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Abstract

Humans and dogs are both affected by the allergic skin disease atopic dermatitis (AD), caused by an interaction between
genetic and environmental factors. The German shepherd dog (GSD) is a high-risk breed for canine AD (CAD). In this study,
we used a Swedish cohort of GSDs as a model for human AD. Serum IgA levels are known to be lower in GSDs compared to
other breeds. We detected significantly lower IgA levels in the CAD cases compared to controls (p = 1.161025) in our study
population. We also detected a separation within the GSD cohort, where dogs could be grouped into two different
subpopulations. Disease prevalence differed significantly between the subpopulations contributing to population
stratification (l= 1.3), which was successfully corrected for using a mixed model approach. A genome-wide association
analysis of CAD was performed (ncases = 91, ncontrols = 88). IgA levels were included in the model, due to the high correlation
between CAD and low IgA levels. In addition, we detected a correlation between IgA levels and the age at the time of
sampling (corr = 0.42, p = 3.061029), thus age was included in the model. A genome-wide significant association was
detected on chromosome 27 (praw = 3.161027, pgenome = 0.03). The total associated region was defined as a ,1.5-Mb-long
haplotype including eight genes. Through targeted re-sequencing and additional genotyping of a subset of identified SNPs,
we defined 11 smaller haplotype blocks within the associated region. Two blocks showed the strongest association to CAD.
The ,209-kb region, defined by the two blocks, harbors only the PKP2 gene, encoding Plakophilin 2 expressed in the
desmosomes and important for skin structure. Our results may yield further insight into the genetics behind both canine
and human AD.
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Introduction

The domestic dog (Canis familiaris) has been bred for different

purposes and characteristics for thousands of years [1]. The

creation of modern dog breeds started around 200 years ago and

was based on few founders and breeding strategies such as strong

selection for certain traits, popular sires and inbreeding/back-

crossing. This has led to enrichment of disease mutations in

different breeds. The German shepherd dog (GSD) breed has an

exceptionally high susceptibility to immunological diseases or

immune-related disorders including skin as well as gastrointestinal

problems. Inflammatory and immune-related diseases that have

been reported with high incidence in GSDs are, for example

exocrine pancreas insufficiency due to atrophy [2,3], canine atopic

dermatitis (CAD) [4,5], anal furunculosis [6,7] and disseminated

aspergillosis [8]. A predisposition for food hypersensitivity and

bacterial folliculitis [9] as well as low serum IgA levels [10–12]

have also been reported in the GSD breed.

CAD is defined as an inflammatory and pruritic allergic skin

disease caused by an interaction between genetic and environ-

mental factors [13,14]. The characteristic clinical features are most

commonly associated with IgE antibodies directed towards

environmental allergens [15]. In dogs, the allergic symptoms

appear as eczematous skin but do not show the sequential

development called atopic march (eczema in a child being often

followed by asthma and allergic rhinitis in the adult patient) as

described in humans [16,17]. Clinical signs usually develop at a

young age in both humans [16] and dogs. In dogs the disease onset
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is typically between six months and three years of age [18]. The

initial signs of CAD can either be seasonal or non-seasonal,

depending on the allergens involved. Face, ears, paws, extremities,

ventrum and flex-zones are typically affected by pruritus and

erythema [18] in a pattern similar to that observed in human AD

[19]. To establish the diagnosis of CAD an extensive work-up is

required [20], where conditions with similar clinical presentations

must be ruled out. These include: scabies or other pruritic

ectoparasite infestations, pruritic bacterial skin infections, Malas-

sezia dermatitis, flea allergy dermatitis and, less commonly,

cornification disorders and contact dermatitis. Cutaneous adverse

food reactions (CAFR) can present similarly or contribute to

clinical signs of CAD, but can be mediated by either hypersen-

sitivity or non-immunological reactions. Thus, ideally the presence

of CAFR should be evaluated before making the diagnosis. Also

scabies could satisfy many of the inclusion criteria [21] and

therefore has to be excluded as possible differential diagnosis. A

positive allergen-specific IgE test (serology or intradermal test) is

needed for final diagnosis and aids in defining offending allergens.

In humans, mutations in the gene filaggrin (FLG) increase the risk of

several complex diseases, including AD. Altogether 42% of AD-

affected individuals carry FLG mutations, which is considerably

higher than the carrier frequency of 10% observed in Europeans

[22]. The aetiology of Filaggrin deficiency in AD is characterized

by a cutaneous barrier defect, which enhances allergen penetra-

tion, bacterial colonisation and infection and cutaneous inflam-

mation driven by type 2 helper T cells [23]. Filaggrin mutations

are also known to cause asthma regardless of atopic phenotype

[24] and ichtyosis vulgaris [25] in humans. Asthma-like symptoms

are rarely reported in dogs: in a multi-centre study including ,800

CAD dogs only 0.07% had any respiratory signs in the form of

sneezing/rhinitis [17]. Different types of ichtyosis have been

described in various breeds such as Golden retriever [26], Cavalier

King Charles spaniel [27] and Soft Coated Wheaten terrier [28],

however, to our knowledge, not in GSDs. Alopecia areata in

humans has been correlated to filaggrin mutations and development

of atopic dermatitis [29]. Canine models have previously been

suggested for Alopecia areata [30], however this condition has not

been reported in any dogs within our studied GSD population.

