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Abstract

Known protein coding gene exons compose less than 3% of the human genome. The remaining 97% is largely uncharted
territory, with only a small fraction characterized. The recent observation of transcription in this intergenic territory has
stimulated debate about the extent of intergenic transcription and whether these intergenic RNAs are functional. Here we
directly observed with a large set of RNA-seq data covering a wide array of human tissue types that the majority of the
genome is indeed transcribed, corroborating recent observations by the ENCODE project. Furthermore, using de novo
transcriptome assembly of this RNA-seq data, we found that intergenic regions encode far more long intergenic noncoding
RNAs (lincRNAs) than previously described, helping to resolve the discrepancy between the vast amount of observed
intergenic transcription and the limited number of previously known lincRNAs. In total, we identified tens of thousands of
putative lincRNAs expressed at a minimum of one copy per cell, significantly expanding upon prior lincRNA annotation sets.
These lincRNAs are specifically regulated and conserved rather than being the product of transcriptional noise. In addition,
lincRNAs are strongly enriched for trait-associated SNPs suggesting a new mechanism by which intergenic trait-associated
regions may function. These findings will enable the discovery and interrogation of novel intergenic functional elements.
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Introduction

A large fraction of the human genome consists of intergenic

sequence. Once referred to as ‘‘junk DNA’’, it is now clear that

functional elements exist in intergenic regions. In fact, genome

wide association studies have revealed that approximately half of

all disease and trait-associated genomic regions are intergenic [1].

While some of these regions may function solely as DNA elements,

it is now known that intergenic regions can be transcribed [2–7],

and a growing list of functional noncoding RNA genes within

intergenic regions has emerged [8].

Despite this progress, a complete understanding of the extent of

intergenic transcription and the identity of these transcripts has

remained elusive. The first attempts to analyze the extent and

nature of intergenic transcription utilized tiling array technology

[2–5]. These studies suggested that intergenic transcription is

pervasive, but concerns about cross-hybridization have fueled a

debate about the data [9–12]. Furthermore, in order to avoid

technical difficulties associated with analyzing repeat sequence

using tiling arrays, the studies were restricted to evaluating less

than half of the genome. More recently, a few studies have focused

on evaluating the extent of intergenic transcription using

sequencing-based approaches, but with the exception of the

recently published ENCODE project results [13,14], these studies

have thus far been limited to very narrow preselected regions of

the genome and a small number of tissues [6,7]. Overcoming these

prior shortcomings, the ENCODE project used RNA-seq analysis

in combination with other technologies to profile 15 human cell

lines, providing evidence for transcription across 83.7% of the

human genome and firmly establishing the reality of pervasive

transcription [14].

Long intergenic noncoding RNAs (lincRNAs) are defined as

intergenic (relative to current gene annotations) transcripts longer

than 200 nucleotides in length that lack protein coding capacity.

LincRNAs are known to perform myriad functions through

diverse mechanisms ranging from the regulation of epigenetic

modifications and gene expression to acting as scaffolds for protein

signaling complexes [8,15]. The first attempts to generate

lincRNA annotation sets either profiled lincRNAs specific to a

small number of tissues or required that transcripts harbor specific

structural features such as splicing and polyadenylation [16–18].

The GENCODE consortium (GENCODE v7) has manually

curated approximately five thousand lincRNAs that are not

restricted to particular tissues or structural features, however this

annotation set contains only a small fraction of all lincRNAs

because it does not take advantage of RNA-seq data to identify

novel transcripts [19,20]. The limited scale of current lincRNA

annotations, including GENCODE, is clearly incompatible with
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the massive amount of intergenic transcription observed by the

ENCODE project. It should therefore be expected that the

genome encodes far more lincRNAs than are currently known.

In order to bridge the gap between the observation of pervasive

intergenic transcription by the ENCODE project and the

currently limited set of annotated lincRNAs, we performed an

analysis of a unique set of RNA-seq data derived from both novel

and published datasets that complements and significantly expands

prior efforts [14,16,19]. This analysis resulted in a clear

corroboration of the observations of pervasive transcription across

the human genome by the ENCODE project [14]. Furthermore,

analysis of previously annotated putative lincRNAs, including

those of the ENCODE project [19], in addition to de novo discovery

of novel lincRNAs from RNA-seq data has resulted in the

compilation of the most comprehensive catalog of human

lincRNAs. Owing to the extended breadth of tissues sampled

and relaxed constraints on transcript structure, we find signifi-

cantly more lincRNAs than all previous lincRNA annotation sets

combined. Our analyses revealed that these lincRNAs display

many features consistent with functionality, contrasting prior

claims that intergenic transcription is primarily the product of

transcriptional noise [12]. In sum, our findings corroborate recent

reports of pervasive transcription across the human genome and

demonstrate that intergenic transcription results in the production

of a large number of previously unknown lincRNAs. We provide

this vastly expanded lincRNA annotation set as an important

resource for the study of intergenic functional elements in human

health and disease.

Results

Quantitation of the Extent of Transcription of the Human
Genome

We have analyzed six novel RNA-seq datasets generated as part

of the Human Epigenome Atlas (http://www.genboree.org/

epigenomeatlas/index.rhtml) and 121 previously published

RNA-seq datasets representing 23 human tissues under multiple

conditions and consisting of over 4.5 billion uniquely mapped

reads (Table S1). This set of RNA-seq data allowed for detection of

both rare and tissue-specific transcription events that would

otherwise be undetectable. In contrast to the limited reach of prior

tiling array studies [2–5], we analyzed the much larger portion

(83.4%) of the genome to which RNA-seq reads can be uniquely

mapped thus providing a broader view of the transcriptome. At a

threshold of one RNA-seq read, we observed reads mapping to

78.9% of the genome and, if additional evidence of transcription is

taken into account including the full structures of known genes,

spliced ESTs and cDNAs, we found evidence that 85.2% of the

genome is transcribed (Figure 1A). This result closely agrees with

the recently published findings from the ENCODE project in

which evidence for transcription of 83.7% of the genome was

uncovered [14]. Interestingly, even with 4.5 billion mapped reads,

we observe an increase in genomic coverage at each lower read

threshold implying that even more read depth may reveal yet

higher genomic coverage. (Figure S1).

As expected, protein coding gene exons contain the largest

fraction of highly expressed bases (Figure 1B) as well as a

disproportionately large fraction of total reads relative to their

small (,3%) amount of genomic sequence (Figure S2). However,

many regions of high expression do exist within intergenic regions,

far more than are accounted for by current noncoding RNA gene

annotations (Figure 1C). We reasoned that this unaccounted for

intergenic transcription must derive from novel intergenic

transcripts, and we next directed our efforts toward identification

and analysis of these transcripts.

Discovery of a Large Number of Novel LincRNAs
We hypothesized that much of the intergenic transcription not

accounted for by previously annotated transcripts is derived from

novel lincRNAs. We reasoned that because lincRNA expression is

known to be highly tissue-specific [16], the breadth of tissues and

conditions sampled in the RNA-seq datasets analyzed here would

aid lincRNA discovery.

We used this large set of RNA-seq data in combination with

previous noncoding RNA annotation sets to generate the most

comprehensive catalog of lincRNAs (Figure 2A). In order to

generate this lincRNA catalog, we first compiled known and

putative annotated lincRNAs. We collected noncoding RNAs

present in public databases, including GENCODE v6, and from

literature sources [16,18] resulting in a set of 351,940 transcripts.

In addition, we performed de novo transcriptome assembly on each

of the RNA-seq datasets (Table S2) to generate 6,833,809 de novo

assembled transcripts. Both previously annotated and de novo

assembled transcripts were filtered to remove transcripts overlap-

ping protein coding genes, known non-lincRNA noncoding RNA

genes, and pseudogenes. Transcripts longer than 200 nucleotides

were further filtered to remove any transcripts containing (or

overlapping any other transcript containing) an open reading

frame (ORF) longer than 100 amino acids. Out of concern that

some de novo assembled transcripts may be unannotated extensions

of neighboring protein coding genes, as was recently observed for a

fraction of GENCODE long noncoding RNAs [19], we created an

additional filter to remove transcripts linked to neighboring genes

by RNA-seq reads. To do this, we extended protein coding gene

reference annotations using de novo transcriptome assembly and

removed transcripts overlapping these extended gene structures

(see Methods, Dataset S1).

