense wdr43
probes in developmentally staged zebrafish embryos. (M) RT-PCR results of wdr43 gene expression in wild type and fan mutant embryos at indicated
times (hpf). fan mutant mRNA was detected at 48 and 72 hpf, as indicated by digestion with DdeI, a unique restriction site generated by the fan point
mutation. (N–Q) Sectioned ISH revealed discrete wdr43 mRNA expression in neurepithelium (ne), pharyngeal arch tissues (pa), and gut (g) (arrows).
(N9, P9) Higher magnification images of boxed regions in N, P, respectively. Sense controls did not exhibit staining (O, Q).
doi:10.1371/journal.pgen.1004074.g003
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consistent with the previously characterized nucleolar localization

of the yeast ortholog for Wdr43, Utp5 [39]. In contrast to the full

length EGFP-Wdr43 protein, EGFP-tagged fan mutant Wdr43

(amino acids 1–364) lost its exclusive nucleolar localization, and

rather exhibited expression throughout the nucleus (Fig. 5, C1–

C4). To correlate these in vitro results to in vivo expression studies in

zebrafish, the same EGFP-tagged zebrafish wild type and fan

mutant wdr43 constructs were injected into single cell stage

zebrafish, which were then analyzed via confocal microscopy (Fig.

S3). These analyses also showed that while full length Wdr43 co-

localized with mCherry-B23 to nucleoli (Fig. S3, A–C), truncated

fan mutant Wdr43 remained dispersed throughout the nucleus

(Fig. S3, D–F).

Protein-protein interactions between wild type, fan
mutant Wdr43 and t-Utp subcomplex proteins

Utp5, the yeast ortholog of Wdr43, has been shown to function

in the yeast t-Utp subcomplex, which mediates both pre-ribosomal

RNA (rRNA) transcription and processing [16] [17]. Previously, it

has been shown that yeast Utp5 interacts with Utp4 and Utp15

(Freed & Baserga 2010) [40]. We used yeast two-hybrid analyses

(Y2H) to examine the protein-protein interactions between yeast

and zebrafish wild type and fan mutant Wdr43 with other t-Utp

complex proteins. We found that both yeast and zebrafish full

length Wdr43 interacted with Utp4 and Utp15 (Fig. 5D and Fig.

S4), consistent with previously published yeast Utp5/Wdr43

binding studies [17]. We also determined that the C-terminal

portion of Wdr43 protein is both necessary and sufficient to

mediate this interaction. Zebrafish and yeast truncated fan mutant

Wdr43 did not bind to either Utp4 or Utp15, while the C-terminal

fragment of Wdr43 alone was able to bind to both Utp4 and

Utp15 (Fig. 5D zebrafish and Fig. S4 yeast). Together, these data

revealed the conserved interaction of yeast and zebrafish full

length Wdr43 proteins with Utp4 and Utp15, and also suggest that

the C-terminal portion of Wdr43, which contains the Utp12

domain, is required for protein interaction of Wdr43 with other

t-UTP subcomplex member proteins.

Wdr43 is required for optimal pre-rRNA transcription and
proper ribosomal protein sub-nucleolar localization

Based on our results, and those of previously published reports,

we anticipated that Wdr43 would play an important role in

ribosome biogenesis. We therefore investigated pre-rRNA synthe-

sis and processing in 30 hpf and 50 hpf fan mutant and wild type

sibling embryos via Northern blot analysis, using a probe specific

for the 59 external transcribed spacer (59ETS) region of the pre-

rRNA at the start site of transcription (Fig. 6A). These analyses

showed reduced levels of the primary transcript (labeled a) in fan

mutants (M) at both 30hpf and 50 hpf as compared to that of wild

type (W) siblings, consistent with a defect in pre-rRNA transcrip-

tion in fan mutants. Quantification of the ratio of full length

primary transcript (a) to the processed pre-18S rRNA (b) showed

reduced pre-rRNA in fan mutants relative to age matched wild

type siblings. These results are consistent with previously published

results showing that siRNA knockdown of human UTP5 resulted

in defects in pre-rRNA transcription and processing [19], and

suggest conserved functions for vertebrate Wdr43 and yeast Utp5/

Wdr43 in pre-rRNA transcription [17].

