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Abstract

Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as
well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is
important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive
plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the
enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded
proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default ‘‘OFF’’ state and
identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which
is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and
genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the
pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide.
Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison
with other mobile systems are discussed.
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Introduction

Horizontal Gene Transfer (HGT) plays a significant role not

only in bacterial evolution but also in the spread of antibiotic

resistance and pathogenicity determinants. The main mechanisms

responsible for HGT are transformation mediated by natural

competence, transduction, phage-related chromosomal islands

(PRCI) and conjugation performed by plasmids or ICEs [1–4].

Conjugation is the process by which a DNA element is transferred

from a donor cell to a recipient cell. Consequently, conjugation

requires direct contact between the donor and the recipient cells.

Often conjugative elements are present on plasmids, but they can

also be found as mobile elements that are integrated in a bacterial

chromosome. These latter forms are generally named integrative

and conjugative elements (ICE).

The basics of the conjugation mechanism among plasmids are

conserved. For a plasmid to be conjugative it requires a set of

genes encoding proteins that (i) process the plasmid DNA into the

form that can be transferred, which generally is single-stranded

DNA, and (ii) generate a membrane-associated mating channel,

called transferosome, through which the ssDNA is transported.

The intercellular transferosome is a form of type IV secretion

system. Generation of the ssDNA plasmidic form involves a

relaxase, which forms a nucleoprotein complex called the

relaxosome that introduces a site- and strand-specific nick within

the origin of transfer (oriT). The relaxase remains covalently

attached to the nicked DNA and the relaxasome is linked to the

transferosome via the so-called coupling protein. Upon transfer of

the ssDNA strand into the recipient cell through the transfero-

some, the attached relaxase directs recircularization of the ssDNA

in the recipient cell.

Good understanding of the process of conjugation and its

transcriptional regulation can provide insights into bacterial

evolution. Such knowledge will also have important socio-

economic, medical and biotechnological implications. For in-

stance, it may provide valuable information to help control the

explosive global spread of antibiotic resistance, and it may form

the basis to construct tools to modify clinically or industrially

important bacteria that are reluctant to genetic manipulation by

other approaches. The process of conjugation and its transcrip-

tional regulation has been studied in considerable detail for various

plasmids present in Gram-negative (Gram2) bacteria (for review

see, [5–8]). However, comparatively little is known about

conjugation systems on plasmids from Gram-positive (Gram+)

bacteria, many of them industrially and medically important

organisms, although interest in this field is increasing (for general

review see, [7,9]). The conjugation machineries of plasmids from

some Gram+ bacteria have been studied in more depth. Examples

of these are (i) the broad host-range plasmid pIP501, originally

isolated from Streptococcus agalactiae [10,11, and references therein],
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pCW3 of Clostridium perfringens [12], the Staphylococcal aureus

plasmids pGO1 and pSK41 [13,14], and the Enterococcus faecalis

plasmids pAD1 and pCF10. For the latter plasmids their

transcriptional regulation has also been studied (for review see,

[15–17]). A characteristic feature of these latter plasmids is that

conjugation is induced by pheromones that are produced by

plasmid-free recipient cells.

Bacillus subtilis is one of best studied Gram+ bacteria [18,19].

Although many natural isolates of B. subtilis harbor one or more

plasmids [20], little is known about conjugation systems present on

B. subtilis plasmids. The main reason for this is that most B. subtilis

studies are based on a few plasmid-free strains. For this reason and

the other reasons stated below, we chose to study the regulation of

plasmid conjugation in B. subtilis. First, due to its ability to develop

natural competence, its genome and resident plasmids are

amenable to genetic manipulation [18,19]. Second, B. subtilis is

closely related to fastidious and pathogenic bacilli like B. cereus and

B. anthracis, respectively, and more distantly related to the Gram+
pathogen Listeria. Third, being a soil-dwelling bacterium that is

found all over the world, B. subtilis may interact with a plethora of

other bacteria and can be an effective vehicle for the transit of

genes to and from other bacteria. This may be further underlined

by the fact that it has become clear in recent years that various B.

subtilis strains are also gut commensals in animals and humans

[21]. It is therefore not unlikely that B. subtilis plasmids play an

important role in HGT at various levels and this warrants a better

understanding of them. For our studies we chose the 65 kb B.

subtilis plasmid pLS20, which has been identified originally in the

Bacillus subtilis natto strain IFO3335 [22] and shown to be

conjugative even in liquid medium [23,24].

Earlier studies have determined the replication region of pLS20

[25], and showed that it uses a dedicated mechanism involving the

actin-like Alp7A protein for its segregation [26]. In addition, we

recently discovered that pLS20cat, a derivative of pLS20 carrying

a chloramphenicol-resistance gene (Cm) [24], encodes a protein

that suppresses the development of natural competence of its host

[27]. Although it has been shown that the conjugation machinery

is predominantly formed at the cell poles [28], little is known about

the process of conjugation itself.

In this work we studied the transcriptional regulation of the

pLS20 conjugation genes. We identified an Xre-type repressor as

the main transcriptional repressor that keeps the pLS20 conjuga-

tion system in the default ‘‘OFF’’ state. We show that pLS20

conjugation is not activated by recipient pheromones. Instead,

activation of conjugation is exerted by a plasmid-encoded anti-

repressor that belongs to the family of Rap proteins; most other

members of which are involved in regulation of developmental

processes in B. subtilis. Moreover, we show that activation of the

conjugation genes is ultimately controlled by a signaling peptide

that regulates the activity of the anti-repressor. To our knowledge,

such a regulatory circuitry mechanism has never been described

before for plasmids.

Results

pLS20 conjugation is not activated by pheromones
Conjugation systems present on Gram-positive Enterococcus

faecalis plasmids are induced upon sensing a recipient-produced

pheromone (for review see, [16]). To study whether the

conjugation system of pLS20 is also induced by pheromones we

determined conjugation efficiencies in liquid medium under

different conditions using a Cm-labeled derivative of pLS20,

pLS20cat [24]. Under the first condition, overnight grown cultures

of donor (PKS11) and recipient (PKS7) cells were diluted and

grown separately. At different times during growth, aliquots of the

donor and recipient cells (,1:1 ratio) were mixed and their

conjugation efficiencies were determined after a mating period of

15 min. The results presented in Figure 1 show that conjugation

efficiencies increased during growth, reaching maximum levels

near the end of the exponential growth phase, followed by a steep

decrease in efficiencies at later times. The conjugation efficiency

patterns obtained are similar to that published previously [24].

The observed increase in conjugation efficiency during the

exponential growth phase might be due to accumulation of a

conjugation activating signaling molecule produced by recipient

cells. If this were the case, replacing the growth medium of the

recipient cells with fresh medium before mixing with the donor

cells should result in a reduction in conjugation efficiency. Figure 1

shows however that this treatment did not significantly affect

conjugation efficiencies, strongly indicating that regulation of

conjugation of pLS20 is fundamentally different from that of the

enterococcal plasmids.

We then considered the possibility that recipient cells were

specifically competent for conjugation during the mid to late

exponential growth phase. However this was not the case either as

similar levels of conjugation efficiencies were obtained regardless

of the growth stage of the recipient cells (in the range of 1023–

1024 transconjugants/donor). Altogether, these results indicate

that the pLS20 conjugation system is not activated by recipient-

produced signaling molecules. Instead, they support the view that

under our standard conditions the conjugation system is contin-

uously repressed except for a rather small window of time near the

end of the exponential growth phase.

