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Abstract

The generation of genome-scale data is becoming more routine, yet the subsequent analysis of omics data remains a
significant challenge. Here, an approach that integrates multiple omics datasets with bioinformatics tools was developed
that produces a detailed annotation of several microbial genomic features. This methodology was used to characterize the
genome of Thermotoga maritima—a phylogenetically deep-branching, hyperthermophilic bacterium. Experimental data
were generated for whole-genome resequencing, transcription start site (TSS) determination, transcriptome profiling, and
proteome profiling. These datasets, analyzed in combination with bioinformatics tools, served as a basis for the
improvement of gene annotation, the elucidation of transcription units (TUs), the identification of putative non-coding
RNAs (ncRNAs), and the determination of promoters and ribosome binding sites. This revealed many distinctive properties
of the T. maritima genome organization relative to other bacteria. This genome has a high number of genes per TU (3.3), a
paucity of putative ncRNAs (12), and few TUs with multiple TSSs (3.7%). Quantitative analysis of promoters and ribosome
binding sites showed increased sequence conservation relative to other bacteria. The 59UTRs follow an atypical bimodal
length distribution comprised of ‘‘Short’’ 59UTRs (11–17 nt) and ‘‘Common’’ 59UTRs (26–32 nt). Transcriptional regulation is
limited by a lack of intergenic space for the majority of TUs. Lastly, a high fraction of annotated genes are expressed
independent of growth state and a linear correlation of mRNA/protein is observed (Pearson r = 0.63, p,2.2610216 t-test).
These distinctive properties are hypothesized to be a reflection of this organism’s hyperthermophilic lifestyle and could
yield novel insights into the evolutionary trajectory of microbial life on earth.
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Introduction

A fundamental step towards obtaining a systems-level under-

standing of organisms is to obtain an accurate inventory of cellular

components and their interconnectivities [1–3]. The genome

sequence and in silico predictions of gene annotation are the

starting points for assembling a network. For prokaryotes, these in

silico approaches detect open reading frames and structural RNAs

with varying degrees of accuracy [4]. Recently, multi-omic data

generation and analysis studies [5–11] have revealed an

abundance of genomic features that are not detected computa-

tionally such as transcription start sites (TSSs), promoters,

untranslated regions (UTRs), non-coding RNAs, ribosome binding

sites (RBSs) and transcription termination sites [12]. However, the

rate at which multi-omic datasets are being generated is

substantially outpacing the development of analysis workflows

for these inherently dissimilar data types [13]. Here, multi-omic

experimental data is generated and analyzed in conjunction with

bioinformatics tools to annotate numerous bacterial genomic

features that cannot accurately be detected using in silico

approaches alone. This methodology was applied to study the

genome organization of Thermotoga maritima—a phylogenetically

deep-branching, hyperthermophilic bacterium with a compact

1.86 Mb genome.

Originally isolated from geothermally heated marine sediment,

T. maritima grows between 60–90uC with an optimal growth

temperature of 80uC [14]. This species belongs to the order

Thermotogales that have, until recently, been exclusively comprised

of thermophilic or hyperthermophilic organisms. Compared to

most bacteria, Thermotogales are capable of sustaining growth over a

remarkably wide range of temperatures. For instance, Kosmotoga

olearia can be cultivated between 20–80 uC [15]. Recently, the
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existence of mesophilic Thermotogales [16,17] was confirmed with

the description of Mesotoga prima, which grows from 20–50 uC with

an optimum at 37 uC [18]. Sequencing of M. prima revealed that it

has the largest genome of all the Thermotogales at 2.97 Mb with

,15% noncoding DNA [19]. T. maritima, which grows at the

upper-limit known for Thermotogales, has one of the smallest

genomes in this order and maintains one of the most compact

genomes among all sequenced bacterial species (,5% noncoding

DNA) [20,21]. The short intergenic regions in the T. maritima

genome (5 bp median) resemble those in the genome of Pelagibacter

ubique, a bacterium that has undergone genome streamlining and

has the shortest median intergenic space (3 bp) among free-living

bacteria [20]. Although it remains unclear whether T. maritima has

also undergone streamlining, both organisms encode only a few

global regulators (four sigma factors in T. maritima versus two in P.

ubique) and carry just a single rRNA operon. In contrast with P.

ubique, T. maritima displays more metabolic diversity through its

ability to ferment numerous mono- and polysaccharides [14,22].

Thermotogales have been the focus of many evolutionary

studies [23–25]. Organisms in hydrothermal vent communities,

where many Thermotogales have been isolated, are thought to

harbor traits of early microorganisms [26]. Phylogenetic analysis

of 16S rRNA sequences place the Thermotogae at the base of the

bacterial phylogenetic tree [27,28]; however, Zhaxybayeva et al.

[25] determined through analysis of 16S rRNA and ribosomal

protein genes that Thermotogae and Aquificales (a hyperthermo-

philic order) are sister taxa. The authors also determined that the

majority of Thermotogae proteins align best with those found in

the order Firmicutes [25]; therefore, the exact phylogenetic

position of Thermotogae is still unresolved. Nevertheless, members

of this phylum are among the deepest branching bacterial species

and, as such, prime candidates for evolutionary studies.

Thermophiles such as T. maritima implement numerous

strategies at both the protein and nucleic acid levels to support

growth at high temperatures. For instance, intrinsic protein

stabilization is achieved by utilizing more charged residues at

the protein surface, encoding for a dense hydrophobic core, and

increasing disulfide bond usage [29,30]. DNA is typically kept

from denaturing by introducing positive supercoils via reverse

gyrase activity while phosphodiester bond degradation is prevent-

ed by stabilization through interaction with cations (e.g. K+, Mg2+)

and polyamines [31,32]. However, the impact of temperature on

genome features essential to gene expression such as promoters

and RBSs remains largely unexplored. Bacterial transcription

initiation is governed by recognition of promoter sequences by

sigma factors, which load the RNA polymerase holoenzyme

upstream of the transcription start site (TSS). Translation initiation

is predominantly reliant on base pairing between the anti-Shine-

Dalgarno sequence found near the 39-terminus of the 16S rRNA

and the Shine-Dalgarno sequence (i.e. the RBS). Therefore,

thermophilic macromolecular synthesis machinery must establish

and retain contacts with nucleic acids while facing greater

thermodynamic challenges.

The integrated approach described here enables an experimen-

tally anchored annotation of several bacterial genomic features

including protein-coding genes, functional RNAs, non-coding

RNAs, transcription units (TUs), promoters, ribosome binding

sites (RBSs) and regulatory sites such as transcription factor (TF)

binding sites, 59 and 39 untranslated regions (UTRs) and intergenic

regions. This is achieved through the simultaneous analysis of

genomic, transcriptomic and proteomic experimental datasets with

complementary bioinformatics approaches. In addition to provid-

ing a valuable resource to the research community, this analysis

framework facilitates quantitative and comparative analysis of

annotated features across microbial species. For the genome of T.

maritima, several distinguishing characteristics were identified and

their potential causal factors are discussed.

