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Abstract

Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic
clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the
transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination,
increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin
templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the
downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and
downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the
rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of
transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes.
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Introduction

An intriguing question for understanding protein-DNA recog-

nition is how low-abundant transcription factors recognize their

target sites in genomic DNA [1,2]. Empirical studies revealed that

regulatory regions, such as enhancers and promoters, comprise

modular units of a few hundred base pairs that harbour multiple

binding sites for the same transcription factor. Such ‘homotypic

clustering sites’ (HTCs) have been identified in 2% of the human

genome, being enriched at promoters and enhancers [3]. HTCs

have been shown to play a role in Drosophila development,

regulating early patterning genes [4–6]. Genome-wide binding

analyses in yeast have demonstrated that the occupancy of

transcription factors is higher at clustered binding sites compared

to single ones [7]. Studies in mammalian cells have shown that

clustering of binding sites facilitate the cooperative binding of

nuclear receptors to their target sites in vivo, suggesting that HCTs

coordinate the recruitment of transcription initiation factors [8–

10]. Alternatively, cooperative binding could arise through

indirect effects, e.g. by changing the accessibility of neighbouring

binding sites in chromatin [11].

To assess the functional relevance of homotypic clustering of

transcription factor binding sites, we studied the 39-terminal region

of murine rRNA genes (rDNA), which contains ten binding sites

(T1–T10) for the transcription termination factor TTF-I. Binding

of TTF-I to the terminator elements is required to stop elongating

RNA polymerase I (Pol I) and termination of pre-rRNA synthesis

occurring predominantly at the first terminator T1 [12–15]. In

addition to the downstream terminators, there is a single TTF-I

binding site, termed T0, located 170 bp upstream of the

transcription start site [16]. Binding of TTF-I to this site is

required for efficient transcription initiation and for the recruit-

ment of chromatin remodelling complexes that establish distinct

epigenetic states of rRNA genes. The interaction of TTF-I with

CSB (Cockayne Syndrome protein B), NoRC (Nucleolar Remod-

eling Complex), or NuRD (Nucleosome Remodeling and

Deacetylation complex), respectively, has been shown to recruit

histone modifying enzymes which lead to the establishment of a

specific epigenetic signature that characterizes active, silent or

poised rRNA genes [17–20].

TTF-I has been shown to oligomerize in vitro and to link two

DNA fragments in trans [21]. These characteristics enable TTF-I

bound to the upstream binding site T0 and the downstream

terminators T1–T10 to loop out of the pre-rRNA coding region

[22,23]. Formation of a chromatin loop facilitates re-initiation and

increases transcription initiation rates at the rRNA gene [22,24].

TTF-I is a multifunctional protein that is not only essential for

transcription termination, but also directs efficient rDNA tran-

scription, mediates replication fork arrest [25], establishes specific

epigenetic features and determines the topology of rDNA. The

conservation of multiple TTF-I binding sites downstream of the

pre-rRNA coding region raises the question whether homotypic

clustering of terminator elements is functionally relevant. Here we

demonstrate that HTCs serve a chromatin-specific function.

Packaging into chromatin increases the binding affinity of TTF-I

to clustered terminator elements, augments the efficiency of

transcription termination, enhances transcription initiation, and

changes the higher-order structure of rRNA genes. The homotypic

clusters at the rRNA gene coordinate the timing of molecular

events, coordinating transcription termination and initiation and
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the occurrence of higher-order chromatin domains, suggesting an

important chromatin-dependent role for clustered binding sites in

the genome.

Results

Multiple termination sites enhance the efficiency of
transcription in vitro

The rDNA terminators in human and mouse exhibit an overall

similar structure, containing 10 to 11 TTF-I binding sites in close

proximity (Fig. S1A). We focused on the murine rDNA

terminator, which comprises 10 termination sites (T1–T10) spaced

by 18–123 bp, preventing the accommodation of nucleosomes in

between the TTF-I binding sites. The consensus sequence of these

TTF-I binding sites share almost perfect sequence identity within

the core motif GGTCGACCAG, while the surrounding nucleo-

tides vary slightly (Fig. 1A). In electrophoretic mobility shift assays

(EMSAs) recombinant TTF-I bound with comparable affinity to

all terminators assayed (data not shown). The DNA binding

affinity of TTF-I was quantified by microscale thermophoresis,

recording changes of nucleoprotein complex mobility in a small

temperature gradient [26]. By titrating a wide range of TTF-

I:DNA ratios, the binding constant of TTF-I to free Sal-box DNA

was determined to be 0.5 mM (Fig. 1B), a relatively low DNA

binding affinity which is one order of magnitude lower than the

KD of other transcription factors [27–29].

In vitro transcription assays on a circular minigene comprising

the rDNA promoter fused to a single termination site (pMrSB)

yielded long read-through transcripts in the absence of TTF-I.

The addition of recombinant TTF-I led to the synthesis of

terminated transcripts whose lengths correspond to the distance

from the transcription start site to the terminator T1 (Fig. 1C). If

the template contained all ten terminators (pMrT1-T10), both

read-through transcripts and a heterogeneous population of

transcripts randomly terminated at any of the TTF-I binding

sites were synthesized due to sub-saturating TTF-I levels in the

extract (Fig. 1D). In the presence of increasing concentrations of

recombinant TTF-I the amount of transcripts stopped at

terminator T1 progressively increased (Fig. 1D, lanes 1–8 and

Fig. S2). Thus, TTF-I binds to all sites with similar affinity and

randomly terminates transcription until at saturating concentra-

tions TTF-I occupies all ten terminators.

