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Abstract

We present a hidden Markov model (HMM) for inferring gradual isolation between two populations during speciation,
modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two
genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or
can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes,
splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer
all parameters except the recombination rate, which is biased downwards. Inference is robust to variation in the mutation
rate and the recombination rate over the sequence and also robust to unknown phase of genomes unless they are very
closely related. We provide a test for whether divergence is gradual or instantaneous, and we apply the model to three key
divergence processes in great apes: (a) the bonobo and common chimpanzee, (b) the eastern and western gorilla, and (c)
the Sumatran and Bornean orang-utan. We find that the bonobo and chimpanzee appear to have undergone a clear split,
whereas the divergence processes of the gorilla and orang-utan species occurred over several hundred thousands years
with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most
likely scenario involves an extended period of gene flow during speciation.

Citation: Mailund T, Halager AE, Westergaard M, Dutheil JY, Munch K, et al. (2012) A New Isolation with Migration Model along Complete Genomes Infers Very
Different Divergence Processes among Closely Related Great Ape Species. PLoS Genet 8(12): e1003125. doi:10.1371/journal.pgen.1003125

Editor: Harmit S. Malik, Fred Hutchinson Cancer Research Center, United States of America

Received June 21, 2012; Accepted October 14, 2012; Published December 20, 2012

Copyright: � 2012 Mailund et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: KM and MHS were funded by the Danish Council for Independent Research, grant FNU 09-062-535. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mailund@birc.au.dk

Introduction

The decreasing cost of genome sequencing has led to the

sequencing of many species, including closely related species. With

these available genomes, it becomes possible to study the

speciation process in more detail. Due to the processes of

recombination and coalescence, the complete genomes of two

related species contain a large number of partly independent

histories, with different regions having different migration histories

and times to common ancestry. These histories, if inferred, can

inform us about key parameters of the species divergence process.

Particularly informative is the distribution of the length of genomic

fragments having identical histories, since this depends directly on

the time interval over which recombination could have acted and

therefore on the distribution of coalescent times. Demographic

parameters shape this distribution, so inference of it is informative

about demographic history. However the difficulty of modelling

coalescence with recombination means that most previous

approaches have been unable to exploit this information, with

one recent notable exception being inference of population size

history from a single diploid genome [1].

Previous isolation with migration (IM) models have been

designed to deal with relatively short sequences from several

individuals of each species, since this was typical of data sets

available until recently. Adding more individuals to a data set is

often not as powerful as adding loci, since most coalescence events

occur recently in the history of the samples and there are only few

ancestors present at deep coalescence times. For the constant

population size coalescent, the total branch length in the ancestry

of a sample set grows logarithmically with the number of samples,

but linearly in the number of loci, and most statistical methods for

exploring the evolution of closely related species therefore employ

multiple loci with small sample sizes [2–7]. These methods,

however, typically assume loci are sufficiently short and widely

separated that recombination is negligible within them and occurs

freely between them. One notable exception is the MIMAR

model, which does allow recombination within loci but still

assumes free recombination between loci, see Becquet and

Przeworski (2007) [8].

Using coalescent theory it is reasonably straightforward to

compute the coalescence density under many demographic

scenarios, including scenarios with and without gene flow. This
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follows from the Markov property of the process when viewed

backwards in time. When recombination is absent, we can often

derive simple maximum likelihood algorithms for inferring

parameters. When recombination is present, however, the

likelihood computations quickly become computationally infeasi-

ble since the process is not Markovian across loci [9]. Reasonable

approximations can be made, however, by assuming the Markov

property across loci [10–12]. In order to fully model complete

recombining genomes we have developed a class of models that we

term ‘‘coalescent hidden Markov models’’ or CoalHMMs. These

models are based on the sequential Markov coalescence approach

[10,11] which models the coalescent process as a Markov process

along a genome alignment. The coalescence states, however, are

hidden and can only be inferred by comparing the sequences.

CoalHMMs permit recombination between any neighbouring

pair of nucleotides, and represent the correlation between sites as a

Markov model along the alignment [1,13–16]. In Hobolth et al.

(2007) [13] and Dutheil et al. (2009) [14] we analysed alignments

of three genomes (human, chimpanzee and gorilla) using a Markov

model with four states, in which one state corresponds to a

genealogy consistent with the species phylogeny, and with the two

most closely related species coalescing recently, and the other

states correspond to the three possible genealogies with a deep

initial coalescence (further back in time than the deepest

speciation). The same model was used to analyse the human,

chimpanzee and orang-utan in Hobolth et al. (2011) [17]. In

Mailund et al. (2011) [15], on the other hand, the model had a

variable number of states corresponding to different coalescence

times in an alignment of two orang-utan genomes. In all models,

speciation was modelled as a simple isolation model, with

panmictic mating before the speciation event and no gene flow

following speciation.

In this paper we extend the coalescent hidden Markov model of

Mailund et al. (2011) [15] to an IM model, where we allow limited

gene flow after an initial population split, followed by a period with

no gene flow (see Figure 1). We derive the transition probabilities

for the Markov model from finite state continuous time Markov

chains parameterized by the split times and the rates of

coalescence, recombination and migration. With this approach

we exactly compute the transition probabilities between diver-

gence times for pairs of nucleotides according to the coalescent

process with recombination, and by assuming a Markov depen-

dency along the alignment we obtain an approximation to the

process that is computationally efficient for scanning whole

genome data. We apply the approach to data from three pairs

of recently diverged great ape species: the two orang-utan species,

the eastern and western gorilla species, and chimpanzees and

bonobos. We also apply it to the more ancient divergence between

humans and the Pan genus (chimpanzees and bonobos).

Results

Key aspects of the isolation-with-migration coalescent
hidden Markov model

When considering only pairs of genomes, the likelihood of a

model will depend only on the divergence time at each locus

[1,3,15]. By computing the joint coalescence time density for pairs

of nucleotides we can compute a density for the coalescent time of

the right nucleotide of a pair, conditional on when the left

nucleotide coalesces. By assuming the Markov property along an

alignment we can then efficiently compute the coalescence density

for each nucleotide along a pairwise genome alignment.

In Mailund et al. (2011) [15] we used this observation to

compute the joint coalescence density of pairs of nucleotides in a

simple isolation model from a continuous time Markov chain

(CTMC). In this paper, we take the same approach, but we now

compute the joint coalescence density of pairs of nucleotides in a

scenario which includes a period of restricted migration. In this

setting, the state space of the CTMC explodes in the number of

states. Constructing the CTMC manually thus becomes tedious

and error prone, and instead we have implemented an algorithm

for constructing the rate matrix (see Methods).

