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Abstract

UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery
operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase
DOT1L in mouse embryonic fibroblasts (MEFDOT1L) leads to a UV hypersensitivity coupled to a deficient recovery of
transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA
damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes
the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally
active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-
survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription
initiation after a genotoxic attack.
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Introduction

Short-wave UV light is a significant source of mutagenic and

cytotoxic DNA damage. UV irradiation induces two major types

of DNA lesions; the cis-syn cyclobutane-pyrimidine dimers (CPD)

and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP) [1].

Through the deformation of the DNA structure, these lesions have

repressive effect on various nuclear processes including replication

and transcription. As a matter of fact, the removal of these lesions

is a priority for the cell and takes place at the expense of

fundamental cellular processes that are paused to circumvent the

risks of mutations that may lead to cancer. The molecular

mechanism underlying transcription inhibition and recovery is not

understood yet but it includes proteins such as CSB, a member of

the SWI2/SNF2 family of chromatin remodeling proteins, which

promote transcription re-initiation at the promoters of UV-

repressed genes [2,3].

UV lesions are removed from DNA by the nucleotide excision

repair (NER) mechanism through two sub-pathways. The general

global genome repair (GG-NER) removes DNA damage from the

entire genome, while the transcription-coupled repair (TC-NER)

corrects lesions located on actively transcribed genes [4]. In TC-

NER, an elongating RNA polymerase II (RNA Pol II) stalled by a

lesion triggers efficient repair of the cytotoxic damage that blocks

transcription, while lesion elsewhere in the genome are detected by

the XPC/hHR23B complex for GG-NER [5]. Then, both sub-

pathways funnel into a common process involving XPA, RPA,

TFIIH, XPG and XPF-ERCC1 to excise damaged oligonucleo-

tides from DNA.

Post-translational histone modifications modulate promoter

activity. Histone acetylation, phosphorylation, ubiquitination,

and methylation dictate the transcriptional fate of any given locus

[6]. Inactive heterochromatin is associated with high levels of

methylation at H3K9, H3K27, and H4K20 residues and low

levels of acetylation, while actively transcribed euchromatin shows

a high level of acetylation of H4K16 and H4K20 and methylation

of H3K4, H3K36, and H3K79 residues [7,8].

The dot1 gene (disruptor of telomeric silencing-1), also called

kmt4 (lysine methyltransferase-4), encodes a protein that exclusively

methylates lysine 79 of histone H3 (H3K79) [9,10,11]. Unlike

most modified histone residues that are located within the N-

terminal tail, H3K79 is found within the globular core of the

histone octamer [12]. The Dot1 protein is the only histone lysine

methyltransferase that does not contain the conserved SET

domain but exhibits a methyltransferase fold that is responsible

for its activity [13,14]. In mammals, several studies have shown

that DOT1L (the Dot1 homolog) exists in a complex that

trimethylates H3K79 and that contains several myeloid/lymphoid

or mix-lineage leukemia fusion partners, such as MLLT1, 2, 3 or

10 [15]. More recently, DOT1L was shown to be involved in cell
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cycle progression, the control of the differentiation of pluripotent

cells [16] and leukemogenesis [17].

In addition to these roles in fundamental cellular processes,

several lines of evidence suggest that DOT1L plays an important

role in genomic stability. DOT1L has been reported to favor the

recruitment of double strand breaks sensor 53BP1 to DNA lesions

[18]. Dot1 is known to be required for the activation of the RAD9/

RAD53 checkpoint function by UV and c-radiation [19,20,21].

Dot1 also plays a role in the yeast cellular response to UV damage

but its specific function in this mechanism is unclear [22].

Here, we provide evidence that the mammalian DOT1L

protein is required to re-initiate transcription after UV irradiation.

Knocking-out of DOT1L results in high sensitivity to UV

irradiation in mouse embryonic fibroblasts (MEF), but preserves

an accurate repair of (6-4)PP lesions. Instead, MEFDOT1L are

unable to recover transcription of constitutively expressed genes

after UV irradiation. Using fluorescence recovery after photo-

bleaching (FRAP), we have shown that DOT1L regulates the

recruitment of RNA Pol II to chromatin after UV irradiation.

Applying chromatin immunoprecipitation assay, we additionally

revealed that DOT1L triggers the formation of the pre-initiation

complex (PIC) to the promoters of UV-repressed genes, as well as

the appearance of active transcriptional marks on histones.

Altogether, our results highlight a new role for DOT1L in the

maintenance of an open chromatin structure in order to reactivate

the formation of the transcription machinery on the promoter of

constitutive genes after a genotoxic attack.

Results

DOT1L deficient mammalian cells are UV-sensitive
To investigate the role of DOT1L in the repair of UV-induced

DNA damage, we used knocked-down MEFDOT1L cells carrying a

homozygous gene trap insertion in Dot1l [23]. Together with an

absence of Dot1l protein expression, the mono- and tri-methylation

of H3K79 were strongly reduced in MEFDOT1L (Figure 1A). In a

UV-C survival assay, MEFDOT1L cells were more sensitive to

irradiation as compared to control MEFWT but less than MEFXPG,

knocked-out for the NER factor XPG and deficient both for GG-

and TC-NER [24] (Figure 1B). However, MEFDOT1L showed

similar UV-C sensitivity than the MEFCSB cells, knocked-out for the

CSB protein involved only in TC-NER. Note that tri-methylation of

H3K79 was similar in MEFWT, MEFXPG and MEFCSB (Supple-

mental Figure S1A). Knocking-down of DOT1L expression in

HeLa cells using siRNA (Supplemental Figure S1B) recapitulated

the mild UV-sensitivity of the MEF cells compared to the high UV-

sensitivity induced by the knocked-down of the NER factor XPA

(Supplemental Figures S1B–C). These data indicate that DOT1L

deficiency induces UV-sensitivity in mammalian cells.

