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Abstract

Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a
systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2
intercross comprised of .500 mice from diabetes-resistant (B6) and diabetes-susceptible (BTBR) mouse strains made
genetically obese by the Leptinob/ob mutation (Lepob). High-density genotypes, diabetes-related clinical traits, and whole-
transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius
muscle) were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among
genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are
extensive protein–protein interactions between genes responding to different loci in adipose and pancreatic islets that
potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-
loci protein-protein network topology and gene expression to assess each gene’s potential to regulate plasma insulin.
Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer’s gene App was identified as a
top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin
secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network
model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases:
Alzheimer’s disease and type 2 diabetes.
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Introduction

Complex diseases, such as diabetes and obesity, result from

the interaction of genetic and environmental factors [1–3].

Approximately 170 gene loci have been robustly implicated in

diabetes through genome-wide association studies [4]. Studies

with knockout mouse models have identified hundreds of genes

that can act autonomously to regulate insulin levels

(MP:0001560) [5]. However, it is still elusive to understand

the underlying mechanisms of how these loci or genes

contribute to diseases.

Network modeling methods have been developed based on the

premise that complex diseases are often caused by perturbation to

a sub-network of genes [1,6–14]. We have applied these methods

to identify causal genes for diabetes-related traits in multiple

experimental mouse crosses [13–14] and human populations [1].

These analyses suggest that potentially many thousands of genes,

under the right circumstances, can affect metabolic states.

With the advancement of high-throughput technologies, such as

DNA and RNA sequencing, methods that integrate various high-

volume data sources are providing for more comprehensive

characterizations of biological systems [15–18]. New methods
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have been developed to utilize high-dimensional data sets to infer

unknown pathways, untangle gene-based regulatory networks, and

identify novel disease-causing genes [13,19–23]. However, study-

ing complex diseases at a systems level is still in its infancy. New

technologies for data collection and novel methodologies of data

interpretation are needed for a better resolution view of the

system.

In this study, we developed a network-based model to identify

key genes that regulate plasma insulin levels in a B6XBTBR obese

F2 cross. By applying a causality test for genes whose expression

trait is linked to two loci that overlap insulin QTLs (quantitative

trait loci) and integrating protein-protein interactions, we

constructed a network for each of five tissues under study. We

predicted that multiple genes in the pancreatic islet network may

be involved in modulating plasma insulin levels in the B6XBTBR

F2 cross, including App, Gria3, Grb10, Calca, and Ins1. In particular,

our pancreatic islet network predicts that the Alzheimer’s disease

gene, amyloid precursor protein App is a negative regulator of

insulin abundance in the plasma. We therefore studied insulin

secretion from islets of App knockout mice. Islets from 17-wk-old,

but not 10-wk-old App 2/2 mice showed an increase in glucose

and cAMP-stimulated insulin secretion, confirming that App acts as

a negative regulator of insulin secretion. This result elucidates a

possible mechanism connecting two common age-related diseases,

Alzheimer’s disease and type 2 diabetes.

Results

We generated an F2 inter-cross between diabetes-resistant (B6)

and diabetes-susceptible (BTBR) mouse strains, made genetically

obese in response to the Lepob mutation [24]. The cross consisted of

.500 mice, evenly split between males and females. A compre-

hensive set of ,5000 genotype markers were used to genotype

each F2 mouse (,2000 informative SNPs were used for analysis),

and the expression levels of ,40 K transcripts (corresponding to

25,901 unique genes) were monitored in five tissues (adipose, liver,

pancreatic islets, hypothalamus, and gastroc (gastrocnemius

muscle)) that were harvested from each mouse at 10 weeks of

age. In addition to gene expression, several key T2D-related traits

were determined for each mouse. The medians, and 1st and 3rd

quartiles for the following traits: body weight, the number of islets

harvested per pancreas, HOMA, plasma insulin, glucose, triglyc-

eride, and C-peptide are listed in Table 1.

At a genome-wide p-value,0.05, plasma insulin shows signif-

icant linkage to multiple loci in male mice, including chromosomes

2 at 59.5–82.5 cM, 6 at 0–33.66 cM, and 19 at 25–35.38 cM with

LOD scores of ,6.5, 4.4, and 5.4, respectively (Figure 1). Using

linear regression modeling, the loci on chromosomes 2, 6, and 19

explain 10.6%, 6.0%, and 8.4% of the variation of plasma insulin,

respectively. The top two loci at chromosomes 2 and 19 jointly

explain 16.8% of the variance (Figure S1). The top two loci are

significant at genome-wide p-value,0.01, and are consistent with

the results of another independent F2 cross from the same two

strains Stoehr et al. [25].

To elucidate the gene-gene interactions underlying the herita-

bility of plasma insulin, we examined gene expression profiles in

several key tissues and extended the causality method to construct

a protein interaction network for genes with expression quantita-

tive trait loci, or eQTLs linked to insulin loci. To simplify the

interaction models, we modeled the effects of two loci. Further

analysis focused on interactions of genes with eQTLs linked to the

top two plasma insulin loci, at chromosomes 2 and 19. We

hypothesize that the joint regulation of plasma insulin at the two

QTLs is mediated by gene-gene interactions whose expression

variations are linked to the two loci. We further developed a novel

ranking algorithm to infer candidate genes for regulation of

plasma insulin.