Having defined an important role for zebrafish Wdr43 in

ribosome biogenesis, we further examined its function in cultured

human HeLa cells, which we transfected with human WDR43

small interfering RNA (siRNA) (Sigma MISSION esiRNA) to

silence WDR43 expression. GFP esiRNA was used as a negative

control for these studies. Analysis of WDR43 protein and mRNA

expression in siRNA treated cells using both Western blot (Fig. 6B)

and qRT-PCR (Fig. 6C) analyses, respectively, confirmed that

endogenous WDR43 expression was significantly reduced with

Figure 4. fan mutants exhibit increased apoptosis and reduced
cell proliferation. (A) TUNEL Staining. Wild type embryos at 16 hpf (a,
a9), 24 hpf (c, c9) and 48 hpf (e, e9) exhibited few apoptotic cells at all
stages (arrows). In contrast, age matched fan mutant embryos exhibited
increased levels of apoptotic cells at all stages examined (b, b9, d, d9, f,
f9, arrows). Abbreviations: e, eye; n, neural tissue; pa, pharyngeal arches;
y, yolk). Scale bar = 100 mm. (B) pH3 Immunofluorescent (IF) histochem-
istry. At 16 hpf, 24 hpf and 48 hpf, wild type embryos exhibit discrete
pH3 expression in proliferating cells of the eye (e), neural tissues (n), and
pharyngeal arches (pa) (a, a9, c, c9, e, e9). In contrast, age matched fan
mutants exhibited reduced pH3 positive cell proliferation at all stages
examined (b, b9, d, d9, f, f9, arrows). (Abbreviations: y, yolk). Scale
bar = 100 mm. For both (A) and (B), fluorescent (a–f) and bright field plus
fluorescent (a9–f9) images are shown. (C) Quantification of TUNEL and
pH3 IF. For TUNEL, all apoptotic cells in each panel were counted for
comparison between age matched wild type and fan mutant embryos.
For pH3 IF, red fluorescent cells were counted in boxed areas as
indicated. These results showed that fan mutants exhibited significantly
increased apoptosis at all stages examined and significantly reduced
cell proliferation at 48 hpf. At least 3 sectioned embryos were examined
for each genotype at each developmental stage. Statistical analyses
were performed using Student’s t-test. (p = .0.01).
doi:10.1371/journal.pgen.1004074.g004

Wdr43 Regulation of NCC Differentiation

PLOS Genetics | www.plosgenetics.org 6 January 2014 | Volume 10 | Issue 1 | e1004074



WDR43 siRNA treatment. We next examined how WDR43

depletion affected the localization of another t-UTP complex

Wdr43 interacting protein, UTP15. Due to the lack of available

antibody for UTP15, we transfected N-terminal mCherry tagged

zebrafish UTP15 into HeLa cells, and monitored its localization

via fluorescent confocal microscopy. Consistent with a role for

UTP15 in pre-rRNA processing, we found that mCherry tagged

UTP15 localized to nucleoli in control GFP siRNA treated cells

(Fig. 6D). In contrast, in HeLa cells depleted of WDR43 using

WDR43 siRNA, mCherry-tagged UTP15 did not localize to

nucleoli, but rather appeared exhibited a perinuclear expression

pattern (Fig. 6E). These results indicate that WDR43 is required

for entry into the nucleus, as well as for proper nucleolar

localization of UTP15.

It was intriguing to us that many of the observed phenotypes

observed in fan mutant zebrafish have also been reported in

humans (and mice) with mutations in TCOF1/Treacle, the gene

commonly mutated in Treacher-Collins Syndrome (TCS). TCS

results in aberrant NCC specification and differentiation, cranio-

facial dysmorphologies, increased cell apoptosis, and upregulated

p53 signaling [10,11]. Based on these common characteristics, we

investigated whether the localization of TCOF1 and other

nucleolar proteins was affected in human HeLa cells depleted of

WDR43 protein. For reference, we examined the expression of the

nucleolar proteins Mpp10, Nucleolin and Fibrillarin, which have

been associated with distinct nucleolar functions. Mpp10 is

normally found in the dense fibrillar component (DFC) and in

the boundary between the DFC and the fibrillar center (FC), sites

of rDNA transcription and pre-rRNA splicing and modification by

snoRNPs, while Fibrillarin is normally found in association with

snoRNAs throughout the DFC [41]. Nucleolin/C23 is normally

localized to the outer layer of nucleoli with fainter expression at

the center [42]. Our investigation of the expression of these

nucleolar proteins, and TCOF1, in control and WDR43 siRNA

treated HeLa cells (Figure 7) showed that TCOF1 exhibited a

reduced and perinucleolar expression pattern in WDR43 depleted

cells (Fig. 7 B vs. A, arrows). Mpp10 expression appeared reduced,

but was expressed throughout the smaller nucleoli (Fig. 7 B vs. D,

arrows). Nucleolin, although barely detectable in WDR43 siRNA

expressing cell lines as compared to control GFP siRNA treated

cells, was also expressed in a perinucleolar fashion, similar to that

of TCOF1 (Fig. 7 F vs. E, arrows). In contrast, Fibrillarin

expression appeared relatively less affected in WDR43 depleted

cells, and was detected throughout the smaller nucleoli (Fig. 7H vs.