Once the joint coalescence densities are computed however, we

can construct a hidden Markov model from following the

approach of our previous work. We discretize time in a number

of intervals (see Figure 1) to get a finite state space for the hidden

Markov model. In all analyses we used 20 intervals, 10 in the

migration period and 10 in the ancestral population; see Text S1

for results for different numbers of time intervals. From the joint

coalescence densities we can compute the probability of the left

nucleotide of a pair coalescing in one time interval and the right

nucleotide in another, and from this obtain the transition

probability matrix of the hidden Markov model. We compute

the mean coalescence time in each time interval to get the emission

probabilities of the hidden Markov model, assuming that

coalescence occurred at that time point. Once we have computed

the transition and emission probability matrices for the hidden

Markov model, we can use well known hidden Markov model

algorithms to compute the likelihood of a genome alignment.

The parameters of the hidden Markov model are the same as

those used for the CTMC for computing the coalescence densities.

The IM model introduced in this paper is parameterized by i) the

coalescence rate of lineages, ii) the recombination rate between

pairs of nucleotides, and iii) the rate of migration between

populations. We scale all these rates by number of substitutions,

such that the coalescence densities are measured in the expected

number of substitutions, which simplify the likelihood computa-

tions.

We then assume three different time periods (see Figure 1). The

period from the present until time t1 allows coalescence and

recombination events within populations, but no migration events

between them. From time t1 to time t2, migration events are

allowed as well coalescence and recombination events, and further

back in time than t2 we assume a panmictic mating, where again

coalescence and recombination events are allowed.

Author Summary

Next-generation sequencing technology has enabled the
generation of whole-genome data for many closely related
species. For population genetic inference we have se-
quenced many loci, but only in a few individuals. We present
a new method that allows inference of the divergence
process based on two closely related genomes, modelled as
gradual isolation in an isolation with migration model. This
allows estimation of the initial time of restricted gene flow,
the cessation of gene flow, as well as the population sizes,
migration rates, and recombination rates. We show by
simulations that the parameter estimation is accurate with
genome-wide data and use the model to disentangle the
divergence processes among three sets of closely related
great ape species: bonobo/chimpanzee, eastern/western
gorillas, and Sumatran/Bornean orang-utans. We find allo-
patric speciation for bonobo and chimpanzee and non-
allopatric speciation for the gorillas and orang-utans. We also
consider the split between humans and chimpanzees/
bonobos and find evidence for non-allopatric speciation,
similar to that within gorillas and orang-utans.

An IM CoalHMM
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We assume that both the recombination rate R and coalescence

rate C are constant across lineages and over time. We also assume

that the migration rate M is symmetric between the two

populations. The mathematical framework used to construct the

model does allow us to vary all rate parameters both in time and

along the sequence, and allows the migration rate to be

asymmetric between populations, but due to identifiability issues

(see Text S1, Sections 4 and 5, and [7]) we restrict ourselves to

symmetric parameters.

Performance of the model
The coalescent HMM employs two important approximations. It

assumes that the coalescent process is Markov along the sequences

and that coalescent events occur at discrete time points rather than

continuously in time. The Markov assumption is very difficult to

relax because it enables us to reduce the problem of inference across

the genome to that of the history of two adjacent nucleotides. The

assumption of discrete coalescent times can be investigated by

varying the number of intervals. Therefore, we have used extensive

simulation studies to validate that the model can recover true

parameters simulated under the coalescent with recombination

process, both under ideal circumstances and under circumstances

where different aspects of the model are mis-specified (see Text S1).

Simulations are carried out under the more complex coalescent with

recombination and migration model, whereas inference uses the

assumptions of Markov property and discrete coalescence times.

For all simulations we used a coalescence rate of C~2,500 –

corresponding to an effective population size Ne~10,000 assum-

ing a substitution rate of m~1:0|10{9 substitutions per bp per

year and 20 years per generation – and a recombination rate of

R~0:4 – corresponding to 0.8 cM/Mb with the assumed

mutation rate and generation time. To explore different scenarios

Figure 1. Isolation-with-migration model. Our isolation-with-migration model considers two separated populations (sub-species or species)
derived from a shared ancestral population in the recent past. The model assumes that the ancestral population split into two populations in the
past, at time t2 , and that these two populations exchanged genes with migration rate M until a later time, t1 , where gene flow stopped. The
coalescence process in this model is parameterized with a coalescence rate (inverse of the effective population size), C, and a recombination rate, R.
The model is translated into a finite-state hidden Markov model by discretizing time into time intervals with break points ti .
doi:10.1371/journal.pgen.1003125.g001

An IM CoalHMM

PLOS Genetics | www.plosgenetics.org 3 December 2012 | Volume 8 | Issue 12 | e1003125



we simulated 10 independent data sets for each combination of

parameters t1[f0:00025,0:00050g (250 and 500 thousand years

ago with the assumed mutation rate), t2[f0:001,0:002g (1 and 2

million years ago), and M[f125:0,250:0g (Nem[f0:1,0:2g). All

simulation results are based on 10 Mbp of data (but see Text S1,

Section 3.3 for accuracy as a function of data size). We present a

broad range of analysis of the simulations in the supplement and

will here only focus on a couple of key aspects.

Figure 2 shows the parameter estimation accuracy for the six

different scenarios simulated. As shown, the parameters are

generally well recovered except for the recombination rate that

is consistently under-estimated.

The CoalHMM assumes that both the mutation rate and the

recombination rate are constant in the region analysed, which in

general will not be true. We explored the sensitivity to variation in

rates through simulations. Figure 3 shows the effect of varying the

mutation rate in segments along the alignment, in blocks of length

geometrically distributed with mean either 500 or 2000 bp, and

varying the mutation rate by a factor uniformly distributed in

either range 0.75–1.25 or 0.5–1.5. The main effect of varying

mutation rate appears to be a decrease in the estimated

coalescence rate and an increase in the estimated migration rate.

The decrease in coalescence rate is explained by a greater variance

in estimated coalescence times when mutation rate variation is

Figure 2. Estimation accuracy. The box-plot shows the distribution of parameter estimates for six different simulation scenarios. In all scenarios
the coalescence rate and the recombination rate parameters are kept fixed, while the end of gene flow, t1 , the initial population split, t2, and the
migration rate, M , varies between scenarios. For each simulation scenario, 10 independent data sets were generated and analyzed. The dashed
horizontal lines indicate the simulated values for the five parameters. The recombination rate is consistently under-estimated while the remaining
parameters are well recovered.
doi:10.1371/journal.pgen.1003125.g002

An IM CoalHMM
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added to the variation in actual coalescence times. The model

misinterpretes stretches of the genome with small divergence as

recent coalescence times causes the increase in migration rate

estimates.