In a final step, we removed transcripts expressed at fragments

per kilobase of transcript per million mapped reads (FPKM),1, a

threshold approximately equivalent to one copy per cell [21]

(Table S1). To decrease redundancy, and with the goal of

Author Summary

Much of the human genome is composed of intergenic
sequence, the regions between genes. Intergenic se-
quence was once thought to be transcriptionally silent
‘‘junk DNA,’’ but it has recently become apparent that
intergenic regions can be transcribed. However, the scope,
nature, and identity of this intergenic transcription remain
unknown. Here, by analyzing a large set of RNA-seq data,
we found that .85% of the genome is transcribed,
allowing us to generate a comprehensive catalog of an
important class of intergenic transcripts: long intergenic
noncoding RNAs (lincRNAs). We found that the genome
encodes far more lincRNAs than previously known. A key
question in the field is whether these intergenic transcripts
are functional or transcriptional noise. We found that the
lincRNAs we identified have many characteristics that are
inconsistent with noise, including specific regulation of
their expression, the presence of conserved sequence and
evidence for regulated processing. Furthermore, these
lincRNAs are strongly enriched with intergenic sequences
that were previously known to be functional in human
traits and diseases. This study provides an essential
framework from which the functional elements in inter-
genic regions can be identified and characterized, facili-
tating future efforts toward understanding the roles of
intergenic transcription in human health and disease.

Pervasive Transcription Produces LincRNAs
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identifying lincRNA ‘‘genes’’ rather than potentially redundant

overlapping ‘‘transcripts’’, the remaining transcripts were merged

if they shared at least one exon (see Methods) resulting in 53,864

distinct putative lincRNAs at FPKM.1, 3,676 lincRNAs at

FPKM.10, and 925 lincRNAs at FPKM.30 (Dataset S2 and

Figure S3). Surprisingly, greater than 94% of the final set of

merged lincRNAs at each expression level consists exclusively of

novel de novo assembled transcripts discovered from the RNA-seq

data in this study (Table S3 and Dataset S2). Rather than being

clustered near currently annotated genes, these lincRNAs are

spread throughout intergenic sequence. 58.1% of FPKM.1

lincRNAs, 61.9% of FPKM.10 lincRNAs, and 67.7% of

FPKM.30 lincRNAs are greater than 30 kilobases from the

nearest protein coding gene on either strand. We annotated the

lincRNAs as belonging to the same ‘‘group’’ (see Methods) if they

are within 1 kilobase of each other to account for the possibility

that some proximal lincRNA annotations may be partial structures

of larger transcripts (see Discussion). This grouping resulted in

35,585 distinct lincRNA groups at FPKM.1, 2,970 at

FPKM.10, and 764 at FPKM.30, and the lincRNAs in the

catalog are named according to these groups (Dataset S2). These

annotations are likely to be incomplete due to limitations in

transcript assembly from RNA-seq data; indeed, some annotations

may be fragments of larger overlapping lincRNA transcripts.

Therefore, the actual number of independent lincRNAs may differ

from the above numbers, and future work is needed to more fully

define complete, independent lincRNA transcript annotations (see

Discussion).

Evaluation of LincRNA Filtering Approach
We evaluated the stringency with which our filtering process

removed protein coding transcripts by analyzing ribosomal

profiling data from HeLa cells (Figure 2B) [22]. As expected,

lincRNAs resemble the 39 untranslated region exons of protein

coding genes, with very few transcripts showing significant

engagement with the ribosome. This finding is in agreement with

the recent observation that GENCODE long noncoding RNAs (a

subset of our catalog) generally lack mass spectrometry based

evidence for translation [23]. In contrast, a recent study found that

many previously annotated mouse lincRNAs bind the ribosome

[24]. While the biological significance of this discrepancy is

unknown, it may be the result of differences in the stringency of

the filtering approach employed in the generation of the lincRNA

annotations under consideration. Further confirming the stringen-

cy of our filters, a computational analysis of protein coding

potential using the program PhyloCSF revealed that our set of

filtered lincRNAs lack predicted protein coding capacity

(Figure 2C). From these analyses we conclude that our filtering

approach effectively removed protein coding transcripts from the

catalog.

Additional LincRNA Catalogs and Resources
While the remainder of this study focuses on this catalog of

putative lincRNAs (Dataset S2), we have provided multiple

alternative lincRNA catalogs. These include a combined catalog

of the lincRNAs identified in this study merged (see Methods) with

a set of additional lincRNAs identified in Cabili, et al. [16] which

passed all of our filters except were not expressed at FPKM.1 in

any of the RNA-seq datasets analyzed here. The added lincRNAs

are expressed at FPKM.1 in one or more of the RNA-seq

datasets analyzed in Cabili et al. [16], which are entirely distinct

from the datasets analyzed here, and are therefore likely to be

genuine lincRNAs by our criteria. This catalog (Dataset S3)

includes 54,784 lincRNAs at FPKM.1 (920 additional lincRNAs

compared to Dataset S2), 3,764 lincRNAs at FPKM.10 (88

additional lincRNAs), and 942 lincRNAs at FPKM.30 (17

additional lincRNAs). In addition, we have included a catalog of

spliced lincRNAs that are expressed at FPKM.1 in at least one

dataset (4,576 lincRNAs, Dataset S4), of which 61% are

exclusively composed of de novo assembled transcripts discovered

Figure 1. The human intergenic transcriptome. (A) 85.2% of the genome has evidence of transcription, with RNA-seq reads mapping directly to
78.9% of genomic sequence. The remaining genomic coverage is comprised of known genes, spliced ESTs and spliced cDNAs. The grey circle
represents the portion of the genome (83.4%) that is uniquely mappable with RNA-seq reads. (B) Protein coding (NM gene) exon, intron and
intergenic region expression level distribution. Regions that have high expression have a larger fraction of base calls appearing at higher read depths.
Protein coding gene exons have the highest proportion of bases with high read depth, while introns and intergenic regions have relatively more
bases of low read depth though each contain many highly expressed regions. Base calls = (# of genomic positions at a specific read depth)(read
depth). (C) Most intergenic transcription is outside of annotated noncoding RNA genes. The fraction of intergenic base calls within RefSeq noncoding
RNA genes (NR genes) compared to other intergenic regions are compared. In (A–C), only uniquely mappable portions of the genome are considered
(see Methods).
doi:10.1371/journal.pgen.1003569.g001
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in this study. We have also compiled a catalog of lincRNAs

expressed at FPKM.1 in at least two datasets (26,455 lincRNAs,

Dataset S5), of which 97% are exclusively de novo assembled

transcripts discovered here. Additionally, an alternative lincRNA

catalog containing only those lincRNAs expressed significantly

higher than randomly sampled intergenic regions (see Methods)

were included (5,267 lincRNAs, Datasets S6, S7). Furthermore, as

an additional resource we provide the expression level (FPKM and

raw RNA-seq read counts) of all lincRNAs (in Dataset S2) and

RefSeq protein coding genes across all 127 RNA-seq datasets

(Dataset S8).

LincRNAs Are Specifically Regulated
The degree to which intergenic transcription is functional

remains uncertain and controversial [9–12,25]. In order to

evaluate whether the lincRNAs identified in the present study

are specifically regulated as opposed to transcriptional noise, we

determined if the lincRNA genes harbor canonical epigenetic

marks for activation and repression with the reasoning that noise

transcripts should lack coherent epigenetic modification patterns.

Consistent with observations based on earlier long noncoding

RNA annotations [18,19,26,27], analysis of ChIP-seq and RNA-

seq data [28,29] revealed that the catalog of lincRNAs shows

patterns of epigenetic modification similar to protein coding genes

(Figure 3A). Activating histone marks, H3K4me3 and

H3K36me3, are both significantly enriched within highly

expressed lincRNAs. Similarly, the repressive mark H3K27me3

is significantly enriched within lowly expressed lincRNAs. Thus,

the expression of lincRNAs appears to be specifically regulated.