RcoLS20, an Xre-type regulator protein encoded by pLS20
gene 27c, represses conjugation of pLS20

The observation that efficient conjugation occurred only during

a short time window raised the possibility that conjugation is kept

Author Summary

Bacteria evolve rapidly due to their short generation time
and their ability to exchange genetic material, which can
occur via different processes, collectively named Horizon-
tal Gene Transfer (HGT). Most bacteria contain, besides a
single chromosome, autonomously replicating units called
plasmids. Many plasmids carry genes enabling them to be
transferred into plasmid-free bacteria. This process, called
conjugation, contributes significantly to HGT. Many plas-
mids also contain antibiotic resistance genes. Therefore,
plasmid conjugation plays a major role in the spread of
antibiotic resistance. Understanding the regulation of
conjugation genes is essential for designing strategies to
combat the spread of antibiotic resistance. We have
studied the regulation of the native plasmid pLS20 from
Bacillus subtilis. Besides being a soil bacterium, B. subtilis is
a gut commensal in animals and humans. Here we
unraveled the mechanisms controlling conjugation and
found that pLS20 conjugation genes become activated
when plasmid-free recipient cells are present. We have
identified the repressor protein that keeps conjugation in
an ‘OFF’ state, and an anti-repressor that activates
conjugation. The activity of the anti-repressor is inhibited
by a pLS20-encoded peptide that is secreted from the cell
and can be absorbed by cells, after a secondary processing
step. Ultimately, it is the signaling-peptide that dictates
when conjugation genes become activated.

Conjugation of Gram + Plasmid Regulated by rap-phr
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in the default ‘‘OFF’’ state by a transcriptional repressor protein,

and is switched on only in a certain period during growth when

the repressor is inactivated. To identify a possible conjugation

repressor gene we sequenced and annotated pLS20cat, and used

this information to construct a genetic map of pLS20cat (Figure 2).

The following features identified gene 27c as a possible candidate

encoding a conjugation repressor. First, in silico analysis indicated

that it encodes an Xre-type, transcriptional regulator with a Helix-

Turn-Helix (HTH) domain in its N-terminal region (see Figure

S1). Second, gene 27c is located immediately upstream of a

divergently oriented putative conjugation operon spanning genes

28 to 74. Several of the genes in the 28 to 74 region are predicted

to be homologues of essential conjugation genes present on other

conjugative plasmids, and homologues of essential conjugation

genes are not found outside this region of pLS20cat (see Figure 2).

Table S1 gives an overview of the comparative analysis of genes in

this region that includes details on the putative translation start

sites.

To test whether gene 27c indeed encodes a repressor of the

conjugation genes we studied the effect of ectopic expression of

gene 27c on pLS20cat conjugation. For this, we constructed

strain PKS14 that harbors plasmid pLS20cat and contains an

ectopic copy of gene 27c under the control of the IPTG-inducible

Pspank promoter at the chromosomal amyE locus. Conjugation

efficiencies for pLS20cat were determined when PKS14 donor

cells were grown in the presence or absence of IPTG. Since

maximum conjugation levels occur near the end of the

exponential growth phase (see above), we first determined

conjugation efficiencies of pLS20cat during this phase. As a

control, conjugation efficiencies of pLS20cat were determined in

the wild type background (strain PKS11). The results presented in

Table 1 show that ectopic expression of pLS20cat gene 27c

resulted in a dramatic decrease (.50,000 fold) in pLS20cat

conjugation efficiency, supporting the view that it encodes a

repressor of conjugation. In the absence of inducer, strain PKS14

showed a small but noticeable decrease in conjugation efficiency

(25 to 30-fold) compared to that of strain PKS11 (pLS20cat in the

wild type background). This was probably due to the leakiness of

the Pspank promoter. Based on these results and those presented

below we denominated gene 27c of pLS20 rcoLS20 (repressor of

conjugation).

To test the function of gene 27c more directly, we constructed

a derivative of pLS20cat, pLS20rco, in which gene 27c is deleted

and replaced by a kanamycin marker. The expected constitutive

de-repression of the conjugation operon in the absence of Rco in

pLS20rco might pose a burden to the cell. Therefore, we

introduced pLS20rco into strain PKS9 containing the Pspank-

rcoLS20 construct. The resulting strain, PKS86, was used to

determine the kinetics of conjugation during growth. Strain

PKS14 containing the wild type pLS20cat in the same

background, was included as a control. When rcoLS20 gene was

expressed ectopically, the conjugation levels of both pLS20cat

and pLS20rco were below the detection level of 161028 at all

time points tested, confirming that RcoLS20 represses conjugation

(Figure 3). Interestingly, in the absence of ectopic RcoLS20

expression conjugation efficiencies of pLS20rco differed in two

aspects from that of pLS20cat. First, conjugation efficiencies were

higher at all time points measured; and second, conjugation levels

were high for a very broad window of time. Therefore, in the

absence of a functional rcoLS20 gene conjugation was no longer

inhibited, most likely because the conjugation genes were not

repressed (Figure 3).

Transcriptional analysis of pLS20cat genes by RNA-seq
Results presented above show that RcoLS20 suppresses conju-

gation. To establish whether RcoLS20 exerts its inhibitory effect

on conjugation at the level of transcription and to identify genes

that are under the control of RcoLS20, we performed RNAseq

analysis to determine the expression pattern of all pLS20cat genes

in a wild type background, and when grown in the presence of

ectopic RcoLS20 expression. Thus, total RNA was isolated from

late exponential phase cells of PKS11, and of PKS14 grown in

the presence of IPTG. In parallel, total RNA was isolated from

plasmid-free B. subtilis 168 cells grown under the same conditions

to serve as a negative control. After processing, the RNA samples

were used to generate cDNA libraries using a ‘‘directional RNA-

seq’’ procedure that preserved information about a transcript’s

direction. The generated libraries were subjected to Illumina

sequencing resulting in a total of about 56.56106 reads of 36-nt

that passed the quality control settings. Of these, 1,596,385 reads

mapped to the pLS20cat genome, and were used to calculate the

apparent expression level of individual genes. A heat map

representation of the expression levels of the pLS20cat genes

when conjugation efficiencies were at their maximum is shown in

the left lane of Figure 4. The middle lane in Figure 4 represents

the effect of ectopic RcoLS20 production on the expression of the

pLS20cat genes. Thus, increasing and decreasing RNA levels of

individual genes are reflected by the intensity of green and red

colors, respectively. The right lane (+rap) is explained further

below. The additional expression of gene 27c encoding RcoLS20

from the ectopic locus is reflected by the green color of the

corresponding rectangle. Importantly, the heat map shows

significantly reduced RNA levels for genes 28 to 72, as well as

gene 74, indicating that RcoLS20 is responsible for repressing

these genes. Some other genes outside the region spanning 28–74

Figure 1. Conjugation kinetics of pLS20cat without and with
replacing the recipient growth medium. Conjugation kinetics of
pLS20cat was determined as described in Materials and Methods using
strains PKS11 and PKS7 as donor and recipient strain, respectively. At
each time point donor cells were mixed with recipient cells either
directly (broken line) or after the recipient growth medium had been
replaced with fresh LB medium (continuous line), and plated on
selective agar plates after a 15 min mating period. t = 0 corresponds to
the end of the exponential growth phase. Control experiments showed
that the centrifugation step did not affect conjugation efficiency (not
shown).
doi:10.1371/journal.pgen.1003892.g001

Conjugation of Gram + Plasmid Regulated by rap-phr
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are also repressed under these conditions. Further analysis using

quantitative RT-PCR confirmed these results (data not shown).