Figure 4 shows estimation results when the recombination rate along

the alignment is taken from the DeCODE recombination map [18].

Introducing variation in the recombination rate does not appear to bias

the parameters, but the variance in estimates generally increases.

The model assumes that we have one haploid genome from

each species. From sequencing data, however, we generally only

obtain diploid genomes, and inferring the phase to split this into

haploid genomes is not immediately possible with only one

genome sequenced. If the species are sufficiently diverged,

however, most polymorphism in the species will be local to one

of the species, and which variant is considered for a heterozygotic

site will not matter for the divergence to the other species.

However, when species are so closely related that shared

polymorphisms are common, we expect that assuming phased

chromosome will make us believe that more recombination has

occurred and therefore bias the inferred t1 upwards. To test this

Figure 3. The effect of mutation rate variation. The figure shows the effect on parameter estimation when the mutation rate is varied along the
genome alignment. We split the alignment into segments geometrically distributed with mean length 500 bp and 2 kbp, and the mutation rate is
then scaled by a random value chosen uniformly in the range 0.75 to 1.25 or 0.5 to 1.5. The dashed lines show the simulated values. The largest effect
on varying the mutation rate is seen in the top-most parameters, the coalescence rate and the mutation rate. Varying the mutation rate increases the
variance in coalescence times scaled with mutation rate, which is interpreted by the model as a decreased coalescence rate, while segments with low
mutation rates are seen as more recent coalescence rates which the model interprets as evidence for migration. Consequently, variation in mutation
rate decreases our estimates of the coalescence rate and increases our estimates of migration rates.
doi:10.1371/journal.pgen.1003125.g003

An IM CoalHMM
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we simulated two genomes per species and compared parameter

estimates on haploid genomes and mosaic genomes constructed by

taking a random allele at all positions where the two sequences in a

species differed. As shown in Figure 5 and in the supplement,

species have to have diverged very recently (within the last 250,000

years) for this effect to be detectable.

Analysis of closely related great ape species
Recently-sequenced primate genomes allow us to apply the

model on three different closely related species pairs: (a) bonobos

and chimpanzees (Prüfer et al. (2012) [19]), (b) eastern and western

gorillas (Scally et al. (2012) [20]), and (c) Sumatran and Bornean

orang-utans (Locke et al. (2011) [21]). We analysed these species

pairs in 10 Mbp intervals using both the IM model from the

present study and the isolation model (I model) from Mailund et al.

(2011) [15], in order to test whether a period of limited gene flow

explains the data better than a clean split. Estimates for each

10 Mbp segment can be seen in Dataset S1.

Figure 6 shows the divergence times estimated under the I

model (a single divergence time) and the IM model (two

divergence times). In each case the I model estimates a time

intermediate to the two divergence times of the IM model. The

median migration rates per coalescence (2Nem~M=C) are

M=C~8235 for bonobo and chimpanzee, M=C~0:59 for

eastern and western gorilla and M=C~24 for Sumatran and

Bornean orang-utan. Thus, the short migration epoch for bonobo

and chimpanzee appears virtually panmictic while the epoch for

the gorillas has very limited migration.

Figure 7 shows the divergence times for each chromosome and

Figure 8 shows a comparison of the I and IM models for each

chromosome in the three species pairs (for details of the model

checking approach see Text S1, Section 8). As expected from the

short time interval of gene flow and the large amount of gene flow

estimated, the IM model does not provide a better fit to the data

than the I model for the Pan comparison. For gorillas and orang-

utans, however, the IM model is preferred, with the strongest

support for the IM model in gorillas. We conclude that the Pan

split is consistent with allopatry, whereas both the orang-utans and

gorillas split non-allopatrically, and the split between gorillas much

more recent than that between orang-utans.

Human and chimpanzee speciation
Among the great ape speciation events, the human and

chimpanzee speciation has received the most attention. We

applied our new model to this speciation event using both the

chimpanzee and bonobo genomes compared to the human

genome, see Figure 9 and Figure 10. Estimating parameters using

the isolation model, we see a recent speciation with a large

ancestral population size (i.e. small coalescence rate), while

estimating parameters using the isolation with migration model

Figure 4. The effect of recombination rate variation. The figure shows the effect on parameter estimation when the recombination rate is
varied along the genome alignment. To simulate variation in the recombination rate, we sampled random 10 Mbp segments of the human genome,
extracted the DeCODE recombination map for these segments, and scaled the recombination rate in the simulations according to the variation in this
map. The dashed lines show the simulated values of the parameters. For most parameters, the effect of varying the recombination rate is seen as an
increased variance in the estimates, while they do not appear to be biased. The exception is the recombination rate that becomes even more
underestimated than for a constant recombination rate.
doi:10.1371/journal.pgen.1003125.g004

An IM CoalHMM
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we find a relatively large interval with gene flow and a smaller

ancestral effective population size, although still large compared to

most extant great apes. Comparing the two models using the AIC

approach, we find that the isolation with migration model is

preferred, suggesting that the Homo/Pan split was not allopatric

(see Figure 11).

Discussion

A new isolation with migration model
Our study shows that detailed information on the divergence

process can be gathered from just two related haploid genomes

through joint inference of the length of segments with the same

history and their times to coalescence. A period of time with

limited migration is detectable as a period in which coalescences

occur at a much lower frequency than in a panmictic population,

because they are limited by the rate of migration events.

Simulations under the full coalescence with recombination process

show that the Markov assumption does not significantly bias the

estimation of parameters, except for the recombination rate which

is consistently underestimated, typically by 20–30%. The cause of

this underestimation is the tendency of the real coalescent with

recombination process to return to the same ancestor which

implies that the average effect of recombination events is smaller

than assumed by the Markov model (for an extended discussion,

see Dutheil et al. (2009) [14] and Mailund et al. (2011) [15, Text S1

Section 1.4.3]).