If lincRNAs are specifically regulated at the level of transcrip-

tion, it is expected that their expression levels are specific to their

tissue source. Indeed, prior studies of lincRNAs have shown that

lincRNAs display very strong tissue-specific expression [16,19]. To

test whether this remains true with our expanded set of lincRNAs

we performed unsupervised hierarchical clustering using lincRNA

expression levels in replicate RNA-seq datasets from various tissues

(Figure S4). Replicates of each tissue type strongly clustered

together, indicating that lincRNA differential expression is indeed

reproducibly tissue-specific, supporting specific regulation of

lincRNA expression.

LincRNAs do not need to be polyadenylated to be functional

[30]. Because of this, we included in our analysis many RNA-seq

libraries that were not polyA+ selected. In fact, earlier tiling array

studies revealed that intergenic transcripts tend to be bimorphic;

that is, they appear in both polyA+ and polyA2 fractions, as

opposed to protein coding transcripts that are primarily polyA+
[3]. The recently published ENCODE results corroborate this

finding [14,19]. In agreement with these studies, we found that the

Figure 2. Discovery of lincRNAs. (A) Discovery of lincRNAs consisted of de novo assembly of transcripts from RNA-seq data and compilation of
annotated and putative noncoding RNAs (see Methods), followed by a series of filters designed to remove all known and novel protein coding
transcripts and non-lincRNA noncoding RNAs. Only intergenic noncoding transcripts at least 200 nucleotides in length and expressed at least at one
copy per cell were ultimately annotated as lincRNAs. (B) Analysis of ribosomal profiling data reveals that the lincRNA catalog is composed of
noncoding transcripts. The maximum 30 bp window ratio of HeLa ribosomal/RNA-seq reads [22] is plotted for exons of lincRNAs, 39 UTRs and coding
sequences (CDS). *P,2.2E-16; whiskers extend +/21.5 times interquartile range and dots represent outliers. (C) Computational analysis of protein
coding capacity of the lincRNAs reveals a lack of protein coding capacity. The cumulative distribution of PhyloCSF [40] scores for lincRNAs and RefSeq
NM genes are plotted. Higher scores correspond to higher predicted coding capacity.
doi:10.1371/journal.pgen.1003569.g002

Pervasive Transcription Produces LincRNAs
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polyadenylation status of lincRNAs in our catalog is reproducibly

bimorphic across multiple cell types while protein coding

transcripts are strongly enriched in the polyA+ sample. The

reproducibility of this lincRNA bimorphic state suggests that

lincRNA polyadenylation is regulated and that many lincRNAs

exist at least partially as nonpolyadenylated transcripts (Figure 3B

and Figure S5). This finding indicates that future studies of

lincRNAs should not ignore the nonpolyadenylated RNA fraction.

We next evaluated whether lincRNAs are conserved. It has

been observed that lincRNAs can contain conserved motifs

tethered together by nonconserved sequence [25,31,32]. There-

fore, we evaluated lincRNA conservation using a scanning 50 bp

window (Figure 3C, Figure S6, and Table S4). Consistent with

prior studies, lincRNAs display detectable but modest conserva-

tion [16,19]. We applied this same method to known functional

human lincRNAs and found that the majority of the lincRNAs

identified in this study display a level of conservation consistent

with known functional lincRNAs (Figure 3C).

LincRNAs Are Enriched for Trait-Associated SNPs
Almost half of all trait-associated SNPs (TASs) identified in

genome-wide association studies are located in intergenic

sequence while only a small portion are in protein coding gene

exons [1]. This curious observation points to an abundance of

functional elements in intergenic sequence. While some of these

regions may function at the DNA level alone, it is possible that

many function by encoding RNA. In fact, TASs have already

been identified within or proximal to noncoding RNAs including

some lincRNAs [16,33–36]. We reasoned that if lincRNAs are

functional, they should be enriched for TASs compared to

nonexpressed intergenic regions. Indeed, we find that lincRNAs

are more than 5-fold enriched for TASs compared to non-

expressed intergenic regions (Figure 4) despite an approximately

equal distribution of SNPs between these regions (Figure S7).

Therefore, many trait-associated intergenic regions may function

by encoding lincRNAs.

Discussion

There has been a recent debate about whether there is pervasive

transcription of the human genome and what the number and

abundance of intergenic transcripts is [9–12]. Until recently, a key

missing component to this debate has been an analysis of ultra

deep RNA-seq data sampling a wide array of tissue types. Without

this, insufficient read depth can result in a failure to identify low

abundance intergenic transcripts, and limited tissue sampling

results in missed tissue specific expression. During the course of

this study, the ENCODE project released a large scale analysis of

RNA-seq data that provided clear evidence that the human

genome is pervasively transcribed [14]. We analyzed a distinct,

complementary set of RNA-seq data that also fulfills these

requirements of read depth and tissue breadth, covering both

polyadenylated and nonpolyadenylated RNA fractions. In strong

Figure 3. LincRNAs possess features inconsistent with transcriptional noise. (A) ChIP-seq and RNA-seq data from IMR90 cells [28,29] were
analyzed for lincRNAs and RefSeq NM genes. *P = 4.01E-7, ** P = 4.52E-9, *** P = 2.43E-14, **** P,2.2E-16; P = 0.137 for lincRNAs H3K9me3; whiskers
extend to +/21.5 times interquartile range or most extreme data point. (B) LincRNA FPKM values in polyA+ specific and polyA2 specific RNA-seq
libraries in H9 ESCs and HeLa cells [46] were compared. Transcripts with RNA-seq reads in all four datasets and with FPKM.1 in at least one of the
two fractions for each cell type were analyzed (16,819 NM genes and 127 lincRNAs). Individual lincRNA and NM gene ratios of FPKMs in polyA+/
polyA2 fractions are plotted. Pearson correlation value for lincRNAs = 0.622 (P = 5.551E-15) and for NM genes = 0.702 (P,2.2E-16). (C) The maximally
conserved 50 bp windows in each NM gene, lincRNA, and repetitive element (nonconserved control sequences) were determined. The maximally
conserved 50 bp windows of 12 functional human lincRNAs are indicated for comparison.
doi:10.1371/journal.pgen.1003569.g003

Pervasive Transcription Produces LincRNAs
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agreement with the ENCODE results, we observed that approx-

imately 85% of the genome is transcribed, supporting prior

observations of pervasive transcription based on tiling arrays that

have been recently questioned [2–5].

There is an apparent discrepancy between this observed

pervasive transcription and the relative paucity of annotated

lincRNAs, the most numerous intergenic RNAs. It should be

expected that intergenic regions encode far more lincRNAs than

are currently annotated. Indeed, here we found that there are

many more lincRNAs than previously known, even after

aggressive filtering that removed the vast majority of previously

annotated long noncoding RNAs and newly discovered intergenic

transcripts (Dataset S2). These observations clearly demonstrate

that the human genome is pervasively transcribed, and that

lincRNAs make up an extremely common class of intergenic

transcripts.

In agreement with prior observations of smaller lincRNA

annotation sets, our analyses of the expanded lincRNA catalog

presented here revealed that most lincRNAs are expressed at

lower levels than protein coding genes [16,19]. Though most

lincRNAs are expressed at only a few copies per cell, we found that

many lincRNAs are highly expressed with nearly 4,000 expressed

at .FPKM 10 and nearly 1,000 expressed at .FPKM 30, rivaling

the expression of many messenger RNAs. We chose to apply an

expression cutoff to remove very lowly expressed transcripts from

the catalog of lincRNAs. However, it may be the case that there

exist many functional lincRNAs with very low expression levels,

below our expression filter cutoff. For example, the functional

human lincRNA HOTTIP is expressed in approximately one out

of three cells [37]. Furthermore, recent findings have shown that

the intergenic transcriptome may be vastly more complex than

currently appreciated when very lowly expressed transcripts are

considered [7]. It is possible that some of these are functional

transcripts despite their apparent low expression, perhaps having

brief bursts of expression during stages of the cell cycle or

functioning in single cells in a heterogeneous population as has

been previously observed [14]. Therefore, while we have provided

the most complete lincRNA catalog to date, there may be

additional lowly expressed, yet potentially functional lincRNAs

that were excluded here.

