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Abstract

Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to
environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks,
and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that
signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome,
whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution
in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental
perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control:
glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across
experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary
tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because
they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results
are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is
adaptive in the short term, but maladaptive should the environment change.
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Introduction

Adaptive evolution optimizes the fitness of organisms for their

environment through the accumulation of beneficial mutations by

natural selection [1]. While we understand much about the

mechanisms by which natural selection operates, less is known

about the beneficial mutation rate [2], and the genetic basis of

adaptation [3]. Of particular interest is the spectrum of mutations

that are adaptive in a specific environment, defined here as

‘‘adaptive strategy’’. Through the use of experimental evolution, in

conjunction with technological innovations such as candidate gene

sequencing [4]–[8], cDNA, [9], [10] and tiling microarrays [11],

[12], and whole genome sequencing of individual clones [13]– [16]

and populations [17], [18], the field has recently gained significant

insight into the genetic basis of adaptation. However, while

candidate gene sequencing is certainly incomplete (though still

instructive) in the picture it provides, even the identification of all

mutations in individual clones does not reveal a complete represen-

tation of adaptation. Sequencing a handful of selected clones from

an experiment provides only a microcosm of the adaptive muta-

tional spectrum, while sequencing many clones from an experiment

begins to resample the most prevalent lineages. By contrast,

sequencing terminal clones from many different experiments (e.g.

[14]) provides deeper insight into the convergence or divergence of

the adaptive process, but is unable to capture evolution in action,

including the clonal interference that occurs in the typically large

populations used in microbial experimental evolution systems. To

capture the dynamics of the adaptive process, as well as the

mutational spectrum that accompanies it, it is necessary to sequence

very large numbers of clones, possibly from many time points during

an experiment, or instead to sequence entire populations as they

evolve.

In large asexual populations, selection acts positively to increase

the frequency of the lineages containing beneficial mutations,

while competition between coexisting adaptive lineages reduces

the overall rate at which beneficial mutation increase in allele

frequency, a process termed clonal interference [19], [20]. Clonal

interference occurs when beneficial mutations are sufficiently

common to allow multiple adaptive lineages to expand in the

population concurrently [21]. By deeply sequencing populations at

multiple time points it is possible to not only identify mutations,

but to also track the evolutionary dynamics of adapting lineages.

Three studies published thus far have performed whole genome

sequencing of evolving populations [17], [18], [22], identifying

SNPs at as low as 5% allele frequency in the sequenced popu-

lations; in the first two of these studies, E. coli were evolved by

serial transfer, effectively in a continuously varying environment.

The second of these two studies [18], sequenced deeply enough

that the allele frequencies of identified mutations over time could

be tracked. However, it is likely that at ever-lower allele frequencies,

there will be more observable beneficial mutations, most probably

with smaller fitness effects. In the third of the studies, 40 replicate

PLOS Genetics | www.plosgenetics.org 1 November 2013 | Volume 9 | Issue 11 | e1003972



yeast populations were propagated by serial transfer for 1,000

generations, and sequenced every 80 or so generations [22],

allowing allele frequencies to be able to be determined down to 10%

allele frequency. To better enumerate the adaptive strategy under a

particular environment and to gain a better quantitative measure of

the extent of clonal interference, deeper sequencing is needed

however, which will likely identify additional mutations at lower

allele frequencies with which to better characterize the adaptive

mutational spectrum.

Different environments likely result in different adaptive

strategies, and many natural environments are variable and

unpredictable, with irregular fluctuations in environmental para-

meters. Consequently, signaling networks evolved to enable orga-

nisms to be able to sense and respond to uncertain environments

[23]. Signaling networks are ubiquitous across the Tree of Life, yet

the question remains, ‘‘are functional signaling networks an

essential feature of a well-adapted biological system?’’ Intracellular

symbionts have undergone extensive genome reductions, likely due

to relaxed selection in a setting that has few environmental

perturbations. A major functional theme in these genome reduc-

tions is the loss of genes involved in signaling and genetic regulation

[24], [25]. However, this loss is likely neutral gene degradation due

to genetic drift rather than adaptive evolutionary processes [26].

We sought to determine if the loss of environmental sensitivity is

a viable or indeed preferred adaptive strategy. A constant environ-

ment provides an opportunity for such a system to evolve, since

environmental sensing is superfluous, and perhaps even carries a

fitness cost. We characterized the adaptive strategy, and the

dynamics of adaptive lineages of the budding yeast S. cerevisiae

evolving in a constant environment by ultra deep genome- and

population-wide sequencing of three parallel evolution experiments.