Immunoglobulin A (IgA) consists of two different forms,

secretory IgA and serum IgA. In humans, serum concentrations

of IgA are normally around 2–3 g/l, which makes it the second

most prevalent antibody in serum after IgG [31]. IgA deficiency

(IgAD) is the most common primary immunodeficiency in

Caucasians with an estimated frequency of 1/600. IgA levels

,0.07 g/l together with normal levels of IgG and IgM define

IgAD in humans [32]. Compared to other dog breeds, very low

IgA levels are known to be overrepresented in GSDs [33–37] Low

serum IgA levels have also been reported in Shar-Pei [38] and

Beagle [39]. Moreover, low levels of secretory-IgA in mucosa,

tears [11,40] and faecal extracts [41] have been reported in GSDs.

Human studies show that children tend to have lower serum IgA

levels than adults [42]. This is in concordance to the lower serum

and secretory (tear) IgA levels being described in one year old or

younger dogs compared to older dogs [43]. While increased

incidence of upper respiratory tract infections, allergies and

autoimmune diseases are observed in IgA-deficient human

patients; more often humans show no symptoms at low levels of

IgA [44]. Similarly, dogs with low IgA levels can either be

asymptomatic or affected with recurrent upper respiratory

infections and chronic dermatitis [39].

Due to the similarities between human patients and GSDs

affected by AD and low IgA levels, we decided to study these two

traits in a cohort of GSDs. Our aim was to detect loci associated

with CAD and evaluate whether IgA levels in serum are correlated

with the CAD phenotype in GSDs. We found a strong correlation

between low serum IgA levels and CAD and could identify a

genome-wide significant association of a locus with CAD using

serum IgA levels and age at sampling as covariates. In addition to

reaching our primary aim, we could also present characteristics

specific to our sample cohort, including the detection of

subpopulations with diverse predisposition of the studied pheno-

types resulting in pronounced population stratification.

Results

Characterization of the sample cohort
We investigated the diagnostic features CAD and low IgA levels,

in a Swedish population of GSDs. The total number of dogs

included in the study is presented in Table 1. When considering

the CAD phenotype we first evaluated the relationship of the

following parameters; CAD status, IgA levels and gender. 40.7%

(n = 37) of the CAD cases had IgA-levels #0.10 g/l compared to

5.4% (n = 5) of the CAD controls. The IgA levels were significantly

lower in CAD cases versus controls p = 1.161025 (Figure 1A),

mean IgA level in cases was 0.16 g/l and 0.26 g/l in controls

(before excluding the 5 CAD controls with low IgA levels from the

final association analysis, see Materials and Methods). We detected no

gender bias in cases versus controls for CAD (p = 0.88). When

considering whether IgA levels were related to age, we determined

regression coefficient of 0.42 in all dogs together (p = 3.061029),

0.37 in cases (p = 3.661024) and 0.28 in controls (p = 8.561023).

We added the age at sampling as a covariate in the association

analyses in order to remove any confounding effects of the IgA

measurements’ dependency of age.

Genome-wide association studies (GWAS)
We performed genotyping of ,170,000 SNP markers of the

entire GSD cohort (n = 207). We excluded non-informative

markers and markers with low call rate and 114,348 markers

Author Summary

Humans and dogs are both affected by the allergic skin
disease atopic dermatitis (AD), caused by an interaction
between genetic and environmental factors. The German
shepherd dog (GSD) is a high-risk breed for canine AD
(CAD), also affected by low serum IgA levels. A Swedish
cohort of GSDs was used as a model for human AD in this
study. We performed a genome-wide association analysis
where a region associated with CAD was identified. IgA
levels were included in the model due to strong
correlation with CAD. Also, age at sampling was included
in the model due to correlation with IgA levels. The
associated region, consisting of eight genes, was further
fine-mapped with sequencing and additional genotyping.
Haplotype association analysis from the fine-mapping data
indicates association of the gene, plakophilin 2 (PKP2),
known to be important for skin structure. We detected a
division of the GSD breed into two subpopulations where
one is more prone to develop CAD and to have lower
serum IgA levels compared with the other. Here, we
present methods for performing genome-wide association
analyses when the study population is complex and when
the trait is affected by additional parameters. The PKP2
gene found within the associated region became an
interesting target for further study of its importance both
in canine and human AD.
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remained for the final analysis. We performed an association

analysis of CAD using IgA levels and age at sampling as covariates.