Identifying genes with overlapping eQTLs with the
insulin QTLs

Treating gene expression as a phenotypic trait, we computed

eQTLs, for all genes expressed in pancreatic islets, white adipose

tissue, liver, hypothalamus, and gastroc muscle of each male F2

mouse. We hypothesized that genes with eQTLs that co-localized

with insulin QTLs are co-regulated by common genetic factors

[13]. We identified eQTLs within each tissue that had LOD

profile peaks on chromosomes 2 and 19, the same genomic regions

containing the peak insulin linkages. Among genes physically

located within the insulin QTLs on chromosome 2 or 19 (Table

S1), 89 genes have cis-eQTLs (gene expression QTLs are mapped

to within 10 Mb of the genomic location of the genes) in islet, 66 in

white adipose tissue, 52 in liver, 51 in hypothalamus, and 5 in

gastroc have cis-eQTLs. Clearly, genes with cis-eQTLs may play

Table 1. Diabetes-related clinical traits for 275 B6XBTBR-ob/
ob F2 male mice at 10 weeks of age.

Trait Median 1st quartile 3rd quartile

body weight (gm) 52 47 55

plasma glucose (mg/dl) 529 460 598

plasma insulin (ng/ml) 6.4 3.8 12.5

HOMA (insulin6glucose/22.5) 156 92 281

plasma C-peptide (nM) 3.5 2.5 4.8

plasma TG (mg/dl) 228 164 327

# islets per pancreas 184 118 268

All metrics were made following a 4 hour fasting period. The number of islets
per pancreas is that collected for each mouse following pancreatic collagenase
digestion and manual hand-picking as described [24].
doi:10.1371/journal.pgen.1003107.t001

Author Summary

Alzheimer’s disease and type 2 diabetes are two common
aging-related diseases. Numerous studies have shown that
the two diseases are associated. However, the mechanisms
of such connection are not clear. Both diseases are
complex diseases that are induced by multiple genetic
factors and the environment. To understand the molecular
network regulated by complex genetic factors causing
type 2 diabetes, we constructed an F2 intercross com-
prised of .500 mice from diabetes-resistant and diabetic
mouse strains. We measured genotypes, clinical traits, and
expression profiling in five tissues for each mouse. We
then performed an integrative analysis to investigate the
inter-relationship among genetic factors, expression traits,
and plasma insulin, a hallmark diabetes trait, and devel-
oped a novel method for inferring key regulators for
regulating plasma insulin. In islets, the Alzheimer’s gene
App was identified as a top candidate regulator. Islets from
17-week-old, but not 10-week-old, App knockout mice
showed increased insulin secretion in response to glucose,
in agreement with the predictions of the network model.
Our result provides a novel hypothesis on the mechanism
for the connection between two aging-related diseases:
Alzheimer’s disease and type 2 diabetes.

Integrative Analysis of a Complex Disease Network
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significant roles in modulating insulin and methods have been

developed to identify the causal genes with cis-eQTLs for various

phenotypic traits [14,26–27]. However, each gene with a cis-

eQTL can only explain the variance in the trait linked to its

location. Here we considered a complementary strategy where we

focused on genes with trans-eQTLs and interactions among them

that integrate perturbations from multiple loci. As a greater

number of genes showed trans-linkage, it is worth studying the

potential mechanisms by which these genes jointly mediate the

phenotypic variation.

The expression traits that overlapped with the insulin QTLs were

tissue-specific, and are enriched in different GO biological pathways

(Table S2). The largest number of these traits was from pancreatic

islets (Table 2, Figure 2). In addition, islets contained the largest

proportion of eQTLs that showed linkage to both loci on

chromosomes 2 and 19, indicating that similar to traditional complex

traits (e.g. insulin), gene expression is also regulated by multiple

genetic loci [28]. Co-localization of gene eQTLs and plasma insulin

QTLs does not imply the gene is related to plasma insulin regulation.

To filter out genes that, while linked to the same QTL region as

Figure 1. Genome-wide linkage profile for plasma insulin at 10-week-old BTBRx B6 ob/ob F2 male mice. The top two QTLs are
chromosome 2 (LOD = 6.5) and chromosome 19 (LOD = 5.4). We select these two loci to study the underlying protein-protein interaction networks in
various tissues that could explain their joint regulation on insulin trait.
doi:10.1371/journal.pgen.1003107.g001

Table 2. Number of genes whose eQTL mapped to chromosome 2 and 19 for five tissues before filtering out genes that were
determined to be independent of the insulin trait.

Number of Genes Islet Adipose Gastroc Liver Hypothalamus

eQTL on Chr 2 (FDR) 3926 (4.0%) 980 (12.0%) 779 (15.4%) 306 (43.3%) 139 (85.5%)

eQTL on chr 2 causal or reactive 1703 399 30 47 4

eQTL on Chr 19 (FDR) 624 (12.0%) 177 (25.4%) 142 (47.8%) 133 (43.3%) 101 (52.2%)

eQTL on chr19 causal or reactive 516 88 11 34 9

Overlap btw 2/19 380 26 18 7 5

Overlap btw filtered 2/19 295 10 1 1 0

FDR: False Discovery Rate.
doi:10.1371/journal.pgen.1003107.t002
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insulin QTLs, are likely independent of plasma insulin regulation

(described in Methods and Text S1), we applied a genetic causality

test developed by Schadt et al. [13] to further narrow our list of

candidate regulatory genes. Given the known feedback loop (shown

in Figure 3) (islets – insulin levels – peripheral tissues, and – glucose

levels), genes supported as either causal (QTL gene insulin), or

reactive with respect to insulin levels (QTL insulin gene) were

identified for consideration as insulin regulation genes.