At present, we do not know whether RcoLS20 represses these

genes directly or indirectly, but the results clearly show that

RcoLS20 represses genes 28 to 72 as well as other putative plasmid

genes encoding proteins of unknown function, such as genes 11

and 16–21c.

RapLS20 is not involved in sporulation or competence but
stimulates conjugation by counteracting RcoLS20-
mediated repression

Located downstream of the repressor gene rcoLS20 in pLS20cat is

a putative rap-phr cassette (genes 25–26); the genes which we name

rapLS20 and phrLS20, respectively (see Figure 2). The genome of B.

subtilis contains eleven rap genes. The name rap refers to the activity

of the founding member RapA shown to be a Regulator Aspartate

Phosphatase [29]. The functions of Rap proteins are to interfere

with developmental processes such as sporulation, competence

development and production of degradative enzymes and antibi-

otics [29–35]. In addition, rap genes have been identified on

rolling-circle and theta replicating plasmids from B. subtilis and on

the Bacillus anthracis megaplasmid pXO1 [25,36–38]. For those

analyzed, plasmid-encoded rap genes also affect the production of

extracellular proteases or sporulation [38–40]. Based on this, it

seemed plausible that rapLS20 too could play a role in sporulation

and/or competence. To test this, we constructed strain GR20,

which contains a copy of rapLS20 at the chromosomal amyE locus

under the control of the inducible Pspank promoter. Surprisingly

though, overexpression of RapLS20 did not significantly affect

sporulation or competence (supplemental Table S2).

The particular gene arrangement, being that the rap-phr cassette

flanks rcoLS20, stimulated us then to investigate the possibility that

rapLS20 could be involved in pLS20 conjugation. For this, we

introduced pLS20cat into strain GR20 containing the inducible

rapLS20 gene, and used the resulting strain GR23 to determine the

kinetics of pLS20cat conjugation efficiencies in the absence and

presence of ectopic RapLS20 induction (Figure 5). Interestingly,

ectopic expression of RapLS20 stimulated conjugation. In fact, the

kinetics of conjugation obtained under these conditions was similar

to those obtained for pLS20rco, the derivative containing a

deletion of gene rcoLS20 encoding the repressor of conjugation.

Thus, in both cases, the maximum levels of conjugation increased

Figure 2. Genetic map of pLS20cat. (Putative) genes are numbered. Gene 1 corresponds to the homologue of gene 1 of the related Bacillus
pumilus NRS576 plasmid p576 [37]. The positions and the lengths of the (putative) genes are indicated by arrows. Rightward and leftward oriented
genes are indicated in purple and orange, respectively. Putative Rho-independent transcriptional terminators are indicated with green hairpin
structures. The origin of replication region and the gene conferring resistance to chloramphenicol are labeled with green rectangles. The DNA region
containing the chloramphenicol gene was cloned into the unique SalI site located in pLS20 gene 13 [24]. The sequences flanking the Cm resistance
cassette coding for the N- and C-terminal regions of gene 13 are labeled 13-N and 13-C, respectively. The putative conjugation operon encompassing
genes 28 to 74, is highlighted by a blue background. Genes showing significant homology with genes reported to be involved in conjugation in other
systems are shown in black. Recently, the complete pLS20cat sequence has been deposited by Itaya,M., et al. (Mitsuhiro Itaya Keio University, Japan)
in public database under accession numbers NC_015148.1 and AB615352.1. pLS20cat gene 25, according to our nomenclature, corresponds to gene
001 of the deposited sequence. Due to differences in annotation we prefer to maintain our nomenclature.
doi:10.1371/journal.pgen.1003892.g002
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and efficient conjugation occurred during a much broader time

window. These results are a strong indication that RapLS20 acts to

counteract the RcoLS20-mediated repression of pLS20 conjuga-

tion.

The results of two additional approaches support this view.

First, we determined the expression profile of pLS20cat genes in

strain GR23 when rapLS20 was expressed ectopically by RNAseq. A

heat map representation of the results is presented in the right lane

of Figure 4. Interestingly, almost all of the pLS20cat genes whose

expression was repressed by RcoLS20 (middle lane, red rectangles),

most noticeably genes 28 to 74 containing the predicted essential

conjugation genes, were overexpressed when RapLS20 was induced

ectopically (right lane, green rectangles). Second, we deleted

rapLS20 from pLS20cat by replacing it with a Km marker, and then

determined the conjugation kinetics of the resulting plasmid

pLS20rap. Consistent with its role as a positive regulator, absence

of rapLS20 resulted in a severe reduction in conjugation efficiency

(strain PKS79) (Figure 5). The combination of these results

provides compelling evidence that RapLS20 stimulates conjugation

by relieving RcoLS20 mediated repression of the conjugation genes.

RapI of B. subtilis ICEBs1 affects sporulation
The chromosomes of some B. subtilis strains contain a

conjugative element, named ICEBs1 [41]. Transfer of this ICE

has been shown to be activated by a member of the rap gene

family, rapI, which is located within the ICEBs1 element [42].

Hence, both rapI and rapLS20 play a role in the regulation of a

conjugative element. Based on their similar function we expected

that, like rapLS20, rapI would not affect sporulation. To test this

prediction we constructed PKS139, an ICE-negative strain in

which rapI is placed at amyE under the control of the IPTG

inducible Physpank promoter, and used it to determine the efficiency

of sporulation with and without induction of RapI. Surprisingly,

sporulation efficiency dropped more than 200-fold when RapI was

overexpressed, demonstrating that unlike RapLS20, RapI severely

affected sporulation (supplemental Table S3).

Phr*LS20 inhibits the activity of RapLS20 and thereby
determines the time window of efficient conjugation