Extensive population stratification
The initial association analysis for CAD with IgA levels and age

at sampling as covariates revealed that the GSD sample set was

highly stratified with l (genomic inflation factor) of lno

correction = 1.3. The GSD population is clearly formed into two

subpopulations (Figure 1B) defined using K-means clustering as

described in Materials and Methods. The major cause of the high

inflation factor, i.e. stratification, is the uneven distribution of cases

and controls across the subpopulations visualized as a multi-

dimensional scaling (MDS) plot (Figure 1C). In addition, the IgA

levels followed a similar pattern, being unevenly distributed across

the two subpopulations (Figure 1D). We found a pronounced

difference in disease risk between subpopulations (p = 1.761026,

odds ratio OR = 4.4, CI95 = 2.3–8.8). The subpopulation counts

are presented in Table 2.

We used the mixed model approach to account for the observed

population structure and cryptic relatedness between the individ-

uals, which is common in dog breeds. After fitting the mixed

Figure 1. Correlation between the phenotypes and obvious population structure was detected in the GSD population. The difference
in IgA levels (pdiff = 1.161025, based on Welsh two sample t-test) in CAD cases and CAD controls (Ntotal = 184, before removing CAD controls with low
IgA levels) is presented with boxplots (A). The GSD population is visualised with an MDS-plot displaying the formation of two subpopulations (B) with
the uneven distribution of CAD cases and CAD controls (C). The distribution of IgA levels across the subpopulations is visualized with violin plots (D).
Panels B-D include all dogs after QC (n = 203) and the dotted lines on the violin plots (A and D) correspond to the respective median values.
doi:10.1371/journal.pgen.1003475.g001
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model we observed no inflation (l= 1.0) as presented in quantile-

quantile (QQ) plot (Figure 2).

A locus on chromosome 27 associated with CAD
In the association analysis of CAD we found a significant

association to chromosome 27 where 19 SNPs between

17,814,493–19,262,027 (CanFam 2.0) showed association

p,2.861025. The top two SNPs are located at canine chromo-

some 27 (CFA 27): 19,140,837 bp (praw = 3.161027 and

pgenome = 0.03) and 18,861,228 bp (praw = 6.761027and

pgenome = 0.07) (Figure 3A–3C). To define the associated haplotype

we performed clumping using r2 = 0.8, and identified a 21 SNP

haplotype spanning from 17,814,493 to 19,262,027. This haplo-

type region contains eight genes (CPNE8, MRPC37, ALG10B,

NAP1L1, SYT10, PKP2, YARS2 and DNM1L) where the two top

SNPs surround the PKP2 gene as indicated in Figure 3C. The

haplotype corresponds to the region identified by the 19 associated

SNPs and covers a region of ,1.5 Mb. The haplotype region

shows a mosaic pattern of association typical for purebred dogs

[45], thus it is not possible from this data to define a shorter

associated haplotype.

Using Haploview we detected lower association to CAD when

considering the ,1.5 Mb haplotype compared to the single top

SNPs (phaplotype = 2.661025). The observed minor allele frequency

(MAF) of the top SNP (CFA 27: 19,140,837 bp) was 0.29 across all

samples, and 0.40 and 0.16 in cases and controls, respectively. The

minor allele (G) conferred an OR = 1.28 for CAD. We observed a

two-fold difference in MAF between the two detected subpopu-

lations (MAFsubpopulation 1 = 0.40, MAFsubpopulation 2 = 0.20).

Targeted re-sequencing of the associated locus on CFA
27

We performed targeted re-sequencing (Roche NimbleGen

sequence capture array) of the locus on CFA 27 spanning 16.8–

19.6 Mb (CanFam 2.0) i.e. including the associated haplotype

located at ,17.8–19.3 Mb. In total, three dogs homozygous for

the control haplotype, one dog homozygous for the case haplotype

and three dogs heterozygous for the case and control haplotypes

were sequenced (Figure 4A). In total, 2,587 SNPs of all the

identified SNPs (n = 8,765) followed the case and control

haplotype pattern (see Materials and Methods). We used SEQScoring

[46], (see Materials and Methods) to prioritize potentially causal

variants. As expected, the majority of the SNPs detected to

correlate with the case/control haplotypes (86%) were located

within the associated (17.8–19.3 Mb) region. No structural

variants were detected. In total, 54 SNPs were included on an

iPLEX array for further genotyping in the same cohort used for

the GWAS. These SNPs were concordant with the risk haplotype

and considered functional candidates based on their location in

conserved elements or in genes. In addition the top GWAS SNPs

were included. For the final analysis, 42 SNPs and 84 controls and

91 cases remained after quality control (see Materials and Methods).