A strikingly different result was obtained on rDNA templates

assembled into chromatin with an extract from Drosophila embryos

[30] (Figure S1B). Consistent with Pol I transcription on

chromatin requiring binding of TTF-I to the promoter-proximal

terminator T0 and ATP-dependent chromatin remodelling

[31,32], transcription was repressed in the absence of TTF-I

(Fig. 1D, lane 9). The addition of TTF-I relieved transcriptional

repression, yielding only a single RNA species of 686 nt. On

chromatin templates, already lowest TTF-I concentrations termi-

nated transcription specifically at T1 (Fig. 1D, lanes 10–16 and

Fig. S2). The result suggests that transcription in chromatin is only

initiated when the termination sites are set, meaning that the TTF-

I binding site at the promoter is only bound after sequestering

TTF-I at the terminator. The qualitative difference between

transcription on free DNA and chromatin templates indicates that

on chromatin templates TTF-I either binds preferentially to T1 or

the overall binding affinity of TTF-I to all terminator sites is

increased in chromatin.

Clustered termination sites facilitate cooperative binding
of TTF-I to chromatin

Next, we performed electrophoretic mobility shift assays

(EMSAs) and DNase I footprinting experiments to compare

TTF-I binding to free DNA and chromatin. Consistent with

the transcription data on free DNA, EMSAs on terminator

DNA fragments containing more than one TTF-I binding sites

yielded heterogeneous nucleoprotein complexes, reflecting

binding to each binding site with similar affinity (Fig. 2A).

On chromatin templates, DNase I footprinting experiments

demonstrate that TTF-I simultaneously bound to all terminator

binding sites (Fig. 2B). Together with the transcription results

on chromatin templates, this suggests that homotypic clustering

of target sites increases the binding affinity of TTF-I to

chromatin.

To compare the binding affinity of TTF-I to free DNA and

reconstituted chromatin, we performed DNase I footprinting

assays, monitoring DNase I cleavage sites by primer extension

which allows simultaneous analysis of TTF-I occupancy at the

promoter and terminator(s) (Fig. 2C). TTF-I binding can be

observed by the disappearance of a DNase I sensitive site that is

apparent within the TTF-I binding sites of free DNA and

reconstituted chromatin (Fig. 2B and C). In agreement with the

binding studies and the in vitro transcription experiments, TTF-I

binds on free DNA to the promoter-proximal terminator T0 and

the downstream terminators with similar affinity (Fig. 2C,

compare lanes 2–4 and lanes 9–11). On chromatin templates,

TTF-I binding to the upstream site T0 is comparable to its binding

to free DNA (Fig. 2C, upper panel). However, on chromatin

templates TTF-I binds with higher affinity to the clustered sites,

fully occupying all terminator sites at low protein concentrations

(Fig. 2C, lower panel). Significantly, TTF-I occupied the binding

sites at the terminators prior to the promoter-proximal site

(compare lanes 5–7 and 12–14), showing a specific role of

chromatin and binding site clustering for increasing the binding

affinity of TTF-I. The sequential binding of TTF-I, first to the

terminators and then to the gene promoter in chromatin was also

confirmed using a different method. Affinity purification of either

TTF-I bound free DNA or chromatin revealed binding of TTF-I

to the gene terminators reconstituted into chromatin already at

concentrations one order of magnitude lower than with the gene

promoter (Fig. S3). Like in the footprinting assay, this effect was

not detectable using free DNA, where both TTF-I binding regions

Author Summary

The sequence-specific binding of proteins to regulatory
regions controls gene expression. Binding sites for
transcription factors are rather short and present several
million times in large genomes. However, only a small
number of these binding sites are functionally important.
How proteins can discriminate and select their functional
regions is not clear, to date. Regulatory loci like gene
promoters and enhancers commonly comprise multiple
binding sites for either one factor or a combination of
several DNA binding proteins, allowing efficient factor
recruitment. We studied the cluster of TTF-I binding sites
downstream of the rRNA gene and identified that
cooperative binding to the multimeric termination sites
in combination with low-affinity binding of TTF-I to
individual sites upstream of the gene serves multiple
regulatory functions. Packaging of the clustered sites into
chromatin is a prerequisite for high-affinity binding,
coordinated activation of transcription and the formation
of a chromatin loop between the promoter and the
terminator.

Multiple TTF-I Binding Sites Enhance Transcription
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were occupied with similar affinity. Apparently, the clustered

arrangement of binding sites increases the affinity of TTF-I, thus

promoting the association of TTF-I with the downstream

terminators T1–10 prior to the upstream site T0, a process that

appears to be essential for both TTF-I dependent transcription

activation and transcription termination.

Figure 1. Chromatin-specific termination at the homotypic cluster of TTF-I. (A) Overview of the murine rRNA gene and the location of the
TTF-I binding sites. A homotypic cluster of TTF-I sites is located in the terminator region. The distances between TTF-I binding sites, their orientation
and the gene promoter are indicated. A comparison of the TTF-I binding sites T0 and the termination sites T1 to T10 is depicted. (B) Increasing
amounts of TTF-IDN348 were incubated with 50 nM of either a fluorescently labelled 30-mer oligonucleotide containing a Sal-box motif (T2) or a
control oligonucleotide of the same length. Protein-DNA interactions are quantified by microscale thermophoresis. Curve fitting with a Hill coefficient
of 1 resulted in a KD of 500 nM+/2120 nM for the T2 sequence. (C) Transcription reaction using the circular rDNA minigene plasmid pMr-SB
containing a single termination site, a partially purified nuclear extract lacking most of the nuclear TTF-I (DEAE280), performed in the presence or
absence of recombinant TTF-I. The positions of the long read-through and the terminated transcripts are indicated. (D) Transcription on free DNA and
chromatin, using the pMrWT-T DNA containing the promoter with the TTF-I binding site T0 and the full terminator with the 10 termination sites. DNA
(lanes 1–8) and chromatin (lanes 9–16) were incubated with increasing concentrations of TTF-I as indicated and the DEAE280 extract. The position of
the long, non-terminated read-through transcript (RT) and the terminated transcripts are indicated.
doi:10.1371/journal.pgen.1003786.g001

Multiple TTF-I Binding Sites Enhance Transcription
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Clustered terminators act as a transcriptional enhancer in
vivo