In order to minimize any potential contamination of the

lincRNA catalog with protein coding transcripts, the filtering

approach used was very aggressive. In fact, most previously

annotated noncoding RNAs failed to pass our filters and were

therefore excluded from the lincRNA catalog (Table S3 and

Dataset S9). The vast majority of these transcripts (including most

GENCODEv6 ‘‘lincRNAs’’ and ‘‘processed transcripts’’) overlap

known or predicted protein coding genes, pseudogenes, or non-

lincRNA noncoding RNAs (e.g. microRNAs)(Table S3). Some of

these removed transcripts may be functional long noncoding

RNAs, such as GAS5 (removed because it contains 10 snoRNA

genes within its introns). However, in order to most confidently

identify only lincRNAs, rather than potential unannotated

extensions of known genes, these were removed.

Of those previously annotated noncoding RNAs that are

intergenic, more than half contain predicted ORFs longer than

100 amino acids. For example, two previously characterized

functional human lincRNAs were found to contain ORFs longer

than 100 amino acids, Xist and HOTAIR. These results

demonstrate that our filtering approach, which eliminates all

transcripts with ORFs larger than 100 amino acids, may have

removed some lincRNAs with large, nonfunctional ORFs.

Figure 4. LincRNAs are enriched for trait-associated SNPs. The number of trait-associated SNPs within RefSeq NM gene exons, lincRNA exons,
or background loci (nonexpressed intergenic sequence) per tested SNP in genome wide association studies is compared (see Methods). *P = 0.0173,
**P,2.2E-16; error bars represent 95% binomial proportion confidence interval.
doi:10.1371/journal.pgen.1003569.g004

Pervasive Transcription Produces LincRNAs
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However, the use of a 100 amino acid ORF cutoff, a commonly

used threshold to define potential protein coding genes, is

justifiable because ORFs of this size infrequently occur by chance

and instead indicate potential for protein coding capacity [38,39].

Rather than discard all transcripts with large ORFs, as we did

here, one option to discriminate between transcripts that are

coding versus noncoding is to analyze the frequency of synony-

mous codon substitutions (PhyloCSF) [40]. However, this

approach is limited to ORFs that can be aligned across species,

potentially missing recently evolved or otherwise nonconserved

novel protein coding genes. Importantly, our approach of

removing all transcripts with large open reading frames effectively

removed transcripts with significant predicted coding potential

(Figure 2C), indicating that using an ORF size cutoff is at least as

conservative as filtering based on PhyloCSF analysis. The lack of

engagement of the ribosome, observed with ribosomal profiling

data, confirms the stringency of the ORF cutoff filter (Figure 2B).

Further analysis of these removed large ORF-containing interge-

nic transcripts is outside the scope of this study, but we have

included these annotations for investigators interested in further

analyzing their coding potential in search of novel protein coding

genes (Dataset S10).

Despite the fact that most previously annotated noncoding

RNAs failed to pass our filters, our lincRNA catalog contains

significantly more lincRNAs than previously known (.94% of

lincRNAs are entirely novel at each expression level). This is the

result of two unique features of our study. First, the RNA-seq

read depth and diversity of tissues surveyed allowed for the

detection of rare and tissue specific transcripts that were

previously unknown. Many of these novel transcripts passed all

filters and are annotated as novel lincRNAs in our catalog.

Second, in contrast to prior lincRNA annotation efforts that were

restricted to identification of only spliced or polyadenylated

lincRNAs [16,19,41], we sought to generate annotations of a

more complete set of human lincRNAs regardless of splicing or

polyadenylation status. The reasons for taking this approach are

manifold. Two of the most well known and abundant functional

human lincRNAs, NEAT1 and MALAT1, are single exon genes

(as are approximately 5% of protein coding genes) [42],

suggesting that non-spliced transcripts may make up an

important class of lincRNA. Additionally, numerous functional

nonpolyadenylated noncoding RNAs have been described

[30,43]. Even long noncoding RNAs which can be spliced are

often found in their unprocessed forms [44], a distinct property of

long noncoding RNAs that would result in missed lincRNAs if

splicing were a required attribute. Therefore, we chose not to

exclude any lincRNAs from this catalog due to lack of splicing or

polyadenylation. Importantly, because nonspliced, nonpolyade-

nylated transcripts could theoretically be erroneously de novo

assembled from reads derived from contaminating genomic DNA

in RNA-seq data, we took multiple measures to mitigate any

contributions of genomic DNA contaminant reads (see Methods).

Due to inherent limitations of de novo transcriptome assembly

using short reads of finite depth, it is not always possible to

unequivocally determine the complete structure of a transcript.

This is particularly true for lowly expressed transcripts where the

number of reads available is limited, and for genomic regions to

which reads cannot be uniquely mapped. In the case of shallow

read depth, exons of multi-exonic transcripts may lack reads

connecting the exons, and de novo assembly could result in separate

annotation of each exon as a distinct transcript. In support of this,

we found that lower expressed lincRNAs discovered from de novo

transcript assembly were less likely to have multi-exonic structures

(Table S5). Additionally, the annotated 59 and 39 ends of the

lincRNAs may represent truncations of the full length transcripts.

Indeed, our analysis of PET tag data revealed that while the

majority of our lincRNA catalog is overlapped by at least one PET

tag, in most cases there is minimal PET tag support for the

annotated 59 and 39 ends of the lincRNAs (Table S6). It is

therefore the case that some lincRNA annotations in the catalog

we provide (Dataset S2), particularly single exon lincRNA

annotations, may represent fragments of larger transcripts.

Furthermore, considering the reported prevalence of low level

overlapping transcripts throughout intergenic sequence [7], it is

not clear that full lincRNA structures can be unequivocally

deconvoluted using short read RNA-seq technology. The deter-

mination of full lincRNA structures will be an important future

effort in the field and may rely upon new datasets of longer read

length and greater read depth, use of multiple orthogonal data

types in the same tissue, new technologies such as ultra long read

next generation sequencing, and further improvements in software

for de novo transcript assembly.

In addition, the majority of RNA-seq data we analyzed lacks

strand information and as a result most of the lincRNAs in our

catalog are of ambiguous strandedness. Prior annotations have

relied upon splice site orientation to infer the strandedness of the

transcript [16]. While this is a reasonable approach that we too

have adopted when applicable in the present lincRNA catalog,

stranded RNA-seq data is needed to most confidently assign

strandedness to de novo assembled transcripts.

While determining the isoforms and full structures of all

lincRNAs is clearly desirable, these incomplete lincRNA structure

annotations are nonetheless of tremendous practical value.

Knowledge of the structure of a portion of a transcript is often

sufficient to test for differential expression or perform RNAi

knockdown experiments, and facilitates the cloning and sequenc-

ing of the full length transcript. Because of this, instead of placing

additional restrictions upon lincRNA annotations, our filtering

strategy was aimed toward identification of as many transcripts as

possible that fit within the definition of a lincRNA. However, for

investigators interested in more refined lincRNA annotations, we

have provided multiple more restrictive lincRNA catalogs

(Datasets S4, S5, S6).

A key question in the field is whether the transcripts resulting

from pervasive transcription of intergenic regions are functional or

the result of noisy transcription. The lincRNAs we describe are

specifically regulated and contain conserved sequence, attributes

inconsistent with transcriptional noise (Figure 3). Furthermore,

lincRNAs were found to be strongly enriched for intergenic TASs

compared to nonexpressed intergenic regions (Figure 4). This

striking finding supports the possibility that many intergenic SNPs

mark regions that function as lincRNAs rather than DNA

elements. Because nearly half of all TASs are intergenic, it is

possible that lincRNAs play a significant role in the majority of

human traits and diseases thus far analyzed in GWASs. One

functional lincRNA (MIAT) was first identified during the

experimental interrogation of an intergenic TAS [35], and another

lincRNA PTCSC3, was identified nearby a TAS found from a

papillary thyroid carcinoma GWAS, perhaps representing the first

of many such discoveries to come from intergenic TASs. The

finding that lincRNAs are strongly enriched for TASs provides a

new opportunity to revisit intergenic trait-associated regions with

unknown functional mechanisms by testing whether the overlap-

ping lincRNA is involved in the observed phenotype.