Estimation of time and migration parameters is robust to typical

violations of model assumptions such as mutation rate and

recombination rate variation. A practical concern is that the

model assumes haploid phased genomes whereas most genome

sequences are a random mix of two haplotypes. Using a random

phase should have no effect if the genomes are sufficiently diverged

that they do not share any polymorphism; in this case the patterns

of coalescence time will be the same for either phase at any

position along the genome. If the genomes have shared

polymorphism, then the phase will affect the estimated coalescence

time, and with a high degree of shared polymorphism we expect

that a random phase will cause the HMM to jump between states

too often.

To investigate the consequences of this, we simulated diploid

genomes and constructed haploid genomes by choosing a random

phase, and then estimated parameters from this data (see Text S1,

Section 7). We found that split times were very slightly overestimated

when a random phase was used, while the recombination rate was

underestimated by a somewhat greater extent and the coalescence

rate could be overestimated by a factor of up to 50%. As expected

however, the biases introduced by using a random phase quickly

disappear when the genome divergence increases.

Scaling times and effective population sizes
The demographic parameters inferred by our model are

expressed in units of sequence divergence (substitutions per base

pair). To translate these into units measured in years and effective

population sizes measured in individuals requires both a genomic

substitution rate and a generation time. A substitution rate has

typically been estimated from fossil dates, with values around

1:0|10{9 per base pair per year as typical for great apes.

Figure 5. The effect of using a random genotype phase. We simulated the situation where the genotype phase is unknown by simulating two
genomes and selecting a random allele for all heterozygotic sites. The plot shows the effect on parameter estimates of not knowing the phase.
doi:10.1371/journal.pgen.1003125.g005

An IM CoalHMM
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Recent measurements of de novo mutations in modern humans,

however, combined with studies of the generation time in humans

and African apes, have revealed a mutation rate of around

0:5|10{9 bp{1 y{1 [22–24]. This rate is significantly lower than

estimates based on fossil calibration. However there are constraints

on how far back this can be extrapolated, given fossil evidence for

earlier evolutionary events (for example the divergence of orang-

utan from other apes seems incompatible with dates older than

15–20 Mya) [20]. It may also be that the per-generation rate

differs in other apes. For these reasons, in Figure 12 we show how

the estimated timescales for the speciation processes investigated

depend on the mutation rate assumed. For comparison with

previous analyses, we show similar plots annotated with mutation

rates and time estimates in other studies in Text S2, Section 3.

Speciation processes within the non-human great apes
Our application of the model to three closely related great ape

species pairs revealed different speciation processes between

chimpanzees and bonobos on one hand and the gorilla and

orang-utan species on the other.

We estimate that the two gorilla species have experienced a long

period of time with a very small amount of gene flow. Evidence for

recent gene flow between these species was also found by

Thalmann et al. (2007) [25] and by Scally et al. (2012) [20].

Thalmann et al. (2007) [25], using a mutation rate just below

m~1:0|10{9, estimated an initial population divergence

0.9 Mya to 1.6 Mya, with continued gene flow ceasing 80 kya to

200 kya. Under the same scaling we estimate a much more recent

population split, later than 0.5 Mya, with gene flow continuing

until quite recently. Scally et al. (2012) [20] also presented

evidence for recent gene flow, but using a model that assumed

initial divergence followed by gene flow continuing to the present

day, and with m~0:6|10{9 found a much more recent

divergence time corresponding to 300 kya with their scaling (see

Text S2, Figure 8).

For the two orang-utan species we also find evidence for an

extended period of limited gene flow but with a more ancient

cessation of gene flow than is observed for the Gorillas. This is in

agreement with the DaDi analysis presented by Locke et al. (2011)

[21] which also posits a gradual divergence process. Other studies

estimated much more ancient divergence times; for example

Steiper (2006) [26] estimated a divergence time between 3 and

5 Mya and Becquet and Przeworski (2007) [8] a divergence

around 1.4 Mya (although with a wide confidence interval that

overlaps other estimates) using also 1:0|10{9 bp{1 y{1 (see Text

S2, Figure 9). Our inference falls within these extremes, with the

1:0|10{9 bp{1 y{1 scaling we estimate initial divergence almost

600 kya and had an moderate level of gene flow over a period of

300 thousand years.

Finally, for the chimpanzees and bonobos we find no evidence

against an allopatric separation. This is in agreement with Won

and Hey (2005) [27] and Hey (2010) [28], who also used an IM

model to study the separation between these two species. Indeed,

the chimpanzee-bonobo speciation process has previously been

Figure 6. Split times estimates for the three great ape genera. The box plot shows the estimated split times using either the isolation model
or the isolation-with-migration model for the three great ape comparisons. The box plots on the left shows the split time estimate in the isolation
model while the box plots on the right shows both the initial population divergence and the end of gene flow. The variation in estimates is from each
10 Mbp segment of the genome.
doi:10.1371/journal.pgen.1003125.g006

An IM CoalHMM
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suggested as an example of allopatric speciation in which the

Congo River acted as a barrier to gene flow [29], since the

present-day ranges of bonobos and chimpanzees are separated by

that river. Fluvial drainage patterns in Central Africa may well

have changed substantially in response to geological and

climatological events over the last 20 million years, and could

have triggered speciation. However the formation of the Congo

River itself may have occurred substantially more than 2 million

years ago [30], in which case it would predate most estimated

divergence times for chimpanzee and bonobo, including those

presented here. Prüfer er al. (2012) [19] used an isolation model

and patterns of incomplete lineage sorting between the two Pan

species and humans, and estimated the split time to be about

990 kya. Using the same scaling factor (mutation rate 1:0|10{9

per year) we find a split time estimate of around 800 kya. Our

estimate is consistent with previous estimates based on IM models

from Won and Hey (2005) [27] and Hey (2010) [28], which also

inferred no migration between bonobos and common chimpan-

zees. It is also close to the estimate of Becquet and Przeworski

(2007) [8]. This study detected a weak signal of gene flow between

eastern chimpanzees and bonobos, but the whole-genome analysis

of Prüfer et al. (2012) [19] does not indicate gene flow between

bonobos and any of the common chimpanzee sub-species. (see

Text S2, Figure 7).

Thus, most estimates for the bonobo-chimpanzee separation are

largely consistent with our results and there is little evidence

against allopatry. If we use recent estimates of present-day human

mutation rate of about 0:5|10{9 bp{1 y{1 instead of

1:0|10{9 bp{1 y{1, the above time estimates should be multi-

plied by 2 (see Figure 12), putting the bonobo-chimpanzee

separation around 1.5 Mya, closer to but still likely postdating

the formation of the Congo River.