To study the functional relevance of clustered sites in vivo, we

transfected CHO cells with reporter plasmids containing the

murine Pol I promoter, an internal ribosomal entry site (IRES),

Firefly luciferase cDNA and either no terminator (pTD) or one

(pT1), two (pT2) or ten (pT10) termination sites. As shown in

Figure 3A, the presence of one or two terminators (pT1 and pT2)

enhanced transcription of the luciferase reporter 8- to 12-fold

compared to the terminator-deficient vector. The presence of ten

termination sites (pT10) decreased luciferase activity, presumably

due to squelching of endogenous TTF-I. In support of this view,

Figure 2. Multiple termination sites enable cooperative binding of TTF-I to chromatin. (A) Electrophoretic mobility shift assays (EMSA)
were performed with a single TTF-I binding site (T1, lanes 1–4), two binding sites (T1–2, lanes 5–9) and an array of five binding sites (T1–5, lanes 10–14)
and increasing concentrations of TTF-I as indicated. Nucleoprotein complexes are resolved on native polyacrylamide gels and detected by
autoradiography. The positions of the free DNA molecules and the TTF-I-DNA complexes (triangles) are indicated. (B) Monitoring TTF-I binding to the
chromatinized terminator by DNase I footprinting. The pMr-T plasmid containing the full terminator was reconstituted into chromatin with
Drosophila embryo extract. Chromatin was incubated with increasing concentrations of TTF-I as indicated and partially digested with DNase I.
Footprints were analysed by a primer extension reaction using a radioactively labelled oligonucleotide and resolving the DNA on 6% sequencing gels.
The marker was generated by partial digestion of the plasmid with the restriction enzyme SalI and analysed by the same primer extension reaction.
The SalI sites (T1 to T10) represent the TTF-I binding sites and the triangles indicate sites of DNase I protection. (C) Comparative footprinting of TTF-I
binding to the promoter and terminator of free DNA and chromatin. Identical amounts of pMrWT-T were used as free DNA (lanes 1 to 4 and 8 to 11)
or chromatin (lanes 5 to 7 and 12 to 14) and incubated with increasing amounts of TTF-I as indicated. DNA was partially digested with DNase I and
the purified DNA was analysed by primer extension reactions, either using a radiolabelled oligonucleotide binding close to the promoter (lanes 1 to
7) or binding close to T1 in the terminator region (lanes 8 to 14). DNA was separated on 8% sequencing gels, dried and analysed after
autoradiography. The TTF-I binding sites T1, T2 and T0 and the protected DNase I cutting sites (triangles) are indicated.
doi:10.1371/journal.pgen.1003786.g002

Multiple TTF-I Binding Sites Enhance Transcription
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transient overexpression of TTF-I (pTTFDN348) revealed a linear

correlation between the number of terminators and reporter gene

activity, showing further transcriptional enhancement by the pT10

construct (Fig. 3B and Fig. S4B). Additional controls revealed that

the stimulatory effect depends on the TTF-I binding sites at the

promoter and the terminator (Fig. S4A) and co-transfection of

pTTFDN470 revealed that the chromatin-binding domain of

TTF-I is required. pTTFDN470 represents a deletion mutant that

is capable of binding to its target sites on free DNA but not on

chromatin [31]. Therefore, pTTFDN470 cannot activate tran-

scription in a chromatin context [31] and transfection of this

construct did not further activate transcription of the pT10

construct (Fig. 3C and Fig. S4B). The control shows that

chromatin-specific activities of TTF-I are required for efficient

transcriptional activation. Notably, there was no luciferase

expression using reporters with TTF-I binding site(s) in the reverse

orientation (pT1R, pT10R), supporting the importance of the

topological arrangement of the HCTs for efficient Pol I

transcription.

To examine whether the number of terminators affects gene

activity and/or the spatial organization of rDNA in a genomic

context, we generated stable cell lines that harbour a single copy of

mouse rRNA minigenes, either containing only T1 (CHO-pT1) or

all ten terminators (CHO-pT10) (Fig. S5). Using the Flip-In system

we generated comparable rRNA minigene lines, integrated at the

same genomic site of CHO cells. This strategy allows us to rule out

effects of inefficient chromatin packaging and minigene dosage in

transfection experiments. The nuclear localisation of the ectopic

rDNA was not affected, as 3D immuno-FISH experiments

revealed that comparable number of rDNA was associated with

the nucleoli in the stable cell lines (33 of 104 alleles were associated

with nucleoli in CHO-pT1 and 50 of 160 alleles in CHO-pT10

cells; Fig. S5A, B). RNA FISH experiments confirmed that all cell

lines were transcriptionally active (Fig. 3D). Expression analysis of

the rRNA minigene by qRT-PCR and reporter assays revealed

that both the level of the ectopic pre-rRNA and the Pol I-driven

luciferase activity were increased in CHO-pT10 compared to

CHO-pT1 cells (Fig. 3E and Fig. S5C), reinforcing the activating

role of clustered termination sites in rDNA transcription.

HTC is required for gene looping and efficient loading of
Pol I specific factors

To decipher the molecular mechanism underlying HTC-driven

transcriptional activation, we compared transcription factor

occupancy within the stable cell lines, containing single rDNA

minigenes with either one (CHO-pT1) or ten terminators (CHO-

pT10, Fig. 4A). As shown in Figure 4B, binding of Pol I and UBF

was enhanced at the promoter, the transcribed region and the

terminators of CHO-pT10 compared to CHO-pT1 cells. In

addition, we observed increased binding of TBP to the promoter

of CHO-pT10 cells, demonstrating that augmented rDNA

transcription is a direct consequence of enhanced transcription

initiation and polymerase occupancy. Pol I enrichment down-

stream of the terminator region was reduced in CHO-pT10 cells,

consistent with clustered TTF-I binding sites promoting efficient

termination. Similar results were obtained with the transient

transfection of the constructs (Fig. S6).

Active rRNA genes are known to form chromatin loops,

connecting the promoter with the terminator to promote recycling

of Pol I [22,23,33]. To examine whether multiple terminators

facilitate loop formation, we determined the occupancy of TBP at

the terminator in the stable cell lines CHO-pT1 and CHO-pT10

(Fig. 4B lower panel and 4C). The close proximity of a protein to

DNA results in crosslinking and co-purification of the DNA, even

though the factor does not directly contact the DNA at this site.