Figure 2. Number of gene transcripts in islet, liver, and white adipose tissue containing eQTLs that overlap with the insulin QTLs on
chromosome 2 and chromosome 19. Chromosome 2 (a), chromosome 19 (b). Numbers in parentheses show tissue-specific eQTLs (before
filtering out genes that were determined to be independent of the insulin trait).
doi:10.1371/journal.pgen.1003107.g002

Figure 3. Schematics view of insulin regulation. Elevated glucose level by either food intake or liver glycogenolysis is sensed by islet and leads
to insulin secretion to the bloodstream. The increased insulin stimulates peripheral tissues to absorb glucose, and as a consequence, the glucose level
in the plasma would return to normal level. Since a loop is formed regarding insulin regulation, it is necessary for us to consider both casual and
reactive genes to insulin.
doi:10.1371/journal.pgen.1003107.g003

Integrative Analysis of a Complex Disease Network
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Constructing protein–protein interaction network for
genes with common eQTLs

A model considering the two loci, on chromosomes 2 and 19,

accounts for a greater part of the variation in plasma insulin than a

single locus model. Several models of various degrees of

complexity could explain the joint regulation of a common trait

by multiple loci. As plotted in Figure 4A, the simplest case (M1)

would be that the two loci directly regulate the same gene and that

such a gene is responsible for modulating the trait. A slightly more

complex case (M2) would be each locus regulates a different gene,

which could collaborate directly through protein-protein physical

interaction to influence the trait. In model M3, genes regulated by

different loci interact indirectly and multiple steps exist before the

perturbation signals merge on the common trait. In model M4,

multiple tissues and their interactions are involved in regulating

the trait. Here, we developed an approach that seeks to combine

the first two models to identify those components of the network

underlying insulin regulation that are modulated by the chromo-

some 2 and 19 genetic loci and that may be physically interacting.

The more complex models is not considered here but left for

future work. As shown in Figure 4B, genetic variation at a single

locus results in perturbations of biological functions that are

reflected in the transcripts, or nodes, linked to that locus (orange or

green nodes). Genetic variation at two loci could result in a larger

functional influence on nodes showing linkage to both loci (yellow

nodes) or nodes interacting across the two sub-networks (nodes

connected by red edges).

Here we only consider the situation in which single genetic

variations are synergistic, although antagonistic relationships may

certainly occur. We hypothesize that nodes mediating the

interaction between the two sub-networks are critical points for

integrating the effects of multiple loci. To identify and rank these

critical nodes, we developed an algorithm for assessing a gene’s

potential for being such an integrator in each of five tissues. We

first collected a mouse protein-protein interactome by combining

information from various databases as previously described [20],

where most interactions were experimentally derived and manu-

ally curated. We then extract tissue-specific networks by mapping

genes with eQTLs overlapping insulin QTLs on chromosome 2 or

19 onto this interactome and considering only interactions across

the two eQTL gene groups. Islets contain the greatest number of

genes involved in a cross group interaction (listed in Table S3)

between the sub-networks showing linkage to chromosomes 2 or

19 (Table 3).

Figure 5 illustrates the islet protein-protein interaction

network constructed from gene transcripts showing linkage to

either chromosome 2, 19 or both loci. Genes contained within

the islet network are significantly enriched for several gene

ontology (GO) categories (Table S4), such as ‘‘neuron

projection’’ ( p = 5.661028), ‘‘extracellular space’’ (p = 4:03|

10{7), and ‘‘hormone activity’’ (p = 3.261026). These results

demonstrate that our network identifies gene sets with common

biological functions and some of these functions appear to be

related to insulin secretion.

Prioritization of genes based on cross-group interactions
As shown in Figure 5, many genes are supported as being

involved in cross group interactions and could conceivable play a

critical role in regulating plasma insulin levels. To assess their

potential in mediating cross group interactions and regulating

Figure 4. Mechanistic models for joint regulation by two loci and interactive model for the additive effects between two genetic
loci that regulate plasma insulin. A) Mechanistic models for joint regulation by two loci. In model 1, two loci directly regulate same gene. In
model 2, each locus regulates one gene, and the two genes have physical interaction. Model 3 is similar to model 2, but there are multiple steps
between the two genes. Model 4, each locus regulates one gene in a single tissue, and the cross-tissue interaction leads to joint effect on phenotypic
variation. B) Interactive model for the additive effects between two genetic loci that regulate plasma insulin. Genetic variation at chromosome 2
changes expression for some nodes in the network (orange), while variation at chromosome 19 changes expression of other nodes (green) including
genes regulated by chromosome 2 (yellow node). The blue nodes represent other nodes in the global protein-protein interaction network. Genes
bound by grey curves are genes sharing same eQTLs. Nodes involved in an interaction between the two sub-networks (shaded in light orange and
green) are connected by bold red lines. We hypothesize these nodes would be more influenced by genetic variation at both loci than a single locus.
Genes involved in these cross-group interactions may be key regulators of plasma insulin.
doi:10.1371/journal.pgen.1003107.g004
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clinical traits, we designed a novel ranking algorithm that