Results

An integrative, multi-omic approach for the annotation
of the genome organization

An integrative workflow was developed to re-annotate the

genome of T. maritima. The re-annotated genome is the result of

the simultaneous reconciliation of multiple omics data sources

(Figure 1, upper left) with bioinformatics approaches (Figure 1,

upper right). Omics data generated included: (1) genome

resequencing, (2) transcription start site (TSS) identification using

a modified 5’RACE (Rapid Amplification of cDNA Ends)

protocol, (3) transcriptome profiling using both high-density tiling

arrays and strand-specific RNA-seq, and (4) LC-MS/MS shotgun

proteomics. Transcriptome data were generated from cultures

grown in diverse conditions including log phase growth, late

exponential phase, heat shock, and growth inhibition by hydrogen

(See Materials and Methods). Proteomic datasets include log phase

growth and late exponential phase growth conditions. In

combination with various bioinformatics approaches, integration

of these omics datasets allowed for the definition of gene and

transcription units (TU) boundaries with single base-pair resolu-

tion. The updated and expanded annotation served as the basis for

genome-wide identification of promoters, ribosome binding sites

(RBSs), intrinsic transcriptional terminators and UTRs.

Annotation of open reading frames (ORFs). Reannotation

of the T. maritima MSB8 genome began with whole genome

resequencing of the ATCC derived strain. Genome resequencing

was prompted by the recent identification of a ,9 kb chromo-

somal region in the DSMZ derived strain (DSMZ genomovar,

Genbank Accession AGIJ00000000.1) that is not present in the

original genome sequence derived from a TIGR strain (TIGR

genomovar, Genbank Accession AE000512.1) [33]. Resequencing

the ATCC derived strain (presented as the ATCC genomovar,

Genbank Accession CP004077) ensured that subsequent analyses

referenced an accurate genome sequence. The ATCC genomovar

sequence consists of 1,869,612 bp and, like the DSMZ genomo-

var, carries an ,9 kb chromosomal region found between

TM1847 and TM1848 of the TIGR annotation. The draft

genome was annotated using the RAST Pipeline [34] and was

Author Summary

Genomic studies have greatly benefited from the advent
of high-throughput technologies and bioinformatics tools.
Here, a methodology integrating genome-scale data and
bioinformatics tools is developed to characterize the
genome organization of the hyperthermophilic, phyloge-
netically deep-branching bacterium Thermotoga maritima.
This approach elucidates several features of the genome
organization and enables comparative analysis of these
features across diverse taxa. Our results suggest that the
genome of T. maritima is reflective of its hyperthermo-
philic lifestyle. Ultimately, constraints imposed on the
genome have negative impacts on regulatory complexity
and phenotypic diversity. Investigating the genome
organization of Thermotogae species will help resolve
various causal factors contributing to the genome orga-
nization such as phylogeny and environment. Applying a
similar analysis of the genome organization to numerous
taxa will likely provide insights into microbial evolution.

Genome Organization and Genomic Constraints
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then reconciled with the existing TIGR genomovar annotation.

The RAST draft annotation had 1,887 protein-coding sequences

while the TIGR annotation contained 1,858. Comparison of these

two annotations with transcriptome, proteome and bioinformatics

datasets resulted in a final annotation containing 1,893 protein-

coding sequences (Table S1). The final gene annotation retained a

total of 1,830 NCBI annotated genes while 28 NCBI annotated

genes were dropped (or replaced) due to a lack of experimental

support. An additional 63 genes were annotated based on evidence

found in multiple data-types. Furthermore, 370 genes varied in

length when comparing the final gene annotation to the NCBI

annotation. These discrepancies in gene length were predomi-

nantly due to differences in the start codon assignment, thus

changing the amino acid sequence at the N-terminus. Gene length

annotation differences of less than 10 amino acids were not

resolved using the generated datasets without the presence of

direct proteomic evidence to support one annotation over the

other. However, 118 of these 370 genes (32%) had large

discrepancies in their gene length annotation, equaling or

exceeding 10 amino acids. For these cases, annotation conflicts

were resolved using data from peptide mapping, transcript

presence and bioinformatics tools.

Annotation of transcription units (TUs). In addition to the

annotation of ORFs, the genome annotation was expanded to

include the TU architecture. The TU architecture is defined here

to be the genomic coordinates of all RNA molecules in the

transcriptome. To expand the annotation to include TUs,

transcript bounds were resolved with single base pair resolution

using data from RNA-seq and TSS determination. Definition of

these bounds was facilitated by bioinformatics approaches; for

example, the prediction of intrinsic transcriptional terminators was

used to aid in assigning 39 bounds of transcripts. This approach

resulted in the assignment of 748 TUs with a total of 676 unique

TSSs (Table S2). The majority of TUs were found to be

polycistronic (427, 57%) while the rest of the TUs contain only

a single gene (321, 43%). The average TU contains 3.3 genes

which is greater than the typical 1–2 genes per transcript observed

in other bacteria [7,35,36] but similar to those found in archaea

[9,37]. Previous high-resolution studies of microbial transcrip-

tomes have identified the transcription of suboperonic regions as a

source of transcriptional complexity [5,8,35]. In T. maritima 165

TUs (22%) are suboperonic, having their initiation site within a

longer TU. This fraction of suboperons observed in T. maritima is

within the range observed in other bacteria; however, some

Figure 1. Generation of multiple genome-scale datasets integrated with bioinformatics predictions reveals the genome
organization. Experimental data generated for the study of the T. maritima genome include genome resequencing, TSS determination, RNA-
seq, tiling arrays (not shown) and LC-MS/MS peptide mapping (top left). Bioinformatics approaches used include genome re-annotation, functional
RNA prediction, ribosome binding site energy calculations, and determination of intrinsic terminators (top right). Integration of these distinct datasets
involves normalization and quantification to genomic coordinates. This experimentally anchors gene annotation improvements, defines the TU
architecture, identifies non-coding RNAs and serves as a basis for the identification of additional genetic elements such as promoters and ribosome
binding sites.
doi:10.1371/journal.pgen.1003485.g001
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organisms such as Helicobacter pylori have similarly sized genomes

(1.67 Mb) but use suboperonic transcription much more frequent-

ly (47%, excluding antisense suboperons) [8]. Another source of

transcriptional complexity comes from the use of multiple start

sites, however, only a small number of T. maritima TUs (28, Table

S3) were observed to utilize them.