Such binding events indicate the close spatial proximity of distant

DNA sites, comparable to 3C assays [34]. Obviously, TBP was

found to be associated with the promoter of CHO-pT1 and CHO-

pT10 as part of the initiation complex, while no binding was

observed in the transcribed region (Fig. 4B, TBP panel). Strikingly,

TBP was also enriched at the terminator of CHO-pT10 but not

CHO-pT1 cells, suggesting that clustered TTF-I binding sites are

in close proximity with the gene promoter. Consistent with

multiple terminators facilitating initiation of transcription, TBP

and Pol I occupancy was about 4-fold higher in CHO-pT10

compared to CHO-pT1 (Fig. 4B, TBP panel). To exclude the

possibility that clustered TTF-I binding sites on their own recruit

TBP to the 39-end of rRNA genes, we examined TBP occupancy

on a reporter plasmid in which the ten terminators were fused to a

Pol II promoter. TBP was enriched at the Pol II promoter but

close to background at the terminator (Fig. 4C), emphasizing the

importance of TTF-I binding sites at both elements, the promoter

and the terminators, to form chromatin loops.

Integrative analysis of histone marks reveals similarity to
classical enhancer elements

Homo- and heterotypic clusters of transcription factor binding

sites were shown to mark potential regulatory regions with

enhancer function [35–39] characterized by eukaryotic histone

marks like H3K27ac, which is involved in long-range chromatin

interactions [40]. As the repetitive rDNA is left out of standard

ChIP-Seq analyses, we artificially added a single mouse rDNA

repeat to the current mouse genome version mm9 and mapped

ChIP-Seq data of H3K27ac, H3K27me3, H3K4me1, H3K4me2

and H3K4me3 to this expanded reference genome (Fig. 5A). We

observed enrichment of H3K27ac and H3K4me2 in the

terminator and promoter region of murine rDNA, enforcing our

previous results and confirming that the homotypic cluster of

TTF-I binding sites represents an active enhancer element. In

contrast, H3K27me3, commonly associated to repressed genes, is

depleted at the terminator compared to the rDNA gene body.

Therefore, the mouse rDNA terminator exhibits a histone

modification profile typical for enhancer elements involved in

Pol II transcription.

Discussion

Clustering of transcription factor binding sites, comprising

either multiple binding sites for the same factor (homotypic

clustering) or different DNA binding motifs (heterotypic cluster-

ing), is an important regulatory feature of eukaryotic gene

expression, about 62% of transcription factor genes and 66% of

developmentally regulated genes comprising clustered binding

sites in vertebrates [3]. Therefore, this feature has been widely

used for computational prediction. In Drosophila, predicted HTCs

are present in more than 70% of regulatory regions and have been

suggested to function as developmental enhancers [6,41]. Clus-

tered binding sites are suggested to exert a positive effect on

transcription by either of the following mechanisms. They could

increase the local concentration of transcription factors or facilitate

multiple interactions with components of the transcription

machinery. Alternatively, they could provide functional redun-

dancy [37,42], allowing cooperative binding of the factors through

interactions among the multiple binding sites or indirectly through

multiple interactions with the transcriptional machinery [10,43–

46]. Here, we have uncovered a novel chromatin-based mecha-

nism underlying HTC-directed transcriptional activation. We

show that packaging into chromatin converts multiple low-affinity

Multiple TTF-I Binding Sites Enhance Transcription
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Figure 3. Multiple termination sites enhance transcription in vivo. (A) Reporter plasmids containing the rDNA promoter, Firefly luciferase and
either no (pTD), one (pT1), two (pT2), ten (pT10) termination sites and T1 and T1–10 in reverse orientation (pT1r and pT10r) were co-transfected with a
Renilla luciferase encoding plasmid (pRL-TK) into CHO cells. As a control, empty pBluescript vector was co-transfected. Transcriptional activities were
analysed using a dual luciferase reporter assay. The ratio of Firefly/Renilla relative light units (RLU) of three independent experiments is given. Error
bars indicate standard deviations. The functional elements and the sizes of the reporter plasmids are depicted. (B) Reporter plasmids were co-
transfected with a GFP-TTFDN348 expression vector and analysed as described in (A). (C) Reporter plasmids were co-transfected with a GFP-

Multiple TTF-I Binding Sites Enhance Transcription
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terminators downstream of the rDNA transcription unit into a

high-affinity binding platform for TTF-I. This preferential binding

of TTF-I to the downstream terminators is a prerequisite for TTF-

I binding to the promoter-proximal binding site, connecting the

promoter with the terminator to allow efficient recycling of Pol I.

Cooperative binding of proteins has been shown to disrupt

nucleosomes, thereby increasing the accessibility of transcription

factors to regulatory sites [47,48]. Our data reveal an alternative

mechanism that increases the affinity of transcription factors. We

show that binding of TTF-I to its target sites in chromatin is higher

than to free DNA, suggesting that a specific nucleosomal

arrangement or interactions with histones may trigger cooperative

binding of TTF-I. Thus, HTCs attract transcription factors to

functionally relevant sites, avoiding binding to single target sites in

the genome. High-affinity binding of TTF-I to clustered termina-

tion sites will ensure loading of the downstream terminators (T1–

T10) prior to TTF-I binding to the promoter-proximal binding site

T0 in vivo. Sequential binding of TTF-I to the 39- and 59-end of the

rDNA transcription unit will ensure that transcription initiation

will take place exclusively at rRNA genes that are associated with

TTF-I and will be properly terminated. In addition, a direct

interaction between the promoter and the terminator is only

established when the terminator comprises several TTF-I binding

sites. This mode of binding and the formation of an intragenic

loop may serve two functions. First, it links the terminator with the

respective transcription unit to be activated. Second, it enhances

transcription at genes associated with TTF-I by forming a highly

active ribomotor structure [22,49]. Thus, homotypic clustering of

TTF-I binding sites coordinates transcription initiation and

termination, thereby affecting both the timing and the efficiency

of rDNA transcription.