We further investigated whether DOT1L affected UV-C

survival by sustaining the repair of UV-induced DNA damage.

We performed unscheduled DNA synthesis assay (UDS), which is

mainly a measure of the GG-NER efficiency [25]. The UDS of

MEFDOT1L was identical to that of the MEFWT (Figure 2A). We

also used an assay based on immunofluorescence coupled to

quantification of DNA lesions directly in cell nucleus to measure

the removal of the (6-4)PPs, the main UV-induced DNA lesions

(see experimental procedures). MEFXPG cells showed low removal

of (6-4)PP along the time course of repair, compared to MEFWT or

MEFCSB in which lesions were rapidly removed (Figures 2B).

When measured in MEFDOT1L cells, the removal rate of (6-4)PP

lesions was identical to that of MEFWT (Figures 2B), which implied

that the absence of DOT1L does not impair GG-NER.

To determine whether MEFDOT1L were able to perform TC-

NER, we performed two sets of experiments. First we measured

cell survival following incubation with Ecteinascidin 743 (et743),

an anti-tumor drug that shows cytotoxicity effect only on human

TC-NER proficient cells [26]. In our experimental conditions,

knocking-down of the TC-NER factor CSB in MEF cells resulted in

et743 resistance, compared to MEFWT cells (Figure 2C). In contrast,

MEFDOT1L cells showed sensitivity to et743 to a level equivalent to

that of MEFWT cells (Figure 2C). Next, we performed a host cell

reactivation assay [27]. We employed a dual GFP/RFP readout

with a UV-damaged plasmid (600 J/m2, 3 Kb) containing a GFP-

tagged reporter and an undamaged plasmid containing an RFP-

tagged reporter transiently transfected into MEF cells. Recovery of

GFP-reporter expression, 12 hours post-transfection, was efficient

in both MEFWT (Figure 3, panels a–f) and MEFDOT1L (Figure 3,

panels g–l) cells but not in the TC-NER deficient MEFCSB cells

(Figure 3, m–r). Overall, these results suggest that the absence of

DOT1L induces sensitivity to UV irradiation that is not the

consequence of a defect in GG- or TC-NER.

DOT1L promotes transcription recovery after UV
irradiation

Next we aimed to determine the global RNA synthesis of MEF

cells after irradiation using the recovery of RNA synthesis (RRS)

assay [25]. Cells were UV-irradiated with 10 or 20 J/m2 and

incubated with radioactive [3H]uridine during a 30 minutes pulse

performed before and 24 hours after irradiation. Mock-treated

MEFWT and MEFDOT1L cells showed similar levels of RNA

synthesis, visualized by equivalent number of black dots in their

nuclei (around 100 dots/nucleus, Figure 4A and 4B, compare

panels a and c). In contrast, we observed a marked deficiency in

RNA synthesis in MEFDOT1L cells, 24 hours after UV-C

treatment, as compared to MEFWT (Figure 4A and 4B, compare

panels b and d). We estimated the residual transcription activity in

the MEFDOT1L cells to 30% of that of the mock-treated cells,

24 hours after irradiation with 20 J/m2.

DOT1L ensures RNA Pol II binding to chromatin after UV
irradiation

To unveil the molecular mechanisms that led to the inhibition of

transcription in MEFDOT1L cells after UV irradiation, we

examined live-cell protein mobility of RNA Pol II by fluorescence

recovery after photobleaching (FRAP). In brief, a small region in

the middle of the nucleus was bleached and the subsequent

Author Summary

Through the deformation of the genomic DNA structure,
UV-induced DNA lesions have repressive effect on various
nuclear processes including replication and transcription.
As a matter of fact, the removal of these lesions is a priority
for the cell and takes place at the expense of fundamental
cellular processes that are paused to circumvent the risks
of mutations that may lead to cancer. The molecular
mechanism underlying transcription inhibition and recov-
ery is not clearly understood and appears more compli-
cated than anticipated. Here we analyzed the process of
transcription recovery after UV-irradiation and found that it
depends on DOT1L, a histone methyltransferase that
promotes the reformation of the transcription machinery
at the promoters of UV-repressed genes. Our discovery
shows that transcription recovery after a genotoxic attack
is an active process under the control of chromatin
remodelling enzymes.

DOT1L in Transcription and DNA Repair

PLOS Genetics | www.plosgenetics.org 2 July 2013 | Volume 9 | Issue 7 | e1003611



fluorescence recovery was measured in time (Figure 5A). For that

purpose, the largest RNA Pol II subunit RPB1 was fused with GFP

and expressed either in MEFWT or MEFDOT1L. In these

conditions, we found an equivalent mobility of RNA Pol II in

mock-treated and UV-irradiated (UV-C, 16 J/m2) MEFWT

(Figure 5B and Supplemental Data S1) (T-test = 3.4E-2). In

marked contrast, FRAP analysis of UV-damaged MEFDOT1L cells

revealed a significant increase in fluorescence recovery when

compared to mock-treated cells (Figure 5C and Supplemental

Data S1) (T-test = 1.4E-5), indicating that a fraction of RNA Pol II

became mobile in the absence of DOT1L, after UV irradiation.