Many rap genes are transcriptionally coupled to a downstream-

located phr gene. The small phr genes encode a product that, after

being subjected to an export-import-maturation process, produces

a mature penta- or hexapeptide that inhibits the activity of its

cognate Rap protein. A putative phr gene, phrLS20, is located

immediately downstream of rapLS20. The stop/start codons of

these genes overlap and hence phrLS20 is translationally coupled to

rapLS20, a situation that is similar to those observed for some other

rap-phr cassettes. Inspection of the deduced protein sequence

suggests that phrLS20 indeed encodes a typical pre-pro-peptide. The

44 residue gene product is predicted to contain an N-terminal

signal peptide, a conserved motif upstream of its predicted

maturation cleavage site, as well as conserved residues within the

putative mature peptide [25,43]. Based on this, the mature

phrLS20–derived peptide is predicted to correspond to the five C-

terminal residues of Phr*LS20, ‘‘QKGMY’’, which we will refer to

as Phr*LS20. To test a possible effect we determined conjugation

efficiencies at the end of the exponential growth phase in the

absence or presence of synthetic ‘‘QKGMY’’ peptide. The results

presented in Figure 6A show that the presence of synthetic

Phr*LS20 in the medium greatly reduced the maximum level of

conjugation. These results support the view that Phr*LS20 inhibits

RapLS20–mediated de-repression of the conjugation genes. Con-

jugation efficiency did not alter significantly in the presence of

another pentapeptide ‘‘EKAII’’, demonstrating the specificity of

the Phr*LS20 (not shown). The ‘‘EKAII’’ peptide is the predicted

Figure 3. Gene 27c of pLS20cat encodes a repressor of
conjugation. Conjugation kinetics of pLS20cat and pLS20rco were
determined with and without ectopic expression of pLS20 gene 27c as
described in Materials and Methods. PKS7 was used as recipient strain.
Donor strains PKS14 (pLS20cat) and PKS86 (pLS20rco) both contain an
ectopic copy of pLS20cat gene 27c under the IPTG inducible Pspank

promoter at the chromosomal amyE locus. t = 0 corresponds to the end
of the exponential growth phase. The conjugation efficiencies obtained
for strains PKS14 and PKS86 were below the detection level of 161028

when grown in the presence of IPTG.
doi:10.1371/journal.pgen.1003892.g003

Table 1. pLS20 gene 27c (rcoLS20) encodes a repressor of conjugation.

Strain genotype Plasmid IPTG (1 mM) Conjugation efficiency *

PKS11 168 (wt) pLS20cat 2 5.6 1023

+ 3.8 1023

PKS14 168, amyE::Pspank- rcoLS20 pLS20cat 2 1.6 1024

+ ,1 1028

PKS86 168, amyE::Pspank- rcoLS20 pLS20rco 2 5.761022

+ ,161028

*: Conjugation efficiencies are calculated as transconjugants/donor. Conjugation efficiencies are the mean value of at least three independent experiments.
doi:10.1371/journal.pgen.1003892.t001

Conjugation of Gram + Plasmid Regulated by rap-phr
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mature Phr*576 peptide encoded by a rap-phr cassette located on

the related p576 plasmid [37].

Mature Phr* peptides encoded by other rap-phr cassettes are

taken up by the oligo-peptide permease (Opp) of B. subtilis

[30,32,42]. Figure 6A shows that Phr*LS20 forms no exception

because the addition of Phr*LS20 peptide hardly affected conju-

gation when donor cells were opp-deficient.

The results of two further experiments provided additional

evidence that Phr*LS20 inactivates RapLS20. First, the Phr*LS20-

mediated inhibition on conjugation was counteracted by ectopic

expression of RapLS20 (not shown). Second, we constructed a

derivative of pLS20cat, pLS20phr, in which the phrLS20 gene was

deleted and tested its conjugation kinetics. The results presented in

Figure 6B show that inactivation of phrLS20 had similar effects on

conjugation as those observed in the presence of ectopic expression

of RapLS20 (Figure 5) or inactivation of rcoLS20 (Figure 3). Thus, in

the absence of phrLS20 conjugation efficiencies are high and

conjugation occurs during a very broad time window.

Under our laboratory conditions, efficient conjugation is limited

to a rather small time window before the end of the exponential

growth phase (see Figure 1). The results that Phr*LS20 inhibits the

activity of RapLS20, and that conjugation levels are high at all

growth phases for pLS20phr indicate that the amount of RapLS20

protein is not the limiting factor for activating conjugation but that

its activity is inhibited by Phr*LS20 during early exponential as well

as stationary growth phases. Phr*LS20-mediated inhibition of

conjugation during stationary phase is most likely due to the

accumulation of Phr*LS20 during growth, which will reach

RapLS20-inhibiting threshold levels at or near the end of the

exponential growth phase. However, the low levels of conjugation

during early exponential growth cannot be explained by a similar

kind of reasoning because the freshly diluted culture will contain

low levels of Phr*LS20 in the culture medium. One possible

explanation for this is due to feasible intrinsic features of early

exponential cells. This is very unlikely though taken into account

that high levels of conjugation were obtained at early exponential

growth phase with pLS20phr, pLS20rco or when RapLS20 was

ectopically expressed. An alternative explanation could be that

RapLS20-inhibiting levels of Phr*LS20 are still present inside the

cells after overnight grown cultures are diluted in fresh medium. If

this were the case, then high conjugation levels would be expected

at early exponential growth phase by first growing the diluted

overnight culture of donor cells to the end of the exponential

growth phase and then diluting it again. The result of this

experiment (Figure 6C) shows that high conjugation levels were

indeed observed at early exponential growth phase under these

conditions. Altogether, these results provide strong evidence that

Figure 4. Heat map representation of the expression levels of
the pLS20cat genes at late exponential phase under various
conditions analyzed by RNAseq. Left lane (‘‘wt’’) shows the
expression level of pLS20cat genes in the wild type strain background
at late exponential phase when conjugation efficiency is at its
maximum. Expression levels are presented on a log2 scale covering a
range from 0 (white, lowest level) to 16 (blue, highest level). Middle
(+Rco) and right (+Rap) lanes represent the effects of ectopic expression
of RcoLS20 (middle lane) or RapLS20 (right lane), respectively, on the
expression of the pLS20cat genes. Differential expression levels are
presented on a log2 scale covering a range of 216 to 16 using shades of
red and green for repression and overexpression, respectively. White
reflects no change in expression. Gene numbers according to our
nomenclature and those deposited in database under accession
number NC_015148.1 (preceded by ‘‘J’’) are given on the right). ‘‘c’’
corresponds to leftward oriented genes.
doi:10.1371/journal.pgen.1003892.g004
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Phr*LS20 is the determining factor in regulating the time window at

which conjugation genes are activated.

Discussion

Here, we report for the first time the regulation of a conjugation

system present on a native B. subtilis plasmid. Our results show that

the conjugation genes of pLS20cat are not induced by recipient-

produced pheromones, demonstrating that regulation of the

conjugation system of pLS20cat is fundamentally different from

that of the enterococcal plasmids pAD1 and pCF10.

Using different experimental approaches we demonstrated that

the pLS20cat gene 27c encodes the master regulator of

conjugation, RcoLS20. Interestingly, ectopic expression of RcoLS20,

predicted to be a DNA binding protein, resulted in the repression

of not only the large, putative conjugation operon spanning genes

28 to 74, but also some other pLS20cat genes located outside the

putative operon (for example, genes 11 and 16–21c). While it is

possible that the effects of RcoLS20 on the expression of some of the

genes are indirect, the combination of our results clearly show that

RcoLS20 is the master regulator of conjugation. Further work to

characterize the DNA-binding properties of RcoLS20 and to

identify the operator site(s) of RcoLS20 will be able to provide

important information on how the different genes on pLS20 are

regulated.

We also show that conjugation is activated by anti-repression

and that RapLS20, encoded by pLS20cat gene 25, is the anti-

repressor of RcoLS20. RapLS20 belongs to the large family of Rap

proteins. At the moment of this writing, the number of rap genes

present in databases exceeded 500 members. To our knowledge,

this is the first time that a Rap protein has been demonstrated to

activate plasmid conjugation.