This noncoding RNA catalog represents a major step toward

achieving a more complete understanding of this exciting frontier.

We have identified a large number of putative lincRNAs with

characteristics suggesting functionality. However, many of these
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lincRNAs are low expressed and definitive proof of functionality

for a lincRNA requires functional experiments. High throughput

functional genomic approaches, such as RNAi and cDNA

overexpression screens, will serve as crucial tools for future efforts

to uncover the roles of lincRNAs in diverse biological systems.

With the requisite technology now available for these next

generation experimental approaches, the time is ripe for this dark

matter of the human genome to step further into the spotlight.

Materials and Methods

RNA-seq and Ribosomal Profiling Read Alignment and
Processing

127 RNA-seq sequence files (5 novel and 122 publicly available

datasets, Table S1) were aligned to hg18 with TopHat v1.1.4

allowing only uniquely mapped reads using the option -g 1 (all

other parameters were default, see the TopHat manual http://

tophat.cbcb.umd.edu/manual.html). Detailed information per-

taining to each dataset, including novel datasets, is available in

the sources provided in Table S1. These RNA-seq datasets were

chosen because they sampled a wide breadth of human tissues and

cell types, have well documented experimental methods used for

their generation, and were publicly available. While datasets with

longer reads and deeper read depth were preferred because they

allow for more complete de novo transcript assembly, some datasets

with short reads and shallow read depths were included in order to

sample as many tissue types as possible. Datasets derived from

tissues with mutated genomes, such as cancers, were included to

capture tissue specific expression even though some reads from

mutated genomic positions would fail to map to the reference hg18

genome. SAMtools v0.1.7 and BEDTools v2.12.0 were used to

process aligned read files.

Quantitation of the Transcribed Fraction of the Genome
The uniquely mappable human genome, defined here as the

portions of the genome to which RNA-seq reads can be uniquely

mapped, was derived for hg18 from http://www.imagenix.com/

uniqueome/downloads/hg18_uniqueome.unique_starts.base-space.

50.2.positive.BED.gz [45]. It contains 2,570,174,327 bp or 83.4% of

the total human genomic sequence. To determine the genomic

coverage of RNA-seq data, all aligned RNA-seq reads were

combined and read coverage at each genomic base position was

determined with the BEDTools function genomeCoverageBed. Split

reads (i.e. exon-exon junction spanning reads) were counted such

that intronic sequence was included as part of the reads. In

Figure 1A, ‘‘All genes, ESTs, cDNAs’’ includes GENCODE v10

genes (excluding pseudogenes), RefSeq NM and NR genes, UCSC

Known Genes, spliced H-Invitational cDNAs, spliced ESTs (UCSC

Genome Browser ‘‘Spliced EST’’ track), and previously annotated

spliced lincRNAs [16]. In all cases, intronic sequences of genes,

cDNAs and ESTs were included.

LincRNA Discovery
Transcripts annotated in public databases and literature

sources that could be lincRNAs were compiled. Ensembl

v61 ‘‘processed_transcript’’ and ‘‘lincRNA’’ categories, GEN-

CODE v6 ‘‘processed_transcript’’ and ‘‘lincRNA’’ categories,

RefSeq NR and XR genes, H-Invitational ‘‘noncoding’’ tran-

scripts, ultra conserved elements (UCEs), and published lincRNAs

from Khalil et al. [18] and Cabili et al. [16]. LiftOver was used to

map hg19 coordinates to hg18 for Ensembl, GENCODE, H-

Invitational and Cabili et al. [16] transcripts. RefSeq XR

sequences in hg19 were aligned to hg18 with BLAT v34 and the

top scoring alignment was used. Ultra conserved elements

sequences were retrieved from http://biodev.cbm.fvg.it, aligned

to hg18 with BLAT v34 and the top scoring alignment was used.

Khalil et al. [18] exons were grouped by their overlapping defined

transcribed regions to build transcript structures.

Novel transcripts from de novo transcriptome assembly

of RNA-seq data were compiled. De novo transcriptome

assembly was performed on RNA-seq data with Cufflinks v1.0.1

using the upper quartile normalization (-N) and fragment bias

correction (-b) options. This transcript assembly was performed

using reads that were prealigned to hg18 using TopHat as

described above. In cases where multiple datasets of the same

library type from the same tissue were available, these datasets

were combined to increase read depth for de novo assembly (see

Table S2). For paired end read datasets, only properly paired and

singleton reads as defined by SAMTools were used.

Transcripts were filtered to remove overlap with non-

lincRNA genes or pseudogenes and short

transcripts. Transcripts less than 200 nt in length were

removed. Remaining transcripts were removed if they were within

1 kb of RefSeq NM genes on the same strand or, in the case of

transcripts with ambiguous strandedness, on either strand relative

to the NM gene. Transcripts on the opposite strand of an NM

gene were removed if they overlapped the NM gene by at least one

base. In addition, transcripts overlapping at least one base of any

of the following were removed, regardless of strandedness:

Ensembl v61 genes except ‘‘lincRNA’’ and ‘‘processed_tran-

script’’, non-human RefSeq genes aligned to hg18 with BLAT

(UCSC Genome Browser ‘‘Other RefSeq’’ track), alternative and

extended 59 and 39 UTRs of known human genes from UTRdb,

RefSeq NR and XR transcripts annotated as ‘‘pseudogenes’’, and

Ensembl v54 coding sequences.

Transcripts containing large ORFs were removed. Two

steps of filtering were performed to remove both putative protein

coding transcripts and their UTRs. First, large ORFs (.100

amino acids) were identified in all transcripts in all reading frames

using EMBOSS getorf v6.1.0. In order to account for potentially

truncated ORF-containing transcripts in which the start or stop

codon may be outside the annotated region, the presence of

greater than 300 nt downstream of a start codon without an

interrupting stop codon, or 300 nt upstream of a stop codon

without an interrupting start codon, sufficed to call a putative

ORF. Transcripts with putative large ORFs were removed. These

putative large ORF containing intergenic transcripts, some of

which may be novel protein coding genes, are provided as a

resource in Dataset S10. In order to remove potential UTRs of

these large ORF-containing transcripts from the lincRNA catalog,

the remaining transcripts were filtered to remove any that

overlapped a large ORF-containing transcript.

Transcripts overlapping extended protein coding gene

structures were removed. RNA-seq reads may extend beyond

annotated 59 and 39 ends of annotated protein coding gene

structures representing possible extended UTRs as well as, in the

case of spliced reads mapping to the gene from distal sites,

unannotated exons. In order to avoid cataloging transcripts in

these regions as lincRNAs, we created a filter based on extended

boundaries of protein coding genes using RNA-seq data. To do

this, de novo transcriptome assembly with Cufflinks v1.1.0 using

RefSeq NM genes as a reference annotation (-g), upper quartile

normalization (-N), and fragment bias correction (-b) was

performed on all polyA+ RNA-seq libraries in Table S2. RefSeq

NM gene annotations were used as the reference annotation for

this transcript assembly because these represent a limited, high

confidence set of protein coding gene annotations. This set of

extended protein coding gene boundaries (Dataset S1) was used as
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a filter to remove transcripts that overlap any extended protein

coding gene by at least one base regardless of strandedness.

Transcripts not expressed at FPKM.1 in at least one

dataset were removed. In order to determine transcript

expression levels, mapped RNA-seq reads were distributed to

transcripts using a modified version of HTSeq v0.5.3p that allows

for reads that are mapped to shared portions of overlapping

transcripts to be counted as a full read for each overlapping

transcript. This was necessary to properly assign reads to each of

multiple redundant annotations of transcripts present in the

combined set from all public databases and de novo assemblies prior

to the merging of overlapping lincRNA annotations (described

below). These redundant annotations are the result of the repeated

de novo assembly of the same transcript in multiple different datasets

or redundant existing annotations in public databases, each of

which have slightly different genomic coordinates yet may represent

the same transcript. As such, all reads were distributed fully to each

redundant annotation rather than proportioned between them.