Using Haploview, we defined haplotypes based on r2$0.9

between neighbouring SNPs. The risk alleles of block 11 and 7

(GCCA and AGG, respectively) had a frequency of 40.1% in the

cases versus 16.7% in the controls (praw = 1.361026,

p1,000,000perm = 4.061026). The common control allele TTT of

block 11 had the same p-value as the risk allele and a frequency of

83.3 % in controls versus 59.9% in cases. Considering single SNPs;

the top associated were the risk alleles of 18,934,038 bp and

18,934,219 bp (part of block 7), and 19,140,837 bp (part of block

11 and also the top GWAS SNP). They had the same frequency as

the risk alleles of the corresponding haplotypes and were

associated to the same extent (praw = 1.361026) but with a slightly

less significant p-value after permutations (p1,000,000perm =

3.161025) due to the larger number of SNPs compared to

haplotypes. See the association analysis results of haplotypes and

SNPs in Table 3 and Table 4, respectively (see also Tables S1 and

S2). The association of SNPs and haplotypes (p-value after

1,000,000 permutations) as well as the defined haplotypes and the

LD plot are visualized in Figure 4B–4E. These results indicate that

the region; 18,934,038 – 19,142,893 Mb harbours the causative

mutation predisposing for CAD in the studied GSD population.

This is in concordance with the genome-wide association results

where the top associated SNP is located at 19,140,837 bp. Only

one gene, PKP2, falls within the top region (defined by block 7–11).

The PKP2 gene, encoding the protein Plakophilin 2, a central

component of desmosomes [47], is an excellent candidate gene for

CAD.

Discussion

Genome-wide association of CAD
We detected a significant difference in IgA levels in CAD cases

compared to CAD controls (Figure 1A), using a mixed-model

approach. This suggests a functional role of IgA in the aetiology of

CAD. The overall low IgA levels seen in the GSD breed might

contribute to its predisposition for CAD: among the CAD cases

40.7% had low IgA-levels compared to only 5.4% of the CAD

controls.

The associated haplotype on chromosome 27 from the

genome-wide association analysis of CAD includes eight genes;

CPNE8, MRPC37, ALG10B, NAP1L1, SYT10, PKP2, YARS2 and

DNM1L.

Table 1. Individuals classified with CAD in the final analysis
(before QC in brackets).

IgA levels CAD cases CAD controls CAD missing

$0.20 g/l 21 (22) 57 (57) 0 (3)

0.10–0.20 g/l 33 (35) 31 (31) 0 (0)

IgA#0.10 g/l 37 (37) 0 (5) 0 (1)

IgA missing 0 (0) 0 (15) 0 (1)

Total 91 (94) 88 (108) 0 (5) 179 (207)

doi:10.1371/journal.pgen.1003475.t001

Table 2. Summary of subpopulation statistics after QC.

Subpopulation 1 Subpopulation 2

CAD controls 62 26

CAD cases 32 59

CAD status missing 13 11

IgA$0.20 g/l 52 29

IgA 0.10–0.20 g/l 31 33

IgA#0.10 g/l 18 25

IgA missing 6 9

Mean IgA level 0.23 0.19

Total number of
individuals

107 96

doi:10.1371/journal.pgen.1003475.t002
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Subpopulations in the GSD breed
The first German sheepdogs were exhibited in 1882 at a dog

show in Hannover, Germany. These dogs were the ancestors to

what became the German shepherd dog (GSD) breed formed in

1899. The way breeding has been performed led to a split into two

variants in the end of the 1970s [48].

The Swedish GSD population used in this study was highly

stratified primarily due to the formation of two subpopulations.

We found a significant difference between subpopulations

regarding both phenotypes in the study (IgA levels and CAD)

where subpopulation 2 harbours more CAD cases and dogs with

low IgA levels than subpopulation 1. When comparing the merits

of the dogs included in the CAD association analysis, we noted

that GSDs in subpopulation 1 were more often of working type

compared to subpopulation 2. Moreover, fewer dogs in subpop-

ulation 1 had documented show results compared to subpopula-

tion 2. Thus, the risk of CAD and low IgA levels seems lower in

the GSD population bred for working capacity.

The stratification was successfully corrected for by using the mixed

model approach within the GenABEL software. Not only does it

correct for the formation of two clusters and the uneven distribution

of cases and controls across the clusters, but also for cryptic

relatedness typical for dog breeds. Despite the identified subpopu-

lations, there is no apparent discontinuity between them in terms of

gene flow (Figure 1B). Therefore, a mixed model approach was

sufficient to remove the effect of stratification. Simpler approaches,

such as genomic control or PCA-based corrections, were not capable

of correcting the observed stratification (data not shown). In

addition, we used IgA levels and age at sampling as covariates in

order to account for their effect on the observed phenotypes.