It is well established that gene activation by a distal regulatory

element correlates with long-range interactions between enhanc-

er(s) and gene promoters by factor-mediated formation of

chromatin loops [50]. With regard to human and rat rRNA

genes, previous studies suggested a role for TBP and c-Myc in loop

formation at active rRNA genes [23,33]. However, genome-wide

ChIP-Seq data did not reveal significant enrichment of c-Myc-

and TBP at the terminator (Fig. S7B). Moreover, murine rRNA

genes lack clustered E-boxes (Fig. S7A), and therefore the

participation of c-Myc in loop formation is not very likely. Similar

loop mechanisms were shown for RNA polymerase II transcribed

genes, suggesting a common theme involving the interaction of

promoters with transcription termination regions that enhance the

transcriptional activity and gene regulation [51].

Active enhancer elements are characterized by eukaryotic

histone marks, e.g. H3K27ac or H3K4me1, which are involved

in long-range chromatin interactions [40]. Notably, our integrative

genomic analysis revealed characteristic enrichment of histone

marks at the terminator, which can be observed in human as well

[52]. The results support our finding that the homotypic cluster of

TTF-I binding sites displays all hallmarks of a functional enhancer,

such as distal location, presence of HTCs, regulatory histone

marks and the potential to exert gene activation by direct, protein-

mediated DNA loops. Chromatin-dependent high-affinity binding

of TTF-I to the clustered binding sites adds a further regulatory

level on the enhancer function, i.e., coordination of transcription

termination and initiation.

Materials and Methods

Protein expression and microscale thermophoresis
Histidine-tagged full-length TTF-I and the deletion mutants

TTFDN210 and TTFDN348 were purified on a heparin column

(Bio-Rad), followed by purification with Ni-NTA agarose

according to the manufacturer’s instructions (Qiagen). For

microscale thermophoresis experiments, 50 nM of fluorescently

labelled DNA oligonucleotides were incubated with 5 nM–

2.4 mM of protein for 10 min at 30uC in 80 mM Tris-HCl

(pH 7.6), 80 mM KCl, 0.2 mM EDTA, 5 mM MgCl2, 10%

glycerol and 0.05% IGEPAL CA-630. Affinity measurements

were carried out in a Monolith NT.015T (NanoTemper

Technologies) as described [26].

MNase footprinting and transcription
300 ng of chromatin reconstituted with Drosophila extract was

digested with 1.5 U of MNase (Sigma) for 40 s in 10 mM Tris-

HCl (pH 7.6), 80 mM KCl, 1.5 mM MgCl2, 10% glycerol,

0.5 mM ATP, and 200 ng/ml BSA. Reactions were then stopped

by the addition of 0.2 volumes of 4% SDS, 100 mM EDTA, 1 mg

of glycogen, 10 mg of proteinase K. Purified DNA was analysed by

a single round of PCR (denaturation, 5 min at 95uC; annealing,

2 min at 56uC; extension, 1 min at 72uC) using radioactively

labelled oligonucleotides that hybridize to the rDNA promoter or

terminator. Primer extension fragments were resolved on 8%

sequencing gels and visualized by autoradiography.

Transcription experiments were performed on pMrWT-T, a

template comprising the murine rDNA promoter (from 2170 to

+155 with regard to the transcription start site) fused to a 3.5 kb

39-terminal rDNA fragment (BamHI/EcoRV Fragment) harbour-

ing all ten terminators. (T1–T10). The promoter and the

terminator elements are separated by 686 bp. Transcription

reactions were performed as described [53].

Cell culture
CHO and CHO Flp-In cells (Invitrogen) were grown in DMEM

(GIBCO) supplemented with 10% FBS, 100 U/ml penicillin and

100 mg/ml streptomycin. For transient transfections, 200.000 cells

were transfected with 1 mg of plasmid DNA. Prior to transfection

of the CHO Flp-In cells, 100 mg/ml zeocin (Invitrogen) was added

to the medium and for transfection 0.25, 0.5 or 1.0 mg of the

rRNA reporter construct and the flipase encoding plasmid pOG44

(Invitrogen) in a ratio of 1:9 were used. During the selection

process, 500 mg/ml of hygromycin (PAA) was added to the

medium; afterwards the stable cell lines were passaged with

250 mg/ml of hygromycin.

Constructs and reporter gene assays
Transiently transfected rRNA minigenes [22] contain mouse

rDNA (BK000964) sequences from position 21932 to +181, an

IRES, the firefly luciferase gene, and rDNA terminator regions

from position +13169 to +15278 (T10 constructs) in a pGL3-Basic

TTFDN470 expression vector and analysed as described in (A). (D) RNA FISH using CHO cell lines with stably integrated rDNA minigenes. CHO-pT10

cells containing an rDNA minigene with a full terminator, were stained with DAPI (in blue in the middle panel), with a-B23 antibody staining the
nucleoli (left panel; shown in red in the middle panel), and integrated reporter gene transcripts were visualized by FISH (right panel; shown in green
in the middle panel). Bar: 5 mm. (E) Transcription levels of genomically inserted pT1 and pT10 constructs were assayed using RT-qPCR. Comparative
quantitation was performed and RNA levels of the Firefly luciferase sequence were normalized to b-actin expression. Relative transcript levels of three
independent experiments are given in relation to non-transfected CHO Flp-In cells (control), error bars denote standard deviations.
doi:10.1371/journal.pgen.1003786.g003
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vector (Promega). Plasmids for genomic integration contain in

addition the enhancer/promoter regions from position 22148 to

+181 cloned into a pcDNA5-FRT vector (Invitrogen).