Speciation of humans and chimpanzees
The human-chimpanzee speciation has been the focus of

considerable attention in previous studies, most of which have

assumed a simple (allopatric) speciation model. However, as shown

in Figure 11, we find evidence favouring a non-allopatric model, in

which the initial divergence was followed by gene flow for an

extended period.

Figure 7. Chromosome wise split time estimates. The box plots show the estimates of the initial split time and the end of gene flow in the
isolation-with-migration model for each 10 Mbp segment for each chromosome.
doi:10.1371/journal.pgen.1003125.g007
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Considering the evidence reported here and previously for gene

flow between species within the great ape genera [20,21] and

between modern humans and archaic humans [31–35], it appears

that non-allopatric speciation is not uncommon within the great

apes, and it is plausible that a similar scenario may have applied to

the split between humans and our closest relatives. Patterson et al.

(2006) [36] proposed a complex scenario involving an initial split,

followed by isolation, then an admixture event and finally an

isolation between the species. Several subsequent analyses

concluded that an allopatric speciation could not be rejected but

did not conclusively rule out more complex scenarios [5,7,20,37–

40]. Our method does not explicitly model admixture so we

cannot directly test the hypothesis presented by Patterson et al. In

particular the model does not distinguish between gene flow

occurring as a period of limited ongoing exchange between

diverging populations or in the form of one or more admixture/

hybridisation events. This is a key question to explore in future

extensions.

Future perspectives
The exploitation of whole genome data in a demographic inference

model is made computationally efficient by the Markov assumption

underlying CoalHMMs, and should increase the statistical power for

parameter estimation and for comparing different demographic

scenarios. However the construction of complex demographic models

with CoalHMMs is complicated by the mathematics involved in

specifying transition probabilities between local genealogies.

The model we have presented in this paper is an initial attempt

at building a speciation model using a CoalHMM, but the

underlying framework, using a continuous time Markov chain to

model transitions between genealogies, generalises straightfor-

wardly to other demographic scenarios (see [41] for initial work in

this direction). By varying the coalescence rate in different time

intervals, the model captures variation in the effective population

size in the past in essentially the same way as the pairwise

sequential Markov coalescence (PSMC) model of Li and Durbin

[1]. Varying the migration rate in a similar manner, rather than

Figure 8. Model comparison between the isolation and the isolation-with-migration model. The box plots show the Akaike Information
Criteria (AIC) for the isolation model against the isolation-with-migration model. For each 10 Mbp genomic segment we have plotted the AIC for the
model including migration minus the model without. The model with the smallest AIC should be preferred, so values below zero prefers the isolation
model while values above zero prefers the migration model.
doi:10.1371/journal.pgen.1003125.g008
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assuming a constant rate of migration during an extended

speciation event, could provide information about the timing of

admixture events and could also model scenarios such as a gradual

speciation or the complex speciation between humans and

chimpanzees suggested by Patterson et al. (2006) [36]. Adding

further populations and genomes is also feasible but is limited by

the state space of the continuous time Markov chain.

Using a hidden Markov model also enables us, via posterior

decoding, to investigate variation in coalescent times, recombina-

tion and gene exchange along the genome. See Text S1, Section

10 and Text S2, Section 1, for initial results using posterior

decoding to estimate the time to the most recent common ancestor

and to detect signals of selection. Such variation is expected to be

an important aspect of speciation [42], and is seen in studies of

hybridisation between closely related species [43,44]. The ability

to explore it in genome-wide comparisons between populations at

various stages of divergence will be important in understanding the

range of evolutionary processes involved in speciation.

Methods

Constructing the hidden Markov model
The crux of constructing a coalescent hidden Markov model is

deriving transition and emission probability matrices from the

coalescence process parameters of interest. For computing the

transition probabilities we take the approach from Mailund et al.

(2011) [15] and construct continuous time Markov chains (CTMCs)

that explicitly track the ancestry of pairs of neighboring nucleotides.

From these we can compute the the transition probabilities exactly.

For emission probabilities we compute the coalescence de1nsities in

the models from similar CTMCs from which we compute the mean

coalescence time in each time interval. Based on the mean

coalescent time, we then compute the distribution of alignment

columns and use these for the emission probabilities.

Constructing the CTMCs. The coalescence process with

recombination can be formulated as a CTMC running back in time

from a present day sample of genomes back until all nucleotides

have found their most recent common ancestor (MRCA) [45]. In an

isolation with migration model, the states corresponds to a number

of lineages carrying ancestral material, distributed across the two

populations, and the events that can occur are i) coalescence, ii)

recombination, and iii) migration, each with different rates.

When constructing our coalescent hidden Markov model, we

consider the case for genome segments only two nucleotides long.

In this case, we get a system of a relatively small number of states

where we can explicitly construct the rate matrix and compute

transition probabilities exactly. The process is very similar to the

isolation model in Mailund et al. (2011) [15] and was also used by

Simonsen and Churchill (1997) [46] and Slatkin and Pollack

(2006) [47]. Although manageable, constructing the state space

and rate matrix manually is still tedious and error prone, so we

instead construct a generative model from which we can

enumerate the complete state space of all states and transitions,

and from this easily construct the rate matrix.

In this model, we represent lineages at a single nucleotide as

sets. The sets 1f g and 2f g denote sequences 1 and 2 before they

have found their MRCA, while 1,2f g denote their MRCA. We

then model two neighboring nucleotides as pairs of such states, so

e.g. 1,2f g, 1f gð Þ denote a lineage where the left nucleotide has

found its MRCA and is linked on the right to a nucleotide from the

Figure 9. Parameter estimates for the human/chimpanzee split with the isolation model. The histograms show the distribution of
parameter estimates for the human/bonobo speciation (blue) and the human/chimpanzee speciation (red) using the isolation model.
doi:10.1371/journal.pgen.1003125.g009
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first sequence that has not found its MRCA with sequence 2, and

1, 2f gð Þ denotes a lineage where sequence two on the right

nucleotide has not found its MRCA with sequence 1 and is not

linked with ancestral material on the left.

To assign lineages to species, we pair them again, and let 1,‘½ �
denote that lineage ‘ is in species 1 and let 2,‘½ � denote that lineage

‘ is in species 2. A state in the CTMC corresponds to a set of such

lineages assigned to species.

We define the following transitions of states:

1. Coalescence:

p1, l1,r1ð Þ½ �f g| p2, l2,r2ð Þ½ �f g|S? p1, l1|l2,r1|r2ð Þ½ �f g|S if

p1~p2

2. Recombination:

p, l,rð Þ½ �f g|S? p, l,1ð Þ½ �f g| p, 1,rð Þ½ �f g|S
3. Migration: p1, l,rð Þ½ �f g|S? p2, l,rð Þ½ �f g|S if p1=p2.

where S denotes the set of other lineages in the state. Figure 13

illustrates this state space notation with an example ancestral

recombination graph.