integrates Trait, protein-protein Interaction, and gene Expression

(referred to as, TIE score) to identify those genes most likely to play

a critical role in insulin regulation. Instead of focusing on the

property of individual genes, the TIE score incorporates an

Interaction Potential (IP) between a protein pair. Because PPI data are

not assayed in a relevant physiological context, we leverage the

expression data, which is assayed in a relevant context, to weigh

whether a protein interaction pair is relevant to our context of

interest (i.e., interactions between diabetes-relevant tissues in the

cross population). There are many post-transcriptional and post-

translational modifications that may impact protein-protein

interactions and their resulting functional activities. However,

these modifications cannot be inferred by gene expression

profiling. For a pair of proteins known to interact, we make the

simplifying assumption that their protein activities and binding

affinity do not change. We further assume a strong interaction

potential (IP) if both genes are highly expressed in a mouse relative

to the two genes in other F2 mice (since protein-protein association

rates depend on protein concentrations in a simple diffusion

model); if one or the other gene has relatively low expression, the

IP will be weaker. We then calculate the correlation between the

Table 3. Genes involved in cross-group interactions.

Gene set Islet Adipose Liver

eQTL on Chr 2 341/823 35/201 0/23

eQTL on Chr 19 125/225 12/42 0/19

#Interaction 1349 (0.73%) 119 (1.4%) 0 (0.0%)

The first number in the first two rows indicates the number of genes that are
involved in cross group interactions and whose eQTLs are mapped to either
chromosome 2 or 19. The second number indicates the number of genes
whose eQTLs mapped to chromosome 2 or 19 and are contained in the protein
interaction database that we used to construct the network. The third row
shows the number of cross group interactions in each tissue and the number in
the parenthesis indicates the frequency of observing such cross group
interaction. Using islet as an example, we have 823 genes in the first group and
225 genes in the second group, the total possible cross group interactions are
8236225. The actual number of interactions we observed across these two
groups of genes is 1,349. Therefore, the frequency is 0.73% (1349/(8236225)).
By comparing the frequency, we can tell if in a particular tissue the cross-group
interactions occurred at a particularly high frequency or vice versa.
doi:10.1371/journal.pgen.1003107.t003

Figure 5. The cross eQTL group protein–protein interaction network in islets. Only those genes with eQTLs to chromosome 2 or 19 are
shown. Nodes in green/red color are genes with eQTLs on chromosome 2/19; yellow color represents linkage to both loci. Figure is drawn using
CytoScape [57]. A zoomable version is shown as Figure S8.
doi:10.1371/journal.pgen.1003107.g005
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IP and trait, yielding a Trait – IP Correlation (TIPC). The TIPC

represents the potential of an interaction (instead of individual

genes) in regulating a clinical trait. Using TIPC as a weight for

each interaction in the protein-protein interaction network, the

TIE score is then computed for each node based on the small sub-

network formed by the node and its direct neighbors (see Method

for details). A node receives a high TIE score if it has numerous

interactions with large TIPC values. TIE scores are context

dependent so that a given gene may have different TIE scores in

different tissues, given that the levels of its own expression and that

of its interaction partners’ may be different between tissues. In

contrast to other network-based approaches [29–31], the TIE

score enables us to identify key nodes within a network that have

multiple protein interactions with neighboring nodes, where such

interactions are supported as exerting a strong influence on the

particular clinical trait under investigation (in our case, plasma

insulin levels).

For ranking purposes, we limit our calculation to genes with 5 or

more interactions and set the TIE score to zero for the rest of the

genes, given genes with too few interactions may spuriously

influence the TIE score and thus lead to unreliable results. We also

permutated gene expression for the nodes in the network a

thousand times and calculated the empirical distribution of TIE

scores to assess the significance of derived TIE scores (see

supplementary methods in Text S1).

Pancreatic islets had the greatest number of genes with a

significant non-zero TIE score (Table 4, and listed in Table S5).

Adipose tissue had many fewer genes with a non-zero TIE-score

(listed in Table S6) than islets, and the other three tissues had no

genes with non-zero TIE scores, suggesting that protein-protein

interactions in these tissues may not be the mechanism underlying

the cross-locus regulation of plasma insulin involving chromo-

somes 2 or 19. The top 5 ranked genes for both adipose and islet

tissues are given in Table 4. Our result suggests that pancreatic

islets contribute the most to variation in plasma insulin in our F2

cross between B6 and BTBR mice. Circulating levels of plasma

triglyceride, an indicator of insulin resistance, showed no

significant genetic linkage (Figure S2), suggesting that factors

controlling insulin resistance may be distinct from that controlling

plasma insulin in our B6XBTBR-ob/ob F2 cross.

Top ranked genes in adipose tissue and islets
Cdkn1a (cyclin-dependent kinase inhibitor 1 A), the top ranking

gene in adipose tissue, is a potent cyclin-dependent kinase

inhibitor ( p-value = 6:7|10-5). The protein binds to and inhibits

the activity of cyclin-Cdk2 or –Cdk4 complexes, and thus functions

as an inhibitor of cell cycle progression at G1. The expression of

this gene is tightly controlled by the tumor suppressor protein p53,

in response to a variety of stress stimuli [32]. Previous reports

demonstrate that p53 expression in adipose tissue is crucially

involved in the development of insulin resistance [33]. The p21

KO mouse (Cdkn1a2/2) showed 90% increase in fat pad weights,

70% increase of adipocyte numbers, and insulin resistance [34].