Cells were transfected with Pol I driven firefly luciferase

reporter constructs and a Pol II renilla luciferase control

plasmid, pRL-TK (Promega). TTF-I co-transfections were

Figure 4. Clustered termination sites enhance transcription and are required for chromatin looping. (A) Overview to the stably
integrated rDNA minigenes and the locations of the PCR amplicons. (B) Chromatin-immunoprecipitation (ChIP) assays on stably integrated rDNA
reporter genes using the indicated antibodies. Occupancies were measured by qPCR, calculated as percentage of input chromatin and background
signals as determined from control IPs with unspecific antibodies (a-HA or a-IgG) were subtracted. At least three independent biological replicates
were performed. Error bars indicate the standard error of the mean. For statistical analysis, a two-sided, homoscedatic student’s t-test was performed,
stars denote significances. * p,0.05, ** p,0.01, *** p, = 0.001. (C) ChIP experiment using an rDNA reporter in which the Pol I spacer promoter, core
promoter and enhancer regions of a pT10 reporter construct were replaced by a Pol II promoter containing a canonical TBP binding site. The
experiment was performed as described in (B).
doi:10.1371/journal.pgen.1003786.g004
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performed with the expression vectors TTFDN348-EGFP or

TTF-IDN470-EGFP in a TTF-I:reporter ratio of 10:1. Protein

expression was monitored by Western Blot analysis. Reporter

gene measurements were performed using the Dual Luciferase

Reporter Assay System (Promega) according to the manufactur-

er’s instructions using a single-tube luminometer (Stratec

Biomedical Systems).

Isolation of RNA and genomic DNA
RNA isolation was performed with the NucleoSpin RNA II kit

(Macherey-Nagel). Purified RNA (500 ng) was used for cDNA

preparation with the iScript Select kit (Biorad).

To determine the number of integration sites, genomic DNA

was isolated by cells lysis (1% SDS, 50 mM Tris-HCl (pH 8.0),

20 mM EDTA and 250 mg of RNase A), the addition of proteinase

K and incubation at 37uC o.n. The supernatant was precipitated

with ethanol and ammonium acetate.

qPCR
Quantitative real-time PCR was performed in a Rotor-Gene

cycler (Qiagen) using a HotStar master mix containing SYBR

green (Qiagen). Primer sequences and annealing temperatures are

listed in the in Table S2. Fold inductions were calculated using the

comparative quantitation software (Qiagen). Post-PCR melting

curves and agarose gels of PCR products (Fig. S3F) were used to

assess the quality of primer pairs.

Chromatin immunoprecipitation
Cells were transfected with 10 mg of DNA and cross-linked with

1% formaldehyde for 10 min (a-Pol I and a-UBF ChIPs) or

10 mM DMA for 30 min +1% formaldehyde for 10 min (a-TBP)

at RT. The reactions were quenched with 125 mM glycine. Cells

were washed twice in ice-cold PBS and the cell pellets were lysed

in SDS lysis buffer (1% SDS, 50 mM Tris-HCl pH 8.0, 20 mM

EDTA, protease inhibitors). Chromatin was sheared in a

Biorupter sonicator (Diagenode) to fragments of 400–1000 bp in

length. The samples were diluted in IP dilution buffer (20 mM

Tris-HCl, 2 mM EDTA, 1% Triton X-100, 150 mM NaCl,

pH 8.0, protease inhibitors). Paf53 antibody for Pol I detection

and the pre-serum were obtained from the Grummt lab [54].

Antibodies targeting RPA194 (sc-28714), UBF (sc-9131), TBP (sc-

273) and normal rabbit IgG (sc-2027) were purchased from Santa

Cruz. Antibodies (5 mg) and chromatin were incubated on a

rotating wheel at 4uC o.n. Pre-blocked Protein-G sepharose

(500 mg/ml sonicated salmon sperm DNA and 100 mg/ml BSA in

IP dilution buffer) was added to isolate the immune-complexes and

incubated for 2 h at 4uC. Beads were washed twice with IP

dilution buffer, once with high salt buffer (20 mM Tris-HCl,

2 mM EDTA, 1% Triton X-100, 150 mM NaCl, pH 8.0), LiCl

buffer (0.25 M LiCl, 1% NP40, 1% Deoxycholate, 1 mM EDTA,

10 mM Tris-HCl, pH 8.0) and twice with TE buffer (10 mM Tris-

HCl, 1 mM EDTA pH 8.0). Elution was performed using 250 ml

of 1% SDS, 0.1 M NaHCO3. RNase A was added to a

Figure 5. Distribution of histone modifications at the murine rDNA. (A) Enrichment of histone modifications at the rDNA locus in 3T3-L1
cells. The whole rDNA repeat is plotted from position +1 (the TSS) to position 45.309. The terminator track indicates TTF-I binding sites by black
vertical lines. The black box highlights the clustered terminator elements at the 39 end of the gene. ChIP-Seq tracks of histone modifications display
relative enrichments compared to input. (B) Model depicting the order of binding events at the rRNA gene. The promoter is coloured in blue, a right-
headed arrow marks the TSS and the clustered termination sites are depicted in red.
doi:10.1371/journal.pgen.1003786.g005
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concentration of 100 mg/ml and incubated for 2.5 h at 37uC.

Following the Proteinase K digestion (100 mg/ml, 2.5 h at 37uC),

reverse crosslinking was carried out at 64uC o.n. DNA was isolated

by phenol/chloroform/isoamylalcohol extraction and precipitated

with ethanol and sodium acetate.

FISH experiments
Fluorescence in situ hybridizations on metaphase chromosome

spreads and on interphase nuclei combined with nucleolar

immunostaining were performed as described [55]. For RNA

FISH, cells grown on coverslips were fixed for 10 min at room

temperature with 3.7% formaldehyde/5% acetic acid/0.5% (w/v)

NaCl, washed twice with 16 PBS, once in 50 mM NH4Cl/16
PBS pH 7.4, and once in 16 PBS. Coverslips were then

transferred to 70% ethanol and incubated o.n. at 4uC. Before

hybridization, coverslips were rehydrated in 26 SSC/50%

formamide for 15 min at RT. Hybridization mixtures were added

for o.n. incubation at 37uC. Post-hybridization washes were

carried out as follows: 2625 min at 37uC in 50% formamide/26
SSC and 265 min in 26 SSC at RT. The subsequent

immunostaining, DNA staining and mounting was performed as

in interphase DNA FISH experiments. Nick-translated, biotin-

labeled pcDNA5-FRT-rRNA reporter served as hybridization

probe in all experiments.