Figure 6. Phr*LS20 pentapeptide inhibits conjugation in an opp dependent manner. A. Effects of synthetic Phr* peptide on conjugation in
the wild type and an opp deficient background. Conjugation efficiencies of pLS20cat were determined at late exponential growth phase using as
recipient strain PKS7, and as donor either strain PKS11 (wild type, black bars) or PKS98 (oppA, grey bars). Diluted overnight grown cultures of donor
cells were split in two, and Phr*LS20 pentapeptide was added to a final concentration of 6 mM to one of the cultures and equal volume of the peptide
buffer to the other. B. Conjugation kinetics of pLS20cat and pLS20phr. Conjugation kinetics was determined as described in Materials and Methods
using PKS7 as recipient strain and PKS14 (pLS20cat) or PKS117 (pLS20phr) as donor strains. t = 0 corresponds to the end of the exponential growth
phase. Both donor strains contain an ectopic copy of rcoLS20 under the IPTG inducible Pspank promoter at the chromosomal amyE locus. Overnight
cultures of donor cells were grown in the presence of 1 mM IPTG and diluted in fresh pre-warmed LB medium without IPTG. C. Conjugation kinetics
of pLS20cat after re-dilution of the donor cell culture. Conjugation kinetics using PKS7 and PKS11 as recipient and donor strains, respectively, was
determined as described in Materials and Methods with the following modification. Overnight cultures were diluted, grown until late exponential
growth phase (OD600 = 0,8), and diluted again (to OD600 = 0.05) before starting the experiment. B and C. t = 0 corresponds to the end of the
exponential growth phase.
doi:10.1371/journal.pgen.1003892.g006

Figure 5. RapLS20 stimulates conjugation. Conjugation kinetics of
pLS20cat and pLS20rap were determined with and without ectopic
expression of RapLS20 as described in Materials and Methods. PKS7 was
used as recipient strain. GR23 (pLS20cat) and PKS79 (pLS20rap) were
used as donor strains. GR23 contains an ectopic copy of rapLS20 under
the control of the IPTG inducible Pspank promoter at the chromosomal
amyE locus. t = 0 corresponds to the end of the exponential growth
phase. Control experiments showed that overexpression of RapLS20 in
strain GR20 did not significantly affect growth (not shown).
doi:10.1371/journal.pgen.1003892.g005
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Most rap genes are present on the genomes of bacilli. The

genome of B. subtilis contains eleven rap genes. The majority of

them inhibit directly or indirectly the activity of the transcriptional

regulators that regulate processes such as sporulation, competence

development and production of degradative enzymes and antibi-

otics [29–35]. Rap genes are also present on some rolling-circle and

theta replicating Bacillus plasmids, and for those analyzed they too

affect the production of extracellular proteases and sporulation

[25,36–40]. Surprisingly, our results showed that rapLS20 plays no

role in sporulation or competence.

Why RapLS20 does not affect these differentiation routes may be

explained by the recently obtained functional and structural data

on how Rap proteins interact with regulatory proteins in the

sporulation and competence pathways [44,45]. Initiation of

sporulation is controlled by the master regulator of sporulation,

Spo0A, which becomes activated upon phosphorylation through

phosphorelay. Eight of the Rap proteins encoded by the

chromosome of B. subtilis and some Rap proteins encoded by

Bacillus plasmids have been shown to interact with and dephos-

phorylate the sporulation protein Spo0F, one of the intermediate

signal transducers. This interrupts the phosphate flux in which the

phosphate is transferred from kinases to Spo0A through

phosphorelay [46]. Competence development, on the other hand,

is controlled by the transcription factor of competence, ComA.

Previous studies have shown that RapC, RapF and RapH inhibit

competence by interacting with ComA and preventing it from

binding to DNA [35,47,48]. Probably all Rap proteins contain a

rather small N-terminal domain of about 70 residues that is

composed of a 3-helix bundle, a flexible linker, and a much larger

C-terminal domain that generally harbors the Rap characteristic

tetratricopeptide repeat (TPR) sequences [44,45]. The recently

resolved crystal structure of the Spo0F-RapH complex revealed

that Spo0F interacts with both the C-terminal TPR domain and

the N-terminal 3-helix bundle of RapH, including Gln47 in the N-

terminal domain. This glutamine residue (GLu49 in the case of

RapP encoded by the B. subtilis plasmid pBS32) is highly conserved

and it constitutes the catalytic residue responsible for dephosphor-

ylating Spo0F,P [40,44]. The alignment of the N-terminal

regions of Rap proteins, presented in Figure 7, shows that neither

the catalytic residue nor other residues in this region shown to be

important for RapH phosphatase activity in vitro and in vivo are

conserved in RapLS20 or Rap576, the latter is encoded by a related

theta replicating plasmid p576 [37]. Moreover, neither residues

located in the C-terminal TPR domain shown to be important for

RapH phosphatase activity are conserved in RapLS20 and Rap576

(not shown).

In the case of ComA, several ComA-interacting residues of

RapF, which are conserved among Rap proteins known to interact

with ComA, have been identified and shown to be vital for the

functionality of RapF [45]. The alignment in Figure 7 shows that

these residues are not conserved in RapLS20 or Rap576, consistent

with our finding that RapLS20 does not affect competence. Thus,

residues important for interaction with Spo0F or ComA are not

conserved in RapLS20, which most probably explains why RapLS20

does not affect sporulation or competence.

It is worth mentioning that Rap proteins involved in the

regulation of the competence and sporulation pathways act as

modulators, by inhibiting and/or delaying these developmental

processes. On contrary, RapLS20 functions as an activator, and

rather than being a modulator, it plays a decisive role in the

conjugation process by relieving RcoLS20-mediated repression.

Thus, whereas conjugation levels were severely affected in the

absence of rapLS20, conjugation was stimulated at all growth phases

when RapLS20 was ectopically expressed, accompanied by

activation of the RcoLS20-repressed genes as analyzed by

transcriptional profiling.

However, the ultimate determining factor responsible for

defining the time window during which conjugation occurs is

Phr*LS20. The observation that addition of synthetic Phr*LS20

peptide inhibits conjugation suggests that the peptide acts in cell-

cell signaling rather than being an autocrine signal. Elevated

conjugation levels were obtained at all growth phases for

pLS20phr that lacked the phrLS20 gene. These results strongly

indicate that sufficient amounts of RapLS20 are available to

stimulate conjugation at all growth phases but that, under our

standard laboratory conditions, its activity is inhibited by Phr*LS20

during early exponential and stationary growth phases, allowing

efficient conjugation to occur only during a rather narrow time

window near the end of the exponential growth phase.