G, arrows). These results are indicative of disrupted nucleolar

organization and rRNA transcription, consistent with the observed

Figure 5. Subcellular localization and Y2H analyses of wild type and fan mutant Wdr43. (A1–A4) IF images of HeLa cells immunostained
with anti-WDR43 (green) and anti-B23 (red) antibodies followed by DAPI stain (blue) to visualize nuclear DNA. IF images of Hela cells transfected with
EGFP tagged zebrafish wild type Wdr43 (B1–B4) or fan mutant Wdr43 (C1–C4). Anti-GFP antibody was used to increase the fluorescent signal of EGFP-
tagged wild type and fan mutant Wdr43 expressed proteins. Stained cells were counterstained with anti-B23 (red) and DAPI (blue). (D) Y2H analysis of
zebrafish full length (FL) Wdr43, truncated fan mutant Wdr43 (N), and Wdr43 C-terminal domain (C) interactions with zebrafish Utp4 and Utp15
proteins.
doi:10.1371/journal.pgen.1004074.g005
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defects in pre-rRNA transcription observed in fan mutants. To

confirm and more reliably study these observations, we next

examined TCOF1 localization in stable HeLa cell lines expressing

stable short hairpin RNAs (shRNAs) for GFP control and WDR43

(Fig. 8). We first tested five shRNAs against WDR43 gene and

found that all of them showed somewhat reduced WDR43

expression using qRT-PCR analysis (Fig. S5). Western blot

analyses showed that two of the shRNA WDR43 cell lines, sh9

and 2a1, exhibited the most efficient inhibition of protein levels. As

observed in WDR43 siRNA treated cell lines, stable WDR43

shRNA expressing cell lines sh9 and 2a1 exhibited mislocalized

TCOF1 expression at the periphery of nucleoli, as compared to

control shRNA stable cell lines (Fig. 8, E, I, N, O vs. A, M,

arrows). Together, these results suggest that WDR43 expression is

required for proper nucleolar organization and the subnucleolar

localization of a variety of nucleolar proteins including TCOF1,

and for optimal pre-rRNA transcription.

WDR43 is required for proper nucleolar morphology,
maturation and assembly

We also found that WDR43 depletion had an effect on

nucleolar size and shape. WDR43 depleted cells had larger

numbers of mini nucleoli as compared to control cells, which

exhibited fewer numbers of larger sized, mature nucleoli. To

quantitate this observation, we monitored nucleolar number and

size in control and WDR43 depleted cultured HeLa cells

immunostained for TCOF1 (Fig. 8). We found that in normal

and control shRNA cultured HeLa cells, nucleoli reassembled

after mitosis, with several small nucleoli fusing into ,1–4 larger,

mature nucleoli per HeLa cell. In contrast, TCOF1 expressing

nucleoli failed to fuse together in WDR43 shRNA expressing HeLa

cells, but rather remained as small unfused mini nucleoli, or

‘‘nucleolar caps’’, which also appeared spherical shape as

compared to the irregular shaped nucleoli present in control

HeLa cell cultures (Fig. 8 F, J vs. B). We also found that the

Figure 6. Ribosome biogenesis defects in fan mutant zebrafish. (A) Northern blot analysis of rRNA isolated from 30 and 50 hpf wild type (W)
and fan mutants (M) using an oligonucleotide probe against the 59ETS region of zebrafish pre-rRNA. Pre-rRNAs (a) and (b) are indicated. Methylene
blue (MB) staining of the mature 28S and 18S rRNAs was carried out as a loading control. Quantitation of the ration of a/b was performed using
Image J. (B) Western blot of whole-cell extracts treated with WDR43 or EGFP control siRNA as indicated. (C) qRT-PCR analyses of human WDR43 gene
expression level in non-treated (NT), GFP or WDR43 siRNA treated HeLa cells normalized to ß -actin. (D, E) Subcellular localization of mCherry-tagged
Utp15 (red) in control GFP (D) and WDR43 (E) siRNA treated HeLa cells counter stained with DAPI (blue).
doi:10.1371/journal.pgen.1004074.g006
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average number of nucleoli was increased, and the number of

fused nucleoli was reduced, in WDR43 shRNA expressing HeLa

cells as compared to control shRNA treated HeLa cells, as shown

using the nucleolar marker B23 (Fig. 8, F, J vs. B). Quantification

of these results revealed that WDR43 depleted cells exhibited

increased numbers of smaller nuclei as compared to control cells

(Fig. 8, Q, R). Together, these results demonstrate that depletion

of WDR43, an essential ribosome biogenesis factor, affects

nucleolar maturation and assembly.

fan mutants exhibit upregulated p53 signaling
Ribosome biogenesis defects, such as those observed in fan

mutants, have been reported to be associated with upregulation of

the p53 signaling pathway, and cellular apoptosis [11,25] [43] [44]

[45] [46]. Based on the increased apoptosis observed in fan

mutants, we next examined p53 signaling pathway gene expres-

sion in developing fan mutant and wild type sibling embryos.