As the initial state of the system, we use the state where sequence 1

is in species 1, sequence 2 is in species 2, and both sequences have

their left and right nucleotides linked, 1, 1f g, 1f gð Þ½ �, 2, 2f g, 2f gð Þ½ �f g,
and we then compute a graph of all states reachable from this state

through the transitions above, labeling each edge with the kind of

transformation (coalescence, recombination or migration). From this

state space we construct a rate matrix by first assigning a number to

each state, and then setting rates in the matrix in entries

corresponding to edges in the graph.

When constructing the rate matrix from the state space, we set

migration rates to zero for the time period where we do not allow gene

flow, from t0 to t1, and for the ancestral population we only consider

the first population and do not allow migrations to the second. When

moving to that CTMC we then first project all lineages into the first

population. To reflect that the effective population size can be different

in the different populations, we allow different coalescence rates in the

different populations, and a different coalescence rate in the ancestral

population than in the two present day populations. In the following,

we let Q0 denote the rate matrix for the time interval t0 to t1, Q1

denote the rate matrix for the time interval t1 to t2, and Q2 denote the

rate matrix for the time interval above t2.
Computing the transition probability matrix. Let Pr L[i,ð

R[jÞ denote the probability that the left nucleotides finds their MRCA

in time interval i and that the right nucleotides find their MRCA in

time interval j. Our goal now is to compute these probabilities, and

from these obtain the transition probabilities for the hidden Markov

model. We do this by summing over all paths of states in the CTMC

where the left nucleotide coalesces in interval i~½ti,tiz1� and where

the right nucleotide coalesces in interval j~½tj ,tjz1�.
First, we compute CTMC transition probability matrices for

individual time intervals. Let Pi,iz1 denote such a matrix, i.e. let

Pi,iz1
� �

k‘
denote the probability of moving from state k at the

beginning of interval i to state ‘ at the end of interval i. When the

same CTMC is used in interval i and iz1 this is obtained from

CTMC theory as Pi,iz1~exp Q tiz1{tið Þð Þ where Q is the rate

matrix for the CTMC. When we use a different CTMC in interval

i and iz1, i.e. when tiz1~t1 or tiz1~t2, the probability matrix

is complicated by having different sets of states in interval i and

iz1. To deal with this, we define an injection matrix, I01, that

injects the smaller state space of the first CTMC, where no gene

flow is possible, into the larger state space where it is, and a

projection matrix, I12, that projects the separate populations in the

second CTMC into the third CTMC with panmictic mating.

Let

I01
� �

k‘
~

1 if k and ‘ represent the same state

in the transition system,

0 otherwise

8><
>:

and

I12
� �

k‘
~

1 if k and ‘ represent the same state

in the transition system except for which

population the lineages are paired with,

0 otherwise

8>>><
>>>:

Using these injection and projection matrices, the transition

probability matrices for individual intervals are computed as

Figure 10. Parameter estimates for the human/chimpanzee split with the isolation-with-migration model. The histograms show the distribution
of parameter estimates for the human/bonobo speciation (blue) and the human/chimpanzee speciation (red) using the isolation-with-migration model.
doi:10.1371/journal.pgen.1003125.g010

Figure 11. Model comparison for the human/chimpanzee and
the human/bonobo split. The histograms show the distribution of
AIC differences for the isolation and isolation-with-migration model for
the human/chimpanzee comparison and the human/bonobo compar-
ison. Negative values indicate a preference for the isolation model while
positive values indicate a preference for the isolation-with-migration
model. The overall result points toward a preference for a prolonged
speciation for the Homo/Pan split.
doi:10.1371/journal.pgen.1003125.g011
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P0,1~exp Q0t1ð Þ:I01

for the interval between the present and the time where gene flow

is allowed,

Pi,iz1~exp Q1 tiz1{tið Þð Þ

for t1ƒtivt2, the intervals where the ancestral species/popula-

tions are separated but where gene flow is allowed,

Pi,iz1~exp Q1 tiz1{tið Þð Þ:I12

for tiz1~t2, the final interval with gene flow, and

Pi,iz1~exp Q2 tiz1{tið Þð Þ

for t2ƒti, the time intervals with panmictic mating (using

tiz1~? for the final interval).

Second, we compute the CTMC transition probability matrices

across several intervals. These can be computed by simple matrix

multiplication, since the probability of being in state k at time ti

and being in state ‘ at time tiz2 is

X
m

Pi,iz1
� �

km
Piz1,iz2
� �

m‘
~ Pi,iz1:Piz1,iz2
� �

k‘
,

so we define Pi,j for jwi as

Pi,j~ P
j{1

k~i
Pk,kz1:

Now, let X (t) denote the two-nucleotide state of the CTMC at

time t and let 0 denote the initial state, where we assume that the

Figure 12. Split times scaled in years. The figure shows the inferred split times when scaled with a mutation rate, m, ranging from 0:5:10{9 to
1:0:10{9 . The solid lines show mean estimates while the dashed lines the 95% confidence interval (+1:96|SEM). The Homo/Pan slit is annotated
with key fossils, the chimpanzee/bonobo split with the formation of the Congo River, and the orang-utan split with glacial period where sea level was
low and migration between orang-utans possible.
doi:10.1371/journal.pgen.1003125.g012

An IM CoalHMM

PLOS Genetics | www.plosgenetics.org 14 December 2012 | Volume 8 | Issue 12 | e1003125



initial state is always f½1,(f1g,f1g)�,½2,(f2g,f2g)�g and that this

has index 0 and Pr X 0ð Þ~0ð Þ~1. In all analyses, we have

assumed that the initial state is the state where the nucleotides

have not found their MRCA, and where the left and right

nucleotides in the two sequences are linked. Let VB denote all

CTMC states where neither left nor right nucleotides have found

their MRCA, let VL denote the states where the left but not the

right nucleotides have found their MRCA, let VR denote the states

where the right but not the left nucleotides have found their

MRCA, and finally let VE denote the states where both left and

right nucleotides have found their MRCA.