Results

To determine the genetic basis of adaptation and the dynamics

of arising mutations, we developed a novel population sequencing

protocol, enabling the discovery of mutant alleles as well as their

frequencies (Figure S1). We sequenced samples taken every ,70

generations from three glucose-limited, chemostat-evolved popu-

lations of haploid S288c, named E1, E2 and E3, that have been

described previously [12], [27]. Libraries were sequenced to 266–

10466 coverage, and we employed an overlapping read strategy

to reduce the sequencing error rate (Figure S1; Table S1). We also

tagged each DNA fragment with a random barcode during library

construction (Figure S1), enabling us to distinguish PCR duplicates

from fragments that happened to map to the same genomic

location; this reduced the apparent number of PCR duplicate

reads by 100-fold. Our approach enabled the detection of muta-

tions with an allele frequency as low as 1% (Figure 1), and in total,

we discovered 117 mutations across all time points in the three

experiments, of which 106 were in coding regions, affecting 51

genes, 19 of which were recurrently mutated. The mutations

discovered, as well as their allele frequencies at each timepoint are

given in Table S2.

Author Summary

When a population of organisms is faced with a selective
pressure, such as a limiting nutrient, mutations that arise
randomly may confer a fitness benefit on the individual
carrying that mutation. If that individual reproduces before
it is lost from the population, the frequency of that
mutation may increase. Over time, many beneficial
mutations will arise in a large population, but there are
few high resolution experiments tracking the frequency of
such mutations in an evolving population. We evolved
populations of the baker’s yeast in a constant environment
in the presence of limiting amounts of sugar, and then
used DNA sequencing to identify mutations that reached
at least a 1% frequency in the population, and tracked
them over time. We identified 120 mutations over three
experiments, and determined that the genes and path-
ways that had gained beneficial mutations were largely
reproducible across experiments, and that many of the
mutations led to the loss of signaling pathways that
usually sense a changing environment, allowing the cell to
respond appropriately. When these mutant cells were
faced with uncertain environments, the mutations proved
to be deleterious. Environmental sensing must carry a
fitness cost in a constant environment, but is essential in a
changing one.

Figure 1. Histogram of maximum allele frequencies reached of all mutations discovered across the three experiments.
doi:10.1371/journal.pgen.1003972.g001

Adaptive Strategy in a Constant Environment
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The dynamics of adaptation: Clonal interference and
multiple mutations

Our population sequencing shows that clonal interference plays

a dominant role in all three experiments, as 74 of the identified

mutations (63%) decrease in frequency following their maxima,

and 42 of these mutations (57%) become extinct by the end of the

experiment (Figure 2). These results agree with theoretical predic-

tions [19], [28] and previous observations [29], and imply that

even if a mutation rises to a level above our detection threshold,

it is still likely to succumb to an expanding fitter lineage and

eventually become extinct.

Evolution under conditions that promote clonal interference is

also predicted to promote the accumulation of multiple beneficial

mutations within an adaptive lineage before the first mutation can

sweep [21]. We genotyped clones to determine the linkage of

mutations above 10% frequency, and find that 91% of these

mutations coexist in a clone with one or more other mutations.

This value is an underestimate, since most mutations (67%) never

reach 10% frequency and thus were not analyzed for linkage.

While from sequencing data alone we cannot unequivocally label a

mutation as beneficial versus neutral, recurrent independent

mutations (see below and Figure S2) are likely to be beneficial.

By this definition, all lineages that we were able to define by

genotyping carry at least 1 beneficial mutation (Figure 3). Further-

more, the ‘‘winning’’ lineages occupying the largest proportion of

the final population carry at least three beneficial mutations, and

at least five mutations total (Figure 3). An exceptional case is E1,

where six mutations occur in close succession (four of which are

genes that we observe as recurrently mutated) and result in what

appears to be a complete selective sweep (Figure 3a). These data

indicate that multiple beneficial mutations – often occurring in

close succession on what appears to have been a wild-type background

– are necessary for a lineage to be successful. However, having

multiple mutations is not sufficient for a lineage’s success; for

example, three lineages in E1, each with two mutations, become

extinct due another lineage sweeping (Figure 3a). Furthermore,

almost two thirds (49/76) of recurrent, and thus likely beneficial

mutations never reach 10% frequency. The dynamics of adaptation

suggest the ‘‘survival of the luckiest’’, where for a new beneficial

mutation to reach a high frequency, it must occur on a background

that already has multiple other beneficial mutations [29]. This

makes predicting the outcome of adaptive evolution difficult since

the fixation probability of a beneficial mutation is no longer

deterministic and proportional to the selection coefficient, but is also

dependent on the genetic background on which the mutation occurs,

which is distinctly a chance event. Our data show unequivocally that

clonal interference between lineages carrying multiple beneficial

mutations defines the dynamics of adaptation.