Immunohistochemical analysis using the zebrafish p53 antibody

(kind gift of David Lane) [47] revealed high levels of expression of

p53 in fan mutants, while p53 was virtually undetectable in wild

type sibling embryos at 5 dpf (Fig. 9, B vs. A). Next, we used qRT-

PCR analyses to show that the expression of p53 downstream

target genes, including the N-terminal truncated p53 isoform

delta113p53, mdm2, and cyclin G1 were all upregulated in 24, 48 and

72 hpf fan mutants as compared to wild type sibling controls (Fig. 9,

C, D and data not shown). We next tested whether knockdown of

p53 signaling via injection of p53 anti-sense MOs could rescue the

fan mutant phenotype. Similar to previous reports in the Treacher-

Collins mouse model [11], we found that the fan mutant

pharyngeal, neural and eye defects were largely rescued in p53

MO injected fan mutants (Fig. 9, G vs. F, and H), and NCC

marker gene expression was also rescued in fan mutants (Fig. S2).

TUNEL analyses revealed rescue of apoptosis in p53MO injected

fan mutants (Fig. 9. K vs. J, I), indicating that increased apoptosis

observed in fan mutants was mediated via upregulated p53

signaling pathways.

Figure 7. Subcellular localization of nucleolar proteins in
WDR43 depleted HeLa cells. IF analysis of nucleolar protein
localization in control siRNA (A, C, E, G) and WDR43 (B, D, F, H) siRNA
treated HeLa cells. WDR43 depleted cells exhibited mislocalized
expression of TCOF1 (B), Mpp10 (D), Nucleolin (F) and Fibrillarin (H)
(arrows), as compared to their respective control GFP siRNA treated
cells (see arrows). Scale bar = 10 mm.
doi:10.1371/journal.pgen.1004074.g007

Figure 8. TCOF1 expression in stable WDR43 shRNA cell lines.
(A–O) IF analysis of TCOF1 (red) localization in control shRNA (A–D, M)
and human WDR43 shRNA (E–L, N, O) stable HeLa cell lines. All cells
were positive for shRNA expression (green) and DAPI stained nuclei
(blue). (P) Western blot analyses of WDR43 expression in stable WDR43
shRNA cell lines. (Q–R) Quantification of TCOF1 positive nucleoli per cell
(Q), and percent cells with fused TCOF1 positive nucleoli (R), in control
and WDR43 shRNA stable lines. The number of nucleoli was increased
(Q), and the percentage of fused nucleoli was reduced (R) in WDR43
depleted cells, as compared to control cells. Sample numbers: Panel Q -
ctr 290, 2a1 136, sh6 195, sh8 172, sh9 172, sh10 108; Panel R – ctr 268,
2a1 115, sh6 181, sh8 163, sh9 171, sh10 108.
doi:10.1371/journal.pgen.1004074.g008
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Discussion

Proper ribosome biogenesis is required for the production of

functional ribosomes, the primary site of protein synthesis. Most if

not all ribosomal proteins (RPs) are thought to be essential for

ribosome biogenesis and cell survival. It is therefore surprising that

ribosome biogenesis defects caused by mutations in certain RPs

can lead to variable and seemingly tissue-specific defects in

vertebrate development. For example, mutations in several RPs

are associated with human congenital hypoplastic Diamond-

Blackfan anemia (DBA), and similar DBA phenotypes were

observed when DBA associated RP mutations were expressed in

zebrafish [48–51]. In addition, several reports on zebrafish

ribosome biogenesis protein mutants describe a variety of diverse

phenotypes, ranging from tumors, to central nervous system

degeneration, to organogenesis defects [23,25,52,53].