Figure 2. A mixed model corrected sufficiently for the population stratification. Quantile-Quantile (QQ) plot from the association analysis
using the mixed model approach.
doi:10.1371/journal.pgen.1003475.g002
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Candidate mutation detection and validation genotyping
of the CFA 27–associated region

The sequencing data generated in the 2.8 Mb region on CFA

27 verified the ,1.5 Mb long associated haplotype showing

86% of the 2,587 SNPs following the case and control haplotype

pattern located at ,17.8–19.3 Mb. Based on further genotyping

of 42 SNPs within the region there is clear indication that the

region 18.94–19.14 Mb, based on both haplotypes and single

SNPs, harbours the mutation predisposing for CAD in GSDs.

By performing targeted re-sequencing of the associated region

we attempted to identify all variants concordant with the

phenotype and then evaluate their potential as risk variants.

Here we identified two haplotypes with multiple SNPs with

equally strong association and a potential for function. While

one or several of these variants may be the causative variant, it

is also possible that actual mutation may have been missed in

the targeted re-sequencing process or in the genotyping process

as several SNPs failed genotyping for technical reasons.

Furthermore, our ability to predict functionality is not compre-

hensive as functional variants may be located in non-conserved

elements or in complicated regions with low sequence coverage.

The actual functional variant may also be an indel or CNV not

identified in this analysis. Further analysis should reveal the

exact causative mutation.

The gene PKP2, encoding Plakophilin 2, is the only gene located

within the associated 200 kb region. Plakophilin proteins are

localized in the desmosomal plaque and cell nucleus and

participate in linking cadherins to intermediate filaments in the

cytoskeleton [49]. Plakophilin 2 takes part in pathways that drive

actin reorganization and regulation of desmoplakin-intermediate

filament interactions required for normal desmosome assembly

[50]. Changes in the corneodesmosomes (modified desmosomes in

the epidermis) degradation process influence the thickness of the

stratum corneum and surface of the skin and abnormal

corneodesmosome degradation has been found in common skin

diseases including atopic dermatitis [51]. A recent small study in

dogs showed statistically significant altered mRNA expression of

PKP2 between atopic and healthy skin (20 cases and 17 controls of

various breeds and mongrels). In addition, the expression

correlated with clinical severity in atopic skin [52]. Defective

permeability barrier function enables enhanced infiltration of

environmental allergens into the skin, which in turn triggers

immunological reactions and inflammation. [53]. Based on the

increasing evidence of the skin barrier being a crucial component

in the development of human and canine atopic dermatitis [54–

55], PKP2 serves as an excellent candidate gene. Furthermore,

Filaggrin is known as a filament-aggregating protein and it is

important for the formation of the stratum corneum, the

outermost layer of epidermis [25]. Since the desmosome is one

of the best characterized components of the stratum corneum [56]

the importance of Filaggrin and Plakophilin 2 for skin structure in

the aetiology of AD may be very similar.

Conclusions
Further studies are necessary to conclusively define how CAD

and low IgA levels are correlated. Low IgA levels may also affect

other immune-related diseases that occur in the GSD breed. The

results presented here set a starting point for further studies of

susceptibility to immune diseases within the GSD breed. Even

more importantly a novel gene, PKP2, is indicated to be involved

in the development of CAD in GSDs. This may be of significance

also in other dog breeds and in human AD.

Materials and Methods

Sampling and ethics statement
We collected blood samples (EDTA for DNA extraction and

serum for IgA measurements) from 207 German shepherd pet

dogs in collaboration with veterinary clinics throughout Sweden.

Owner consent was collected for each dog. The majority of dogs

included in the study were registered in the Swedish Kennel club

(180 out of 207). We conformed the sampling to the approval of

the Swedish Animal Ethical Committee (no. C62/10) and the

Swedish Animal Welfare Agency (no. 31-1711/10).

Samples
We extracted genomic DNA from the EDTA blood samples

using the Qiagen mini- and/or midiprep extraction kit (Qiagen,

Hilden, Germany). DNA samples were diluted in de-ionized water

and stored at 220uC. Serum was separated from the red blood

cells by centrifugation and then stored at 220/280uC.

CAD phenotype characterization
The CAD cases were dogs of all ages with positive reactions on

allergen-specific IgE test (intradermal test or IgE serology test),

either with or without concurrent cutaneous adverse food

reactions (CAFR). Clinical diagnoses were established by first

ruling out other causes of pruritus such as ectoparasite infestation,

staphylococcal pyoderma and Malassezia dermatitis. A hypoaller-

genic dietary trial (at least 6–8 weeks followed by a challenge

period) was then conducted in order to evaluate the potential

contribution of CAFR. Atopic reactions were concluded if the dog

was not adequately controlled on hypoallergenic diet and had

positive reactions on intradermal allergy tests (skin prick test) or

IgE serology tests.