The genetic basis of adaption: Loss of signaling pathways
We sought to understand the adaptive strategy of yeast growing

in a constant environment by categorizing the genes in which

mutations had occurred. Grouping recurrently mutated genes by

pathway, we find that 53% of these mutations across all experiments

Figure 2. Clonal interference plays a prominent role in the dynamics of adaptation. Each point represents a mutation identified in one of
the three experiments. Mutations that are at a lower allele frequency in the final time point than at an earlier time point (i.e. below the y = x line) have
decreased due to interference from a competing lineage. Clonal interference affects 63% of all mutations, while 36% of mutations are driven to
extinction due to clonal interference.
doi:10.1371/journal.pgen.1003972.g002
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reside in genes which function in three major signaling pathways:

glucose signaling and transport, cyclic adenosine monophosphate/

protein kinase A (cAMP/PKA) and the high osmolarity glycerol

(HOG) response pathway (Figure 4), and these pathways have

statistically enriched GO terms (Table S3). To further characterize

the adaptive strategy, we characterized mutations by their predicted

consequences. We found that the majority (73%) of mutations are

predicted to disrupt protein function, with nonsense mutations

being enriched by 7.6-fold (p,2.2e-16) (Figure 5). Together, these

data suggest that the general adaptive strategy in a constant

environment is the loss of signal transduction pathway function

(Figure 4). For the glucose signaling pathway, disruptive mutations

in MTH1 and RGT1 lead to constitutive expression of the glucose

transporter (HXT) genes [30], [31], which increases the amount of

glucose that is able to enter the cell, facilitating growth and

providing a selective advantage [27]. The cAMP/PKA pathway

positively responds to glucose in wild-type cells leading to growth

[32]; disruptive mutations in the three recurrently mutated repressors

Figure 3. Dynamics and linkage of mutations above 10% allele frequency in (A) E1, (B) E2 and (C) E3. Mutations and frequencies were
discovered from population sequencing, and linkage with other mutations and the fluorescent marker was determined by genotyping clones. HXT6/7
frequency data in E3 are from [12]. The red, yellow and green indicate the frequencies of the fluorescent makers (compare to Figure 1 of [12]) with
lineages within those differently marked subpopulations originating from within them.
doi:10.1371/journal.pgen.1003972.g003

Figure 4. Identity, severity and function of recurrently mutated genes across all experiments, grouped by pathway. Only genes with
two or more identified mutations are included; bars are colored according to the predicted severity of each mutation on protein function.
doi:10.1371/journal.pgen.1003972.g004

Adaptive Strategy in a Constant Environment
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GPB2, IRA2 and PDE2 would cause constitutive pathway activation

and growth, while loss of function in RIM15 (the second most

mutated gene, with 7 mutations observed), which is repressed by the

PKA pathway, is akin to having increased PKA activity through

that downstream path. Rim15 function is involved in the

establishment of stationary phase [33] – presumably loss of the

ability to enter stationary phase must be beneficial in the constant

chemostat environment. The HOG pathway mediates transcrip-

tional response to hyper-osmotic stress and also causes a brief

growth arrest [34], so the observed disruptive mutations in pathway

activators would be expected to eliminate this response. All five

HOG pathway mutations we genotyped occur in lineages with pre-

existing MTH1 or RGT1 mutations, (Figure 3a–b), suggesting

potential positive epistasis between the HOG and glucose signaling

pathways.

To assess the extent of parallel adaptation we examined the

overlap in genes and GO terms between experiments. E1, E2 and

E3 share 50%, 61% and 21% of their mutated genes with one of

the other experiments, with E1 and E2 having the most sharing.

MTH1, RIM15 and GPB2 are mutated in all three experiments,

with MTH1 being the most frequently observed mutated gene,

having 19 independent mutations observed. We grouped enriched

GO terms that share edges into GO networks to eliminate redun-

dant GO terms and determined that E1 and E2 share all GO

networks with each other (Table S4). E3 has overlap with the other

two experiments, with 3 of 6 networks shared with both E1 and

E2. The GO network overlap suggests that the replicate

experiments followed similar functional trajectories, with the

underlying mutations broadly impacting similar biological pro-

cesses in all experiments, namely the disruption of environmental

sensing and signal transduction.

An evolutionary trade-off by antagonistic pleiotropy
We have shown that loss of environmental sensing through

disruptive mutations in signaling pathways is adaptive in a

constant environment. As signaling pathways make organisms

robust to environmental changes, we hypothesized this loss would

have a fitness cost in environments where nutrient availability was

not constant. We thus subjected 18 clones containing mutations in

one or more signaling pathway to starvation conditions. All 18

clones lost viability more rapidly than wild-type (Figure 6a). To

understand which mutations were causing decreased viability, we

assayed nine strains containing single mutations from E3 [27] for

premature cell death, and found that mutations in or downstream

the cAMP/PKA pathway (4 of 9 mutations assayed) showed

significantly lower cell viability during starvation (Figure 6b). Of

these, we have previously shown that mutations in 3 of these 4

genes are beneficial alone in a glucose limited chemostat [27].

Thus, our results suggest that the adaptive strategy utilized by

yeast in the constant chemostat environment is maladaptive in an

environment where nutrients are not constant, indicating that

there is an evolutionary trade-off due to antagonistic pleiotropy

(e.g. see [35]).