Here we present data showing that defects in the zebrafish

ribosome biogenesis protein Wdr43 result in early developmental

defects in a variety of tissues, including neural, eye and heart and

pharyngeal arches, while later developmental defects appear fairly

localized to NCC derived pharyngeal arch cartilages. These

observations raise the question of how a defect in what is thought

to be a universally required ribosomal biogenesis protein, Wdr43,

can result in a rather specific craniofacial tissue-specific pheno-

type? One possibility is that there are tissue specific, developmental

requirements for ribosome biogenesis proteins. For example,

certain ribosome biogenesis factors may have tissue specific,

developmental expression patterns. In fact, we show here that the

expression of zebrafish wdr43 mRNA becomes localized to neural

and pharyngeal arch tissues starting at ,24 hpf, which is

consistent with the observed fan/wdr43 mutant phenotype. It is

possible that additional ribosomal proteins that regulate cell cycle

or apoptosis may similarly exhibit tissue specific expression

patterns. Another theory is that ribosome biogenesis defects and

subsequent anticipated reduced protein translation efficiency will

most significantly affect those tissues exhibiting a high demand for

protein synthesis. This may include NCC and erythropoiesis

progenitor cells, although recent data does not find evidence for

increased translation in NCC [21]. Finally, decreased efficiency of

cellular translation machinery may affect a wide and varied

spectrum of translation products in different cell types due to

mRNA competition for timely translation, which could result in

diverse readouts in different cell types.

The craniofacial phenotype exhibited by zebrafish fan mutants

resembles the craniofacial malformations observed in individuals

with Treacher-Collins Syndrome. The fact that NCC specification

and differentiation are similarly affected by mutations in nucleolar

proteins – TCOF1/Treacle and a common subunit of RNA

polymerases I and III in Treacher-Collins Syndrome [54] [55],

and Wdr43 in fan mutants - leads to the intriguing question of why

NCCs may be more sensitive to ribosome biogenesis defects as

compared with other tissues. Based on our data presented here

and on the published reports of others, we hypothesize that high

protein translation levels must be maintained by progenitor and

differentiating NCCs in order to support their extensive cell

proliferation, migration and differentiation. In Treacher-Collins

Syndrome, TCOF1 mutant induced defects in ribosome biogenesis

are characterized by stimulation of the nucleolar stress response,

which in turn activates the p53 apoptosis pathway, resulting in the

depletion of the neural crest precursor pool [10]. We observe a

similar upregulation of p53 signaling and depletion of NCCs in fan

mutants. Although beyond the scope of the present study, it will be

interesting in future studies to compare pre-rRNA transcription,

ribosome biogenesis and protein translation efficiency in develop-

mentally staged NCC versus non-NCC populations harvested

from fan mutant and wild type siblings.

Our Northern blot results indicated that pre-rRNA levels are

significantly decreased in developmentally staged zebrafish fan/

wdr43/utp5 mutants, consistent with the previously characterized

role for yeast Utp5 in pre-rRNA transcription [16,19]. We suggest

that a variety of nucleosomal proteins are required for optimal pre-

rRNA transcription. Novel findings from this report include the

fact that blocking WDR43 function in HeLa cells resulted in the

distinct mislocalization of nucleolar proteins including UTP15,

Mpp10, nucleolin and to a lesser extent fibrillarin, suggesting that

Wrd43/UTP5 is required for proper subnucleolar organization

and function. Interestingly, TCOF1 also mislocalized to the outer

periphery of nucleoli, rather than exhibiting its normal distribution

throughout the nucleolus, suggesting that WDR43 may also be

required for proper TCOF1 subnucleolar localization and

function. Although we have not detected direct binding between

TCOF1 and WDR43/UTP5 using Y2H, we have detected

interactions between WDR43/UTP5 and other rDNA transcrip-

tion component proteins (data not shown). Together, these results

suggest roles for Wdr43/UTP5 in ribosomal protein sub-nucleolar

localization and function of other ribosome biogenesis factors, and

raise the intriguing possibility that manipulation of WDR43

expression could be used to correct the localization and improve

the function of TCOF1 in Treacher-Collins Syndrome patients.

Nucleolar mis-localization phenotypes have also been observed

in HeLa cells treated with actinomycin D, an inhibitor of RNA Pol

I [56], which is a TCOF1/Treacle interacting protein [57]. It is

possible that WDR43 may also function together with TCOF1

and Nopp140 to recruit proteins to the nucleolar organizer regions

(NORs) and the upstream binding factor (UBF), an RNA PolI

transactivator [19]. Wdr43 could also mediate rRNA transcription

by binding to rDNA and UBF directly, as shown by other Utps

[58]. These functions for Wdr43 remain to be elucidated.