Defect in transcription initiation after UV irradiation in
cells depleted of DOT1L

We next wondered whether DOT1L was required to mobilize

RNA pol II either during the initiation or elongation steps of

transcription. For this purpose, we examined the step of transition

from initiation to elongation by the RNA Pol II in vivo on an

endogenous mouse gene. Briefly, we reversibly blocked gene

transcription by incubating cells with the P-TEFb inhibitor DRB

(5,6-dichloro-1-b-D-ribobenzimidazole), which inhibited the tran-

sition from initiation to elongation but did not block elongation of

ongoing mRNA transcripts [28] (Figure 6A). Following the

removal of DRB, RNA Pol II was released from promoter-

proximal regions and the level of newly synthesized pre-mRNA had

been measured owing to the presence of exons and introns. We

measured the transition from initiation to elongation on the Utrophin

gene that possesses a very short Exon1 (170 bp). We estimated that

an average of one transcription blocking lesion (CPD or (6-4)PP) was

created per 5 kb of DNA at 20 J/m2 [29], indicating that less than

5% of cells harbor a UV-lesion in this exon following a dose of 15 J/

m2 of UV-C. Therefore, any significant inhibition of transcription

initiation cannot be explained by the blockage of RNA Pol II in

front of a lesion in Exon 1.

We treated MEF cells for 3 hours with DRB and extracted

RNA at 10 minutes intervals after the removal of the drug

(Figure 6B). Next, we performed RT-PCR using primers spanning

Exon1-Intron1 junctions to detect newly synthesized pre-mRNA of

Utrophin gene. In the absence of genotoxic stress, MEFWT and

MEFDOT1L were both able to recover transcription of the Exon1

region within 10 to 20 minutes after DRB removal (Figure 6C),

indicating that the transcriptional initiation rate in MEFWT and

MEFDOT1L was identical, in absence of a genotoxic attack. Then, we

irradiated MEF cells with UV-C (15 J/m2) after the DRB treatment

(Figure 6B). In these experimental conditions, MEFWT were able to

recover transcription of the Exon1 within 60 minutes after removal

of DRB and UV-treatment, while MEFDOT1L showed no recovery

of Exon1 transcription even after 80 minutes (Figure 6D).

Since DOT1L was shown to be involved in chromatin

remodeling, we next tested whether chromatin relaxation could

overcome the absence of DOT1L. For that purpose, we treated

MEFDOT1L with Trichostatin A (TSA, 20 nM), a class I histone

deacetylase (HDAC) inhibitor that relaxed chromatin (Figure 6B).

Following TSA treatment, we observed a recovery of Exon1 pre-

mRNA expression in MEFDOT1L, which peaked between 30 to

40 minutes after UV irradiation (Figure 6E) and paralleled the

transcription of Exon1 in MEFWT cells. Together with this

recovery, pre-treatment of MEFDOT1L with TSA (10 nM) induced

a potent recovery of UV survival (Figure 6F) suggesting that

transcription inhibition in MEFDOT1L was indeed responsible for

the UV-sensitivity of these cells. Pre-treatment of the TC-NER

deficient MEFCSB with TSA did not modify their UV-sensitivity

(Figure 6F). Altogether, these data suggested that DOT1L allowed

RNA Pol II transcription re-initiation after UV irradiation.

Repressive chromatin marks in cells depleted of DOT1L
after UV irradiation

The above data prompted us to perform a detailed analysis of

the PIC formation on the promoter of UV-repressed genes

throughout the time, after irradiation. We studied the promoter of

the several housekeeping genes such as DHFR (dihydrofolate

reductase), B2M (beta-2-microglobulin) or KLF7 (Kruppel-like

factor 7) that we used as models for assembly/disassembly of the

PIC after UV-irradiation. Using chromatin immunoprecipitation

(ChIP), we observed a slight decrease in both RNA Pol II

(Figures 7B and Supplemental Figure S2) and basal transcription

factors (Figure 7C) occupancy at these promoters in UV-irradiated

MEFs, 2 hours post-UV irradiation. The transcription machinery

started to re-assemble on the promoter between 6 and 10 hours

after UV irradiation and the steady state level of mRNA did not

vary significantly with time in the wild-type situation (Figure 7A).

In contrast, the basal transcription machinery did not re-form on

Figure 1. DOT1L is involved in UV-survival in mammalian cells.
(A) Fifty mg of whole cell extracts from MEFWT or MEFDOT1L cells were
resolved by SDS-PAGE and Western-blotted for DOT1L. Asterisk
indicates an unspecific cross-reacting band. Ten mg of fractions from
histone acid-extraction performed on MEFWT or MEFDOT1L cells were
resolved by SDS-PAGE and Western-blotted for H3, H3K79me1 or
H3K79me3. (B) MEFWT, MEFDOT1L, MEFXPG and MEFCSB cells were tested
in a UV-survival assay. Cells were treated with increasing dose of UV-C
and cell survival was determined 96 hours later, as detailed in the
Experimental Procedures. Data were normalized to the mock treatment
controls (as value of 1). The values are the means of three independent
experiments (6 SD). P-value was extrapolated for MEFDOT1L/MEFWT or
MEFDOT1L/MEFXPG and indicated on the graph (***,0.005).
doi:10.1371/journal.pgen.1003611.g001

DOT1L in Transcription and DNA Repair
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the UV-repressed gene promoter throughout the entire time

course in MEFDOT1L cells (Figures 7B, 7C and Supplemental

Figure S2). In line with these observations, the steady state level of

mRNA decreased progressively after UV irradiation in MEF-
DOT1L cells (Figure 7A). This observation is in agreement with

results obtained in Figure 4 in which we measured global

transcription.