If i~j we obtain the joint probability Pr L[i,R[ið Þ from

Pr L[i,R[ið Þ~Pr X tið Þ[VB,X tiz1ð Þ[VE DX 0ð Þ~0ð Þ

~
X
k[VB

X
‘[VE

Pr X tið Þ~kDX (0)~0ð ÞPr X tiz1ð Þ~‘DX tið Þ~kð Þ

~
X
k[VB

X
‘[VE

P0,i
� �

0k
Pi,iz1
� �

k‘
,

if ivj we get

Pr L[i,R[jð Þ

~Pr X tið Þ[VB,X tiz1ð Þ[VL,X tj

� �
[VL,X tjz1

� �
[VE DX 0ð Þ~0

� �

~
X
k[VB

X
‘[VL

X
m[VL

X
s[VE

P0,i
� �

0k
Pi,iz1
� �

k‘
Piz1,j
� �

‘m
Pj,jz1
� �

ms
,

and symmetrically, if iwj we get

Pr L[i,R[jð Þ

~Pr X tj

� �
[VB,X tjz1

� �
[VR,X tið Þ[VR,X tiz1ð Þ[VE DX 0ð Þ~0

� �

~
X
k[VB

X
‘[VR

X
m[VR

X
s[VE

P0,j
� �

0k
Pj,jz1
� �

k‘
Pjz1,i
� �

‘m
Pi,iz1
� �

ms
:

To reduce the computation time for calculating the sums, we

use a dynamic programming algorithm.

Given the joint probabilities of having the left nucleotide

coalesce in time interval i and the right in interval j, the transition

probability matrix for the hidden Markov model is computed

simply as the conditional probability Tij~Pr R[jDL[ið Þ~Pr L[i,ð
R[jÞ=Pr L[ið Þ where Pr i[Lð Þ~

P
k Pr L[i,R[kð Þ.

Computing the emission probability matrix. For com-

puting the emission probabilities, we use the same approach as in

our previous work [13–15] and compute the probability of each

alignment column conditional on a coalescence time at the mean

of a time interval. Conditional on the divergence of the two

sequences, the alignment column probabilities can be computed

Figure 13. Ancestral recombination graph and state space. On the left is shown an ancestral recombination graph for two genomes with two
nucleotides. Lineages, in the notation we use for constructing the CTMCs, are shown in red. On the right is shown the corresponding list of transitions
int he CTMC with the type of transitions on the arrows: recombination (R), migration (M) and coalescence (C). The transition from the two separate
populations to the ancestral population is a special transition – the projection matrix in the CTMC – shown in red.
doi:10.1371/journal.pgen.1003125.g013

An IM CoalHMM

PLOS Genetics | www.plosgenetics.org 15 December 2012 | Volume 8 | Issue 12 | e1003125



using common phylogenetic methods, and in this model we use the

simple Jukes-Cantor model.

For computing the mean coalescence time in each time interval,

we can use the truncated exponential density as in our previous

models for the intervals further back in time than t2, but for the

time intervals between t1 and t2 then coalescence time density is

complicated by having to deal with both migration and

coalescence events [48]. Below, we show how we can compute

the mean coalescence time in each interval between t1 and t2.

To deal with this, we set up a CTMC similar to those for the

transition probabilities, but considering only a single nucleotide

per genome. In the following, VB will denote states for this CTMC

where the nucleotides from the two genomes have not coalesced,

and VE will denote states where the nucleotides have found their

MRCA.

From a CTMC we can compute the mean time until an

absorbing state (i.e. coalescence) using standard CTMC theory

(see e.g. Tavaré (1979) [49]), but in our application we need to

condition on coalescing within the given time interval, i.e. we want

to compute the end-conditioned expectation

E tDX tið Þ[VB,X tiz1ð Þ[VE½ �~
ðtiz1

ti

t:f tDX tið Þ[VB,X tiz1ð Þ[VEð Þdt

where f tDX tið Þ[VB,X tiz1ð Þ[VEð Þ is the conditional coalescence

density

f tDX tið Þ[VB,X tiz1ð Þ[VEð Þ~ f t,X tið Þ[VB,X tiz1ð Þ[VEð Þ
Pr X tið Þ[VB,X tiz1ð Þ[VEð Þ :

We assume implicitly, as for the transition probabilities, that the

state at time 0 is known, i.e. Pr X 0ð Þ~0ð Þ with probability 1, so

E tDX tið Þ[VB,X tiz1ð Þ[VE½ �~E tDX 0ð Þ~0,X tið Þ[VB,X tiz1ð Þ[VE½ �,

thus, we need to compute

E tDX tið Þ[VB,X tiz1ð Þ[VE½ �

~

ðtiz1

ti

t:f t,X tið Þ[VB,X tiz1ð Þ[VEð Þdt=Pr X tið Þ[VB,X tiz1ð Þ[VEð Þ:

The probability Pr X tið Þ[VB,X tiz1ð Þ[VEð Þ is just the proba-

bility of coalescing in interval i, which we computed as Pr(L[i) as

part of the transition probability matrix.

Let Pt
ab denote the probability of going from state a to state b in

time t, computed as Pt
ab~exp Q:tð Þab, where Q is the rate matrix

for the CTMC. For the coalescence density we then have

f t,X tið Þ[VB,X tiz1ð Þ[VEð Þ

~
X
a[VB

X
b[VE

f t,X tið Þ~a,X tiz1ð Þ~bð Þ

~
X
a[VB

X
b[VE

Pr X tið Þ~að Þ:f t,X tiz1ð Þ~bDX tið Þ~að Þ

and so

ðtiz1

ti

t:f t,X tið Þ[VB,X tiz1ð Þ[VEð Þdt

~
X
a[VB

X
b[VE

P
ti
0a
:
ðtiz1

ti

t:f t,X tiz1ð Þ~bDX tið Þ~að Þdt

For the integral, we now use a change of variable, s~tzti, set

Di~tiz1{ti and get

ðtiz1

ti

t:f t,X tiz1ð Þ~bDX tið Þ~að Þdt

~ti
:Pr X Dið Þ~bDX 0ð Þ~að Þz

ðDi

0

s:f sDX 0ð Þ~a,X Dið Þ~bð Þds,

using that the CTMC is time homogeneous and that the conditional

density
Ð Di

0 f sDX 0ð Þ~a,X Dið Þ~bð Þds integrates to one, so

ðDi

0

f s,X Dið Þ~bDX 0ð Þ~að Þds

~Pr X Dið Þ~bDX 0ð Þ~að Þ:
ðDi

0

f sDX 0ð Þ~a,X Dið Þ~bð Þds

~Pr X Dið Þ~bDX 0ð Þ~að Þ

and we get

ðtiz1

ti

t:f t,X tið Þ[VB,X tiz1ð Þ[VEð Þdt

~
X
a[VB

X
b[VE

P
ti
0a
:P

Di
ab
:tizP

ti
0a
:
ðDi

0

s:f s,X Dið Þ~bDX 0ð Þ~að Þds

~ti
:Pr L[ið ÞzP

ti
0a
:
ðDi

0

s:f s,X Dið Þ~bDX 0ð Þ~að Þds

where the last equality follows from

X
a[VB

X
b[VE

P
ti
0a
:P

Di
ab~Pr L[ið Þ

and is the probability of coalescing in interval i.