Annotation of non-coding RNAs. Beyond facilitating pro-

tein-coding gene annotation, transcriptome data provided exper-

imental evidence supporting the bioinformatics prediction of 46

tRNAs, 3 rRNAs, 8 CRISPR cassettes and an additional 10 non-

coding RNAs which include riboswitches, leader sequences,

RNase P RNA, tmRNA and SRP RNA. These features are

included in the final annotation presented here (CP004077, Table

S1). Transcription was detected antisense to 19% of annotated

genes (Table S4). However, 39UTRs account for 52% of these

antisense transcripts and only 62 antisense transcripts have an

experimentally identified TSS. Furthermore, the median log phase

FPKM (Fragments Per Kilobase of transcript per Million mapped

reads) values are much lower for antisense transcripts (4.5) than

those found for protein-coding genes (117). Transcriptome data

also enabled identification of 13 putative non-coding RNAs

(ncRNAs, Table S5). No secondary structures could be defined for

these putative ncRNAs using the prediction algorithms RNAfold

[38] and Infernal [39] at 80uC. Four of these putative ncRNAs

contain small ORFs (,40 amino acids) but no peptide evidence

for these small ORFs was found in the proteomic datasets.

Identification of promoters and RBSs followed by
quantitative intra- and interspecies analysis of binding
free energies

The genome-wide identification of promoter and RBS sites was

facilitated by the annotated TU start loci and protein start codons

(Figure 2A). Promoter and RBS sequences were then quantita-

tively analyzed using thermodynamic principles. These same

quantitative measures were applied to numerous organisms for

interspecies comparison.

Annotation-guided search for motifs reveals promoter

structures that enable many contacts with RNA polymerase

holoenzyme. Bacterial RNA polymerase is recruited predom-

inantly through the binding of sigma factors to promoter regions.

A promoter motif search was performed upstream of all unique T.

maritima TU start sites. This revealed a strongly conserved, E. coli

s70-like consensus sequence for the housekeeping sigma factor

RpoD (Tmari_1457). No motifs were detected for the alternate

sigma factors RpoE, SigH and FliA (See Materials and Methods).

The RpoD motif has three distinct promoter elements: a 210

hexamer, a 235 hexamer and a 59TGn element directly upstream

of the 210 hexamer (Figure 2B). Individual promoters identified

carried combinations of these three elements. The distance

between the TSS and the 39 end of the 210 element was found

to be 7 bp (Figure 2B). This is in strong agreement with the

expected spacing for the consensus sequence of E. coli s70. The

same is true of the 235 element though the location of the 235

hexamer is more variable compared with the 210 hexamer partly

due to the variability of the spacing between the 210 and 235

promoter elements. Plotting the spacer between the 210 and 235

promoter elements yields a distribution centered around 17 bp,

which also is in agreement with the E. coli s70 consensus (Figure

S1). Furthermore, plotting of genomic AT content upstream and

downstream of aligned 210 promoter elements reveals an increase

in AT content ,75 bp upstream of the 210 promoter element

(Figure S2). This suggests the presence of UP elements for a subset

of T. maritima promoters. The a-subunits of RNA polymerase bind

to UP elements, facilitating initiation of transcription [40,41].

Quantitative assessment of T. maritima promoters

indicates high information content across multiple s70

binding modes. The identification of s70 promoter elements

enabled the quantitative study of the relative binding free energy

associated with individual promoters. The sequence conservation

of an individual promoter element (i.e. the information content

measured in bits [42]) can be computed through application of

molecular information theory and is achieved through quantitative

comparison of a given sequence to the average sequence

conservation across the genome as measured through the position

weight matrix [43] (See Materials and Methods). Information

content has been correlated to binding free energy (DG) through

the second law of thermodynamics [44–46], where sequences with

high information content are closer to consensus and, therefore,

have stronger relative binding free energy (more negative DG).

Experimental results, both in vitro and in vivo, have shown that

information content is moderately predictive of promoter strength

and activity [47].

The information content for individual T. maritima promoters

was computed using a model of s70 promoters that accounts for

the information content of each promoter element and the

variation in spacing between the 210 and 235 elements [48].

Using this approach, the information content of each T. maritima

promoter was determined for three, s70-binding modes that

represent the potential contacts between s70 and the promoter

elements (Figure 2C1–C3). Plotting the maximum information

carrying binding mode for all promoters (Figure 2C4) shows that

the vast majority of promoters (90%) have information content

greater than zero. This indicates that, for these TUs, s70 binding

and transcription initiation is thermodynamically favorable

(DG,0). Furthermore, the distribution of information content

indicates that the median T. maritima promoter has 8.7 bits

compared to E. coli s70 promoters whose median is 5.9 bits.

Comparison of T. maritima promoters across all modes shows that

the extended 210 promoter (210 hexamer and upstream 59TGn,

Mode 2) provides the highest information for most TUs (63%).

Furthermore, an extended 210 promoter combined with a 235

box (Mode 3) yields the highest information content in 25% of all

promoters and 51% of functional RNA promoters (Figure 2C4

inset). These RNAs, which are among the most actively

transcribed genes, encode promoters with exceptionally high

information content (median 12.1 bits).

Interspecies comparative analysis reveals that T. maritima

promoters have high relative sequence conservation. The

surprisingly high sequence conservation of T. maritima promoters

prompted a comparative analysis of information content across

multiple bacterial species. The scope of the comparative analysis was

limited by the lack of datasets detailing bacterial TSS locations and

the association of those TSSs with s70. Publically available datasets

for only seven additional, diverse microorganisms met this criteria.

The organisms included in the analysis are the Gammaproteobac-

teria Escherichia coli K12 MG1655 [49] and Salmonella enterica subsp.

enterica serovar Typhimurium SL1344 [50], the Deltaproteobacter-

ium Geobacter sulfurreducens PCA [7], the Epsilonproteobacterium

Helicobacter pylori 26695 [8], the Chlamydiae Chlamydophila pneumoniae

CWL029 [51], the Cyanobacterium Synechocystis sp. PCC 6803 [52]

and the Firmicute Bacillus subtilis [53]. Since these datasets contain

only experimentally confirmed TSS loci, only T. maritima TUs with

an experimentally confirmed TSS were included in this interspecies

comparison (495 TUs out of 676). As before, the information content

across all three s70-binding modes was calculated. The distribution

of the highest information content mode (Figure 2D) indicates that T.

maritima promoters are the strongest among all organisms studied,

carrying a median of 10.2 bits of information. Thus, among bacteria,

Genome Organization and Genomic Constraints
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T. maritima promoter information content associated with s70-

binding is relatively high.