The concentration of Phr*LS20 is expected to be high when all

or the majority of the cells in a population produce the peptide,

and low when the majority of the cells are not producing the

Figure 7. Conserved residues important for Rap proteins known to interact with Spo0F or ComA are not conserved in RapLS20.
Alignment of the N-terminal regions of Bacillus Rap proteins. In addition to RapLS20 and Rap576, the alignment includes Rap proteins that previously
have been demonstrated to dephosphorylate Spo0F (RapP, RapA, RapB, RapE, RapI, RapJ RapH, RapXO1 ( = BXA0205), and Rap60 [Spo0F-phosphatase
activity has not been demonstrated biochemically for Rap60]), and those shown to interact with ComA (RapF, RapC and RapH). Regions adapting an
a-helical formation in RapH are indicated with green cylinders above the alignment. The highly conserved tryptophan residue present in all these Rap
proteins is indicated in green. The catalytic Gln47 residue of RapH that is conserved in six of the seven other Spo0F-interacting Rap proteins as well as
in RapI is highlighted in red. Alanine substitutions in Rap proteins that cause complete or significant loss of function/interaction with Spo0F and
ComA are highlighted by blue boxes [44,45]. RapH residue Leu55 is conserved in RapLS20 and Rap576. It is worth mentioning that although the L55A
mutant affected the function of RapH in vivo, no loss of RapH function was observed for this mutant in vitro [44]. Positions of the a-helices are
indicated above the alignment.
doi:10.1371/journal.pgen.1003892.g007
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peptide. In other words, conjugation genes will be activated

specifically when donor cells are surrounded by recipient cells, and

not by other donor cells. Besides preventing futile expression of

conjugation genes when recipient cells are not present, strict

regulation of the conjugation genes is likely to serve other

purposes. For instance, pLS20cat replicates via the theta mode

of replication [25]. During conjugation, however, replication

switches to the rolling circle mode to generate the ssDNA strand

that is destined to be transferred into the recipient cell.

Simultaneous replication of the theta and rolling circle modes

are likely not compatible and strict regulation of the conjugation

genes, amongst which are those involved in initiating rolling circle

replication, contributes to selecting the mode of replication

according to the circumstances. In addition, it is likely that

expression of the conjugation genes poses a large burden to the

cell. This view is supported by our observations that growth is

affected in cells harboring pLS20rco and pLS20phr, i.e. plasmids

containing alterations leading to constitutive expression of the

conjugation genes.

A summary of the regulatory circuitry of the pLS20 conjugation

genes is schematically presented in Figure 8. RcoLS20 is responsible

for maintaining conjugation in the default ‘‘OFF’’ state by

repressing the conjugation genes. RapLS20 can activate conjuga-

tion by relieving RcoLS20-mediated repression, but is only able to

do so when its activity is not inhibited by the Phr*LS20 signaling

peptide. Therefore, conjugation of the pLS20cat plasmid is strictly

regulated by the Phr*LS20 peptide-mediated quorum sensing (QS)

mechanism. QS is a common way by which bacteria communicate

with one another using small and diffusible chemical signaling

molecules. When the concentration of a signaling molecule

reaches a certain ‘‘quorum’’, bacteria respond by altering its gene

expression profile at a (sub)population-wide scale (for review see,

[49,50]). Several cellular processes in both Gram+ positive and

Gram- bacteria have been shown to be regulated by QS, among

them the development of natural competence in B. subtilis and

Streptococcus pneumonia, [30,43,50]. Here, we show that QS plays a

role in HGT at another level by regulating expression of

conjugation genes of plasmid pLS20. So far, QS has been

reported to regulate conjugation genes of only a few other

conjugative elements. These include the transfer of the tumor-

inducing pTI plasmid of the Gram- Agrobacterium tumefaciens into

plant cells. In this case, activation of conjugation requires two

signaling peptides, one produced by the plant and the other by the

donor cell [51]. Regulation of conjugation of the enterococcal

plasmid pCF10, -and probably in a similar way pAD1-, also

involves two signaling peptides, one produced by donor and the

other by recipient cells. The two peptides compete for binding to a

single transcriptional regulator, PrgX, and act antagonistically on

conjugation. However, instead of being an activator, PrgX is a

repressor. When PrgX is bound to the donor-produced signaling

peptide the complex binds DNA and represses the conjugation

genes. Conjugation genes become activated when recipient-

produced signaling peptide replaces the donor-produced signaling

peptide in the PrgX/peptide complex thereby inactivating the

repressor activity of PrgX. Consequently, conjugation genes are

activated by recipient produced signaling peptides [17]. Our

results show that the QS mechanism to regulate conjugation genes

of pLS20 differs in various aspects from those regulating

conjugation of the pTi and pCF10/pAD1 plasmids. First,

regulation of pLS20 conjugation genes involves not two but only

one signaling peptide, Phr*LS20. Second, the signaling peptide does

not act directly on the transcriptional regulator but instead

regulates activity of another protein, RapLS20, which functions as

an anti-repressor. And third, the signaling peptide does not

function to activate conjugation genes but to return the

conjugation system to the default ‘‘OFF’’ state by inhibiting the

activity of the anti-repressor.

Although rap-phr cassettes have not been shown before to

regulate conjugation of a plasmid, the B. subtilis chromosomal rapI-

phrI cassette has been described to regulate activation of the

integrative conjugative element ICEBs1 [42]. There are several

similarities but also interesting differences between the conjugation

systems present on plasmid pLS20 and the chromosomal ICEBs1.

In both systems, transcription of the conjugation genes are

repressed by an Xre-type repressor (RcoLS20 and ImmR,

respectively) and the gene encoding the repressor protein is

divergently oriented with respect to a large putative operon

encoding the structural conjugation genes. In addition, in both

cases conjugation is activated by a Rap protein (RapLS20 and

RapI, respectively) whose activity is controlled by a quorum

sensing peptide encoded by the downstream phr gene. As we have

proposed for rapLS20-phrLS20, a major function of the rapI-phrI

cassette of ICEBs1 is a sensing mechanism to induce genes

required for conjugation when recipient cells are present [42].

However, there are several important differences between the

RapLS20-PhrLS20 and the RapI-PhrI systems. One significant

difference is that transfer of ICEBs1 requires, besides RapI, the

ICEBs1-encoded ImmA protein to relieve the ImmR-mediated

repression of the ICEBs1 genes [52]. The immA gene is located

immediately downstream of immR. ImmA is a protease that cleaves

ImmR and its activity is probably controlled by RapI [53].

However, an immA homologue is not present on pLS20cat. More

importantly, our preliminary results indicate that RapLS20

functions directly as the anti-repressor of RcoLS20 (to be published

elsewhere). Another major difference is that efficient mating of

ICEBs1, like most other ICEs, is limited to solid media, whereas

pLS20 mates also efficiently in liquid medium [23,24,54, this

study]. In a typical solid medium conjugation experiment, a

concentrated mixture of donor and recipient cells is incubated on a

solid surface for several hours, permitting donor cells to intimately

contact recipient cells for a prolonged period of time. These

conditions also correlate with high cell density, cell crowding and

starvation, i.e. stationary phase conditions at which cells generally

induce developmental pathways in order to cope with the

suboptimal growth conditions.

The third difference is the timing of transfer. Auchtung et al. [42]

reported that conjugation of ICEBs1 is low during mid exponential

and much higher during stationary growth. The authors provided

evidence that rapI is negatively regulated by the transition state

regulator AbrB, which represses transcription of several B. subtilis

genes specifically during the exponential growth phase [55]. Thus,

RapI stimulates transfer of ICEBs1 during stationary phase

conditions that favor intimate intercellular contacts; conditions that

typically occur during conjugation on solid medium. In B. subtilis

such conditions also stimulate initiation of the sporulation pathway.