Read counts were converted to FPKMs using total mapped reads

for each dataset calculated by the SAMTools flagstat function and

custom scripts. Transcripts not expressed at FPKM.1 in at least

one dataset were removed. As a result of this FPKM.1 minimum

filter, 99.975% of de novo assembled lincRNAs (pre-merging) have at

least 5 reads supporting their expression in at least one of the

combined datasets in Table S2, and .99.1% have at least 10 reads

in one dataset. Transcripts were further categorized as FPKM.1,

FPKM.10, and FPKM.30 in at least one dataset where each

category is inclusive of all transcripts in higher categories.

Overlapping transcripts passing all filters at each

expression cutoff were merged and grouped by

proximity. To identify a minimal set of distinct lincRNAs,

overlapping transcripts were merged if 50% of an exon of a

transcript overlapped an exon of another transcript. Furthermore,

merged transcripts within 1 kb of each other were placed in the

same group but received distinct transcript numbers, and are

named based on the FPKM expression level they were derived

from, e.g. FPKM1_group_32871_transcript_1. Merging, grouping

and naming was performed separately on all FPKM.1 tran-

scripts, FPKM.10 transcripts, and FPKM.30 transcripts.

Filtering statistics are presented in Table S3. The catalog of

merged lincRNAs at each expression cutoff is in BED format for

genome build hg18 in Dataset S2. The FPKM.1 catalog of

lincRNAs was used for all analyses in this study unless stated

otherwise. The lincRNA annotations are provided as BED files in

the hg18 genome annotation rather than hg19 because the UCSC

Genome Browser currently has more data ‘‘tracks’’ available for

hg18. However, the lincRNA annotations may be readily

converted to hg19 or other genome annotations by users with

the LiftOver tool: http://genome.ucsc.edu/cgi-bin/hgLiftOver.

After merging these expression filtered, overlapping lincRNAs,

FPKMs were recalculated (Dataset S8) for the merged lincRNAs

using the modified HTSeq program described above. Due to the

incomplete nature of the lincRNA structures resulting from de novo

assembly, overlapping and nearby lincRNAs were considered to

represent different potential models of the same lincRNA gene

(rather than isoforms). Therefore, in the rare instances where two

or more lincRNA models partially overlap but do not satisfy our

merging criteria (above), the reads mapping to these overlapping

portions were fully assigned to each lincRNA.

Identifying lincRNAs expressed significantly above other

intergenic regions. For each RNA-seq dataset (Table S1), an

empirical background distribution of expression values was

generated using one million size-matched annotations shuffled

randomly across intergenic sequence. The intergenic sequence

used includes all portions of the uniquely mappable genome

excluding RefSeq NM, NR and XR genes, Ensembl v61 genes

including ‘‘lincRNAs’’ and ‘‘processed transcripts’’, GENCO-

DEv6 genes including ‘‘lincRNAs’’ and ‘‘processed transcripts’’,

H-Invitational ‘‘noncoding’’ transcripts, alternative and extended

59 and 39 UTRs of known human genes from UTRdb, extended

protein coding gene structures derived from RNA-seq data

(extended gene filter, described above), and published lincRNAs

from Khalil et al. [18] and Cabili et al. [16]. To determine which

putative lincRNAs (in Dataset S2, FPKM.1) were expressed

significantly above background in at least one dataset the

probability of observing a transcript at any given expression level

was estimated using the dataset-specific background distribution

and adjusted for multiple testing according to the Bonferroni

correction assuming one test per RNA-seq dataset. Those

lincRNA annotations with a corrected P value , = 0.1 in at least

one dataset are cataloged in Datasets S6, S7.

Additional LincRNAs Only Expressed in Cabili et al. [16]
An additional set of annotated lincRNA transcripts from Cabili

et al. [16] passed all our filters except were not expressed at

FPKM.1 in any of the datasets analyzed here and were therefore

removed from the lincRNA catalog in Dataset S2. However, some

of these transcripts were reported as expressed at FPKM.1 in at

least one of the datasets analyzed in Cabili et al. [16], all of which

are distinct from the datasets analyzed here. These additional

lincRNAs were merged with the lincRNAs in the catalog in

Dataset S2 resulting in an additional 920 lincRNAs in 741 groups

at FPKM.1, 88 lincRNAs in 82 groups at FPKM.10, and 17

lincRNAs in 17 groups at FPKM.30. This expanded lincRNA

catalog is in BED format for genome build hg18 in Dataset S3 and

was not used further for any analyses in this study.

Note on Genomic DNA Contamination in RNA-seq
Datasets

Genomic DNA contamination is a potential source of false

positive expression signal in RNA-seq data that may contribute to de

novo assembly of erroneous transcripts. In principle, only exon-exon

junction spanning reads can be unequivocally determined as

derived from RNA. Proper de novo assembly of both nonspliced

and spliced (aside from the exon-exon junction spanning reads)

transcripts may therefore suffer if significant genomic DNA

contamination is present. Because our analysis utilized a wide

range of novel and previously existing RNA-seq datasets of

unknown genomic DNA contamination content, we took multiple

steps to mitigate this possibility. First, for all RNA-seq datasets, we

analyzed the distribution of reads between protein coding exons

compared to other regions with the expectation that read

distributions should be similar between RNA-seq datasets generated

from libraries of the same type (e.g. polyA+ selected). A dataset with

an unusually high percentage of intronic and intergenic reads could

contain significant genomic DNA contamination. Our analysis of

the datasets used in this study revealed that, as expected, polyA+
specific RNA-seq datasets have a higher fraction of reads mapping

to protein coding gene exons than rRNA-depleted or polyA2

specific datasets. Furthermore, no obvious outlier datasets were

found for any of the library types. The results of this analysis ensured

that no datasets with high genomic DNA contamination were used

in this study (Figure S2). Next, as described in Figure 2A and in the

Methods, we applied both size and expression cutoffs for all

lincRNAs. The size cutoff prevents miscalling errant single reads,

either from genomic DNA contamination or from read mapping

artifacts, as lincRNAs while the expression cutoff removes lincRNAs

that are assembled from rare genomic DNA-derived reads. The
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combination of these approaches served to minimize the contribu-

tion of genomic DNA to the lincRNA catalog.

Analysis of Distribution of LincRNAs Between
Polyadenylated and Nonpolyadenylated RNA-seq Data

H9 ESC and HeLa RNA-seq data from fractions exclusively

containing polyA2 or polyA+ transcripts were analyzed [46].

Transcripts with RNA-seq reads in all four datasets and with

FPKM.1 in at least one of the two fractions for each cell type

were analyzed for Figure 3B (16,819 NM genes and 127

lincRNAs). For Figure S5, transcripts with reads in both fractions

and FPKM.1 in at least one of the two fractions for a specific cell

type were included in the analysis of that cell type (20,470 NM

genes and 849 lincRNAs in H9 ESCs; 18,294 NM genes and

1,009 lincRNAs in HeLa). The whiskers of the box and whisker

plot extend to +/21.5 times the interquartile range or the most

extreme datapoint.

Paired-End Ditag (PET) Cluster Analysis
Publicly available paired-end ditag (PET) cluster annotations

derived from 7 cell lines or tissues, generated by the ENCODE

project, were downloaded from http://genome.ucsc.edu/cgi-bin/

hgFileUi?db = hg19&g = wgEncodeGisRnaPet. The PET cluster

annotation files used were (by cell or tissue type):

A549 (wgEncodeGisRnaPetA549CellPapClusters.bedCluster),

H1_hESC (wgEncodeGisRnaPetH1hescCellPapClustersRep1.bed),

HeLa-S3 (wgEncodeGisRnaPetHelas3CellPapClustersRep1.bed),

IMR90 (wgEncodeGisRnaPetImr90CellPapClusters.bedCluster),

MCF-7 (wgEncodeGisRnaPetMcf7CellPapClusters.bedCluster),

Prostate (wgEncodeGisRnaPetProstateCellPapClustersRep1.bed),

SK-N-SH (wgEncodeGisRnaPetSknshCellPapClusters.bedCluster).