We then analyzed chromatin modifications associated with

active or inactive chromatin in the promoter region of the

DHFR gene. We observed an acetylated histone H4 pattern

that followed that of the RNA Pol II, with a first phase of

decrease 2 hours post-UV, and a phase of increase from 6 to

24 hours (Figure 7D). In contrast, no phase of recovery was

observed in MEFDOT1L cells (Figure 7D). Di-methylation of

H3K9 residue, a mark of transcription silencing, was stable in

MEFWT throughout the time course after UV-treatment, while

it increased just after irradiation in MEFDOT1L (Figure 7E).

Finally, di-methylation of H3K79, performed by DOT1L, was

observed transiently in the promoter region of DHFR and

peaked 6 hours after UV irradiation (Figure 7F), when RNA

Pol II and TFIIB started to come back to the DHFR promoter

in MEFWT cells. Altogether these data suggested that DOT1L

was required to drive recovery of PIC formation at the

promoters of UV-repressed genes.

Figure 2. DNA repair takes place in the absence of DOT1L. (A) Unscheduled DNA Synthesis (UDS) assay. Left panel; UDS expressed as mean
number of autoradiographic grains/nucleus. UDS was measured by incubating MEFWT or MEFDOT1L with radioactive [3H]thymidine before treatment
with increasing doses of UV-C light and autoradiography [25]. The values are the means of two independent experiments +/2SEM. AUC for each
curve were determined and p-value was extrapolated using a t-test. Right Panel; Autoradiogram of the UDS experiment performed at 20 J/m2 in
either MEFWT (a) or MEFDOT1L (b) cells. Arrows indicate radioactive dots. (B) (6-4)PP removal was carried out in MEFWT, MEFDOT1L, MEFXPG and MEFCSB,
harvested at different time points after UV irradiation at 20 J/m2. Cells were labeled with an anti-(6-4)PP antibody and signals were measured using IN
Cell 1000 analyzer (GE Healthcare). Graph represents the % of lesions removed from the genome at different time points. The values are the means of
three independent experiments (6 SD). For each time point, a mean of 4000 cells has been analysed. (C) MEFWT, MEFDOT1L and MEFCSB cells were
treated with increasing concentration of et743 and cell survival was determined 96 hours later, as detailed in the Experimental Procedures. Data were
normalized to the mock treatment controls (as value of 1). The values are the means of three independent experiments (6 SD). P-value is indicated
(***,0.005) and was determined between MEFDOT1L and either MEFCSB.
doi:10.1371/journal.pgen.1003611.g002

DOT1L in Transcription and DNA Repair
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Discussion

Transcription inhibition and the subsequent recovery that

operate after a genotoxic attack are thought to limit the risks that

lesions represent for the genome. The molecular mechanisms that

are responsible for the turn-off/turn-on of transcription after DNA

damage are not well understood. Here we show that the

methyltransferase DOT1L is required for the re-initiation of

transcription by triggering re-formation of the transcription

machinery at the promoter of UV-repressed genes. Our data

supports the hypothesis that transcription recovery after a

genotoxic attack is an active process involving specific actors

insuring not only the repair of the DNA but also the recovery of

fundamental cellular processes such as transcription.

DOT1L participates in UV-survival but not in DNA repair
Our study demonstrated that disruption of DOT1L caused

hypersensitivity to UV irradiation in mammalian cells. There are

several potential mechanisms that could explain the increased

sensitivity to UV irradiation conferred by DOT1L depletion. If it

was directly involved in DNA repair, its absence may results in

increased levels of DNA damage, leading to cellular apoptosis. A

function for yeast DOT1 in GG-NER has been described recently

[30]. However, we did not find any DNA repair defect associated

with the absence of DOT1L in mammalian cells. Indeed, MEF

cells depleted of DOT1L exhibited normal UDS level, an assay

that mainly measured GG-NER. Furthermore, these cells repaired

(6-4)PP, the best UV-induced NER substrate, at the same rate

than wild-type cells. To show that MEFDOT1L cells were also

proficient in TC-NER, we used two strategies. First we made use

of the sensitivity of cells to the drug et743, a natural marine

product isolated from the Caribbean see squirt. Antiproliferative

activity of et743 was shown to be dependent on active TC-NER

[26]. In our experimental conditions, we observed that MEFs

knockdown for CSB, one of the two TC-NER specific factors,

exhibited a higher resistance to et743 treatment than MEFWT,

confirming previous observation obtained with patient cells [26].

Using et743 on MEFDOT1L cells, we observed that these cells were

as sensitive to treatment as MEFWT. In a second set of

experiments, we measured the capacity of MEFDOT1L to drive

the recovery of a reporter expression construct previously exposed

to UV-irradiation. In mouse-derived cells, the reactivation

depends both on efficient GG- and TC-NER activities as

illustrated by the absence of transcription recovery in MEFCSB

cells observed both in our study and in other reports [31].