Analysis of T. maritima RBS binding strength reveals

strong binding free energies that support translation

initiation at 80 6C. The RNA/RNA binding free energy of

the Shine-Dalgarno with the anti-Shine-Dalgarno was calculated

in a temperature-dependent manner using the gene annotation as

a reference point. Across all protein coding genes, the median RBS

DG was calculated 6100 nucleotides (nt) from the start codon at

temperatures ranging from 37 uC to 90 uC (Figure 2E). The

position of the lowest DG is shown to be 4–6 nt upstream of the

start codon, which is in agreement with the optimal RBS location

for translation initiation [54]. T. maritima is shown to maintain a

thermodynamically favorable median DG up to its growth

temperature maximum of 90 uC [14]. Plotting the distribution of

local minimum DG’s at 80 uC (Figure 2F) reveals that 93% of T.

maritima protein-coding genes have a RBS with DG,0. Calculat-

ing RBS free energy distributions at different temperatures

(Figure 2F) reveals that at higher temperatures there is a narrowing

in the range of observed free energies. T. maritima RBSs have a

median absolute deviation of 1.30 kcal/mol at 37 uC compared to

0.87 kcal/mol at 80 uC (p = 4.4610233, Wilcoxon rank-sum test).

Comparison of E. coli and T. maritima RBSs reveals that T. maritima

RBSs are substantially weaker at their respective optimal growth

temperatures (Figure 2F). A large fraction (36%) of E. coli genes

have a DG.0 at 80 uC and would not be capable of supporting

hyperthermophilic life. When compared at equal temperatures

(Figure 2F, 80 uC) T. maritima RBSs are stronger.

Interspecies analysis indicates that RBS binding strength

is influenced by both optimal growth temperature and

phylogeny. To more rigorously test for a relationship between

RBS strength and optimal growth temperature, RBS DG’s were

calculated for all genes in 108 additional bacterial species spanning

numerous phyla (including 14 members of the Thermotogae

phylum). These organisms include psychrophilic, mesophilic,

thermophilic and hyperthermophilic microorganisms. A signifi-

cant linear correlation was found between optimal growth

temperature and median RBS DG (Pearson r = 20.653,

p,161026 random permutation test), where increasing optimal

growth temperatures trend with a lower median RBS DG

calculated at 37 uC (Figure 2G). However, the energetic analysis

of RBSs applied here is based on the 16S rRNA sequence of the

anti-Shine-Dalgarno and, as such, phylogeny is a potential

contributing factor to this correlation. To test this, three distance

matrices were constructed: (1) for local minimum median RBS DG

(across all genes in a given genome), (2) for optimal growth

temperatures, and (3) for phylogenetic distances determined from

16S rRNA sequences. The Mantel test was then applied to

evaluate the correlations among the pairwise distance matrices

(Figure S3) allowing for the contribution of optimal growth

temperature to be decoupled from phylogeny with respect to RBS

strength. This test indicated that both phylogeny and optimal

growth temperature impact median RBS strength, with temper-

ature slightly more significant than phylogeny (Mantel Statistic

r = 0.37 vs 0.35, p = 161024 random permutation test).

T. maritima promoter-containing intergenic regions
reveal a unique distribution of 59UTRs and spatial
limitations on regulation

Regulation in T. maritima was studied from the vantage point of

an organism with extremely short intergenic regions. In both

microbes [55] and higher organisms [56] it was shown that the

regulatory complexity of an operon positively correlates with the

amount of intergenic space found upstream of that operon.

Promoter-containing intergenic regions (PIRs) served as well-

defined genomic regions for this analysis (Figure 3A). PIRs contain

target sites for transcriptional regulation (e.g. promoters and TF

binding sites) as well as translational regulation (e.g. RBSs). Each

PIR can be divided into two components in relation to the TSS:

the sequence downstream of the TSS (the 59UTR) and the

sequence upstream of the TSS.

T. maritima has a bimodal distribution of 59UTRs

comprised of uncharacteristically ‘‘Short’’ 59UTRs and

‘‘Common’’ 59UTRs. T. maritima exhibits an unusual bimodal

distribution with respect to the length of 59UTRs (Figure 3B). To

date, the 59UTRs of all other microorganisms follow a unimodal

distribution centered at approximately 30 nt [7,8,35,36]. Though

T. maritima has a distinct peak (local maxima) from 26–32 nt

(Common 59UTR Group), it has a second peak containing shorter

59UTRs with lengths between 11–17 nts (Short 59UTR Group).

Interestingly, there is underrepresentation of 59UTRs with lengths

between 18–25 nt. Leaderless transcripts were not detected in T.

maritima, echoing the RNA/RNA binding energy analysis that

indicated exclusive use of RBSs for translation initiation.

To better understand the bimodal nature of the 59UTR

distribution, various factors were tested that could differentiate

the Short 59UTR Group from the Common 59UTR Group and

Figure 2. Identification and quantitative comparison of genetic elements for transcription and translation initiation. (A) Schematic
showing the position of the promoter upstream of the TSS and the RBS upstream of the translation start codon. (B) The genomic position of the 39
end of each promoter element is shown relative to the TSS for all T. maritima TUs. Promoter elements were identified using a gapped motif search for
a 235 hexamer and a 210 nonamer. This revealed an E. coli s70 promoter architecture for the housekeeping sigma factor of T. maritima, RpoD. The
motif for both promoter elements is displayed as a sequence logo (insets). (C) The relative binding free energy of s70 is captured using information
content. Each panel shows the distribution of promoter information content for T. maritima and E. coli. Mode 1 (C1) calculates information content
based on s70 contacts with the 235 and 210 hexamer promoter elements (ntmari = 265, ntmari_fRNA = 38, neco = 650). Mode 2 (C2) represents binding
to the extended 210 promoter (ntmari = 676, ntmari_fRNA = 57, neco = 1,481). Mode 3 (C3) represents s70-binding to both the 235 and the extended
210 promoter elements (ntmari = 274, ntmari_fRNA = 37, neco = 657). (C4) shows the distribution of information content for all promoters when only the
highest scoring mode is considered (ntmari = 676, ntmari_fRNA = 57, neco = 1,481). The inset shows the highest distribution of functional RNAs across the
modes. (D) The s70 binding modes from (C) were used to calculate the promoter information content for seven additional bacterial species.
Analogous to (C4), the distribution of information scores when only the highest bit score mode is considered is shown. The organism abbreviations
correspond to the following: bsu, Bacillus subtilis; cpn, Chlamydophila pneumoniae CWL029; eco, Escherichia coli K12 MG1655; gsu, Geobacter
sulfurreducens PCA; hpy, Helicobacter pylori 26695; sey, Salmonella enterica subsp. enterica serovar Typhimurium SL1344; syn, Synechocystis sp. PCC
6803; tmari, T. maritima MSB8. The genome size is given in paranthesis. *bsu data is extracted from a highly curated source that is a collection of
small-scale experiments and, as such, this distribution is not a genome-scale assessment of promoter strength. (E) The calculated median RBS DG for
all genes based on the position relative to the start codon. Temperature profiles are shown for T. maritima at 37uC (for comparison), 65uC (lower
growth limit), 80uC (growth optimum) and 90uC (upper growth limit). Similar profiles are shown for E. coli at 37uC (optimal) and 80uC (for comparison).
(F) The local minimum RBS DG for all genes in a 30 nt window upstream of the annotated start codon generated for T. maritima and E. coli at 37uC
and 80uC. (G) Similar to (F), the median of the local minimum RBS DG was calculated and plotted for 109 bacteria against their optimal growth
temperature. Species in the Thermotogae phylum (n = 15) are shown in red.
doi:10.1371/journal.pgen.1003485.g002
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provide insights into the lack of 59UTRs between 18–25 nt.