Discussion

The dynamics of adaptive evolution
We have previously used fluorescent markers to track subpop-

ulations during adaptive evolution in a constant environment [12],

and observed clonal interference in each of the 8 experimental

populations that we evolved, in concordance with theoretical

expectations. In this work, we have greatly expanded upon this, by

performing ultra deep whole genome, whole population sequenc-

ing at each of 8 timepoints across 3 of these experimental

evolutions. In addition to allowing us to identify mutations at an

allele frequency as low as 1%, these population sequence data also

provide us with direct estimates of the frequency trajectories of the

mutations. Of the 3 experiments, only one resulted in a fixation

event (E1, where 4 mutations in the same lineage were fixed by the

final time point at 448 generations). By contrast, most mutations

that enter the population were at a lower frequency than their

maximum by the end of the experiment, and indeed more than a

third had gone extinct. In most cases, mutations that were subject

to clonal interference were in genes that were recurrently mutated

(53 out of 74 (72%)), and of those mutations that went extinct, the

majority were also in genes that were recurrently mutated (32 out

of 42 (76%)). Thus, clonal interference clearly plays a major role in

these populations in shaping their eventual composition, with

many beneficial mutations in the population going extinct during

the evolution. A recent study which also used sequencing of

populations undergoing experimental evolution [18] did not

observe such a great extent of clonal interference, though in their

Figure 5. Enrichment of mutation categories relative to the expectation. Expectation was calculated empirically assuming random mutation
across the genome, and significance of enrichment was determined using a chi-squared test. A) Coding versus non-coding mutations. B) Mutations
that are predicted to be disruptive of protein function versus mutations predicted to not affect protein function. C) Enrichments within coding
mutations.
doi:10.1371/journal.pgen.1003972.g005
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PLOS Genetics | www.plosgenetics.org 5 November 2013 | Volume 9 | Issue 11 | e1003972



experiments they only could detect mutations that reached a 5%

allele frequency. In our data, of the 74 mutations we detected that

were at a lower frequency by the end of the experiment than their

maximum frequency (i.e. were subject to clonal interference), 38

(51%) had a maximum frequency of less than 5%. Thus, deeper

sequencing is able to provide significantly more insight into the

process of clonal interference. We observed 35 mutations in genes

that were recurrently mutated that failed to reach a 5% frequency

in the experiment, though we only identified 2 additional

recurrently mutated genes by being able to get to allele frequencies

lower than 5% (OSH3 and LCB3). There were 19 mutations that

did not reach an allele frequency of 5% that were in genes that

were not recurrently mutated – further experimentation to

determine whether these mutations are adaptive, and/or even

deeper sequencing would be required to confidently extend the

adaptive mutational spectrum. We also observed that multiple

mutations prevail, with all of the lineages that we detect as present

in our populations at the end of the experiment carrying more

than one mutation, with at least two predicted to be beneficial.

It is an open question as to how many lineages with beneficial

mutations actually existed within the population – there are few

empirical estimates of the beneficial mutation rate, and those that

do exist are based on a relatively modest number of observed

mutations. One estimate, based on mutations that fixed in

Pseudomonas fluoresecens, is 3.8e-8 per cell division [36]. If that were

similar to the beneficial mutation rate in yeast, then with a

population of 1e9 growing for 448 generations, we might expect as

many as 17,000 beneficial mutations to occur within any one of

our experiments. Most of these would not be expected to establish

– if we assumed that ,10% establish (roughly similar to an

average 10% fitness effect), then 1,700 lineages with beneficial

mutations would have established in a given experiment. By

contrast, Shaw et al [37], analyzing mutation accumulation lines

in A. thaliana, found that approximately half of all mutations

observed were beneficial. In yeast, also using mutation accumu-

lation lines, Hall and colleagues have estimated that between 5%

and 13% of mutations are beneficial [38]–[40]. With a per base

pair mutation rate on the order of ,1e-10 [41] and a genome size

of 12e6, the number of cells estimated per generation to have a

mutation is around 1 in 1,000. If 10% of mutations are beneficial,

then 1 in 10,000 per generation may receive a beneficial mutation.

Thus, in our experiments, we might expect as many as 50 million

beneficial mutations to occur over the 448 generation time course,

with ,5 million establishing. While these are estimates based on

relatively small number of mutations in mutation accumulation

lines, even if they are over estimated by 2 orders of magnitude, it is

clear that sequencing of even hundreds of randomly selected

individual clones (which will likely represent a few, prevalent

lineages), or even deep population sequencing will not be able to

fully characterize the spectrum of beneficial mutations, nor

determine an accurate estimate of their fitness effects. While to

our knowledge this study is the deepest sequencing yet performed

Figure 6. Reduction in cell viability as a function of time in (A) clones isolated from the chemostat experiments and (B) strains
carrying a single mutation from E3. The deeper the blue color, the more significant the reduction in cell viability compared to a wild-type strain.
Multiple independent clones with the same known genotype are indicated.
doi:10.1371/journal.pgen.1003972.g006
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on experimentally evolving populations, it may only represent the

tip of the potential adaptive iceberg (though this is likely the most

important part, as these mutations likely drive the evolutionary

process), while our previous work [12] was only the tip of the tip.