Further description of these PET clusters, including how the

annotations were generated, is available at the UCSC Genome

Browser site here http://genome.ucsc.edu/cgi-bin/hgTrackUi?

hgsid = 321010719&c = chr21&g = wgEncodeGisRnaPet. BED-

Tools was employed to compute overlap between lincRNA and

RefSeq NM gene 59 and 39 ends and PET cluster 59 and 39 end

‘blocks’. In the case of ambiguous stranded lincRNAs, both

potential orientations were allowed for determining overlap with

the 59 and 39 ends of PET clusters.

Ribosome Profiling Analysis
Ribosome profiling data and matched mRNA-seq data from

HeLa cells corresponding to the experiments (mock transfected

12 hr time point) presented in Guo et al. [22] were downloaded from

the NCBI GEO (GSE22004). The expression level of the filtered set

of lincRNAs and of RefSeq NM transcripts was evaluated as above.

The 803 lincRNAs expressed at an FPKM.1 and a sample of 1292

RefSeq NM transcripts expressed at an FPKM.1 (divided into

their constituent CDS and 39 UTR regions) were broken up into

30 bp windows with a 1 bp offset. A modified version of HTSeq

(described above) was used to count reads aligning to each window

for both RNA-seq and ribosomal profiling data. The ratio of

ribosome-associated reads over mRNA-seq reads was evaluated for

each window and the maximum ratio for a given transcript was

taken as a measure of ribosome engagement. The whiskers of the

box and whisker plot in Figure 2B extend to +/21.5 times the

interquartile range with outliers depicted as dots. Wilcoxon rank

sum test was used to calculate P values.

Computational Analysis of Coding Potential
The program PhyloCSF (9/16/2010 release) [40] was used to

computationally evaluate the coding potential of the filtered

lincRNA transcripts. A BED file describing these lincRNA

transcripts as well as a random sample of 8310 RefSeq NM

transcripts was loaded onto the Galaxy webserver (https://main.g2.

bx.psu.edu/) and the tool ‘Stitch Gene Blocks’ was used to retrieve

multiple alignment files with sequence entries for the following

genome builds based on the 44 way Multiz alignment to hg18: hg18

panTro2 rheMac2 tarSyr1 micMur1 otoGar1 tupBel1 mm9 rn4

dipOrd1 cavPor3 speTri1 oryCun1 ochPri2 vicPac1 turTru1

bosTau4 equCab2 felCat3 canFam2 myoLuc1 pteVam1 eriEur1

sorAra1 loxAfr2 proCap1 echTel1 dasNov2 choHof1. Genome

build names were converted to common names and PhyloCSF was

run using the options –orf = StopStop3 and –frames = 6.

Chromatin Modification Analysis
ChIP-seq data from IMR90 cells [28] was retrieved from the

NCBI SRA (Table 1) and aligned to hg18 using Bowtie v0.12.7

allowing only uniquely mapped reads (-k 1). A modified version of

HTSeq v0.5.3p (described above) was used to count reads

mapping to lincRNAs and RefSeq NM genes. The ratio of IP

reads to matched input control reads was used as the measure of

ChIP signal. RNA-seq data from IMR90 cells [29] was also

analyzed to obtain FPKM values for lincRNAs and RefSeq NM

genes using the same procedure used for lincRNA discovery. The

whiskers of the box and whisker plot extend to +/21.5 times the

interquartile range or the most extreme data point.

Tissue Clustering by LincRNA Expression
RNA-seq datasets from B cells, H1 ESCs, and brain (see Table S1)

were clustered by lincRNA expression levels. LincRNAs with

FPKM.10 in one or more of the 7 RNA-seq datasets analyzed in

Figure 3B were used to generate the heatmap and dendrogram. These

7 datasets were chosen for this analysis because they have replicates

from each tissue and have deep read counts for all replicates (Table S1),

important features for accurate measurement of differential expression.

Using Gene Cluster 3.0, FPKM values were log2 transformed and the

genes (rows) and samples (columns) were normalized by multiplying

each log2 transformed FPKM value by a scale factor such that the sum

of the squares of the values in each row and column are 1.0. Euclidean

distance using centroid linkage was calculated for all samples and the

heatmap and dendrogram was generated with Java TreeView. Red

corresponds to fully induced expression and blue corresponds to fully

repressed expression.

Conservation Analysis
Base-wise conservation scores (PhyloP score calculated with

PHAST), based on the multiple alignment of placental mammal

genomes, were downloaded from the UCSC Genome Browser.

The 50 bp window in each lincRNA transcript with the highest

Table 1. Datasets used for chromatin modification analysis.

Mark Sample ID SRA File ID(s)

H3K4me3 214 SRR029610, SRR029618

H3K9me3 805 SRR037619

H3K36me3 214 SRR037546, SRR037550, SRR037553, SRR037592

H3k27me3 803 SRR037555, SRR037560

Input 803 SRR037639

Input 805 SRR037640

Input 214 SRR037634, SRR037635, SRR037636

doi:10.1371/journal.pgen.1003569.t001
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average PhyloP score was identified. The process was repeated for

RefSeq NM genes and a set of size-matched (to lincRNAs)

repetitive elements from RepeatMasker (UCSC Genome Brows-

er). PhyloP scores for the maximally conserved 50 bp windows of

each lincRNA are listed in Table S4.

SNP Analysis
Enrichment of trait-associated SNPs. A table containing

all trait-associated SNPs with P,1028 was downloaded from the

NCBI dbGaP Association Results Browser (3,781 total trait-

associated SNPs). Genomic coordinates of trait-associated SNPs

were retrieved from dbSNP 130. To compare enrichment of trait-

associated SNPs in lincRNAs versus background loci (nonexpressed

intergenic regions), regions of the uniquely mappable genome

longer than 200 bp that exclude all evidence of transcription (RNA-

seq reads, RefSeq NM, NR and XR genes and pseudogenes,

Ensembl v61 genes, GENCODE v10 genes, spliced ESTs, spliced

H-Invitational cDNAs, 59 and 39 UTRs from UTRdb, extended

RefSeq NM genes derived using reference annotation based de novo

transcriptome assembly (see above and Dataset S1) and all

lincRNAs) were compiled and served as background loci for this

analysis. The number of tested SNPs on Illumina (Illumina 1M) and

Affymetrix (Affymetrix SNP Array 6.0) SNP arrays was determined

for RefSeq NM gene exons, lincRNA exons and background loci.

The number of tested SNPs per platform was scaled by the

fractional contribution of Illumina (58.6%) versus Affymetrix

(41.4%) platforms to the full set of GWASs in the NHGRI GWAS

catalog [1]. The number of trait-associated SNPs per tested SNP

was then determined using this scaled number of tested SNPs.

Fisher’s exact test was used to calculate P values and error bars in

Figure 4 represent 95% binomial proportion confidence intervals.

Common SNPs. A table containing all common SNPs (minor

allele frequency .0.05) from HapMap release #27 was down-

loaded from the BioMart HapMap site (http://hapmap.ncbi.nlm.

nih.gov/biomart/martview) and the number of common SNPs

within RefSeq NM gene exons, lincRNA exons and background

loci divided by the number of genomic bases in each of these

categories was determined. Fisher’s exact test was used to calculate

P values and error bars in Figure S7 represent 95% binomial

proportion confidence intervals.

Supporting Information

Dataset S1 Extended protein coding gene boundary filter (BED

format; hg18).

(TXT)

Dataset S2 Primary catalog of lincRNAs identified and

analyzed in this study (53,864 FPKM.1, 3,676 FPKM.10, and

925 FPKM.30 transcripts) (BED format; hg18).

(ZIP)

Dataset S3 Catalog of lincRNAs in Dataset S2 after merging

with additional lincRNAs found to be expressed at FPKM.1

exclusively in Cabili et al. [16] (54,784 FPKM.1, 3,764

FPKM.10, and 942 FPKM.30 transcripts) (BED format; hg18).