Factors tested for over- or underrepresentation of the different

59UTR groups included: (1) gene expression level (both mRNA

and protein levels), (2) protein expression normalized to mRNA

expression, (3) phylogenetic origin of genes, (4) RBS and promoter

strengths, (5) divergent vs. convergent operons, and (6) cellular

functional categorization. These factors yielded no discrimination

between the Short 59UTR Group and the Common 59UTR

Group and could not explain the bimodal nature of the 59UTR

length distribution.

T. maritima PIRs are predominantly too short to permit

transcription factor regulation. To enable regulation of

transcription, space in the genome must be dedicated to operator

sites, which serve as docking locations for TF recruitment.

Typically, these sites reside upstream of the TSS, but can also

be found downstream of the TSS (in the 59UTR). An analysis

centered on PIRs was chosen to capture the potential for TF

binding sites both upstream and downstream of the TSS. A total of

31 TF regulons with a combined total of 91 genomic binding sites

were extracted from the RegPrecise database [57]. Mapping of the

TF binding sites to the T. maritima genome showed that 71 were

within PIRs, 12 mapped to intergenic regions not carrying a

promoter and the remaining 8 were within or overlapped an

annotated gene (Table S6). The length distribution of PIRs

without a TF binding site was compared to that of PIRs with TF

binding sites (Figure 3C). The median length of PIRs that do not

contain a TF binding site is 78 bp. This is significantly shorter

than the length of PIRs that carry a single TF binding site

(median = 161 bp, Wilcoxon rank-sum test p = 6.961028) or

multiple TF binding sites (median = 252 bp, Wilcoxon rank-sum

test p = 2.861027). Thus, the majority of T. maritima PIRs do not

contain the typical space required to encode a TF binding site.

T. maritima has an actively transcribed genome that is
tightly correlated to protein abundances

Transcriptome data indicate that the genome of T. maritima is

exceptionally active irrespective of growth condition (Figure 4A)

with 91–96% of genes expressed above an FPKM threshold of 8.

This fraction of genes transcribed is uncharacteristically high

compared to other free-living bacteria (see Table S7). Further-

more, translational evidence supporting the high gene expression

activity of T. maritima is found in the proteomic datasets. In each

condition tested, peptide evidence was detected for 74% of the

annotated proteins. It is also found that mRNA and protein

abundances are tightly linked (Pearson r = 0.63, p,2.2610216 t-

test) (Figure 4B). This correlation is stronger and more significant

than those reported in comparable studies for other bacteria

[58,59].

Discussion

Genome-scale technologies have provided researchers unprec-

edented access to large volumes of data detailing the composition

of a cell. However, approaches for data analysis and interpretation

have lagged behind due to the scope and complexity of these data

types. Here, we present a framework for multi-omic data analysis

that annotates genomic features involved in transcription, trans-

lation and regulation. This methodology integrates genome-scale

datasets with bioinformatics predictions to produce 1) an

improvement of the gene annotation, 2) an experimentally

validated TU architecture and 3) the identification of putative

antisense, non-coding transcripts and alternative TSSs. Using

these annotated genomic features enabled the genome-wide

identification of promoters and RBSs, which are difficult to

identify solely using in silico approaches [60,61]. Furthermore, the

relative binding strength of individual promoters and RBSs was

quantitatively measured using thermodynamic principles enabling

multi-species comparison of these sequence features. The anno-

tated genome organization served as a scaffold for analyzing

regulatory features. Transcription factor regulation was examined

with respect to promoter containing intergenic regions while the

translational impact of the 59UTR distribution was considered.

The multi-omic data generation and analysis demonstrated here is

applicable to many microbial species.

Applying this methodology to study the genome organization of

T. maritima revealed that it has many distinctive properties

compared to other organisms. Genome-scale analysis of promoters

showed that T. maritima encodes a highly conserved, robust

architecture that ensures transcription initiation. Similarly, RBS

Figure 3. Arrangement of genomic features contained within
promoter-containing intergenic regions (PIRs). (A) Schematic of
the two subdivisions of the PIR and the genetic elements they typically
carry. (B) The 59UTR distribution is shown for all TUs with an
experimentally identified TSS. The Short 59UTR group (11–17 nt) is
shown in red. The Common 59UTR group (26–32 nt) is shown in green.
Transcripts with an annotated functional RNA as the first feature were
omitted from the analysis. Though only the first 100 nt are plotted,
frequencies are based on the entire set of 59UTR lengths. (C) A quartile
plot of the length distribution of PIRs is shown. PIRs are grouped
according to the number of TF binding sites they contain (no TF, a
single TF or multiple TFs).
doi:10.1371/journal.pgen.1003485.g003
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sequence conservation was shown to be thermodynamically

sufficient for translation initiation for almost all T. maritima genes

at 80uC compared with only a fraction of E. coli genes. The

distinctive properties of the T. maritima genome extend beyond

sequence composition and are apparent at the organizational level.

The high protein-coding density and minimal intergenic space

found in this organism have resulted in a high number of genes per

TU, a paucity of putative ncRNAs and few TUs with multiple start

sites. Furthermore, transcriptional regulation appears to be limited

to a few TUs due to a lack of genomic space in PIRs. Interestingly,

the 59UTR component of the PIR was found to be uncharacter-

istically bimodal and was comprised of an unusually short

grouping of 59UTRs. Lastly, the constrained genome organization

of T. maritima is reflected in the physiological state of the cell.

Transcription of the vast majority of genes is detected independent

of culture condition and the correlation between protein and

mRNA is stronger than previously observed in other bacteria.

We hypothesize that the hyperthermophilic lifestyle of T.

maritima could potentially explain the distinctive characteristics of

this organism’s genome organization. For instance, the increased

sequence conservation of promoter elements and RBSs through-

out the T. maritima genome may be attributed to the need to

maintain gene expression under extreme temperature conditions.

Macromolecular interactions (e.g. protein/protein, protein/DNA

and RNA/RNA) are intrinsically harder to maintain at higher

temperatures. In the case of TF binding sites, it has been shown

that each nucleotide deviation from consensus results in a ,2kbT

penalty to the maximum binding free energy for a given TF (where

kb is Boltzmann’s constant and T is temperature) [62]. Increasing

the temperature amplifies the binding free energy penalty for every

non-conserved base pair. Therefore at 80uC, mismatches between

the Shine-Dalgarno and anti-Shine-Dalgarno sequence are

especially severe. Thus, T. maritima must overcome the intrinsic

challenge of recognizing and retaining contact at the initiation site

for both transcription and translation. Our data suggests that high

sequence conservation of promoter and RBS sequences is one of

the mechanisms used by T. maritima to ensure sufficient gene

expression. This sequence-level adaptation could be analogous to

many others observed in thermophilic organisms such as the

amino acid composition of proteins [29,30] and the GC content of

structural RNAs [63].