Visualisation of histone modification data at the mouse
rDNA locus

A custom build of the mm9 assembly was generated by

replacing unsequenced bases at the 59-end of chromosome 18 with

a murine rDNA repeat (GenBank accession no. BK000964). We

used Bowtie [56] to align published ChIP-seq data sets of 3T3L1

and MEL cells (for details see Table S1) to the custom assembly

using ‘–best -k 1’ settings. Input-normalized bedGraph files were

generated using the makeUCSCfile.pl script contained in the

HOMER software suite (http://biowhat.ucsd.edu/homer/, [57])

using standard settings.

Supporting Information

Figure S1 Related to Figure 1. Clustering of rRNA gene

termination sites is evolutionary conserved. (A) Distribution of

binding sites being involved in transcription termination of

mouse and human rRNA genes. The relative distance to the end

of the coding region and the distances between the individual

binding sites are given. Lollipops mark TTF-I binding sites.

Sequence comparison of the TTF-I binding sites in mouse and

human is shown below. (B) MNase digestion of reconstituted

chromatin. Chromatin was reconstituted with the Drosophila

embryo extract and digested with increasing amounts of MNase.

Purified DNA was visualized by agarose gel electrophoresis and

ethidium bromide staining. The regular fragment ladder is

indicative of an efficiently assembled nucleosomal array (1n

through 8n).

(JPG)

Figure S2 Related to Figure 1. Multiple termination sites are

required for efficient transcription activation. (A) In vitro transcrip-

tion analysis was performed comparatively on free DNA (lanes 1–

5) or in vitro assembled chromatin (lanes 6–10) on pMrSB

containing a single termination site (T1), either in the absence

(lanes 1 and 6) or presence of TTF-I (lanes 2–5 and 7–10). The

radioactively labeled transcripts were separated by PAA gel

electrophoresis and detected by autoradiography. (B) In vitro

transcription using the rRNA minigene pMrBH harboring the first

two termination sites (T1+T2). The DNA was analysed for in vitro

transcription on free DNA and chromatin with increasing amounts

of TTF-I as described in (A). (C) In vitro transcription using the

rRNA minigene pMrT5 harbouring the first five termination sites

(T1 to T5). The DNA was analysed for in vitro transcription on free

DNA and chromatin with increasing amounts of TTF-I as

described in (A).

(JPG)

Figure S3 Related to Figure 2. TTF-I binds with higher affinity

to the rDNA terminator in reconstituted chromatin. (A) Overview

to the experimental strategy. The plasmid pMrEnLT10 containing

the gene promoter, a 5 kb long transcribed region and the full

terminator region was used for TTF-I binding experiments.

Specific primers for PCR amplification of the regions containing

T0 (Promoter, P, 145 bp), T1 to T3 (Terminator, T, 276 bp) and a

control region of the vector (control, c, 187 bp) were designed.

Primers were mixed to allow simultaneous detection and

quantification of the three DNA regions. The plasmid was used

as free DNA or reconstituted into chromatin with the Drosophila

embryo extract. DNA or chromatin was incubated with TTF-I for

10 min and then partially digested with MNase (50 fmoles of

DNA were incubated with 2 U MNase for 20 s; 300 ng of

chromatin was incubated with 50 U MNase for 30 s; the reactions

were stopped by the addition of EDTA to a final concentration of

5 mM). TTF-I bound DNA fragments were retained on Ni-NTA

material in a batch assay and washed twice in Ex150 buffer. The

associated DNA was purified and analysed by PCR using the

mixture of primers. (B) Binding of TTF-I to the promoter and the

terminator on free DNA. 50 fmoles of free DNA were incubated

with increasing amounts of TTF-I (60 fmol to 4 pmol, lanes 6 to

12) and DNA was partially hydrolysed with MNase. A control

digestion revealing the input DNA is shown in lane 14. Purified

DNA was amplified with a mixture of primers giving rise to the

Promoter (P), Terminator (T) and control (c) PCR fragments.

Lanes 1 to 4 show the PCR amplification of increasing amounts of

the partially digested pMrEnLT10 plasmid, revealing that the

individual fragments were amplified with similar efficiency over a

16-fold concentration difference. Ni-NTA purification of the DNA

in the absence of TTF-I gives rise to a background of PCR

fragments (lane 5) that remains in the fractions containing

increasing amounts of TTF-I (lanes 6 to 12). However, with

higher concentrations of TTF-I the promoter and terminator

fragments accumulated with similar efficiency (250 fmoles to

4 pmoles, lanes 8 to 12) suggesting binding of TTF-I. The

promoter and terminator fragments appear with similar TTF-I

concentrations, suggesting similar binding affinities of TTF-I with

the promoter and terminator sites on free DNA. (C) Binding of

TTF-I to the promoter and the terminator in reconstituted

chromatin. A control digestion of chromatin revealing the input

DNA is shown in lane 15. The same experiment as shown in B)

was performed with reconstituted chromatin. Lanes 1 to 4 show

the PCR amplification of increasing amounts of the partially

digested pMrEnLT10 plasmid reconstituted into chromatin.

Incubation of chromatin with increasing concentrations of TTF-

I (62, 125, 250, 500, 2000, 4000 fmol, lanes 6 to 11) revealed an

amplification of the terminator fragment at lower TTF-I

concentrations (starting in lane 7) than for the promoter fragment

(starting in lane 10). The result suggests that TTF-I binds with

higher affinity to the rDNA terminator reconstituted into

chromatin and with lower affinity to the chromatinized rDNA

promoter. The result confirms the in vitro transcription experiment

(Figure 1) and the MNase footprinting data (Figure 2).