(ZIP)

Dataset S4 Catalog of lincRNAs in Dataset S2 (FPKM.1) that

are spliced (4,576 transcripts) (BED format, hg18).

(TXT)

Dataset S5 Catalog of lincRNAs in Dataset S2 that are

expressed at FPKM.1 in at least two RNA-seq datasets (26,455

transcripts) (BED format, hg18).

(TXT)

Dataset S6 Catalog of lincRNAs in Dataset S2 (FPKM.1) that

are statistically significantly (p,0.1) expressed above a random

sample of other size-matched intergenic regions in at least one

RNA-seq dataset (5,267 transcripts) (BED format, hg18).

(TXT)

Dataset S7 RNA-seq dataset names, P values and FPKMs

corresponding to each significantly expressed lincRNA in Dataset

S6.

(TXT)

Dataset S8 RNA-seq FPKM and read counts for all lincRNAs

(from Dataset S2, FPKM.1) and NM genes in all individual

datasets (TXT). Please note that these are large files: the

compressed FPKM file is 32 MB (94 MB uncompressed) and

the compressed counts file is 7 MB (29 MB uncompressed).

(ZIP)

Dataset S9 GENCODEv6 ‘‘lincRNAs’’ and ‘‘processed tran-

scripts’’ that were removed at each step of filtering. (A) Unfiltered

GENCODEv6 ‘‘lincRNAs’’ and ‘‘processed transcripts’’ (39,472

transcripts) (BED format; hg18) (TXT). (B) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ that overlap RefSeq

NM (protein coding) genes by at least 1 base pair on either strand

(27,267 transcripts) (BED format; hg18) (TXT). (C) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ that overlap (see

Methods) one or more elements of an expanded set of protein

coding genes (UCSC, RefSeq, Ensembl, GENCODE), pseudo-

genes, UTRs (UTRdb), or non-lincRNA noncoding RNAs

(33,245 transcripts) (BED format; hg18) (TXT). (D) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ that passed the protein/

pseudogene/non-lincRNA ncRNAs/,200 nt filter, but contain

an ORF.100 amino acids in length (964 transcripts) (BED

format; hg18) (TXT). (E) GENCODEv6 ‘‘lincRNAs’’ and

‘‘processed transcripts’’ that do not themselves contain an

ORF.100 amino acids, but overlap another annotated or de novo

lincRNA that contains an ORF.100 amino acids (2,700

transcripts) (BED format; hg18) (TXT). (F) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ that passed the prior

filters but overlap an extended protein coding gene structure (149

transcripts) (BED format; hg18) (TXT). (G) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ passing all prior filters

except not found expressed at FPKM.1 in any dataset (1,469

transcripts) (BED format; hg18) (TXT). (H) GENCODEv6

‘‘lincRNAs’’ and ‘‘processed transcripts’’ passing all filters and

expressed at FPKM.1 in at least one dataset (945 transcripts)

(BED format; hg18) (TXT).

(ZIP)

Dataset S10 Catalog of intergenic transcripts containing ORFs

longer than 100 amino acids (105,265 transcripts) (BED format;

hg18).

(TXT)

Figure S1 Fraction of the human genome with mapped RNA-

seq reads at varying minimum read thresholds. The 4.5 billion

mapped reads from all 127 RNA-seq datasets were combined and

aligned to the uniquely mappable portion of the human genome

(see Methods). The fraction of the uniquely mappable genome

with at least the minimum read threshold is plotted. The data does

not plateau at low minimum read thresholds, indicating that

deeper sequencing would result in a further increase in the fraction

of genome covered. For split reads (reads spanning an intron), the

intervening (intronic) sequence was either inferred to have been

transcribed (Including Inferred Bases) or was not (Excluding

Inferred Bases). At the 1 read minimum read count threshold,
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67.1% and 78.9% of the genome have read coverage when

excluding or including inferred bases, respectively.

(TIF)

Figure S2 Fraction of RNA-seq reads mapping to protein coding

(RefSeq NM) gene exons versus intronic and intergenic regions for

127 RNA-seq datasets grouped by RNA-seq library type. Read

counting was performed using a modified version of HTSeq v0.5.3p

(see Methods). Isoforms of protein coding genes were flattened

before reads were counted such that reads were distributed only

once per gene even if multiple isoforms exist. PolyA+ selected

libraries (enriched for mRNAs) contain a higher fraction of reads

mapping to protein coding gene exons while ribosomal RNA-

depleted RNA-seq libraries and polyA2 selected libraries contain a

higher fraction of intronic and intergenic reads. In all cases, due to

the generally high expression levels of protein coding genes, protein

coding gene exons contain a disproportionate number of mapped

reads relative to the genomic space they occupy (,3%).

(TIF)

Figure S3 Fraction of lincRNAs (Dataset S2, FPKM.1)

expressed at varying minimum FPKM levels. The fraction of

lincRNAs in Dataset S2 that are expressed at or above the

corresponding FPKM level in at least one dataset is plotted.

(TIF)

Figure S4 LincRNAs have tissue specific expression patterns.

LincRNA expression levels (FPKMs) were used to cluster

replicates of RNA-seq data from B cells, H1 embryonic stem cells

and brain tissue. Agglomerative hierarchical clustering of both

lincRNAs (rows) and samples (columns) by Euclidean distance was

performed with log2 transformed lincRNA FPKM values for

lincRNAs with FPKM.10 in at least one of the analyzed samples.

The heatmap displays red for fully induced lincRNAs and blue for

fully repressed lincRNAs, where rows and columns were

normalized (see Methods).

(TIF)

Figure S5 Polyadenylation of lincRNAs versus protein coding

genes. Distribution of ratios of FPKMs in polyA+/polyA2

fractions for lincRNAs and NM genes in HeLa and H9 ESCs.

Transcripts with reads in both fractions and FPKM.1 in at least

one of the two fractions for a specific cell type were included in the

analysis of that cell type (20,470 NM genes and 849 lincRNAs in

H9 ESCs; 18,294 NM genes and 1,009 lincRNAs in HeLa).

Whiskers extend to +/21.5 times interquartile range or most

extreme data point.

(TIF)

Figure S6 Comparison of conservation of the full lincRNA

catalog (53,864 lincRNAs, Dataset S2, FPKM.1) to GENCO-

DEv6 lincRNAs. The maximally conserved 50 bp windows in

each lincRNA, RefSeq NM gene and repetitive element

(nonconserved control sequences) were determined. Only the

GENCODE lincRNAs that passed all lincRNA filters (2,414

GENCODE lincRNAs, Table S3) were evaluated.

(TIF)

Figure S7 Distribution of common SNPs between lincRNA

exons, NM gene exons, and nonexpressed intergenic regions.

HapMap II SNPs with minor allele frequency .0.05 located

within NM gene exons, lincRNA exons, or background loci

(nonexpressed intergenic regions), normalized by total number of

base pairs in each region, were counted (*P = 0.0173, ** P,2.2E-

16; error bars represent 95% binomial proportion confidence

interval).

(TIF)

Table S1 Features of the RNA-seq datasets analyzed. P values

correspond to a binomial test of proportion of the FPKM = 1

expression threshold in each dataset (see Methods).

(XLSX)

Table S2 Features of the combined RNA-seq datasets that were

used for de novo transcriptome assembly.

(XLSX)

Table S3 LincRNA filtering statistics.

(XLSX)

Table S4 Conservation (PhyloP) score for the maximally

conserved 50 bp window of each lincRNA in Dataset S2

(FPKM.1). 532 lincRNAs do not contain 50 contiguous bases

with PhyloP scores and therefore are not listed.

(XLSX)

Table S5 Fraction of de novo assembled lincRNAs (pre-merging)

discovered by de novo assembly in each combined dataset (see Table

S2) that are spliced.

(XLSX)

Table S6 LincRNA (Dataset S2) and RefSeq NM gene analysis

for experimental support of 59 and 39 end annotations using

combined paired-end ditag (PET) data from 7 tissues/cell lines

generated by the ENCODE project (see Methods).

(XLSX)
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