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Fossilised mobile genetic elements, in-

cluding Long Interspersed Element-1

(LINE-1 or L1) retrotransposons, comprise

at least two-thirds of the human genome

[1]. Their molecular history is reminiscent

of speciation and natural selection, where,

as noted by Carl Sagan, ‘‘Extinction is the

rule. Survival is the exception’’ [2].

Broadly, the life cycle of a retrotransposon

begins with innovation to evade host

genome surveillance, followed by ‘‘copy-

and-paste’’ retrotransposition and, finally,

quiescence as a result of host defence

adaptation. Before being tamed, a new or

newly reactivated retrotransposon can

undergo massive copy number amplifica-

tion. For instance, more than one million

copies of the primate-specific Short Inter-

spersed Element (SINE) Alu comprise 11%

of the human genome [3]. Even more

impressively, approximately 500,000 cop-

ies of a single retrotransposon superfamily,

Gypsy, occupy nearly half of the maize

genome [4]. Thus, retrotransposons can

overrun a genome within a brief evolu-

tionary period, making their suppression a

high host priority.

Retrotransposition requires transcrip-

tion of an RNA template for DNA-

primed reverse transcription. Several

cellular defence mechanisms have

evolved to hinder this process, including:

1) promoter methylation and heterochro-

matinisation, 2) degradation of retro-

transposon transcripts via RNA interfer-

ence (RNAi), and 3) host factor

prevention or destabilisation of reverse

transcription. To describe in detail just

one of a myriad of specific inhibitory

pathways, repeat associated small inter-

fering RNAs (rasiRNAs) are present in

plant, worm, fly, fish, and mouse gametes

and, therefore, represent a highly con-

served defence against germ line retro-

transposition [5–8]. A plausible model of

rasiRNA biogenesis involves bidirection-

al transcription of opposed retrotranspo-

son promoters [9,10], resulting in the

formation of double-stranded RNAs

(Figure 1). These are cleaved by Dicer

(DCR) and then assembled with Argonaute

(AGO) and other proteins into the RNA-

induced silencing complex (RISC) that,

in turn, produces RNAi against retro-

transposon transcripts [11]. The suppres-

sive influence of rasiRNAs, in concert

with other pathways, may explain why

retrotransposition is more common dur-

ing embryogenesis than in gametes

[12,13]. Importantly, although rasiRNAs

have been found in stem cells and soma,

their capacity to suppress retrotransposi-

tion during development is relatively

unexplored [14–16].

In this issue of PLOS Genetics, Ciaudo

et al. [17] describe rasiRNA-mediated

suppression of LINE-1 activity in mouse

embryonic stem cells (mESCs). Focusing

on the L1-Tf subfamily, where they

previously described an unusual ra-

siRNA signature mapping to the

59UTR [15], Ciaudo et al. observed that

knock-out of Dicer markedly decreases

L1-Tf promoter methylation and in-

creases L1-Tf transcription, translation,

and copy number in cultured mESCs. In

particular, DCR2/2 mESCs accumulate

a remarkable 860 L1-Tf copies (greater

than five megabases of genomic DNA)

per cell over 20 passages, versus 255

copies per cell in DCRFlx/Flx controls,

based on SYBR-Green qPCR targeting

the L1-Tf 59UTR. High-throughput

small RNA sequencing then confirmed

that DCR2/2 mESCs were depleted of

approximately 22 nt molecules found in

wild-type mESCs, immunoprecipitated

with AGO2 and aligned to L1-Tf, and

therefore resembling rasiRNAs. Hence,

LINE-1 activation in DCR2/2 mESCs

coincides with rasiRNA depletion and is

also possibly influenced by ablation of

Dicer-mediated LINE-1 promoter meth-

ylation.

Intriguingly, a second class of Dicer- and

AGO2-independent small RNAs were

found to ‘‘paint’’ the L1-Tf 59UTR.

Again, assessing L1-Tf transcription and

copy number, Ciaudo et al. found that

deletion of XRN2 and DGCR8, respective

members of the RNA surveillance and

Drosha-DGCR8 Microprocessor pathways,

led to increased L1-Tf transcription but

not copy number amplification. These

observations agree with other recent

reports of small RNAs immunoprecipitat-

ed with DGCR8 and enriched for LINE-1

sequences [18], as well as evidence of

elevated L1-Tf expression in DGCR82/2

mESCs [19]. As a final experiment,

Ciaudo et al. complemented DCR2/2

mESCs with human Dicer and found that

these cells recapitulated wild-type mESC

LINE-1 suppression and differentiated

normally, unlike DCR2/2 mESCs.

Evidence for a reciprocal relationship

between rasiRNA depletion and LINE-1

activation significantly advances our un-

derstanding of RNAi-mediated control of

retrotransposition during mammalian em-

bryogenesis. These data are also important

because they address a longstanding ques-

tion of why rasiRNAs cannot be consis-

tently detected in mammalian somatic

cells: small RNAs generated by RNA

surveillance and the Microprocessor may

cleave the same pool of precursor LINE-1

mRNAs processed by Dicer and obscure

rasiRNA detection (Figure 1). As Ciaudo

et al. note, it is possible that insertional

mutagenesis caused by LINE-1 contributes
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to the reported differentiation defects for

DCR2/2 mESCs [20], though it is

unclear why lesser but still substantial

LINE-1 activity is tolerated by wild-type

mESCs. Interestingly, experiments using

engineered LINE-1 reporters have

shown elsewhere [16,19] that mutation

of Dicer or the Microprocessor increases

LINE-1 mobilisation in cancer cells, with

the latter result at odds with data

generated here from mESCs. Future

advances in high-throughput sequencing

and single cell genomics should enable

characterisation of endogenous LINE-1

mobilisation events in stem cells and

further delineate the multifaceted roles of

Dicer and other factors in LINE-1 inhi-

bition.
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Figure 1. rasiRNAs inhibit LINE-1 expression in mESCs. Mouse LINE-1s are comprised of two ORFs flanked by 59 and 39UTRs. Several monomers
in the 59UTR provide promoter activity. Following the LINE-1 expression and copy number variation data of Ciaudo et al., bidirectional transcription of
the 59UTR generates sense and antisense LINE-1 RNAs. The Drosha-DGCR8 Microprocessor cleaves these precursors into pre-miRNAs, which are
processed into miRNAs by Dicer, but may not be loaded into the RISC complex. By contrast, double-stranded RNAs potentially formed by sense/
antisense pairing of LINE-1 RNAs are also cleaved by Dicer but here generate rasiRNAs, loaded into the RISC complex, which degrade canonical LINE-1
mRNAs. Dicer also appears to mediate LINE-1 promoter methylation (not shown).
doi:10.1371/journal.pgen.1003944.g001
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