(JPG)
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Figure S4 Related to Figure 3. Promoter-proximal and

terminator TTF-I binding sites and the transactivation domain

of TTF-I are required for full transcriptional activation of rRNA

minigenes in vivo. (A) Transiently transfected rRNA minigenes

contain mouse rDNA (BK000964) sequences from position 2217

(pT10s, pTDs) or 2148 (pDT0T10s) to +181, an IRES, the Firefly

luciferase gene, and rDNA terminator regions from position

+13169 to +15278 (pDT0T10s and pT10s) in a pGL3-Basic vector

(Promega). The plasmids contain a shorter non-specific insert than

the constructs shown in Figure 3A. The insert size is 3 kilobases

between the promoter and terminator region. CHO (left panel) or

NIH3T3 cells (right panel) were transfected with Pol I driven

Firefly luciferase reporter constructs and a Pol II Renilla luciferase

control plasmid, pRL-TK (Promega). Reporter gene measure-

ments were performed using the Dual Luciferase Reporter Assay

System (Promega). Deletion of either the promoter-proximal or

the terminator TTF-I binding sites reduces transcriptional activity,

complementing the results shown in Figure 3. (B) Western Blot of

transiently transfected CHO cells expressing EGFP-tagged TTF-I

deletion mutants used in Figure 3B and C. Detection was

performed with an a-GFP (sc-8334) and subsequently an a-

TTF-I antibody (aC7). Lane 2: control transfection with a vector

expressing only EGFP, lanes 3–4: overexpressed EGFP-tagged

TTF-I DN348 or TTF-I DN470, lane 5: non-transfected control

CHO cells. Endogenous full-length TTF-I is visible in all lanes.

MW = molecular weight marker.

(JPG)

Figure S5 Related to Figure 4. Characterization of stable cell

lines containing a single mouse rRNA gene. rRNA minigenes

containing one or ten termination sites (pT1 and pT10) were

genomically inserted into CHO Flp-In cells and stable single

integrants were selected. This resulted in the cell lines CHO-

pT1 and CHO-pT10. In all experiments, non-transfected CHO

Flp-In cell lines were used as controls. Bars represent the mean

of three independent stable transfections and error bars indicate

standard deviations. (A) FISH detection of genomically inserted

mouse rRNA minigenes on CHO Flp-In metaphase spreads.

Chromosomes were stained with DAPI and are illustrated in

red. Hybridization signals of reporter probes are shown in

green. Arrows indicate the single genomic insertion site. The

lower panel shows copy number determination of the integrated

rDNA reporter plasmids. qPCR was performed on genomic

DNA and comparative quantitation was performed between the

luciferase gene and the copy number of two single-copy

housekeeping genes, b-actin and PabpnI. Bars represent the

mean of two independent experiments, error bars denote

standard deviations. (B) The number of termination sites does

not influence localization of the rDNA minigenes. 3D immuno-

FISH analysis of genomically inserted pT1 and pT10 in

interphase nuclei. Nuclear DNA was stained with DAPI (shown

in blue in the middle merged panel), nucleoli with an a-B23

antibody and indirect immunofluorescence (left panel, and

shown in red in the middle merged panel), and the rRNA minigenes

were visualized by FISH (right panel, and shown in green in the

middle merged panel). Bars depict the percentage of genomically

integrated minigenes associated to the nucleolus, n denotes the

absolute number of assayed alleles. Bar: 5 mm. (C) Firefly luciferase

reporter gene assay on genomically integrated rRNA minigenes.

Relative light units (RLU) were measured in three independent

experiments, error bars indicate standard deviations. As control,

non-transfected CHO Flp-In cells were assayed.

(JPG)

Figure S6 Related to Figure 4. ChIP experiments in

transiently transfected CHO cells. (A) Overview of rDNA

minigenes and the locations of the PCR amplicons. (B)

Chromatin-immunoprecipitation (ChIP) assays on transiently

transfected rDNA reporter genes using the indicated antibodies.

Occupancies were measured by qPCR, calculated as percentage

of input chromatin and background signals as determined from

control IPs with unspecific antibodies (a-IgG or a-HA Tag) were

subtracted. Three independent biological replicates were

performed. Error bars indicate the standard error of the mean.

(C) Sonication test. Representative agarose gel of the chromatin

input sonicated for 5 or 10 min (30 sec on/30 sec off, settings:

‘‘high’’) after proteinase K digestion and reversal of crosslinking.

10 min sonication time was used for all experiments. Fragment

size range: 100–600 bp. MW = molecular weight marker. (D)

Representative agarose gel of qPCR amplicons, pipetted in

duplicates, after 40 cycles of qPCR. MW = molecular weight

marker. (E) Mouse-specific primer pairs were tested on non-

transfected CHO cells to ensure species-specific amplicons.

Chromatin was isolated from CHO cells, processed like an input

for ChIP experiments and analysed by qPCR. DNA levels were

normalised to the 59 IGS signal of hamster rDNA (59 IGS). The

multi-copy rRNA genes show a 25-fold higher signal than the

single-copy gene b-actin. None of the mouse specific primer

pairs amplifies detectable products on hamster chromatin. A

faint signal appears in the plasmid-specific control primer pair.

Each bar represents the mean of three replicates. For every

primer pair, both CHO chromatin template triplicates (left) and

water control (right) are shown.

(JPG)

Figure S7 Related to Figure 5. Distribution E-boxes, c-Myc and

TBP at the murine rDNA. (A) In silico comparison of the human

and mouse rDNA repeat. The murine terminator region

comprising of T1 to T10 does not overlap with E-box elements,

the canonical c-Myc binding sites. (B) Enrichment of histone

modifications at rDNA in MEL cells. The whole rDNA repeat is

plotted from position +1 (the TSS) to position 45.500. The

terminator track indicates TTF-I binding sites by black vertical

lines. The black box highlights the clustered terminator elements

at the 39 end of the gene. ChIP-Seq tracks of c-Myc and TBP

display relative enrichments compared to input.

(JPG)

Table S1 Summary of published NGS data used in this study.

The table provides an overview of all next-generation sequencing

datasets that have been used in the study. Cell types, accession

numbers and respective publications are indicated for each

dataset. The number of reads indicates absolute tag counts of

sequencing reads mapped to the expanded reference genome.

(DOC)

Table S2 List of qPCR primers used for ChIP analyses. The

primer lists contains all primers used for quantitation of ChIP

assays. Name, binding site, sequence and annealing temperatures

are provided for each primer pair used in the study.

(DOCX)
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