New, higher throughput approaches, and rational ways of identi-

fying and selecting independent lineages are clearly needed to fully

understand this most fundamental of biological processes.

Adaptive strategy and parallel evolution in a constant
environment

We observed the parallel evolution of mutations that disrupt one

or more of three major signaling pathways responsible for sensing

environmental stimuli and responding by governing growth rate.

We propose a model for the adaptive strategy in constant, nutrient-

limited environments (or at least in a glucose limited environment)

(Figure 7), wherein constitutive commitment to cell division is

beneficial, and thus mutations that result in unrestrained cell

division are adaptive as long as the growth rate does not exceed the

influx rate of nutrients into the system. By and large, these mutations

are loss of function mutations. We consider the mutations in these

pathways to be decoupling the sense and response to environmental

stimuli, leading to an adaptive loss of environmental sensing in a

constant environment. In contrast, these mutations are maladaptive

in environments where nutrient abundance is not constant, such as

when going through a boom and bust cycle from high glucose into

starvation conditions. This may be due to depletion of the cell’s

reserve nutrient supply or the inability to enter a quiescent state,

leading to cellular death. This adaptive loss of environmental sensi-

tivity is a powerful example of how evolution is myopic: by evolving

strategies to cope with a constant and predictable environment,

genes and pathways are disrupted that would be necessary for

survival when cells are confronted with an uncertain environment.

It is noteworthy that the clones characterized in Wenger et al [35],

also evolved in an aerobic glucose limited environment, were also

more fit under a diverse set of other carbon limited environments,

suggesting that their adaptive strategy also translated to other

constant environments. Whether this strategy is widely applicable

under an array of constant environments with different nutrient

limitations remains to be determined through additional experi-

mentation. However, recent analysis of experiments in bacteria

have verified the idea that loss of function mutations can be a

general strategy for adaptive evolution [42].

Broader impacts and antagonistic pleiotropy
From a broad viewpoint, the adaptive strategy of loss of

environmental sensitivity that we observed is similar to the strategy

tumor cells use to proliferate. Cancer is an evolutionary process of

clonal selection [43]–[45], and it is beneficial for the cells to

replicate as fast as possible through the accumulation of mutations

in oncogenes and tumor suppressor genes, many of which are in

the homologous Ras/cAMP/PKA pathway that is recurrently

mutated in our experiments [46], [47]. While the external

environment humans face is dynamic and unpredictable, the

human body has evolved to maintain homeostasis, exemplified by

the near constant concentration of blood glucose [48]. Such

mutations also come with trade-offs – when faced with an

uncertain environment, many of the mutations show antagonistic

pleiotropy (AP). In our data, three single mutants that we tested

had a reduced fitness in the starvation environment, for which we

have previously demonstrated fitness gains in the chemostat

environment where they were selected – clearly cases of AP. For

the multiple mutants that we tested, the loss of fitness could be due

to AP, or alternatively result from a prior hitchhiking event in the

evolved environment of a mutation that is deleterious in the

starved environment. This mutation accumulation hypothesis

(MA) is considered as an alternative to antagonistic pleiotropy

when an evolved lineage shows fitness trade-offs. The fact the

many, if not all of the mutations in our multiple mutants are in

genes or pathways that are recurrently mutated in our chemostat

evolutions makes MA seem a less likely explanation than AP.

Indeed, previous experiments using E. coli evolving by serial

transfer [49] showed that the rate of loss of unused functions in

parallel evolving populations was consistent with AP, rather than

MA, suggesting that AP may be widespread, and that when

evolving in a consistent (though not necessarily constant)

environment that due to the fitness cost of unneeded pathways,

that there is a use it or lose if effect [50]. It has been shown using

the yeast deletion collection that AP is indeed widespread, with

approximately 20% of the collection of non-essential gene

deletions being more fit under one of the tested conditions [51].

It is also of note that in evolving E. coli strains, mutations that result

in a loss function of the sigma factor encoded by rpoS (which is

involved in the general stress response) are frequently selected

[52]. These mutations frequently exhibit AP, being detrimental

under conditions where there is stress, the response to which needs

to be balanced with growth (see [53] for review). Most of the AP

examples thus provided are loss of function mutations (either from

systematic gene deletion projects, or from sequencing beneficial

mutations arising during experimental evolution), but a systematic

catalog of AP effects of large numbers of beneficial mutations has

not yet been generated. It will also be interesting to determine how

clones with beneficial mutations that exhibit AP can perform

adaptive escape when allowed to evolve afresh in an environment

in which their previously beneficial mutations are now deleterious.