Most probably, sporulation and conjugative transfer of an ICE

element are not compatible and hence efficient transfer of the

ICEBs1 element would benefit from inhibiting sporulation in that

cell. Interestingly, we have found that ectopic expression of RapI

strongly affects sporulation. In agreement with our results, it has

been shown very recently that RapI can dephosphorylate Spo0F in

vitro [56]. Together these results demonstrated that RapI has a dual

function: it activates transfer of ICEBs1 during stationary phase and

inhibits the initiation of sporulation that is normally stimulated

under these conditions.

We have shown that RapLS20 regulates conjugation of pLS20cat

in a strikingly different manner. Several results showed that

efficient pLS20cat conjugation occurs during exponential growth
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and that it is strongly inhibited during stationary growth. This

important difference may be related to the fact that conjugation of

pLS20cat occurs efficiently in liquid medium when cells have a

planktonic lifestyle and probably spend more time in the

exponential growth phase than cells growing in sessile communi-

ties. Our results on RapLS20, together with published results on

other Rap proteins, demonstrate the enormous plasticity of how

these proteins have evolved into versatile regulatory proteins that

control diverse cellular processes by interacting with a wide range

of other regulatory proteins.

Materials and Methods

Bacterial strains, media, oligonucleotides and peptides
Escherichia coli and B. subtilis strains were grown in Luria-Bertani

(LB) medium or on 1.5% LB agar plates [57]. When appropriate,

media or agar plates were supplemented with the following

antibiotics: ampicillin (100 mg/ml), erythromycin (1 and 150 mg/

ml for B. subtilis and E. coli, respectively), chloramphenicol (5 mg/

ml), spectinomycin (100 mg/ml), kanamycin (10 mg/ml). Compe-

tent cells were prepared as described before [58]. Transformants

were selected on LB agar plates with appropriate antibiotics. For

sporulation experiments, Bacillus strains were grown in Schaeffer’s

medium [59]. Plasmids and strains used are listed in supplemental

Table S4. B. subtilis strains are all isogenic with B. subtilis strain 168

(Bacillus Genetic Stock Centre Code 1A700). Oligonucleotides

used (Isogen Life Sciences, The Netherlands) are listed in

supplemental Table S5. Phr*LS20 and Phr*576 peptides were

synthesized by the Proteomics department of our Institute.

Transformation
E. coli cells were transformed using standardized methods [57].

For standard B. subtilis transformations, competent cells were

Figure 8. Model of regulatory circuitry of pLS20 conjugation genes. A. Repressed state due to RcoLS20. Gene rcoLS20 (red arrow, rco) encoding
the master repressor of conjugation genes RcoLS20 is divergently transcribed from the putative conjugation operon encompassing genes 28 to 74
(light blue arrows). RcoLS20 inhibits expression of the conjugation genes by repressing a promoter, Pc, located upstream of gene 28, the first gene of
the putative conjugation operon (our unpublished results). B. Activation of conjugation by RapLS20 anti-repressor. Gene rapLS20 (green arrow, rap)
encodes the anti-repressor of RcoLS20 leading to de-repression of the conjugation genes. C. Repressed state due to inactivation of RapLS20 by
signaling peptide Phr*LS20. Gene phrLS20 (brown arrow, phr) encodes a pre-pro-protein of 44 residues. This protein is subject to an export-maturation-
import route. The mature pentapeptide inhibits activity of the RapLS20 anti-repressor protein. For simplicity, import of the mature peptide has been
shown into the cell producing the peptide. Grey cylinders labeled sec and imp, respectively, indicate the secretion and import routes. Extracellular
processing of the secreted peptide is symbolized by the brown interrupted rectangle. QS, quorum sensing.
doi:10.1371/journal.pgen.1003892.g008

Conjugation of Gram + Plasmid Regulated by rap-phr

PLOS Genetics | www.plosgenetics.org 10 October 2013 | Volume 9 | Issue 10 | e1003892



prepared as described by Bron (1990). For making knockout

version of pLS20cat, high competency protocol was used as

described by Zhang and Zhang [60].

Construction of plasmids and strains
DNA techniques were performed using standard molecular

methods [57]. All enzymes used were purchased from New

England Biolabs, USA. The correctness of all constructs was

verified by sequence analysis. To construct a strain containing

rcoLS20 gene under the control of the IPTG-inducible Pspank

promoter, the gene was amplified from plasmid pLS20cat by

polymerase chain reaction (PCR), using primers Xre20UpHind

and Xre20DnNhe. The PCR product was cleaved with HindIII

and NheI and cloned into these sites of vector pDR110 (a gift from

D. Rudner, see Table S4) to produce pDRrcoLS20. Plasmid

pDR110 is a B. subtilis amyE integration vector that contains a

multiple cloning site located behind the IPTG-inducible Pspank

promoter. Next, the Pspank-rcoLS20 construct was placed at amyE

locus at the B. subtilis chromosome by transforming competent B.

subtilis 168 cells with plasmid DNA pDRrcoLS20 and selecting for

spectinomycin resistant colonies. Double cross over event of the

resulting strain PKS9 was confirmed by the loss of a functional

amylase gene. Plasmid pLS20cat was conjugated into strain PKS9

to give strain PKS14. The same strategy, using primers

Rap20UpSal and Rap20DnNhe, was applied to obtain strain

GR20 that contains a Pspank-rapLS20 fusion at the amyE locus. GR23

strain was obtained by conjugating plasmid pLS20cat into strain

GR20. In plasmid pPKS26 rapI is placed under the control of the

Physpank promoter. This plasmid was constructed by first ampli-

fying a rapI containing DNA fragment by PCR using oligos

oGR85 and oGR86 and B. subtilis 168 DNA as template. Next the

PCR fragment was digested with NheI and SphI and cloned in

vector pDR111 digested with the same enzymes. Finally, the

Physpank-rapI construct was placed at amyE locus of the ICEBs1

negative strain PY79 by using plasmid pPKS26 to transform

competent PY79 cells resulting in strain PKS139. A standard

protocol was used to construct derivatives of pLS20cat in which

the rapLS20, phrLS20 or rcoLS20 genes were replaced by an antibiotic

resistance marker [37].

Conjugation assays
Unless specified otherwise, conjugation was carried out in liquid

medium as described by Itaya et al. [24]. Thus, for standard

conjugation experiments, overnight cultures of donor and

recipient cells, grown in the presence of appropriate antibiotics,

were diluted 25 fold in fresh 37uC pre-warmed LB medium

without antibiotics and grown for 2.5 h in shaking (125 rpm) water

bath. Next, 200 ml of both donor and recipient cells were mixed in

2.5 ml eppendorf tube and incubated for 15 min at 37uC without

shaking to permit conjugation. Finally, appropriate dilutions were

plated on LB agar plates supplemented with proper antibiotics to

select either for transconjugants or for donor cells. When

conjugation efficiencies were determined as a function of growth,

overnight cultures were diluted to an OD600 of 0.01. Next, donor

and recipient cells were grown separately (180 rpm) and 200 ml of

the donor and recipient cultures were withdrawn at different times

and proceeded as described above. Growth was followed by

measuring OD600 at regular intervals. In order to study the effect

on conjugation of over-expression of a given gene placed under the

control of the inducible Pspank promoter, IPTG was added to

prewarmed LB medium used for inoculation of the overnight

grown cultures. Unless mentioned otherwise, IPTG was added to a

final concentration of 1 mM.

All conjugation experiments were repeated at least three times.