Compared to the top scores in adipose tissue, the top scores for

genes in the islet network are much higher (Table 4), suggesting a

greater number of genes in islet make a larger contribution to

insulin variation. The top ranked gene in the islet network is App

(Amyloid b Precursor Protein). Successive proteolytic processing of

APP by b- and c- secretase enzymes generates the amyloid-b
peptide, a primary component of amyloid plaques, which are

thought to be central to the etiology of Alzheimer’s disease (AD)

[35]. Although this gene has been heavily studied by AD

researchers, its relevance in type 2 diabetes is much less known.

In addition to App, several other genes with high TIE scores could

potentially be involved in regulating plasma insulin. Wang et al.

showed that peripheral-tissue-specific knockout of Grb10 results in

enhanced insulin sensitivity in vivo [36] that could be due to the loss

of Grb10-mediated degradation of the insulin receptor [37]. More

recently, disrupting Grb10 is shown to increase pancreatic beta cell

mass and reduce beta cell apoptosis in mice [38]. The enrichment

of genes previously shown to participate in the regulation of

circulating insulin in the top islet gene list, such as Grb10 and

insulin Ins1, supports our use of TIE to identify novel regulators of

insulin.

App negatively regulates insulin secretion from
pancreatic islets

The expression of App in islets strongly negatively correlates with

plasma insulin levels in the F2 cross (Pearson correlation

R = 20.68, p-value%0.01, Figure S3). We have previously

characterized the difference in diabetes susceptibility between

Table 4. Top 5 genes in adipose and islet tissues ranked by TIE scores and their gene expression-insulin correlation.

Rank Gene sym # Interactions TIE score P-value Corr. Ins

adipose

1 Cdkn1a 14 0.23 6:7|10{5 0.29

2 Aldoa 18 0.052 1 0.46

3 Src 22 0.031 1 20.22

4 Tpi1 16 0.027 1 0.51

5 Pcx 16 0.016 1 0.30

islet

1 App 102 0.78 v10{16 20.62

2 Gria3 15 0.52 v10{16 20.57

3 Grb10 7 0.52 v10{16 20.52

4 Calca 13 0.49 v10{16 20.39

5 Ins1 47 0.49 v10{16 0.55

doi:10.1371/journal.pgen.1003107.t004

Integrative Analysis of a Complex Disease Network
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the two parental mouse strains [24]. At 10 weeks of age, BTBR-

ob/ob mice are diabetic, whereas B6-ob/ob remain euglycemic.

BTBR-ob/ob mice have lower plasma insulin and a higher level of

App in islets than B6-ob/ob mice (difference in App expression p-

value,0.05, Figure S4), which is consistent with the negative

correlation that we observed in the F2 cross. The distributions of

the islet App expression levels as a function of genotype at the Chr.

2 and 19 loci (Figure S5) indicate that F2 mice with BTBR

genotypes at the two loci have higher islet App expression,

consistent with App gene expression negatively correlating with

plasma insulin levels.

Previous work has shown that compared to wild-type mice,

whole-body App knockout mice (App2/2) have reduced plasma

glucose and elevated insulin secretion in response to an

intravenous glucose injection [39]. Given that App is expressed

in multiple tissues, including the brain where it may regulate

neurogenesis [40], we sought to determine if the changes observed

in App2/2 mice reflect direct or indirect effects of App on islet

function and/or health.

To assess whether the loss of App has a direct impact on islet

function, we monitored insulin secretion ex vivo from pancreatic

islets collected from either wild-type or App2/2 mice (Figure 6). At

10 weeks of age, insulin secretion from wild-type versus App2/2

mice was not different (Figure 6A). However, at 17 weeks of age

insulin secretion was elevated ,2–3-fold from App2/2 islets in

response to glucose (p-value,0.05), a depolarizing concentration

of KCl (p-value,0.01), or a membrane-permeant analogue of

cAMP (p,0.01) (Figure 6B). The amount of insulin per islet

(insulin content) was not significantly different between wild-type

and App2/2 mice (Figure S6). Further, insulin secretion in

response to basal glucose concentration (1.7 mM) at either 10 or

17 weeks of age was not significantly different between wild-type

and App2/2 mice (Figure 6, inserts). These results suggest that App

directly functions as a negative regulator of insulin secretion in

islets, and this only occurs in older mice.

Discussion

We developed a novel network model that integrates genetic,

transcription and protein-protein interaction information to

pinpoint App as a key insulin regulatory molecule in pancreatic

islet tissue. The computational model we developed has several

unique features.

Instead of pursuing cis-regulating genetic factors, it focused on

networks of genes that were trans-regulated. The goal was not to

identify the genetic factors whose variation at DNA level would

lead to changes in circulating insulin. Instead, the model identifies

networks of genes showing transcriptional changes as result of

variation in the genetic factors. This is based on the assumption

that the disease phenotype is at least partially mediated by these

transcriptional changes. Genes identified by this approach could

also have a more direct link to the disease phenotype compared to

the upstream genetic factors. The model also simultaneously

considered multiple loci, which enabled the study of the

interactions between trans-regulated gene modules. As it is

extremely common for complex disease phenotype traits to map

to multiple loci, it is clear that we need models considering the

joint effects of multiple loci. Ideally such models should not only be

meaningful in the mathematical terms, but also provide biological

insight to the possible mechanisms. Although the linear regression

model indicated a joint regulation of the insulin trait, it did not

generate any hypotheses on how the joint regulation occurred

biologically.