Materials and Methods

Source of evolved samples
All population samples in this study have been previously

described [12]. Briefly, three strains of haploid S288c that are

isogenic, except that each constitutively expresses a different

Figure 7. A model for adaptive strategy in the constant,
glucose-limited environment of the chemostat. The accumula-
tion of beneficial mutations disruptive of signaling networks leads to
the decoupling of sensing from response and the loss of environmental
sensitivity. Loss of control of cAMP/PKA pathway function eliminates
some of the normal checks required to pass START A, likely to a
shortened G1 and constitutive cell division. Likewise, loss of repressors
of glucose transporter transcription leads to their constitutive
activation, likely enabling the cell to sequester more glucose, leading
to increased growth and division.
doi:10.1371/journal.pgen.1003972.g007

Adaptive Strategy in a Constant Environment
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fluorescent protein (GFP, YFP or DsRed), were seeded in equal

quantities in a 20 mL chemostat device. Each population was

evolved for 448 generations at steady state under glucose limi-

tation (0.08%) at a dilution rate of 0.2 h21. During this evolution,

the proportions of the three colored lineages were tracked using

flow cytometry, and population samples were archived under deep

freeze in glycerol at 280uC at regular intervals. Wild-type ancestral

strain GSY1136 was also used as a reference for sequencing.

Sequencing library construction
Illumina sequencing libraries were made directly from glycerol

stocks of the original population samples, as well as the wild-type

ancestral strain (GSY1136). Stocks were melted, and genomic

DNA was extracted from 500 ml of each stock using Zymo Yeast

Genomic DNA columns. The Nextera library prep kit (Epicentre)

was used to construct the libraries, starting with 25–50 ng of

genomic DNA. The tagmentation reaction was performed in

LMW Reaction Buffer at 55uC for 10 minutes. The resulting

tagged DNA was subjected to PCR using the Nextera PCR

enzyme (Epicentre) under the following conditions: 72uC for

3 min, 95uC for 30 sec; 9 cycles of 95uC for 10 sec, 62uC for

30 sec, 72uC for 10 sec; final extension at 72uC for 1 min. A

shortened extension time was used to bias the amplification of

short fragments in order to maximize the proportion of bases

being sequenced twice with overlapping paired-end Illumina

reads. A modified Adapter 2 with a random hexamer barcode of

sequence 59-CAAGCAGAAGACGGCATACGAGATNNNNN-

NCGGTCTGCCTTGCCAGCCCGCTCAG-39 (PAGE-purified,

IDT Technologies) was used during the PCR for the population

samples, while the standard Nextera Adapter 2 was used for

GSY1136. No size selection was performed on the libraries, although

they were concentrated through a Qiagen MinElute column. The

same GSY1136 library was spiked into all 24 population libraries at

a molar rate of 5%. The resulting libraries were sequenced on one

lane apiece of 26101 bp plus a 6 bp index read on the Illumina Hi-

Seq 2000. In addition, two independent libraries from the same

genomic DNA of GSY1136 were sequenced on one Hi-Seq lane

apiece.

Sequencing data mapping and pre-processing
An overview of the sequencing analysis pipeline used to identify

variants is given in Figure S3. The wild-type GSY1136 library that

was spiked into each population sample was extracted with the

exact tag ATCTCG using a modified version of the Fastx Barcode

Splitter (http://hannonlab.cshl.edu/fastx_toolkit/index.html). Nextera

adapters were trimmed off the 39 read ends with Cutadapt v0.9.4

[54] supplied with the Nextera adapter sequence and default

parameters except -m 15. The resulting FASTQ files were culled of

any reads that occurred in only one read of the pair. Paired-end

reads were mapped to a custom S288c reference genome with BWA

(bwa-short) v0.5.9-r16 [55] using default parameters plus -I -q 10,

and a sorted BAM file was created with Picard v1.45 FixMateIn-

formation (http://picard.sourceforge.net).

The custom genome was constructed as follows: single end

Illumina reads of a different ancestral wild-type strain (GSY1135)

from a previous study [27] were mapped to the S288c reference

sequences from the Saccharomyces Genome Database (SGD; http://

www.yeastgenome.org/; downloaded 2/24/2011). SNPs were

called with the GATK v1.0.5777 UnifiedGenotyper [56], [57],

and a FASTA reference sequence was constructed that incorporated

these SNP calls using the GATK FastaAlternateReferenceMaker.

The population data were culled of PCR duplicates using a

modified version of Picard MarkDuplicates. In this program, the

random hexamer barcodes were used in addition to the mapping

coordinates to decide if a pair of reads was a PCR duplicate.

Specifically, if more than one read pair had the same mapping

coordinates in addition to the same hexamer barcode, only the

pair with the highest mapping quality was retained for further

analysis.

The in-lane spike-in of wild-type library was used to recalibrate

the base qualities of the population data from the same lane. To

achieve this, GATK CountCovariates and TableRecalibration

were called on each lane of the wild-type data separately, using a

variant mask for the CountCovariates step created by Samtools

v0.1.16 [58] mpileup. Recalibration was visualized as successful as

visualized by AnalyzeCovariates. The covariate file from the wild-

type recalibration was then used as input for TableRecalibration

on the population data from the same lane. Proper recalibration

was assessed once again by AnalyzeCovariates.