The density, f s,X Dið Þ~bDX 0ð Þ~að Þ is computed by summing

over all state transitions from x[VB to y[VE at time s

f s,X Dið Þ~bDX 0ð Þ~að Þ~
X
x[VB

X
y[VE

f s,x,y,X Dið Þ~bDX 0ð Þ~að Þ
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where the density f s,x,y,X Dið Þ~bDX 0ð Þ~að Þ is given by

f s,x,y,X Dið Þ~bDX 0ð Þ~að Þ~Ps
ax
:Qxy

:P
Di{s

yb :

We then use an eigen-value decomposition of the rate matrix Q.

Let za and ya denote the eigen-vectors and eigen-values,

respectively, of Q, and let Z~ z1, . . . ,zk½ � denote the matrix of

eigen-vectors. We then have

Ps
ab~exp Q:sð Þab~

X
a

Zaa
:Z{1

ab
:exp ya

:sð Þ

and so

Ps
ax
:Qxy

:P
Di{s

yb

~
X

a

Zaa
:Z{1

ax
:exp ya

:sð Þ
" #

Qxy

X
b

Zyb
:Z{1

bb
:exp yb

: Di{sð Þ
� �" #

~
X

a

X
b

Qxy
:Zaa

:Z{1
ax
:Zyb

:Z{1
bb
:exp yb

:Di

� �h i
:exp ya{yb

� �
:s

� �
:

Now, let

Z(a,x,y,b,a,b)~Qxy
:Zaa

:Z{1
ax
:Zyb

:Z{1
bb

and note that Z(a,x,y,b,a,b) does not depend on either s, ti or

tiz1. Let I(l,Di) denote the integral

I(l,Di)~

ðDi

0

s:el:s ds~
elDi

l (Di{1=l)zl{2 l=0

1
2
D2

i l~0

 

We then have

ðDi

0

s:Ps
ax
:Qxy

:P
Di{s

yb ds~
X

a

X
b

Z(a,x,y,b,a,b):

exp yb
:Di

� �
:I(ya{yb,Di)

which is a function of a,x,y,b and Di, and we denote it

J(a,x,y,b,Di) and get

ðtiz1

ti

t:f t,X tið Þ[VB,X tiz1ð Þ[VEð Þdt

~ti
:Pr L[ið Þz

X
a[VB

P
ti
0a
:
X
b[VE

X
x[VB

X
y[VE

J(a,x,y,b,Di)

~ti
:Pr L[ið Þz

X
a[VB

P
ti
0a
:M(a,Di)

where

M(a,Di)~
X
b[VE

X
x[VB

X
y[VE

J(a,x,y,b,Di):

Putting it all together, we get

E tDX tið Þ[VB,X tiz1ð Þ[VE½ �

~
1

Pr(L[i)
ti
:Pr L[ið Þz

X
a[VB

P
ti
0a
:M(a,Di)

0
@

1
A

~tiz
1

Pr(L[i)

X
a[VB

P
ti
0a
:M(a,Di)

For computational efficiency, we first compute all Z(a,x,y,z,a,b),
which are independent of the time interval. This can be done

efficiently using dynamic programming. We then use equally spaced

time break points, so Di is the same for all intervals, and then only

need to compute M(a,Di) for all a[VB once, and not for each time

interval.

Parameter estimation
The model was implemented in Python, and we used the

numerical optimization functionality from the scipy optimize

module, function fmin to find the maximum likelihood parameters

and HMMLib [50] to compute the likelihood for the hidden

Markov model. The implementation is available as Dataset S2.

Simulation setup
For our simulation experiments, we simulated ancestral

recombination graphs from the coalescent with recombination

process using the CoaSim tool [51]. From this we extracted local

(tree) genealogies and simulated sequences over these using the

Bio++ suite [52] with the Jukes-Cantor JC69 substitution model.

Genome alignments
Genome sequence alignments between eastern and western gorillas

and between Bornean and Sumatran orang-utans were generated as

follows. Illumina paired-end reads for Mukisi, an eastern lowland

gorilla (Gorilla beringei graueri) [20] were aligned using BWA [53] to the

gorilla reference assembly (UCSC identifier gorGor3.1), which

represents the genome sequence of a western lowland individual

(Gorilla gorilla gorilla). Similarly, Illumina reads from kb5404, a Bornean

orang-utan (Pongo pygmaeus) [21] were mapped using Stampy version

1.0.13 [54] to the (orang-utan reference assembly (ponAbe2), which

represents the Sumatran species (Pongo abelii).

In both cases mapped reads were merged using Picard (http://

picard.sourceforge.net), and duplicate reads were removed and

pileup information generated using Samtools [55]. Consensus

sequences were called at every position on each reference based on

the majority vote of aligned bases, with positions having no aligned

reads represented by ‘N’. This produced two consensus genome

sequences, each the same length as the corresponding reference,

one representing eastern lowland gorilla and the other Bornean

orang-utan. These sequences were used in subsequent analyses.

Genome alignments for the analysis of the chimpanzee-bonobo,

human-chimpanzee and human-bonobo splits were produced as

described in Prüfer et al. [19, Supplementary Information 3]. Briefly,

pairwise lastz [56] alignments were generated from bonobo

(scaffolds, i7) to human, chimpanzee (panTro2) to human and

orang-utan (ponAbe2) to human. These alignments were processed

using the programs of the UCSC genome browser pipeline [57,58]
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and joined on the human reference using the multiz package [59].

Bonobo and chimpanzee bases with a base quality lower than 30

were masked in the resulting multiple genome alignment.

Supporting Information

Dataset S1 Analysis results for all ape analyses.

(XLSX)

Dataset S2 Source code for the CoalHMM.

(GZ)

Text S1 Report describing simulation experiments and results.

(PDF)

Text S2 Report describing data analysis results not included in

the main manuscript.

(PDF)
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