We also used both siRNA and shRNA WDR43 silencing

methods to confirm the function of WDR43 in nucleolar fusion in

cultured HeLa cells. At the present time, mechanisms regulating

nucleolar fusion remain poorly understood. It has been shown that

after mitosis, multiple small nucleoli form around transcriptionally

active NORs, and as cells progress through the cycle, these small

nucleoli fuse to form larger nucleoli [59] [60]. Although the

mechanism of WDR43 function in nucleolar fusion is not clear,

preventing nucleolar fusion may not be common to all ribosome

biogenesis protein mutations based on the fact that inhibition of

NOL11 resulted in the formation of one large (not small) nucleolus

[20]. One possible explanation is that WDR43 depletion may

result in structural changes to rDNA, which in turn could interfere

with nucleolar fusion [61]. Such a proposed function for WDR43

Figure 9. Inhibition of p53 signaling can partially rescue fan mutant craniofacial defects. (A–B) Whole mount IHC analysis of p53
expression in wild type (A) and fan mutants (B). (C, D) qRT-PCR analysis of d113p53 (C) and mdm2 (D) gene in wild type and fan mutants at 24, 48 and
72 hpf. (E–G) Bright field images of live 3 dpf wild type (E), fan mutant (F), and fan mutant injected with p53MO (G). (H) Percent zebrafish exhibiting
normal eye development in uninjected (Uninj), control MO (CMO), and p53MO injected embryos. (I–K) TUNEL stained and sectioned wild type (WT) (I),
fan mutant (J), and fan mutant injected with p53 MO (K). Arrows indicate apoptotic cells. (L) Statistical analyses revealed significantly reduced
apoptosis in fan mutants injected with p53MO. (P value,0.01).
doi:10.1371/journal.pgen.1004074.g009
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may be dependent or independent of its function in the t-Utp

complex. A recent study using Xenopus oocytes showed that

nucleoli exhibit fluid dynamics similar to that of liquid droplets,

and that nucleolar fusion requires dynamic exchange between

nucleoli and the nucleoplasm [62]. In future studies, it will be

interesting to determine whether WDR43 is also involved in this

process.

Recent reports emphasize the apparent tissue specific functions

for ribosomal proteins previously thought to exhibit functions in all

cells and tissues. The results presented here suggest previously

unrecognized roles for Wdr43/UTP5 in craniofacial development.

The fact that Wdr43/UTP5 is needed for proper formation of

nucleoli and for sub-nucleolar organization and function indicates

important roles for Wdr43 as a key participant in ribosome

biogenesis. As such, the zebrafish mutant fantome provides a

valuable vertebrate developmental model and tool to continue in

depth functional studies of RPs and ribosome biogenesis factor

proteins in NCC differentiation, including the identification of

effective tools for reducing the incidence of craniofacial birth

defects.

Materials and Methods

Zebrafish husbandry
AB and WIK fantome/wdr43 mutant and wild type zebrafish

were raised in the Tufts Zebrafish Facility at 28.5uC and

developmentally staged as previously described (Westerfield, M.,

1995). For whole mount in situ hybridization analyses, pigmen-

tation was inhibited by treating embryos with 1-phenyl-2-thiourea

(PTU) at a final concentration of 0.2 mM as previously described

(The Zebrafish Book, U. Oregon Press).

Ethics statement
All experimental procedures on zebrafish embryos and larvae

were approved by the Tufts University Institutional Animal Care

and Use Committee (IACUC) and Ethics Committee.

Positional cloning of the fantome mutant locus
The fan mutant was identified in a large-scale ENU-mutagenesis

screen conducted by the Yelick Laboratory [29]. Genetic mapping

strains were created by crossing identified heterozygous fan mutants

to polymorphic WIK wild type zebrafish. Embryos were collected

from pairwise matings of mapping strain fan/WIK heterozygotes,

and scored at 48 hpf for fan specific phenotypes. Genomic DNA was

extracted from individual fan mutant and wild type embryos, and

bulk segregant analyses were performed using primers designed to

amplify SSLP markers from the Massachusetts General Hospital

Zebrafish Server website (http://zebrafish.mgh.harvard.edu). The

fan mutation mapped to zebrafish linkage group 17 (LG17), to a

region spanning 11 genes. Nucleotide sequence analyses of all 11

genes identified a premature stop codon in the wdr43 gene of all fan

mutant embryos that was not present in wild type siblings.

In situ hybridization
Whole-mount and sectioned in situ hybridizations were per-

formed as previously described (Thisse et al., 1993), using a probe

generated via PCR using the following primers (wdr43-forward:

59- CAGTGCAACAAAAGTTGGTGA-39; wdr43-reverse: 59-

AAAGTTCTGGTTGGCTGCA-39). All other probes were

obtained from zfin.org. Embryos were analysed using Zeiss

Axiophot and M2Bio microscopes, and imaged using Zeiss

Axiophot Imager digital camera (Munich, Germany). Digital

images were processed using Adobe Photoshop software.