A custom Java program was written to identify the bases in each

library fragment that were sequenced twice by overlapping read

pairs. This analysis was applied to both population and wild-type

data, and the overlap information was stored in the custom ‘‘ZO’’

tag of the BAM file. A Python script implementing PySAM v0.5

(http://code.google.com/p/pysam/) was used to calculate the

allele counts for each position in the reference genome, and the

following filters were applied: uniquely mapping reads only, base

quality score greater than 19 required, and only bases sequenced

twice that were concordant in base identity between the two reads

were retained.

SNP calling and filtering
Population SNP calls were made by comparing the allele counts

in each population sample for each genomic position to the counts

of the same allele and position from the wild-type data. This

comparative approach filtered out any position that had false

positive SNP calls due to positional effects, such as mapping or

systematic sequencing errors. First, a merged wild-type file was

created by combining all the spike-in control wild-type data with

the two independently sequenced wild-type files. Second, only

non-reference alleles that had both an allele count of at least 2 and

a larger frequency in the population sample than the wild-type

were retained. Third, a one-tailed Fisher’s Exact Test was used to

calculate if the number of non-reference alleles out of all alleles at

a site was significantly greater in the population data than in the

wild-type data for the same allele. These p-values were FDR

corrected using the Benjamini and Hochberg method [59], and

only sites with a q-value less than 0.01 were retained.

The following heuristic post-hoc filters were applied to the set of

SNPs: 1) SNPs with a maximum frequency that was greater than

the largest color proportion, plus 0.1, for the appropriate time

point were removed (color frequency data from [12]). This

removes any SNP that rose to a higher frequency than the highest

color, which is not possible, unless identical SNPs arose in different

colored populations. 2) Any SNP that was significant in the first

time point was removed. This is because even if a new mutation

present at the start of the experiment conferred a relative fitness of

2, that mutation would not be detectable in our assay in the first

sampled generation. 3) Any site that was not deemed callable was

removed. Callability was determined empirically with the GATK

CallableLociWalker (-frlmq 0.01 -minMappingQuality 2) on the

relevant population data, as well as the merged wild-type data. 4)

Sites that had greater than 5% non-reference alleles in the merged

wild-type data were removed. These sites were largely systematic

errors. 5) SNPs where the read position of the variant allele did not

vary were removed. This was defined as a read position standard

deviation lower than one. 6) SNPs that had a mapping quality bias

between reads containing the reference and variant alleles were
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removed, as calculated by a Bonferroni-corrected Mann-Whitney

U test on mapping qualities.

Variant confirmation, lineage determination and
inference of effects

Mutation allele frequencies were validated against a set of

known mutation frequencies for experiment C1 (Figure S4) with

data from [12], [27], as well as the fluorescent protein reporter

frequencies for all experiments (Figure S5). All putative SNPs with

a maximum allele frequency greater than 10% were confirmed by

Sanger sequencing, except for the chr16:581589 mutation in

experiment E2, which we were unable to amplify by PCR. While

no effort was made to comprehensively catalog indels, Sanger

sequencing of putative SNPs revealed six indels, which in every

case were due to mapping errors of true indels near the ends of reads.

Co-occurrence of SNPs was determined by Sanger sequencing

clones picked from the relevant time points for mutations greater

than 10% allele frequency. The effect of each SNP (non-coding,

synonymous coding, non-synonymous coding, etc.) was established

with SNPeff v2.0.3 (http://snpeff.sourceforge.net/). The permis-

siveness of all missense mutations was calculated using SIFT [60]

with default parameters.

To create the lineage dynamics plots, allele frequency data were

plotted assuming linear expansion or contraction between primary

data points. Since the allele frequency data were of lower

resolution than the flow cytometry data (8 vs 47 time points),

sometimes the inferred linear extrapolation between frequency

data points resulted in an allele frequency greater than the color

frequency. In these cases, the extrapolated allele frequencies were

reduced to fit within the bounds of the color frequencies. Note, this

fitting was performed for extrapolated points only; primary allele

frequency data remained untouched.

Mutation effect enrichment analysis
All mutations discovered across the three experiments were

divided into the following coding mutation effect categories: stop

gained, start lost, stop lost, non-synonymous and synonymous. The

sum of mutations within these categories was compared to the

expectation using a chi-squared test. The expectation was

calculated empirically by assuming random mutation throughout

the genome; i.e. all possible mutations in the genome were made in

silico, and the effect of the mutation was assigned to one of the

categories above. The expected proportion of each category was

calculated as the total for each category out of all possible

mutations, and this proportion was multiplied by the total number

of mutations discovered to get the expected number of mutations

for each category. The same analysis was performed for coding

versus non-coding mutations.