However, MEFDOT1L showed a full recovery of reporter

expression. Finally, the treatment of MEFDOT1L with TSA

induced a recovery of UV-survival while treatment of MEFCSB

did not. We concluded from these cellular observations summa-

rized in Table 1 that it was unlikely that UV-irradiation sensitivity

in DOT1L-deficient mammalian cells was due to a GG-NER or

TC-NER defect.

DOT1L controls transcription recovery after UV
irradiation

Alternatively, DOT1L may serve to reactivate global mRNA

synthesis after UV irradiation. Transcriptional arrest has been

shown to lead to a highly cytotoxic cellular response to stress [5].

This response has multiple causes and is likely not only the result

of DNA lesions that block RNA Pol II in elongation. Previous

studies have challenged the relationship between efficient repair of

a lesion in the transcribed strand of active genes and the

restoration of DNA damage inhibited transcription. For instance,

cells carrying mutations in CSB were unable to recover lesion-

inhibited transcription while they efficiently repaired acetylamino-

fluorene lesions in transcriptionally active genes [32]. In addition,

CSB was shown to accumulate at the promoters of UV-repressed

genes, where it stimulated the recovery of transcription indepen-

dently of the presence of lesions [3]. This finding led to the

Figure 3. Host cell reactivation assay in MEF cells. MEFWT,
MEFDOT1L and MEFCSB were transfected with mock-treated (panels a–c,
g–i, m–o) or irradiated (UV-C, 600 J/m2) (panels d–f, j–l, p–r) pEGFP
reporter plasmid in combination with a non-irradiated pRFP reporter
plasmid used as control. Twelve hours post transfection, GFP and RFP
expression were determined. A ratio of 3/1 (pEGFP/pRFP) was used
during transfection to ensure that any cell expressing the RFP expresses
also the GFP. P-value was extrapolated using t-test (**,0.05,
***,0.005).
doi:10.1371/journal.pgen.1003611.g003

DOT1L in Transcription and DNA Repair
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hypothesis that removal of transcription blocking lesions was

insufficient to restore transcription after DNA damage and that in

addition, chromatin changes in the promoters of UV-repressed

genes may be required. We performed RNA-sequencing on

MEFWT and MEFDOT1L after UV-irradiation (unpublished Data).

However, RNA-sequencing measures steady-state level of individ-

ual mRNA but does not provide information on the de novo RNA

activity. To measured the global level of newly synthetized RNA

we used the RRS assay and we observed a general inhibition of de

novo RNA synthesis in cells depleted of DOT1L; 30% of residual

transcription activity was detected 24 hours post irradiation (20 J/

m2). This inhibition was confirmed at the single gene level since

DHFR showed a similar level of inhibition.

DOT1L allow PIC formation on UV-repressed gene
promoters

Early steps of mRNA expression include formation of PIC,

transcription initiation and escape of RNA Pol II from the promoter

to the elongation step. Using an assay that measured the

transcription of the newly synthetized first exon of Utrophin gene

model in vivo, we demonstrated that the transition from initiation to

elongation was deficient in the absence of DOT1L after UV. We

further analysed both PIC occupancy and the chromatin modifi-

cations on the promoter of a UV-repressed gene after irradiation

and have shown that this promoter was temporally depleted of basal

transcription factors in the first hours after irradiation in wild-type

cells. Six to ten hours after UV irradiation, when DNA repair took

place, the PIC occupancy recovered completely in the wild-type

situation. In the absence of DOT1L, RNA Pol II and TFIIB did not

get back to the promoter of our UV-repressed gene model, and

heterochromatin marks such as methylation of the H3K9 residue

appeared. FRAP experiment using GFP-tagged RPB1 subunit of

RNA Pol II showed that a fraction of RNA Pol II became mobile

after UV-irradiation in the absence of DOT1L, indicating that

dissociation of RNA Pol II from chromatin of UV-repressed genes

after irradiation in the absence of DOT1L is a broad phenomenon.

Figure 4. Deficient transcription recovery after UV irradiation in the absence of DOT1L. (A) Recovery of RNA synthesis assay (RRS). The
mean numbers of auto-radiographic grains per nucleus of mock treated or UV-irradiated cells (10 or 20 J/m2) from two independent experiments are
expressed (6 SEM, measured on at least 150 cells). Under the graph, the results are expressed as percentage of grains per nucleus relative to mock
treated cells. (B) Autoradiogram of an RRS experiment. Twenty four hours after UV irradiation (20 J/m2), MEFWT (panels a–b) or MEFDOT1L (panels c–d)
cells were pulse labeled 30 minutes with [3H]uridine followed by autoradiography. P-value was extrapolated using t-test (**,0.05, ***,0.005).
doi:10.1371/journal.pgen.1003611.g004

DOT1L in Transcription and DNA Repair
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Altogether, these data suggest that DOT1L favors an opened

chromatin structure around the promoter of UV-repressed genes

to allow transcription re-initiation. In line with this hypothesis,

H3K79me2, the mark of DOT1L activity, was accumulating

transiently on the promoter in wild-type cells after UV irradiation.

In addition, the absence of DOT1L was circumvented by the class

I HDAC inhibitor TSA that relaxes chromatin. TSA restored both

transcription initiation and UV-survival of MEFDOT1L cells,

creating thus a link between these two events.