Compared to other network models, such as co-expression

network [41], ARACNE [9], and Bayesian network [22,42], which

focus on grouping co-expression of individual genes, our method

focuses on dissecting potential mechanisms of integrating infor-

mation from multiple co-expression modules. By considering the

protein-protein interactions across the two groups of genes, it is

possible to actually identify potential molecular mechanisms

involved in joint regulation. Although currently the protein-

protein interaction dataset we compiled may be rather incomplete,

hundreds of genes were connected by these interactions. This

makes prioritizing genes for experimental validation a more

important task compared to finding out what could have been

missed due to incomplete protein interaction information. To

prioritize the key nodes in the disease network, we developed the

novel scoring system in the context of the protein interaction

network. As we posit that proteins their function by interacting

with their neighbors in the network, the TIE score gives a

weighted estimation on how strongly the intensity of these

Figure 6. Loss of App leads to increased insulin secretion from
islets in older mice. Islets were collected from 10 week old (A) or 17
week old (B) male wild-type or whole-body App2/2 mice. Insulin
secretion was stimulated by varying glucose concentrations, a
depolarizing concentration of KCl, or 8-Br-cAMP, a membrane-permeant
analogue of cAMP. Data expressed relative to secretion observed in
response to 1.7 mM glucose, 4.7 KCl and no cAMP (basal). *, p,0.05; **,
p,0.01 for App2/2 versus wild-type mice. Inserts show average basal
insulin secretion (ng/ml) from 3 islets per genotype in response to
1.7 mM glucose (n = 3 for each experimental group).
doi:10.1371/journal.pgen.1003107.g006
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interactions correlates with the phenotype. A gene with high TIE

score suggests that the intensity of its interactions strongly

correlates with the phenotype based on large numbers of

interactions. Therefore, the gene is likely to regulate the trait. By

integrating genetic, gene expression, and phenotypic trait infor-

mation, the ranking algorithm identified biologically meaningful

candidate insulin regulators.

A previous publication has shown that, compared to wild-type

mice, whole-body App knockout mice (App2/2) have elevated

insulin secretion in response to an intravenous glucose injection

[39]. A recent study of the cross of App transgenic mice and T2D

predisposition mice shows that increased Ab production impairs

insulin signaling and accelerates insulin resistance [43]. To our

knowledge, however, no other studies have demonstrated a direct

effect of APP on islet function. Given that App is highly expressed

in pancreatic islets [44–45], we sought to determine if the changes

observed in App2/2 mice reflect direct or indirect effects of App on

islet function. Our measurements of glucose stimulated insulin

secretion in isolated islets from App KO mice confirms our network

analysis and is also consistent with the causality test [13] which

also indicates App as a causal gene in pancreatic islet tissue (Figure

S7). The model demonstrates that App is under the regulation of

multiple genetic loci, and may function as an integrator for these

perturbation signals, mediating interactions between two distinct

gene sets that share a common genetic architecture with plasma

insulin.

We have previously shown that Lepob/ob mutation exposes a

strain-dependent difference in diabetes susceptibility between

BTBR and B6 mice [25]. In the current study we exploited this

difference and used it as a ‘‘sensitized screen’’ to genetically map

genes and diabetes-related clinical traits that may underlie this

difference. This approach allowed us to identify App as a key

negative regulator of insulin secretion from pancreatic islets. In this

study, we compared wild-type and App2/2 mice to test for a

direct role of App in insulin secretion in mice not expressing the

Lepob/ob mutation. In these studies, the loss of App resulted in

enhanced insulin secretion, consistent with the strong negative

relationship between islet App and circulating insulin across the F2

samples. These results suggest that while leptin deficiency was

critical in revealing the islet network involving App and circulating

insulin, it was not required to demonstrate the direct role of App in

insulin secretion.

Our results, which demonstrate a difference in insulin secretion

between islets collected from wild-type and those collected from

App2/2 mice at 17 weeks, but not 10 weeks of age, implies an age-

dependence for the role that App plays in the islet. However,

studies in mouse [46] and human islets [47] have not reported an

age-dependent change in App expression. It is possible that

proteolytic processing of App mediated by the beta- and gamma-

secretase enzymes, or other forms of post-translational modifica-

tion, are necessary for App to regulate insulin secretion.

Mouse and rat beta cells are more sensitive to oxidative stress

than human beta cells [48–49], due to the relatively higher

expression of antioxidant enzymes in human beta cells [47,50].

We showed that the sub-network regulating plasma insulin level

variation (Figure 5) is enriched for GO categories ‘‘neuron

projection’’ (p = 5.661028), ‘‘extracellular space’’

(p = 4.0361027), and ‘‘hormone activity’’ (p = 3.261026). Genes

involved in the stress response process are not enriched in the

subnetwork. Recent RNAseq data [47] suggests that APP robustly

expresses in human islet cells. In addition, it has been shown that

aggregated amyloid-b peptide as well as other proteins have been

detected at higher levels in pancreatic islets of T2D patients

comparing to healthy control people [51]. These suggest that the

subnetwork and key regulators in mouse islet we identified in the

F2 cross are expected to be relevant in human islets. Our findings

support the hypothesis that APP contributes to the common

pathogenesis of AD and T2D [52].