To find an enrichment of disruptive versus tolerated mutations,

the totals of the stop gained, start lost, stop lost and disruptive non-

synonymous categories were summed into the ‘‘disruptive’’ meta-

category, and the synonymous, tolerated non-synonymous and

non-coding mutations were summed into the ‘‘tolerated’’ meta-

category. The SIFT predictions were used to classify non-

synonymous mutations as either disruptive or tolerated. Expecta-

tions for disruptive or tolerated non-synonymous mutations were

calculated empirically by summing the SIFT effect of all possible

mutations for a particular protein.

Cell death experiment
Cell viability was quantified under starvation conditions using

propidium iodide (PI) and flow cytometry similar to [61], in

biological triplicate. Overnight cultures in 1.2 mL YPD were

grown unshaken in deep-well 96 well plates at 30uC. Cultures were

spun down, aspirated, and resuspended in 1.2 mL sterile water,

and then diluted 1:3 into a minimal medium described previously

[12] supplemented with 2% glucose. The cultures were left

undisturbed at 30uC between time points. Cell viability was

measured at regular intervals post-inoculation by mixing the

cultures and diluting 50 mL of culture into 250 mL water contain-

ing 250 mg PI, following by analysis by flow cytometry. The

proportion of viable cells was calculated as PI-negative cells out of

total cells analyzed. Significantly different viability was calculated

with a two-tailed t-test between each mutant strain and wild-type

at each time point. Cell viability based on PI staining was validated

by colony forming unit analysis on a subset of the strains analyzed.

Gene Ontology enrichment
Gene Ontology (GO) biological process enrichments of coding

mutations for each experiment were calculated using GO::Term-

Finder [62] at SGD with default options except ‘‘Feature Type’’

set to ‘‘ORF’’ and dubious ORFs disqualified from the analysis.

For the reproducibility analysis, GO terms sharing edges were

grouped into networks and GO networks were considered shared

between experiments if they had at least one shared GO term.

Accession numbers
All Illumina sequencing data are available from the NCBI

Sequence Read Archive with accession number SRA054922.

Supporting Information

Figure S1 Diagram of sequencing library preparation and

sequencing strategy. Two improvements were made to the

Nextera library preparation to facilitate the detection of low

frequency SNPs. First, random hexamer barcodes were added to

Adapter 2 to reduce the observed rate PCR duplicates. PCR

duplicates are a problem for Nextera libraries sequenced to high

coverage because the transposase used for library construction has

an insertion bias, which leads to independent genomic DNA

fragments mapping to the same genomic location. Second, the

insert size of the library was biased towards short fragments by

reducing the PCR extension time. This caused most bases per

genomic DNA fragment to be sequenced twice with overlapping

read pairs, which reduced the error rate of sequencing.

(PDF)

Figure S2 Allele frequency trajectories of all mutations discov-

ered in A) E1, B) E2 and C) E3. Thick dashed lines show the

proportions of each fluorescent protein reporter. Solid thin lines

are mutations in genes that are recurrently hit with mutations, and

thus command more confidence as driver mutations. Dashed thin

lines are mutations in genes hit once.

(PDF)

Figure S3 Diagram of the analysis pipeline used to call SNPs

from population sequencing by converting raw data to allele

counts and allele counts to SNP calls. Actions performed on data

are in boxes, with programs used in parenthesis, if applicable.

(PDF)

Figure S4 Validation of mutation allele frequency estimates

using known mutations from E3. Solid lines are allele frequencies

from this study. Dashed lines are frequencies of the same mutation

as determined by either allele-specific quantitative PCR or

quantitative sequencing. The time points that have data are

different between the population sequencing and the validation,

which contributes to the differences observed.

(PDF)
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Figure S5 Validation of mutation allele frequency estimates

using known mutations carried by fluorescent reporter strains in A)

E1, B) E2 and C) E3. Each strain carries a single SNP, except the

DsRed strain used in E1. Solid lines indicate the proportions of

each fluorescent protein reporter as determined by flow cytometry.

Dotted lines show the allele frequency of the SNP carried by each

fluorescent strain.

(PDF)

Table S1 Sequencing coverage of each sequencing library.

Numbers are average fold sequencing coverage. The coverage

from bases sequenced twice by overlapping read pairs are shown

(OL), as well as bases sequence only once (non-OL). Only OL

bases were used for the analysis to call SNPs.

(PDF)

Table S2 List of mutations discovered in each experiment. Once

a mutation was discovered by the analysis pipeline, the frequency

of the mutation was pulled from other time points to complete the

allele frequency trajectory.

(PDF)

Table S3 Gene Ontology (GO) biological process enrichments

for each experiment. All genes hit with at least one mutation were

the input for the GO enrichment analysis, and only GO terms

with an FDR-corrected p-value of 0.01 or less are shown.

(PDF)

Table S4 GO terms were organized into networks and overlap

between GO networks was calculated to assess the functional

reproducibility of adaptation between experiments (see methods).

GO terms in bold/italic/underline are terms that define a

network, and that are shared between all three experiments. GO

terms in italic/underline define the network and are shared only

between E1 and E2.

(PDF)
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