All CAD controls were over five years of age and had never

suffered from pruritus, repeated ear inflammations or skin lesions

compatible with CAD, neither prior to nor at the time of sampling.

The age cut-off for CAD controls was set at five since affected dogs

rarely debut at ages older than three years of age [17,18]. The

information was based on either owner questionnaire and/or

clinical examination. In addition, we excluded dogs with low IgA

levels (IgA#0.10 g/l) as CAD controls.

Measurements of serum IgA
We measured serum IgA concentrations with enzyme-linked

immunosorbent assay (ELISA) using polyclonal goat anti-dog IgA

antibodies (AbD Serotec, Oxford, UK), polyclonal mouse anti-dog

IgA antibodies (AbD Serotec) and polyclonal, AP-conjugated goat

anti-mouse IgG (Jackson Immunoresearch, West Grove, PA). All

antibodies were diluted 1:2,000 in PBS and the serum samples

were diluted 1:25,000; 1:50,000 and 1:100,000 in PBS. All samples

Figure 3. The associated region of ,1.5 Mb on chromosome 27 includes the excellent candidate gene PKP2. Manhattan plot from the
association analysis of CAD with IgA levels and age at sampling as covariates shows a significant association on chromosome 27. The red line
represents Bonferroni-adjusted significance threshold of 0.05 (A). Chromosome 27 is displayed with association score for each SNP in dark blue and
minor allele frequencies (MAF) in light blue below (B). The SNPs in high LD (r2$0.8) with the top SNP are marked in red and the whole associated
region is indicated by the outer dotted lines with the genes displayed below. The two top SNPs (shaded area) surround the PKP2 gene (C).
doi:10.1371/journal.pgen.1003475.g003

A New Locus for Canine Atopic Dermatitis

PLOS Genetics | www.plosgenetics.org 7 May 2013 | Volume 9 | Issue 5 | e1003475



Figure 4. Fine-mapping of the chromosome 27 locus confirms the association with CAD and further pinpoints the region around
the PKP2 gene. Targeted re-sequencing data is shown for five dogs; two controls (homozygous for the control allele R/R), one case (homozygous for
the risk allele r/r) and two cases (carriers of the risk allele R/r) in panel A. Yellow markings show SNPs that are homozygous for the reference allele,
blue are homozygous for the non reference allele, green are heterozygous and red are SNPs in conserved elements. The association (p-value after
1,000,000 permutations) of the genotyped SNPs (n = 42) and haplotypes (n = 11) are presented in panel B and C, respectively. The haplotype blocks,
the correlation between blocks (thin lines .1.0%, thick lines .10 %) and frequencies of alleles in the genotyped GSD population are presented in D.
Haplotype blocks were defined by r2$0.9, r2 values are presented in each square where black represent the highest value and white the lowest (E).
Each SNP, named after its position in the genome, are shown above, where the two top GWAS SNPs are marked green and the top associated
haplotype blocks (7 and 11) are marked red.
doi:10.1371/journal.pgen.1003475.g004
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were measured at least twice. The coefficient of variation (CV) was

calculated. Samples with a CV value $15% were measured again.

Before the average concentration was calculated, potentially

outlying concentrations were excluded. With a maximal variation

of 15% the reproducibility of our measurements are in the lower

range of ELISA measurements which can be as high as 25%.

Dogs with serum IgA levels #0.10 g/l were considered to be

IgA-deficient and thus not deemed appropriate controls for CAD.

All the dogs were sampled at the age of more than one year except

for one individual that was 11 months and 13 days at the time of

sampling.

Statistical analyses of traits and covariates
We examined the relationships between measured phenotypes

and other possible covariates. We used Fisher’s exact test for count

data to determine whether CAD-gender relationships were

significant. Similarly we used the Welch two-sample t-test for

determining the CAD-IgA levels relationship. We used the same

approaches to check if there were any significant differences in

CAD status or IgA levels between subpopulations.

As IgA levels can vary with age, we fitted a linear model to

determine the age effect on the IgA levels, and used Pearson’s

correlation coefficient to measure the strength of the relationship.

We considered CAD cases and controls separately and together.

The age at the time of sampling was defined at 0.1-year resolution

for most individuals and estimated at a year resolution for 10 dogs

(ncontrols = 7, ncases = 3).

SNP genotyping and quality control
The initial data set consisted of 207 individuals genotyped using

the Illumina 170K CanineHD BeadChip (Illumina, San Diego,

CA). Summary of individuals in each trait class is presented in

Table 1, before and after quality control (QC).