The entry into stationary growth (t = 0) is determined in retrospect

based on the growth curve. Consequently, time points at which

samples were taken fluctuate slightly between each experiment.

Values for specific time points extrapolated from the curves of

repeated experiments showed that they differed by less than 10%.

Therefore, the results of representative experiments are presented

in Figures 1, 3, 5 and 6.

RNA isolation and RNA sequencing
Total RNA was isolated from late exponentially growing cells by

using RNeasy Mini Kit from Qiagen according to manufacturer’s

protocol. RNA protect solution provided by Qiagen was used to

ensure the integrity of RNA during isolation and also to stop

transcription at given time points. RNA was treated with

DNAseTurbo (Ambion) to remove possible traces of contaminant

DNA. Between 5 to 15 mg of total RNA was subjected to rRNA

removal using RiboZero (Epicentre, either Gram-positive specific

or metabacteria-specific) following the manufacturer instructions

to obtain 150–250 ng of rRNA-depleted RNA. Next, RNA of

each sample was used to prepare cDNA libraries using a

procedure that preserves information about transcript’s direction

(ScriptSeq mRNA library preparation kit, Illumina compatible;

Epicentre) [61]. As specified by the supplier, samples were

fragmented for 5 min at 85uC and subsequently bar-coded so

that they could be run in combination.

After library prep, samples were titrated by quantitative PCR,

pooled and bound at a final concentration of about 10 pM to an

Illumina SR-flowcell using a Cluster Station apparatus (Illumina).

Libraries were then run on a GAiix equipment (Unidad de

Genómica, Parque Cientı́fico de Madrid) by SBS under a single-

read 1636 protocol. Quality filtering was performed automatically

according to Illumina specifications and fastq files generated.

Bioinformatic analysis of RNAseq data
Data set. The analyzed data set was constituted by five B.

subtilis subsp. subtilis str. 168 and plasmid pLS20cat samples

corresponding to four different experimental conditions (see

supplemental Table S6), with a total of 56,439,165 single end

reads of 36 nt length in FASTQ format. Data were analyzed using

the standard bioinformatic analysis workflow of a RNA-seq

experiment detailed below.

Reads quality: A preliminary analysis of the quality of the

reads was performed using FastQC, a Java tool with graphic

interface (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Percentages between 93.02% and 93.24% of all bases

had a quality score of 30 or higher (probability of incorrect base

call of 1023 or lower) and between 85.43% and 85.85% of all

bases had a quality score of 35 or higher (probability of incorrect

base call of 3?1024 or lower), being 40 the maximum score quality

reported in FASTQ format (probability of incorrect base call of

1024 or lower). Because of the high quality it was not necessary to

process the reads by filtering or trimming them. The results are

summarized in supplemental Table S6.

Alignment: The reads were mapped to the published B.

subtilis subsp. subtilis str. 168 and plasmid pLS20cat reference

genomes using Bowtie software [62] with the following parame-

ters. Maximum allowed number of mismatches 3, input qualities

are Phred+33 [63,64], and the ‘‘-–best’’ option was switched on,

ensuring that reported alignments are ‘‘best’’ in terms of chosen

criteria (allowed number of mismatches), and that alignments are

reported in best-to-worst order. Of the total reads, a percentage

between 92.48 and 98.51% could be mapped to the reference

genome with 79 to 106-fold sequencing coverage across the entire
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genome. Unmapped reads were searched in UniVec database

using BLAST [65]. UniVec is a database that contains DNA

sequences of cloning/expression vectors, adapters, linkers, and

primers that are commonly used in the process of cloning and

sequencing nucleic acids (http://www.ncbi.nlm.nih.gov/tools/

vecscreen/univec/). This database was used to identify such

contaminating sequences from the unmapped reads. Of total

reads, percentages between 0.18% and 0.56% were assigned to

UniVec database sequences, revealing very low levels of vector

contamination. Unmapped reads were discarded for further

analysis. These results were summarized in supplemental Table

S6. Out of the total of 56,439,165 reads, 1,596,385 (2.83%)

mapped to the pLS20cat genome, which were used to calculate

expression levels of individual pLS20cat genes under the different

conditions.
Expression levels: The alignment files were processed using

EpiCenter software (http://www.niehs.nih.gov/research/resources/

software/biostatistics/epicenter/), an analysis tool of genome-wide

mRNA-seq or ChIP-seq data for detecting differentially expressed

genes [66].

Plasmid pLS20cat expression levels were additionally used to

draw a heat map, by using Matrix2png software (http://www.

chibi.ubc.ca/matrix2png/) [67], that graphically shows the

expression levels of ‘‘wild type’’ experimental conditions (left lane

on Figure 4). In addition, the heatmap shows the differences in

expression of pLS20cat genes when RcoLS20 or RapLS20 were

ectopically expressed (middle and right lanes Figure 4, respective-

ly) compared to the wild type situation.

Computer-assisted analysis
Protein blast (blastP and psi-blast) searches (http://blast.ncbi.

nlm.nih.gov/Blast.cgi) were performed for each ORF of pLS20cat

to gain insights in the function of the proteins encoded by these

ORFs. Alignments of the primary amino acid sequences of Rco

homologues were made using the ClustalW2 program (http://

www.clustal.org/clustal2). Adobe Photoshop CS2 and Adobe

Illustrator were used for creating figures and art work. The Excel

program was used to create graphics.

Supporting Information

Figure S1 Alignment of different Xre-type repressors. Helix-

Turn-Helix region is highlighted in red. Conserved residues

(present in at least 6 of the 10 proteins) are highlighted in yellow.

Abbreviations (accession numbers given in brackets):

DBHTH_Paeni.HGF7, DNA-binding helix-turn-helix protein of

Paenibacillus sp. HGF7 (ZP_08510432); Xre_Paeni.polySC2, XRE

family transcriptional regulator Paenibacillus polymyxa SC2

(YP_003945377); RcoLS20, Repressor of conjugation B. subtilis

natto IFO 3335 plasmid pLS20 (YP_004243490); Xre_p576, Xre

type repressor B. pumilus NRS576 plasmid p576; DBP_B.subp19,

DNA binding protein of plasmid p19 of B. subtilis 19 (ABP52080);

Regulator_P.elgii, transcriptional regulator Paenibacillus elgii B69

(ZP_09077606); Repressor_B.amylo, transcriptional repressor

RghR of B. amyloliquefaciens DSM7 (YP_003921816); Xre_Deha-

lo.GT, XRE family transcriptional regulator Dehalococcoides sp. GT

(YP_00346200); Regulator_Desulfo.DSM, putative transcriptional

regulator Desulfosporosinus youngiae DSM 17734(ZP_09652311);

ImmR_ICE168, XRE family transcriptional regulator of ICE

element B .subtilis 168 (NP_388363).

(DOCX)

Table S1 Characteristics of genes and ORFs located in the

putative conjugation operon.

(DOCX)

Table S2 Ectopic expression of RapLS20 does not affect

competence or sporulation.

(DOCX)

Table S3 ICEBs1 encoded RapI inhibits sporulation.

(DOCX)

Table S4 Strains and plasmids used in these studies.

(DOCX)

Table S5 Oligonucleotides used in these studies.

(DOCX)

Table S6 Summary of experimental RNA seq conditions,

sequence reads, coverage, and quality score.

(DOCX)
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