Targeted protein depletion of Wdr43/UTP5 using anti-
sense wdr43 morpholino oligomer (MO) injections

Antisense morpholino oligonucleotides (MOs) targeted to the

initiation of translation codon of wdr43 mRNA (59TCCGTCCG-

CCGCCATCTTACCGTTC39) were injected into the yolk of 1 cell

stage wild type or fan mutant embryos. 2 nL of MO at a

concentration of 10 ng/mL was used to knockdown wdr43 translation.

Quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR)

Total RNA was extracted from 20 wild type and 20 fan mutant

embryos at 24, 48 and 72 hpf, or from HeLa cells 48 hours after

transfection using RNeasy Plus Kit (Qiagen, Valencia, CA). DNA

was removed using the DNA-free DNase Treatment & Removal

Kit (Ambion,Life Technologies, Grand Island, NY) to remove

genomic DNA contamination. cDNA was synthesized using a

SuperScript III First-Strand Synthesis System (Invitrogen, Life

Technologies, Grand Island, NY) with random primers. Gene

expression was quantified by qRT-PCR using QuantiTect SYBR

Green PCR Master Mix (Qiagen, Valencia, CA) and real-time

cycler Mx3000P (Stratagene, Agilent Technologies, Santa Clara,

CA). Primers for zebrafish p53 isoforms, mdm2, and cyclinG1 were

used as described [63]. The following primers were used to amplify

the human WDR43 gene: Forward: CCTTCCGCGCACCT-

CAGTGGTAC; Reverse: AACTGGCGTTGCATGTCCTG-

TGA. Primers for b-actin, used to normalize the expression levels,

were as described [64].

Yeast two-hybrid analysis
Yeast two-hybrid assays for interaction between yeast and

zebrafish Utp proteins were performed as previously described

(Freed and Baserga, 2010). Briefly, yeast utp5 cDNA encoding full

length, N-terminal (1–343aa) and C-terminal (344–643aa) proteins

were cloned into the pGADT7 prey vector. Additional yeast UTP

genes of the t-Utp subcomplex (Utp8, Utp9, Utp10, Utp15 and

Utp17) cloned into the bait vector were as previously described

(Freed and Baserga 2010). Both bait and prey vectors were

transformed into AH109 yeast strain and interactions were

identified based on the ability of transformants to grow on AHTL

dropout medium after 3–5 days of incubation at 30uC. To test the

interaction between zebrafish Wdr43/Utp5, Utp4 and Utp15, full

length zebrafish utp4 and utp15 cDNAs were purchased (Open-

biosystems, Lafayette, CO) and cloned into pGADT7 prey vector.

Zebrafish wdr43 cDNAs encoding full length, truncated fan mutant

Wdr43 (1–356aa) and C-terminal portion of Wdr43 (357–650aa)

proteins were cloned into the pGABT7 bait vector. Interactions

were tested by growth in triple dropout medium after 3–5 days of

incubation at 30uC. The Y2H studies of zebrafish Wdr43 protein

interactions were tested in both bait and prey constructs.

Wdr43 subcellular localization
To determine the subcellular localization of wild type and

mutant Wdr43 proteins, GFP cDNA was cloned onto the N-

terminal end of full length or fan mutant zebrafish wdr43 cDNA

under the direction of the CMV promoter, using multi-site

Gateway reactions [65]. These constructs were then transfected

into HeLa cells using Lipofectamine 2000 reagent (Invitrogen, Life

Technologies, Grand Island, NY). After 36 hours of growth at

37uC, transfected cells were fixed with 4% PFA, and subjected to

standard immunofluorescence (IF) analyses using the anti-B23

antibody (1:200, Santa Cruz Biotechnology, Inc., Santa Cruz,

CA). The rabbit polyclonal anti-WDR43 antibody (1:100, Abcam,

Cambridge, MA) was used to detect the endogenous WDR43. To
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check the expression in zebrafish embryos, the same constructs

were injected into single cell zebrafish embryos, which were

harvested at 24hpf, and analyzed for GFP expression using a Leica

TCS SP2 confocal microscope.

RNA interference
For siRNA experiments, HeLa cells were transfected with

WDR43 MISSION esiRNA (Sigma, EHU004691) using Lipofec-

tamine 2000 reagent (Invitrogen, Life Technologies, Grand Island,

NY). GFP esiRNA (Sigma, EHUEGPF) was used as a negative

control. Treated cells were harvested 48 hours after transfection

for Western blotting and immunofluorescence experiments.

shRNA constructs were purchased from Openbiosystems and

used to establish stable shRNA expressing HeLa cells following the

manufacture’s protocol. The following shRNA constructs were

used: pGIPZ-WIPI1-2, RHS4430-98853022; pGIPZ-non-target-

ing control RMS4348.