Among the sites of histone methylation, H3K79 is unique as

it is not located within the H3 N-terminal tail domain but in

the core region. Specifically, this methylation occurs on the

surface of the nucleosome and may serve as a platform to

recruit additional chromatin modifiers and DNA damage

response factors [12]. On the other hand, regions of chromatin

where transcription is repressed are depleted of H3K79

methylation, indicating that silencing of chromatin probably

requires hypomethylation of H3K79 [11,33]. The mechanism

that links euchromatin to H3K79 methylation is not fully

understood but it is believed that in addition to recruiting

chromatin modifiers, this histone mark plays an important role

in confining the Sir proteins to heterochromatic regions

[11,34]. In yeast, Sir3 binds to nucleosomes containing

deacetylated histone H4K16 and promotes spreading of

heterochromatin along the chromatin [35]. Based on these

observations and our data, we propose that RNA Pol II re-

accumulation at promoters after UV irradiation depends on

the chromatin changes orchestrated by DOT1L, including the

emergence of active chromatin transcription marks. In the

absence of DOT1L, facultative heterochromatin marks such as

H3K9me2 appear and RNA Pol II does not get back to the

promoters. Through the recruitment of chromatin modifiers

and subsequent histone modifications, DOT1L serves to limit

the spreading of heterochromatin to UV-repressed genes

immediately after irradiation and to allow re-association of

the basal transcription machinery on the promoters of these

genes to re-activate their transcription. Finally, one can

wonder how specific is the requirement of DOT1L for the

transcription recovery? We tested MYST2 and G9a, an H4

acetyl-transferase and an H3K4 methyltransferase respectively,

but knocking down these chromatin remodelers did not induce

any increase in UV sensitivity in Hela cells (Data not shown).

Although this result shows that all transcriptional chromatin

remodelers are not required to reactive transcription after

DNA repair we believe that our observation will lead to the

identification of additional factors relevant for the regulation

and timing of this crucial step that appears more complicated

than anticipated.

Materials and Methods

Cell lines
MEF cells were cultured at 37uC in the presence of 5% CO2 in

Dulbecco’s modified medium supplemented with 10% FCS.

Quantitative UV survival analysis
Ten thousand cells were plated on a 3.5 cm Petri dish, cultured

overnight and UV-irradiated with UV-C light (254 nm) at various

doses (0.5 J/m2/s). After 4 days, cells were dried and stained by

crystal violet, then lysed and quantified by spectrometry at 570 nm

wavelength. When indicated, MEF cells were incubated with TSA

(10 nM final concentration) for 3 hours before UV irradiation and

during the 4 days of the post-irradiation period.

Figure 5. DOT1L ensures binding of RNA Pol II to chromatin
after UV irradiation. (A) Schematic diagram showing the FRAP assay.
Cells were transfected with a GFP-RNA Pol II construct (on RPB1). A small
region in the middle of the nucleus was bleached and the subsequent
fluorescence recovery was followed in time. When indicated, cells were
UV-irradiated, 1 hour before the photobleaching. (B–C) FRAP curves of
RNA Pol II-GFP protein stably expressed in either MEFWT (B) or MEFDOT1L

(C) cells untreated (green) or treated (red) with UV (16 J/m2), 1 hour
before photobleaching. Cells were photobleached with a 488 nm laser at
maximum power 4 sec after the beginning of the acquisition. One image
per 20 msec was taken during 20 sec in the photobleached area. SEM is
within the range of 1% and is shown is supplemental Data 1.
doi:10.1371/journal.pgen.1003611.g005
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Figure 6. Inhibition of the initiation-to-elongation transition phase in the absence of DOT1L, after UV irradiation. (A) Schematic
representation of measuring the initiation-to-elongation transition rate of RNA Pol II transcription in vivo on endogenous genes. We reversibly
blocked gene transcription by incubating cells with DRB. Cells are depleted of their pre-mRNA pool within few hours of incubation with the drug [28].
Following the chase of DRB, RNA Pol II is released from promoter-proximal regions and newly synthesized pre-mRNA appear; the level of pre-mRNA is
measured using oligonucleotides targeting respectively the exon/intron junctions of the gene. (B) Schematic diagram showing the experimental
approach used to measure the rate of initiation-to-elongation transition phase by RNA Pol II after UV irradiation. MEF cells were treated with DRB for
3 hours before chase and addition of fresh medium at t = 0 hour. When indicated, cells were UV irradiated at t = 0 hour, before the addition of fresh
medium or treated with TSA for 12 hours before the addition of DRB. (C) Expression levels of the newly synthesized Exon1 of the Utrophin gene in
MEFWT and MEFDOT1L cells treated with 100 mM of DRB for 3 hours before the addition of fresh medium. The cells were harvest at intervals of
10 minutes for RNA isolation and qRT-PCR was performed using oligonucleotides targeting respectively the Exon1 and Intron1 of the gene. Relative
expression values compared to mock treated cells are plotted against time (6SD). AUC was determined and p-value was extrapolated using t-test. (D)
Expression levels of the newly synthesized Exon1 of the Utrophin gene in either MEFWT or MEFDOT1L irradiated with UV-C (15 J/m2) after treatment as
in (C). AUC was determined and p-value was extrapolated using t-test. (E) Expression levels of the newly synthesized Exon1 of the Utrophin gene in
either MEFWT or MEFDOT1L treated with TSA (20 nM) for 12 hours before addition of DRB for 3 hours and UV-C irradiation (15 J/m2). TSA was
maintained in the medium during DRB treatment and time course. AUC was determined and p-value was extrapolated using t-test. (F) MEFWT, MEFCSB

and MEFDOT1L were irradiated with increasing doses of UV-C light. Cell survival was determined 96 hours later, as detailed in the Experimental
Procedures. Data were normalized to the mock treated controls (as value of 1). Means of three independent experiments are shown (6 SD). When
indicated, cells were treated with TSA (10 nM), 12 hours before UV irradiation, and TSA was maintained for the time of the experiment.
doi:10.1371/journal.pgen.1003611.g006
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Immunofluorescent-based DNA lesion quantification
Five thousand MEF cells were plated in 96 well plates

(OptiPlates-96, Perkin Elmer). Twenty-four hours later, cells were

UV-irradiated with UV-C lamp (10 J/m2) and recovered in fresh

medium for the indicated period of time at 37uC, 5% CO2.