Prior to principal GWAS, we performed iterative QC to remove

poorly genotyped and noisy data. Out of the initial number of

174,376 SNP markers, we excluded 55,399 (31.77%) non-

informative markers (minor allele frequency below 1%), 2,537

(1.45%) due to call rate below 0.95 and 2,722 (1.56%) markers due

to the departure from Hardy-Weinberg equilibrium (first

p,161028 and then FDR,0.2 in CAD controls only). In total,

114,348 markers (65.57%) were included in both analyses.

Considering the entire dataset consisting of 207 individuals, we

excluded two individuals due to exceptionally high identity-by-

state, IBS.0.95 (the one with lowest call rate was excluded in each

pair - all were CAD cases) and two apparent outliers on the

multidimensional scaling (MDS) plot resulting in 203 individuals

passing QC. After QC, 25 individuals in total were excluded from

the association analysis; five were missing CAD status, five CAD

controls had low IgA levels and 15 CAD controls were missing IgA

levels (Table 1).

The initial association (with IgA levels and age at sampling as

covariates) indicated population stratification (l= 1.3,

lse = 1.561023). Hence, we decided to perform a closer

examination of the genetic structure of our GSD population by

computing autosomal genomic kinship matrix and performing

standard K-means clustering. In order to determine the number of

clusters (subpopulations), we performed a number of K-means

clustering with K = {1,2, …, 10}. At each iteration, we were

computed and stored the sum of within-cluster sums of squares

(SWCSS). Subsequently, we used the so-called scree test by

plotting SWCSS vs. K and choosing the number of clusters (K = 2)

corresponding to the first inflection point (for details see: [57]).

The clusters define our subpopulations.

Using MDS, we present visualisation of the genomic-kinship

matrix and subpopulations in Figure 1B–1C, and subpopulation

statistics are shown in Table 2.

Genome-wide association analysis
We performed association analysis of CAD (91 cases and 88

controls) with IgA levels and age at sampling as covariates. We

used the GenABEL package ver. 1.7-0 [58], a part of R statistical

suite/software, ver. 2.14.2 [59] for the genome-wide association

analyses. We used the mixed model approach for all the final

analysis presented in this paper. Mixed models were fitted using

polygenic_hglm function from the hglm package ver. 1.2–2 [60].

Table 3. Top 10 haplotype alleles from the association
analysis of fine-mapping data.

Frequency

Block Allele Case Control p-value
p1,000,000

permutations

7 GCCA 0.401 0.167 1.361026 4.061026

11 AGG 0.401 0.167 1.361026 4.061026

11 TTT 0.599 0.833 1.361026 4.061026

7 TAAC 0.599 0.821 5.061026 2.861025

9 TAT 0.418 0.208 2.761025 1.061024

4 AA 0.378 0.179 3.761025 2.061024

9 CGC 0.582 0.786 4.661025 3.061024

4 CG 0.622 0.810 1.061024 9.061024

6 TTC 0.824 0.940 8.061024 0.0060

3 AT 0.170 0.060 0.0013 0.0079

doi:10.1371/journal.pgen.1003475.t003

Table 4. Top 15 SNP alleles from the association analysis of
fine-mapping data.

Frequency

Position Allele Case Control p-value
p1,000,000

permutations

189340387 G 0.401 0.167 1.361026 3.161025

189342197 C 0.401 0.167 1.361026 3.161025

1914083711 G 0.401 0.167 1.361026 3.161025

1914289311 G 0.400 0.167 1.561026 3.261025

1912120511 A 0.401 0.169 1.861026 4.461025

18861228 A 0.390 0.167 3.561026 6.961025

189640497 C 0.401 0.179 5.061026 9.461025

189654757 A 0.401 0.179 5.061026 9.461025

18486594 A 0.390 0.173 6.861026 1.061024

19292898 T 0.401 0.185 9.461026 2.061024

19048938 T 0.417 0.208 3.061025 5.061024

19049048 A 0.417 0.208 3.061025 5.061024

18134508 A 0.378 0.179 3.761025 7.061024

19067992 T 0.418 0.214 4.661025 8.061024

18161172 A 0.378 0.190 1.061024 0.0020

7SNPs part of block 7,
11SNPs part of block 11.
doi:10.1371/journal.pgen.1003475.t004
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All parameters used for functional calls are discussed in the

paragraphs describing particular steps of the previous sections. We

considered p-values below 0.05 (praw) as significant and after

100,000 permutations as genome-wide significant p-values (pge-

nome).

For haplotype definitions we performed LD-clumping (settings;

r2 = 0.8, p1 = 0.0001, p2 = 0.001, distance d = 3 Mb) using our

own R implementation of the algorithm described in the PLINK

documentation (PLINK v1.07, [61]) and Haploview 4.2 (version

1.0).