The minimal intergenic space found in the T. maritima genome

is reminiscent of a streamlined genome, which could explain the

limited regulatory capacity observed in this organism. Inflexibility

of metabolic regulons has been previously alluded to for other

Thermotogales [64]. Here it is demonstrated that, for most TUs, a

lack of physical space exists for transcriptional regulation by TFs.

Furthermore, the Short 59UTR group carries the minimum

number of nucleotides needed to recruit the ribosome based on

Shine-Dalgarno/anti-Shine-Dalgarno interactions [54]. Further

reduction in 59UTR length would abolish translation. Short

59UTRs also reduce the capacity to regulate by limiting 59UTR

interactions [65,66].

Figure 4. Global analysis of mRNA and protein expression levels. (A) The fraction of transcribed genes as a function of the FPKM threshold.
Under growth promoting conditions (log-phase) and early in the transition to stressed conditions (carbon-limited late exponential phase, heat shock,
and hydrogen inhibition), 91–96% of the genome is expressed using a conservative FPKM threshold of $8. (B) Correlation of mRNA expression and
protein abundance. The line of best fit indicates a strong linear relationship (Pearson r = 0.63, p,2.2610216 t-test) between transcription and
translation. The peptide abundance score for each protein was derived by dividing the total spectral count by the number of possible tryptic
peptides (400–2000 m/z up to a charge state (z) of 3, hence a maximum fragment mass of 6000). Abbreviations: FPKM, Fragments Per Kilobase of
transcript per Million mapped reads; m/z, mass-to-charge ratio.
doi:10.1371/journal.pgen.1003485.g004
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Though thermodynamics and physical space are hypothesized

to contribute to the characteristic features of the T. maritima

genome, the phylogenetic contribution cannot be dismissed. These

potential causal factors are difficult to decouple. For RBSs, we

were able to determine the impact of phylogeny and optimal

growth temperature on RBS binding strength. By analyzing RBSs

from 109 bacterial species spanning many phyla and having a

diverse range of optimal growth temperatures we were able to

demonstrate that both phylogeny and optimal growth temperature

were significant determinants of RBSs sequence composition.

However, a recent analysis of genome size among species of the

order Thermotogales could not resolve the impact of phylogeny

from optimal growth temperature [19]. The authors found that a

negative correlation between genome size and optimal growth

temperature exists within this order but the correlation did not

hold when phylogeny was accounted for in the analysis.

Interestingly, this study also found that the number of predicted

transcriptional regulators and intergenic space is higher in Mesotoga

prima, a mesophilic member of the Thermotogales. Thus, the

relationship between phylogeny and the genome organization is

difficult to elucidate without the generation of more datasets

similar to the one presented here.

Thermotogae are an ideal phylum for future investigations on

the causal impact of factors such as temperature, intergenic space

and phylogeny on genome organization. This phylum contains

organisms that are found in many diverse environments with a

wide range of optimal growth temperatures. Generating multi-

omic datasets and analyzing them using an integrated, quantitative

workflow for numerous Thermotogae species would enable

assessment of various environmental factors in the context of

phylogenetic distance. Furthermore, given their phylogenetic

depth, characterization of the Thermotogae will also provide

insights in the evolutionary trajectory of microbial life on earth.

Materials and Methods

Culture conditions and physiology
T. maritima MSB8 ATCC derived cultures were grown at 80uC

under anoxic conditions in a chemically defined, minimal medium

[67]. Cultures were maintained in either serum bottles or pH-

controlled (6.5) fermenters with continuous 80% N2, 20% CO2

sparging. Maltose and acetate concentrations were measured using

an HPLC. HPLC parameters were previously described [68]. The

following growth conditions were used for omics analysis: 1) log

phase, 2) carbon-limited late exponential phase, 3) heat shock and

4) H2 inhibition. Log phase samples were collected from mid-

exponential phase cultures grown in 125 mL serum bottles with

50 mL working volume of media and 10 mM maltose as the sole

carbon source. Carbon-limited late exponential phase cultures

were grown in pH controlled fermenters with pH control and

continuous stripping of evolved hydrogen. Cultures were moni-

tored for OD and maltose concentration and samples were

collected upon depletion of maltose. The heat shock condition was

achieved by rapidly heating mid-exponential phase cultures grown

in serum bottles (similar to the log phase condition) to 90uC and

sampled after 10 minutes for transcriptome analysis. This has been

shown to result in the heat shock response [69]. H2 inhibition was

achieved by allowing the native evolution of hydrogen to

accumulate in serum bottles (similar to the log phase condition).

Arrested growth was indicated by successive OD readings that

showed no change measured every 30 minutes. Growth profiles

for these conditions are shown in Figure S4.

Genome resequencing and annotation updates
The recent identification of a 9 kb gap in the T. maritima MSB8

genome [33] prompted genome resequencing. Genomic DNA was

isolated using Promega’s Wizard Genomic DNA Purification Kit.

Paired-end resequencing libraries were generated following

standard Illumina protocols and sequenced on an Illumina GAIIx

platform. The updated genome sequence was assembled as

follows: (1) Reads were aligned to the 8.9 kb region identified in

the T. maritima MSB8 DSMZ genomovar (AGIJ00000000.1) [33]

and the TIGR genomovar (AE000512.1) sequence using SHOR-

Emap [70] and MosaikAligner (http://bioinformatics.bc.edu/

marthlab/Mosaik). (2) Unaligned reads were de novo assembled

using Velvet [71] to ensure no additional assemblies were present.

(3) The sequence was corrected for SNPs and indels detected

during read alignment.

An updated genome annotation was generated using the RAST

pipeline with the default parameters [34]. Predicted gene

sequences were mapped to the AE000512.1 annotation using a

bidirectional Smith-Waterman alignment to identify the corre-

sponding locus tags. Instances where $30 bp separated the

predicted gene length between annotations were reconciled

through manual inspection of gene expression data and bioinfor-

matics predictions. Gene length differences ,30 bp could not be

reconciled (unless peptide data supported only one annotation). In

these cases, the updated sequence annotation was retained.

Transcription start site determination
Total RNA was isolated from log phase cultures using the hot

SDS/phenol approach as previously described (http://www.bio.

davidson.edu/projects/GCAT/protocols/ecoli/RNApurification.

pdf). DNase-treated total RNA samples were recovered using

Fisher SurePrep TrueTotal RNA columns. Two biological

replicate TSS sequencing libraries were constructed as previously

described [7]. Illumina reads were aligned to the updated T.

maritima genome using the Mosaik Aligner. The number of

sequenced reads and the number of aligned reads can be found in

Table S10. Only uniquely mapped 59 ends with $5 reads were

retained as potential TSSs.