Immuno-labeling of (6-4)PP was performed using mouse 64M-2

antibodies. DNA was denatured with 2 M HCl for 30 minutes at

RT and blocked in 10% BSA in PBS for 15 minutes prior to

labeling. (6-4)PP lesions were quantified using an IN Cell Analyser

1000 imaging system (GE Healthcare) and the percentage of (6-

4)PP removal was determined (100% represents the amount of

lesions determined just after UV irradiation).

Figure 7. Pre-initiation complex assembly and chromatin modification after UV irradiation. (A) Determination of the relative mRNA
expression level of DHFR gene in MEFWT and MEFDOT1L after UV irradiation (10 J/m2) performed after reverse transcription with random hexameres.
The values are the means of three independent experiments (6 SD). AUC was determined and p-value was extrapolated using t-test. (B–F) Time-
dependent occupancy of RNA Pol II (B), TFIIB (C), H4Ac (D), H3K9me2 (E) and H3K79me2 (F) at the promoter of the DHFR gene following UV
irradiation (10 J/m2). Soluble chromatin was prepared from MEFWT and MEFDOT1L cells at indicated time points after UV-C treatment and subjected to
ChIP assay using the indicated antibodies. Real-time PCR using specific primers was performed to test the relative enrichment at the proximal
promoter of the DHFR gene. The results are expressed as folds of enrichment relative to the untreated cells. The values are the means of a triplicate
experiment (6 SD). P-value was extrapolated using t-test (**,0.05, ***,0.005).
doi:10.1371/journal.pgen.1003611.g007
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Unscheduled DNA synthesis (UDS) and transcription
recovery after UV irradiation (RRS)

UDS was determined by counting the number of grains on at

least 50 non-S-phase cells in autoradiographic preparations of

cultures incubated for 3 h after UV-irradiation in medium

containing 3H-thymidine (3H-TdR, Amersham, specific activity

25 Ci/mmol) [25]. In RRS, mock-treated or UV-irradiated cells

(10 or 20 J/m2) were pulse labeled with 5 mCi/ml of [3H]uridine

(PerkinElmer Life and Analytical Sciences, Boston MA 02118

USA) for 30 minutes, 24 h post-irradiation. Cells were fixed and

auto-radiographied.

Fluorescence recovery after photobleaching (FRAP)
Cell lines stably expressing GFP-RPB1a-amaR were generated by

transfection of MEFWT or MEFDOT1L with 1 ug of pAT7h1a-amaR

[36] using FuGENE6 (Roche Diagnostics, Mannheim, Germany).

One day after transfection, cells expressing GFP-RPB1a-amaR were

selected by overnight incubation with 20 ug/ml of alpha-amanitin.

Three days prior to microscopy experiments, cells were seeded

onto 24 mm diameter coverslips. Imaging and FRAP were

performed on a Zeiss LSM 710 meta confocal laser scanning

microscope (Zeiss, Oberkochen, FRG).

FRAP analysis was performed at high time resolution as

previously described [37]. Briefly, a strip spanning the nucleus was

photo-bleached for 20 ms at 100% laser intensity (laser current set

at 6.1 Å). We monitored the recovery of fluorescence in the strip

every 20 msec for 20 sec at 0.5% of laser intensity. Twenty

independent measurements were performed and the average

values were used for every mobility curve. Mobility curves show

relative fluorescence (fluorescence post-bleach divided by fluores-

cence pre-bleach) plotted against time. Error bars included in all

the plotted FRAP data represent the SEM. Whenever two distinct

FRAP curves were not easily dissociable, the statistical significance

of their difference was checked by using Student’s t-test (two-

sample, two-tailed) within an appropriate time window: right after

the photobleaching when evaluating mobility differences or after

complete recovery when immobile fractions were being evaluated.

Initiation-elongation transition assay in vivo
We grew cells overnight on 60 mm plates to 70–80%

confluency and treated them with 100 mM of 5,6-Dichlorobenzi-

midazole 1-b-D-ribofuranoside (DRB) (Sigma) in culture medium

for 3 hours. The cells were washed twice with PBS and incubated

in fresh medium for various periods of time and RNA was

extracted. Trichostatin A (TSA) (Sigma) was used at a concentra-

tion of 20 nM and was added 12 hours before treatment with

DRB and maintained during the time of the experiment. When

indicated, cells were UV-irradiated (15 J/m2) after the DRB

treatment.

Reverse transcription and real-time quantitative PCR
cDNA synthesis was performed by using hexamere and AMV

reverse transcriptase (Sigma; St. Louis, MO). Real-time quantita-

tive PCR was done with the FastStart DNA Master SYBR Green

kit and the Lightcycler apparatus (Roche Diagnostic; Basel,

Switzerland). Primer sequences are available upon request.