Northern blot analysis
Total RNA was extracted from 20 wild type and 20 fan mutant

embryos at 30 and 50 hpf using standard Trizol protocol for RNA

isolation. Northern blot analysis was carried out as described in

Freed et al, 2012 [20]. For each sample, 2 mg of RNA was

separated by electrophoresis on a 1% agarose/1.25% formalde-

hyde gel in Tricine/Triethanolamine buffer and transferred to a

nylon membrane (Hybond-XL, GE Healthcare). Pre-rRNA

species were detected by methylene blue staining and hybridiza-

tion with a 32P-radiolabelled oligonucleotide probe to the 59ETS:

CGAGCAGAGTGGTAGAGGAAGAGAGCTCTTCCTCGC-

TCA. Quantification of pre-rRNA processing was performed

using Image J (National Institutes of Health).

Apoptosis and cell proliferation analyses
Developmentally staged wild type and fan mutant embryos,

fixed and processed for cryosectioning, were sectioned at 10 mm.

Apoptosis TUNEL assay was performed using the In situ cell death

detection kit, Fluorescein (Roche Applied Science, Indianapolis,

IN, USA). Cell proliferation was assayed with phospho-Histone

H3 immunofluorescence analysis, using anti- phospho Histone H3

(Ser10) antibody (Cell Signaling, Danvers, MA) and anti-rabbit

goat antibody conjugated with Alexafluor 594 (Life Technologies,

Grand Island, NY).

Supporting Information

Figure S1 Knockdown efficiency of wdr43 Morpholino.
(A) Diagram of the wdr43 reporter construct used to test wdr43

MO knockdown efficiency. GFP (green box) was fused in frame to

the 39 end of a portion of the 59 end of the wdr43 cDNA including

the 59 UTR (purple line) and first two exons of wdr43 gene (purple

box). Red line indicates the MO target region. The chimeric gene

was driven by the CMV promoter and followed by the 39 SV40

polyA signal (PA). (B–B0) Fluorescence of shield stage zebrafish

embryos injected with the wdr43-GFP reporter construct and

control MO (CMO) (B, fluorescent microscopy; B9 bright field, B0

merged fluorescent and bright field). (C–C) Lack of fluorescence in

shield stage zebrafish embryos injected with wdr43-GFP reporter

constructs and wdr43 MO (C, fluorescent microscopy; C9 bright

field; C0 merged fluorescent and bright field).

(TIF)

Figure S2 WISH analyses of wdr43 MO injected embry-
os, and p53 MO injected fan mutants. WISH was performed

to examine NCC markers crestin and dlx2a expression in 24 hpf

wild type embryos (WT), wild type embryos injected with wdr43

MO, fan mutants, and fan mutants injected with 253 MO, as

indicated. wdr43 MO injected embryos exhibited down regulated

expression of all NCC markers, similar to that observed in fan

mutants (arrows). Injection of p53MO into single cell stage fan

mutants rescued NCC marker gene expression (arrows).

(TIF)

Figure S3 Subcellular localization of EGFP-tagged wild
type or fan mutant Wdr43 in zebrafish embryos. Confocal

images taken from 24 hpf old zebrafish embryos injected at single cell

stage with EGFP tagged wild type (A1–4, B1–4, C1–4) or fan mutant

(D1–3, E1–3, F1–3)) wdr43 mRNA. Co-injection of mCherry tagged

zebrafish B23 mRNA was used to label nucleoli (A2, B2, C2, D2, E2,

F2). Each row of panels indicates different types of cells imaged in the

whole embryo. GFP expression was manually saturated in panels

(A4, B4, C4) to reveal the entire nucleus.

(TIF)

Figure S4 Yeast two hybrid analysis of yeast Wdr43/
UTP5 and yeast t-UTP subcomplex proteins. Primers for

full length, and fan mutant truncated yeast UTP5 were used to

amplify and sublcone these yeast cDNA constructs into pGADT7

vector. The remaining yeast expression constructs were obtained

from Dr. S. Baerga. P: permissive medium (-Leu and - Trp). S:

selective medium (-Ade, -His, -Leu and -Trp).

(TIF)

Figure S5 qRT-PCR analysis of WDR43 mRNA expres-
sion in WDR43 shRNA treated HeLa cells. The relative

expression levels of WDR43 were normalized to human b-actin

gene. Bar graph shows data from three independent experiments.

(TIF)
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