For the future development, (1) a generalized multi-way

interaction model is needed to capture complex interaction

networks underlying complex traits such as plasma insulin; (2)

additional experiments are needed to systematically validate

candidate genes (such as genes in Table S5 and genes connected

to App in Figure 5) for their roles in affecting b-cell function which

in turn affect insulin production and insulin secretion; (3) the

molecular mechanism of age-dependent App regulating insulin

secretion is warrant further study.

In conclusion, using an integrative analysis of gene expression,

genotypes, and phenotypic traits of the B6xBTBR ob/ob F2 cross,

we showed that plasma insulin is modulated by the variation of

multiple genetic factors, presumably through expression changes

of hundreds of genes in multiple tissues. Our approach focused on

revealing the underlying disease network across loci and tissues.

The model predicted that App acts in pancreatic islets to affect

plasma insulin. This prediction was tested in isolated islets where

the knockout of App was associated with increased insulin

secretion. Considering App is known for Alzheimer’s disease

development and a strong association between T2D and AD, our

findings point to a potential mechanism through which these two

diseases are linked.

Materials and Methods

Animal husbandry, tissue collection, and molecular
profiling

All animal studies were conducted at the University of

Wisconsin in the Biochemistry Department in accordance with

NIH guidelines and the University of Wisconsin Research Animals

Resource Center. App2/2 mice were purchased from the Jackson

Labs (stock number 004133). C57BL/6J (B6) ob/+ male and

BTBR ob/+ female mice were bred to obtain F1 ob/ob mice [24].

Leptin deficiency causes infertility [53–54]. To restore fertility to

F1 ob/ob mice, at approximately 4 weeks of age the F1 ob/ob male

and female mice each received subcutaneous transplants of white-

adipose tissue from lean (leptin-competent) litter mate donor mice,

resulting in the restoration of fertility in .90% of the F1 ob/ob

mice. The F1 ob/ob mice were then bred to produce a panel of

,550 F2 ob/ob mice. At 10 weeks of age, the F2 ob/ob mice were

sacrificed and tissues collected (islet, white adipose, liver, gastroc

muscle, and hypothalamus). Gene expression was profiled on an

Agilent custom murine gene expression microarray consisting of

4,732 control probes and 39,558 non-control oligonucleotides

extracted from mouse Unigene clusters and combined with

RefSeq sequences and RIKEN full-length cDNA clones. All F2

mice were genotyped with the Affymetrix 5 K SNP array, which

identified ,2,000 SNPs that were polymorphic between B6 and

BTBR mice that spread uniformly across genome. Various clinical

traits were measured for each mouse just prior to sacrifice. See

Supplementary materials (Text S1) for additional description of

methods.

Isolation of pancreatic islets
Intact pancreatic islets were isolated from mice using a

collagenase digestion procedure [55]. Briefly, the mice were

sacrificed and the pancreases immediately inflated with 5 ml

Hanks Buffered Salt Solution (HBSS) supplemented with 0.02%

BSA and collagenase (0.5 mg/ml). After inflation, the pancreata

were carefully dissected from the mice, placed in 25 ml of HBSS/
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BSA/collagenase, and incubated for 16 min at 37uC, with

intermittent agitation. A ficoll gradient was used to partially

purify islets from the digested pancreata, and further purified by

hand-picking the islets viewed under a stereo-microscope. Media

used for isolation and insulin secretion studies was a Krebs-Ringer

Bicarbonate Buffer (KRB) containing (in mM): 118.41 NaCl, 4.69

KCl, 2.52 CaCl2, 1.18 MgSO4, 1.18 KH2PO4, 25 NaHCO3, and

5 HEPES.

Plasma insulin measurement
For the measurement of plasma insulin, all mice were fasted

beginning at 8 AM, by transfer to a clean cage and provided water

ad libitum. Approximately 4 hours later, ,0.1 ml of blood was

collected via retro-orbital draw, transferred to a tube containing

3 ml of 0.5 mM EDTA as the anti-coagulant, and then centrifuged

(5 mins, 10,0006g, 4uC) to isolate plasma. The level of plasma

insulin was measured as described previously [24]. Briefly, high-

binding plates (Corning) were coated overnight with 3 mg/mL of

an anti-insulin antibody (D6C4, Research Diagnostics), blocked

with PBS containing 4% RIA-grade BSA (Sigma) for 1 h and then

incubated for 1 h with insulin standards (Linco Research, 0.1–

10 ng/mL) or 25 ml whole plasma. An anti-proinsulin antibody

(1 mg/ml of D3E7-BT, Research Diagnostics) was added and

incubated for an additional hour. After extensive washing (50 mM

Tris, 0.2% Tween-20, pH 8.0), 1 mg/mL of streptavidin-HRP

(Pierce) in PBS/0.1% BSA was added and incubated for 30 min.

Following additional washes, 16 mmol/ml of o-phenylenediamine

(Sigma), dissolved in citrate buffer (0.1 M citrate-phosphate,

0.03% H2O2 at pH 5.0), was added and incubated for 30 min;

0.18 M sulfuric acid was used to quench the reaction. Absorbance

at 492 nm was determined by a plate reader (Ultra 384 TECAN).

Insulin contents in plasma were calculated by comparison to

known standards.