Transcriptome characterization and gene expression
Tiling array and RNA-seq data were generated under log phase

growth, carbon-limiting late exponential phase, heat shock and

hydrogen inhibited conditions. Total RNA was isolated using the

TRIzol (Invitrogen) extraction procedure followed by DNase

treatment and purification using either the Qiagen RNeasy Mini

Kit (Tiling Arrays) or the SurePrep TrueTotal RNA columns

(RNA-seq).

Custom tiling arrays were synthesized based on the AE000512.1

genome sequence by Roche Nimblegen to carry 71,548 probes

with a mean interval of 25 bp. Probe information was remapped

to the updated genome sequence. Of the original 71,548 probes,

only 125 did not map. Labeled cDNA was generated and

processed as previously described [7]. The Transcription Detector

algorithm [72] determined probes expressed above background at

a FDR = 0.05.

Paired-end, strand-specific RNA-seq was performed using the

dUTP method [73] with the following modifications. rRNA was

removed with Epicentre’s Ribo-Zero rRNA Removal Kit.

Subtracted RNA was fragmented for 3 min using Ambion’s

RNA Fragmentation Reagents. cDNA was generated using

Invitrogen’s SuperScript III First-Strand Synthesis protocol with

random hexamer priming. Illumina reads were aligned to the

updated T. maritima genome using Bowtie [74] with up to 2

mismatches per read alignment. The number of sequenced reads
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and the number of aligned reads can be found in Table S10.

FPKM values were calculated using Cufflinks [75]. Functional

RNA transcripts were excluded from FPKM determination.

Proteomics, peptide mapping, and protein abundance
quantitation

Proteomics samples and data were generally prepared as

previously described [76]. In summary, triplicate samples of both

log phase and late exponential phase culture were lysed by French

press, and proteins were extracted into global, soluble, and

insoluble fractions. The three protein fractions were digested with

trypsin (Promega) for 4 h at 37uC and then cleaned-up using C18

or SCX SPE columns (Supelco), as appropriate. Resulting peptide

samples were separated in the first dimension by high pH HPLC

(Agilent) and then analyzed by LC-MS/MS using C18 resin

(Phenomenex) with an expontial gradient on a custom built LC

platform coupled to a linear ion trap (LTQ) or a Velos Orbitrap

mass spectrometer (Thermo Scientific) operated in data dependent

mode. Peptides were identified by SEQUEST (Thermo Scientific)

against a six-frame translation of the T. maritima genome with no

protease specified in the search. Xcorr values were refined to

conform to generally accepted criteria and were applied to result

in a false discovery rate of 0.16% at the peptide level. Non-

quantitative peptide-level data can be found in Table S8.

Normalized protein abundances can be found in Table S9.

Quantitative Peptide-level data was extracted from Lerman et al.

[77] and mapped to the CP004077 genome annotation. The

following criteria were used to filter proteins for quantitative

analysis: 1) the protein has a total spectral count $2 across all

conditions (minimum of two unique peptides or a single unique

peptide with two observations), 2) the protein has $1 observed

peptide under log phase since our data was correlated against log

phase transcriptome data. Redundant peptides (i.e. peptides

mapping to multiple protein entries) were excluded from the

analysis to minimize potential ambiguity. For quantitative analysis,

we normalized the observed spectral counts for each ORF by the

number of possible fully tryptic peptides in the ORF. The number

of possible fully tryptic peptides for each ORF was determined

using the Protein Digestion Simulator (http://omics.pnl.gov/

software/ProteinDigestionSimulator.php). Default settings were

used, except the parameter ‘‘Max Missed Cleavages’’ was set to 0

and ‘‘Minimum Residue Count’’ was set to 6. These options

require fully tryptic peptides of at least length 6. This program

only considers peptides 400–2000 m/z up to a charge state (z) of 3,

hence a maximum fragment mass of 6000.

Promoter element motif analysis and position weight
matrix (PWM) generation

The process of determining individual s70 promoter elements

upstream of each unique TU start in T. maritima was an iterative

process, involving two software packages: BioProspector [78] and

MEME [79]. BioProspector is able to identify gapped motif elements

so it was used to initially identify T. maritima motifs. In BioProspector,

sequences 75 bp upstream of TU starts were searched for bipartite

elements (6 and 9 bp in width) with a 10–25 bp allowable gap and

visualized through WebLogo [80]. MEME provides deterministic

position-weight matrices appropriate for information content

calculations. The 210 and extended 210 boxes were searched

[21 to 218] upstream of the TSS while the 235 box was searched

[220 to 244]. E. coli TUs annotated with s70 promoters and

experimentally validated TSSs in the EcoCyc Database (version

15.0) [49] were extracted for comparative analysis.

A similar approach was applied to identify promoter motifs for

alternative sigma factors. T. maritima has three annotated alternative

sigma factors: RpoE (Tmari_1606), SigH (Tmari_0531) and FliA

(Tmari_0904). For RpoE and SigH, the upstream region of TUs

having genes showing high differential expression under a given

stress condition (heat shock, hydrogen inhibited and carbon-limited

late exponential phase) were searched for motif elements. The

upstream regions of flagellar gene encoding TUs were searched for a

FliA motif. However, no sequence motif could be detected for any of

the three alternate sigma factors.

Information content calculations
Position weight matrices (PWMs) for each promoter element

were converted to individual information weight matrices using

the following formula established in the field of molecular

information theory [43]: Riw(b, i) = 22(2log2f(b, i)), where f(b, i)

is taken to be the probability of observing base b at position i. The

individual information of a sequence, Iseq, was calculated by

summing the relevant entries of Riw. For any particular sequence,

only one entry of Riw is relevant among 4 bases for each position i

in the sequence. Iseq is measured throughout in bits since the log

was base 2 in converting the PWM to Riw.

Iseq reflects sequence conservation for a single sequence, but

natural promoters are often formed by multiple promoter

elements, each with their own sequences and corresponding Iseq

values. When multiple elements are present, variable length

spacers are frequently found between the elements. We applied an

approach previously described by Shultzaberger et al. [48] to

properly account for all possible promoter elements and the

variation in their spacing. This allowed us to assess total sequence

conservation for an entire promoter. For each promoter, the

information content for a particular binding mode was calculated

based on the formulas: (1) Mode 1: Iseq_whole_promoter = Iseq(210

element)+Iseq(235 element)2GS(d); (2) Mode 2: Iseq_whole_promoter =

Iseq(extended210 element); (3) Mode 3: Iseq_whole_promoter = Iseq(ex-

tended210 element)+Iseq(235 element)2GS(d). GS(d) is ‘gap

surprisal’ accounting for variable spacing (of length d) between

the 210 and 235 elements. GS(d) penalizes for unexpected

spacing given the major groove accessibility of B-form DNA and

was defined as in equation (3) in Shultzaberger [48] with no small-

sample correction factor as the analysis here is performed at

genome scale. In accordance with the Shultzaberger model, the

space between the 210 and 235 elements was restricted to 15–

20 bp as measured from the 39 end of the 235 element and the 59

end of the 210 element. This limit on the spacer distance

Iseq_whole_promoter is measured in bits.