ChIP
Cells were crosslinked with a 1% formaldehyde solution for

10 minutes at RT. Crosslinking was stopped by addition of glycine

at 125 mM final concentration. Samples were sonicated to

generate 500 bp DNA fragments. For immunoprecipitations,

100 mg of chromatin extract was pre-cleared for 2 hours with

50 ml of protein G-sepharose before addition of the indicated

antibodies. Then, 2 mg of antibody was added to the reactions and

incubated over night at 4uC in the presence of 50 ml of protein A/

G beads. After serial washings, the immunocomplexes were eluted

twice for 10 minutes at 65uC and crosslinking was reversed by

adjusting to 200 mM NaCl and incubating 5 hours at 65uC.

Further proteinase-K digestion was performed for 2 hours at

42uC. DNA was purified using Quiagen columns (QIAquick PCR

Purification Kit). Immunoprecipitated DNA was quantified by

real-time PCR. Primer sequences are available upon request.

Host-cell reactivation assay
The pEGFP-reporter construct was purchased from Clontech.

The pEGFP-reporter vector was UV-irradiated (254 nm, 600 J/

m2) at a concentration of 1 mg/ml in 10 mM Tris-HCl (pH 8.0)

and 1 mM EDTA. MEF cells were transfected with 3 mg of

pEGFP-reporter and 1 mg of unirradiated pRED-reporter in a six-

well plate at a confluence of 95% using X-tremeGENE 9 DNA

Transfection Reagent (Roche). A 3/1 ratio was used to ensure that

every cell expressing RFP protein expresses GFP in non-irradiated

condition. After 12 hours of incubation, GFP and RFP were

detected by reverse microscopy.

Antibodies
Primary antibodies (the final dilutions are indicated in

parentheses) used were anti-6–4PP (Cosmobio; 64M-2, dilution

1/500), anti-TFIIB C-18 (Santa Cruz, sc-225), anti-H3K79me1

(Abcam, ab2886) (1/1.000), anti-H3K79me3 (Abcam, ab2621) (1/

1.000), anti Histone H3 (Abcam, ab1791), anti-GFP (Clinisciences,

Table 1. Cellular characteristics of MEF cells.

Cell lines Cell survival to UV-C
RCS1 following TSA
treatment

Cell survival to
et743 UDS (6-4)PP removal RRS HCRA3

MEFWT + + 2 + + + +

MEFDOT1L 2 + 2 + + 2 +

MEFCSB 2 22 + + + 22 2

MEFXPG – ND ND ND 24 ND ND

1- Recovery of Cell Survival.
2- As observed in [38].
3- Host Cell Reactivation Assay.
4- As observed in [39].
The cellular characteristics of MEF cells studied in this report are summarized. In bold we highlighted the characteristics of MEFDOT1L that differ from MEFCSB.
doi:10.1371/journal.pgen.1003611.t001
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TP-401) and anti-DOT1L (Novus Biologicals, NB100-40845).

Anti-Acetylated H4 is a mouse monoclonal antibodies produced at

the IGBMC.

Statistics
When required, the trapezoid rule was used to estimate the area

under the curve (AUC). Student’s t-test was used to assess whether

the mean AUC (graph curves) or mean values from triplicate (bar

graphs) were statistically significant. A P-value of 0.05 or less was

considered as significant.

Supporting Information

Data S1 Data of the Strip-FRAP curves of RNA Pol II-GFP

protein stably expressed in either MEFWT or MEFDOT1L cells

untreated (2UV) or treated (+UV) with UV (16 J/m2), 1 hour

before photobleaching. Cells were photobleached with a 488 nm

laser at maximum power 4 sec after the beginning of the

acquisition. One image per 20 msec was taken during 40 sec in

the photobleached area. Twenty independent measurements were

performed and the average values were used for every mobility

curve. SEM is indicated.

(XLSX)

Figure S1 Knocked-down of DOT1L induces UV sensitivity. (A)

Ten mg of fractions from histone acid-extraction performed on

MEFWT, MEFDOT1L, MEFXPG or MEFCSB cells were resolved by

SDS-PAGE and Western-blotted for H3 or H3K79me3. (B) Total

lysates were prepared from HeLa cells treated with control

(siCTL), XPA (siXPA) or DOT1L (siDOT1L) siRNA. DOT1L,

XPA and bTubulin were detected following SDS-PAGE and

Western-blotting. siRNA smart pools are from Dharmacon. (C)

HeLa cells treated with siCTL, siXPA or siDOT1L were

irradiated with increasing doses of UV-C light. Cell survival was

determined 96 h later, as detailed in the Experimental Procedures.

Data were normalized to the mock treatment controls (as value of

1). The values are the means of three independent experiments

+/2 SD.

(PDF)

Figure S2 RNA pol II occupancy at housekeeping genes. (A–B)

Time-dependent occupancy of RNA Pol II at the promoter of the

B2M (A) or KLF7 (B) genes following UV irradiation (10 J/m2).

Soluble chromatin was prepared from MEFWT and MEFDOT1L

cells at indicated time points after UV-C treatment and subjected

to ChIP assay. Real-time PCR using specific primers was

performed to test the relative enrichment at the proximal

promoters. The results are expressed as % of inputs. The values

are the means of a triplicate experiment (6 SD).

(PDF)
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