Insulin secretion
Three islets of equivalent size were placed in 12675-mm glass

tubes, where the bottom of the tube was formed by a 62-mm mesh

(Elko Filtering Co.). The 12675-mm tubes were transferred to

166100-mm tubes containing 1 ml of KRB with 1.7 mM glucose

and 0.5% BSA and pre-incubated at 37uC for 45 min. Following

the pre-incubation, the 12675-mm tubes were transferred to a

fresh 166100-mm tube containing 1 ml KRB supplemented with

1.7, 11.1 or 16.7 mM glucose, with or without additional KCl or

8-Br-cAMP as indicated. For studies where 40 mM KCl was

added to the secretion medium, NaCl was reduced to 78.41 mM

to maintain osmolarity. Following a 45-min incubation period at

37uC, the 12675-mm tubes were transferred to a fresh tube

containing 1 ml of HCl-ethanol-water (1:50:14) to extract cellular

insulin from the islets. The incubation media was collected and

frozen for insulin determination by ELISA.

cQTL/eQTL mapping and testing for causal versus
reactive genes

Insulin trait cQTL and gene eQTL mapping were performed

using scanone function in R package R/qtl [56]. The causality test

was described previously [13] and a Bayesian network version was

used to conduct the test.

Network construction and TIE scores for ranking genes
involved in cross-group interaction

The global mouse protein-protein interaction network was

collected as described previously [20]. For two interacting proteins

i and j, we define an Interaction Potential (IP) for the protein pair in

an individual mouse k as

IPk(i,j)~
ek

i {emin
i

emax
i {emin

i

:
ek

j {emin
j

emax
j {emin

j

:

ek
i is the gene i0s expression in mouse k, so is ek

j for gene j. emax
i

and emin
i are the maximum and minimum tissue-specific expres-

sion observed across the entire F2 panel for gene i. The calculation

assumes the variation of protein abundance is approximated by its

gene expression, and IP is proportional to the relative levels of the

two proteins. Thus, a reduction in gene expression would lead to

reduced protein-protein interaction for a given pair and vice versa.

The predictive power of IP(i,j) for a specific trait value (such as

plasma insulin in our case) can be calculated as the Trait

Interaction Potential Correlation (TIPC). We define

TIPC((i,j),t)~Dcorr k[K (IPk(i,j),tk)D, where t is the trait in

consideration, corr is the function for calculating the correlation

coefficient, and K is the union of all the mice. We consider both

network topology and TIPC scores to rank genes. Assume protein i
interacts with a set of proteins J, the TIE score S(i) is computed as

St(i)~

P
j[J TIPC((i,j),t)

DJ D
ln DJ D,

where j[J and DJ D is the number of proteins contained in J. Gene

with a high TIE score indicates it has large number of interactions

and for its direct neighbors, the average correlation between

interaction potential and trait is also high.

Supporting Information

Figure S1 The interaction between chromosome 2 and 19 with

respect to insulin level. The marker was selected based on insulin

QTL mapping where the LOD score was maximized. Using linear

regression modeling, the locus on chromosomes 2 and 19 explains

10.6% and 8.4% of the variation of plasma insulin, respectively; a

model considering both loci jointly explains 16.8% of the variance.

By comparing the distribution of plasma insulin of mice with

genotype (0,2), (2,0) and (2,2), it is clear that mice with genotype

(2,2) have highest plasma insulin.

(TIF)

Figure S2 Blood triglyceride, an indicator of insulin resist, is not

under strong genetic control in this F2 cross as indicated by its

QTL map (green curve).

(TIF)

Figure S3 The correlation between insulin and App gene

expression in five tissues. We observe a strong anti-correlation

only in pancreatic islet tissue.

(TIF)

Figure S4 The expression of App gene in B6 ob mice is lower

than in BTBR ob mice at 10th week. Y-axis value (mlratio) is

log10(ratio) where the ratio is between the expression intensity of a

particular sample versus the pooled intensity of all samples.

(TIF)

Figure S5 The gene expression of App in F2 cross distribution in

different groups based on chr2 and chr19 genotypes.

(TIF)

Figure S6 Content of insulin is not significantly different in

either wild type and APP KO mice at age of both 10th (A) and 17th

(B) week.

(TIF)
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Figure S7 Conditioning on islet App expression, the plasma

insulin QTL is no longer significant on chromosome 2 and 19.

This supports that the regulation of genetic factors on chromo-

some 2 and 19 on insulin is mediated by App.

(TIF)

Figure S8 The cross eQTL group protein-protein interaction

network in islets. This is the same as Figure 5, but a zoomable

version.

(PDF)

Table S1 Genes located at insulin QTL loci. (a) Genes located

on chromosome 2 insulin QTL region. (b) Genes located on

chromosome 19 insulin QTL region.

(XLSX)

Table S2 Causal and reactive genes function enrichment based

on DAVID tool.

(XLSX)

Table S3 Cross-group protein interaction list in pancreatic islet

tissue as plotted in Figure 5.

(TXT)

Table S4 Gene enrichment of the TIE hits in islet network.

(XLSX)

Table S5 Ranks of genes with TIE scores in pancreatic islet.

(XLSX)

Table S6 Ranks of genes with TIE scores in adipose tissue.

(XLSX)

Text S1 Supplementary Methods: Generation of B66BTBR

cross F2 Mice and genotyping and gene expression data. Data

analysis on eQTL mapping. Construct protein network and

prioritize genes.

(DOCX)
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