Ribosome binding site energy calculations
The anti-RBS sequence 59-UCACCUCCUU-39 (39 end of the

16S rRNA) was selected for this study. The hybrid-2s program in

the UNAFold software package [81] was used to compute

hybridization energies (DG) for all possible 10-mers over the

temperature range 20–100uC. This dictionary was mined for three

applications: (1) binding energy values for all 10-mer sequences in

the updated T. maritima genome were computed to aid in

annotation improvement, (2) the median positional DG for all

CDSs 6100 bp from the start codon, and (3) the local minimum

DG for all CDSs 30 bp upstream of the start codon. RBS binding

energies across 109 organisms were calculated using this dictio-

nary. Optimal growth temperatures for all non-Thermotogae

bacteria were collected from Takemoto et al. [82] and the protein

coding gene annotation for each bacterium was extracted from

NCBI. CDS data for all Thermotogae with a complete genome

sequence were extracted from NCBI with the exception of T.
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maritima for which the annotation generated in this study was used.

For each organism, the median RBS DG was calculated from the

set of minimum RBS DG’s found for each CDS 30 bp upstream of

the annotated start codon. Three distance matrices were

constructed for analysis of the 109 bacterial species for which

optimum growth temperatures were found. The matrices included

are as follows: (1) the absolute difference of median RBS strength

values, (2) the absolute difference of optimal growth temperatures

and (3) the distance matrix generated by aligning full-length 16S

rRNA gene sequences using ClustalW2 (slow mode) followed by

the phylogenetic tree generation script (http://www.ebi.ac.uk/

Tools/phylogeny/) with default settings. Next, the Mantel test,

which tests the correlation between two distance matrices, was

applied to compute the significance of various correlations. The

‘vegan’ package of R was used with its default settings.

Rho-independent terminator site determination
Intrinsic terminators were predicted using the TransTermHP

program [83]. To avoid bias introduced by annotation, no genome

annotation was used in prediction of Rho-independent termina-

tors. Only terminator structures predicted with a ‘‘100%’’

confidence score were included in the curation of TUs.

Prediction of small RNAs
Small RNAs were predicted with Infernal [39] using cmsearch

with default settings against the Rfam 10.0 Database [84] of small

RNA families. sRNAs with an E-value,0.01 were manually

curated to verify expression. These sRNAs were checked against

the sRNA predictions from Rfam and fRNA-DB (http://www.

ncrna.org) based on the AE000512.1 genome sequence.

Transcription unit assembly
TU assembly was accomplished through an iterative procedure

beginning with tiling array expression data. Tiling array data was

processed with two Bioconductor packages for transcript segmenta-

tion based on change point analysis: tilingArray (http://www.

bioconductor.org/packages/2.2/bioc/html/tilingArray.html) and

DNAcopy (http://www.bioconductor.org/packages/2.3/bioc/

html/DNAcopy.html). Manual comparison of the output from both

packages with array data was used to refine the automated set of

transcriptional segments. Additional datasets and bioinformatics

predictions were added and manually curated to fully characterize

the TU assembly. TSS and RNA-seq data provided single-base pair

resolution of segment boundaries. Intrinsic terminator predictions

were also used for 39 boundary definition. ncRNAs were identified

using the transcript segments. Transcribed regions not associated

with a TU and with length exceeding 68 nt (the combined length of

the paired end reads with no insert separating them) were quantified

using Cufflinks to generate FPKM values across all RNA-seq

conditions. Regions with at least two conditions showing FPKM

values .8 were retained as putative ncRNAs.

Transcription factor binding site mapping
TF binding sites were extracted from RegPrecise [57] and

coordinates were mapped to the updated genome. Table S6 has

the TF binding sites used in Figure 3C.

Data deposition
The T. maritima MSB8 ATCC (genomovar) genome and

annotation are found under Genbank Accession CP004077.

RNA-seq, TSS, and tiling array datasets are available in the

Gene Expression Omnibus under Accession GSE37483. Proteo-

genomic data are made available through PNNL (http://omics.

pnl.gov) and in Table S8.

Supporting Information

Figure S1 Spacing between the 210 and 235 promoter

elements. The distribution of the number of base pairs separating

the 210 promoter element from the 235 promoter element for

each unique transcription start site.

(PDF)

Figure S2 AT content in the regions surrounding promoters.

The AT fraction is shown for each promoter motif determined.

The plot is shown 6 300 bp with respect to the 39 end of the 210

promoter element.

(PDF)

Figure S3 Mantel test statistic r for comparison of distance

matrices. Three distance matrices were constructed: (1) absolute

difference of median RBS strength values (this matrix is denoted

R), (2) absolute difference of optimal growth temperatures (this

matrix is denoted T), and (3) a distance matrix generated by

aligning full-length 16S rRNA gene sequences (this matrix is

denoted P). The rows and columns of these matrices are the

organisms for which optimal growth temperature was available.

The Mantel test, which tests the correlation between two distance

matrices (denoted (X,Y)), was applied to compute the significance

of various correlations. The ‘vegan’ package of R was used with its

default settings. The test statistic r falls in the range [21 to +1],

where 21 indicates strong negative correlation and +1 indicates

strong positive correlation. An r value of 0 indicates no correlation.

Finally, Partial Mantel test statistics were computed using all three

distance matrices. In each of these tests, a partial correlation

conditioned on the third matrix (denoted (X,Y |Z)) was computed.

In all Mantel tests, the results using the Pearson method are

reported. All tests had significant p-values (p,0.001).

(PDF)

Figure S4 Growth physiology and sample points for omics data.

(A) A typical batch growth experiment is shown in serum bottles.

T. maritima was grown on maltose minimal media in 125 mL

serum bottles with 50 mL working volume. Optical density and

hydrogen accumulation (as measured in the headspace) is shown.

Arrow 1 marks the sample point for the log phase condition and

for conducting heat shock. Arrow 2 marks the sample point for H2

inhibited growth. (B) A typical batch growth profile using a pH

controlled bioreactor with continuous H2 removal by sparging

80% N2, 20% CO2. Optical density, maltose concentration,

acetate concentration and pH profiles are shown. Arrow 3 marks

the sample point for carbon-limited late exponential phase.

(PDF)

Table S1 Updated T. maritima genome annotation.

(XLSX)

Table S2 T. maritima transcription unit assembly.

(XLSX)

Table S3 Potential Alternative start sites.

(XLSX)

Table S4 Detected antisense transcripts.

(XLSX)

Table S5 Putative ncRNAs.

(XLSX)

Table S6 Transcription factor binding sites mapped to the new

genome sequence.

(XLSX)
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