Targeted re-sequencing
We selected five individuals for targeted re-sequencing of the

CFA 27 locus. A single case was homozygous for the risk

haplotype and two were heterozygous, whereas two controls

lacked the risk haplotype. Targeted capture of in total 6.5 Mb out

of which 2.8 Mb spanning CFA 27:16.8–19.6 Mb (CanFam 2.0)

including the ,1.5 Mb associated haplotype, was performed using

a 385K custom-designed sequence capture array from Roche

NimbleGen, WI. Hybridization library preparation was performed

as described by Olsson et al. [62]. Captured enriched libraries

were sequenced with a read length of 100 bp (paired-end reads),

using HiSeq 2000 (Illumina sequencing technology). Sequencing

was performed by the SNP&SEQ Technology Platform at

SciLifeLab Uppsala. Obtained reads were mapped to CanFam

2.0 [45] using Burrows-Wheeler Aligner (BWA) [63]. The

Genome Analysis Toolkit (GATK) (http://www.broadinstitute.

org/gatk, all web resources used in this study are also summarized

in Text S1) was used for base quality recalibration and local

realignment and the tool picard (hosted by SAMtools [64]) for

removing PCR duplicates. For variant calling SAMtools/0.1.18

was applied using mpileup format and bcftools. Maximum read

depth to call a SNP (-D) was set to 300 and the function -C50 was

applied to reduce the effect of reads with excessive mismatches

(http://samtools.sourceforge.net). Mean coverage in the five

analyzed individuals was 66.9 reads and mean share of positions

covered by at least 10 reads was 87% (Table S3). We searched for

structural variants by performing depth of coverage analyses using

average coverage for controls as a reference. Coverage was

calculated using every 20-th position in the raw pileup files and

then normalized for every individual. Next, the coverage was

averaged within a 100 positions-wide window separately for

controls and cases. The average cases/controls ratio was then

computed and used as indicator of a copy-number variation. In

regions with reduced (,21.0) or elevated (.1.0) relative coverage,

we additionally examined the length of inferred insert size using

the integrative genomics viewer (IGV) [65].

We used SEQScoring [46] (http://www.seqscoring.net) to score

the SNPs by conservation and haplotype pattern; and the

integrative genomics viewer (IGV) was used for manual visuali-

zation of SNPs, individual coverage and indels. In total, 8,765

SNPs were identified in the chromosome 27 region. Out of these,

2,587 SNPs followed the pattern of the case and control

haplotypes defined by the top GWAS SNPs. The pattern was

based on three dogs homozygous for the control haplotype, one

dog homozygous for the case haplotype and three dogs carrying

the case and control haplotype (i.e. carriers of the case haplotype).

Out of the 2,587 SNPs only 46 SNPs were located within

conserved elements (+/25 bp) scored by SEQscoring according to

SiPhy constraint elements detected by the alignment of 29

eutherian mammals [66]. We picked out 60 SNPs for designing

a genotyping array. The selection was based on the following

criteria; 40 SNPs out of the 46 SNPs stated above (SNPs too close

to each other and located in repeated sequences were excluded),

SNPs from the genome-wide array for comparison, manually

picked SNPs within the PKP2 gene (not conserved) and SNPs in

gaps in order to cover the entire associated region. Out of these, 54

SNPs were successfully pooled for additional genotyping in all

dogs.

Genotyping of fine-mapping SNPs
The 54 SNPs were genotyped using iPLEX Sequenom

MassARRAY platform (http://www.sequenom.com/iplex) in

185 GSD dogs. After analyzing the quality of the SNP genotyping

12 SNPs were excluded due to bad calling; nine due to

heterozygotes were incorrectly called as homozygous and two

due to one of the homozygous genotypes was falsely called as

heterozygous and one due to MAF = 0. In total, 42 SNPs

remained for the analysis. For the association analysis of the

genotyped SNPs and for defining haplotypes we used Haploview

4.2 (version 1.0). In total, 84 controls and 91 cases were included

in the analysis – the same set as in the genome-wide association

analysis of CAD except for four excluded controls (two were not

included due to missing DNA and two were excluded due to low

call rate = 48%).
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60. Rönnegård L, Shen X, Alam M (2010) hglm: A package for fitting hierchical

generalized linear models. The R Journal 2: 20–28.
61. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.
62. Olsson M, Meadows JR, Truve K, Rosengren Pielberg G, Puppo F, et al. (2011)

A novel unstable duplication upstream of HAS2 predisposes to a breed-defining
skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs. PLoS

Genet 7: e1001332. doi:10.1371/journal.pgen.1001332

63. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–1760.
64. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence

Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

65. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al.
(2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.

66. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, et al. (2011) A high-
resolution map of human evolutionary constraint using 29 mammals. Nature

478: 476–482.

A New Locus for Canine Atopic Dermatitis

PLOS Genetics | www.plosgenetics.org 12 May 2013 | Volume 9 | Issue 5 | e1003475


