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Abstract

Extracellular guidance cues steer axons towards their targets by eliciting morphological changes in the growth cone. A key
part of this process is the asymmetric recruitment of the cytoplasmic scaffolding protein MIG-10 (lamellipodin). MIG-10 is
thought to asymmetrically promote outgrowth by inducing actin polymerization. However, the mechanism that links MIG-
10 to actin polymerization is not known. We have identified the actin regulatory protein ABI-1 as a partner for MIG-10 that
can mediate its outgrowth-promoting activity. The SH3 domain of ABI-1 binds to MIG-10, and loss of function of either of
these proteins causes similar axon guidance defects. Like MIG-10, ABI-1 functions in both the attractive UNC-6 (netrin)
pathway and the repulsive SLT-1 (slit) pathway. Dosage sensitive genetic interactions indicate that MIG-10 functions with
ABI-1 and WVE-1 to mediate axon guidance. Epistasis analysis reveals that ABI-1 and WVE-1 function downstream of MIG-10
to mediate its outgrowth-promoting activity. Moreover, experiments with cultured mammalian cells suggest that the
interaction between MIG-10 and ABI-1 mediates a conserved mechanism that promotes formation of lamellipodia.
Together, these observations suggest that MIG-10 interacts with ABI-1 and WVE-1 to mediate the UNC-6 and SLT-1 guidance
pathways.
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Introduction

Axons navigate to their targets in the developing nervous system

by making a series of responses to extracellular guidance cues [1–

6]. Several conserved families of guidance cues have been

identified, including the netrins and slits. These guidance cues

activate receptors on the growth cone at the tip of the growing

axon, causing a directional response that steers the axon either

towards or away from the source of guidance cue. A key

component of the mechanism that drives the directional response

to guidance cues is the asymmetric accumulation of f-actin within

the growth cone. For instance, in vitro growth cone turning assays

have shown that actin is asymmetrically polymerized to the side of

the growth cone closest to a source of netrin, which is thought to

cause the growth cone to turn towards the source of netrin [7].

Likewise, asymmetric actin distribution has also been observed in

growth cones migrating in vivo [8,9].

Although many actin regulatory proteins have been implicated

in the control of growth cone morphology, we do not understand

how these proteins are coordinated to cause a directional response

to guidance cues [10]. For example, the WVE-1 (Wave) complex

activates the ARP2/3 actin-nucleating complex to control the

formation of growth cone filopodia [11,12]. Furthermore, loss of

function of WVE-1 or ARP2/3 components causes defects in axon

guidance [11,13,14]. However, we do not know how the activity of

this complex is controlled to give rise to the asymmetry that

underlies growth cone guidance. In particular, it is difficult to

understand how shallow gradients of guidance cues could be

transformed into the sharply polarized outgrowth-promoting

activity that is required for a directional response.

MIG-10 may provide a key to understanding how guidance

signals are transformed into sharply localized actin-based

outgrowth activity. MIG-10 is a cytoplasmic outgrowth-promoting

protein that becomes sharply localized in response to the UNC-6

guidance cue [15–19]. The role of MIG-10 in guidance has been

studied in the HSN neuron of C. elegans, which extends an axon

ventrally, towards a source of UNC-6 guidance cue. In response to

UNC-6, the UNC-40 (DCC) receptor becomes asymmetrically

localized to the side of the cell closest to the source of UNC-6. This

in turn, leads to the asymmetric localization of MIG-10 to the side

of the cell closest to the source of UNC-6. MIG-10 has an

outgrowth-promoting activity, thereby causing axon growth

towards the source of UNC-6. However, the mechanisms that

mediate the outgrowth-promoting activity of MIG-10 are not

understood.

Although MIG-10 and its homolog lamellipodin are thought to

play a major role in inducing actin polymerization, the mecha-

nisms that mediate this effect are not known [20]. Knockdown of

lamellipodin in fibroblasts results in a severe reduction in

polymerized f-actin, with large areas devoid of the normal
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meshwork of f-actin. The Ena/VASP actin regulatory proteins can

physically interact with lamellipodin. However, loss of all Ena/

VASP function in fibroblasts does not produce the severe defects

in actin polymerization that occur with knockdown of lamellipo-

din. Likewise, in C. elegans axon guidance, complete loss of Ena/

VASP (UNC-34) function results in axon guidance defects that are

far weaker than those observed after complete loss of MIG-10

function [18]. Furthermore, complete loss of UNC-34 function

does not reduce the outgrowth-promoting activity of MIG-10 [16].

Together, these observations indicate that the actin-polymerizing

activity of lamellipodin and MIG-10 must be explained primarily

through interaction with an effector other than UNC-34 (Ena/

VASP).

Here, we present evidence that the outgrowth-promoting

activity of MIG-10 is mediated through interactions with ABI-1

and WVE-1. Furthermore, our genetic data indicate that MIG-10

functions with both ABI-1 and WVE-1 to mediate the UNC-6 and

SLT-1 guidance signaling pathways. ABI-1 and WVE-1 are part

of a well-characterized complex that promotes actin polymeriza-

tion by activating the actin-nucleating activity of the ARP2/3

complex [21–26]. Thus, our observations suggest a model where

MIG-10 interacts with ABI-1 and WVE-1 to direct actin

polymerization in response to guidance cues.

Results

Identification of ABI-1 as a potential component of the
MIG-10 scaffold

MIG-10 is hypothesized to serve as a scaffold that can

asymmetrically localize outgrowth-promoting proteins. However,

the identities of these outgrowth-promoting proteins are unknown.

We hypothesized that these outgrowth-promoting proteins are

likely to bind to the polyproline motifs in MIG-10. Therefore, we

searched for proteins that include polyproline-binding domains

(SH3, WW, and EVH1 domains) for potential function in the

MIG-10 pathway. To do this, we constructed an RNAi sublibrary

for genes that encode polyproline-binding domains and screened

for RNAi clones that phenocopy loss of mig-10 function in the

HSN neuron (Figure 1). The HSN axon normally migrates

ventrally to the ventral nerve cord (Figure 1B). In mig-10 null

mutants, 4464.4% of the HSN axons migrate anteriorly before

turning ventrally [18]. We observed this same phenotype in mig-

10(RNAi) animals, but with a penetrance of 21.664.6% (see

Figure 1C). From our screen, we identified abi-1(RNAi), which had

a penetrance of 15.163.6% HSN guidance defects (see Figure 1D).

The migration of the HSN cell body was also affected by mig-

10(RNAi) and abi-1(RNAi). However, previous analysis has

indicated that HSN axon guidance defects are not secondary

consequences of defects in cell body migration [18,27].

Since ABI-1 has an SH3 domain, and MIG-10 has consensus-

binding sites for SH3 domains, we tested for a physical interaction

between the SH3 domain of ABI-1 and MIG-10 (Figure 1E). We

found that MIG-10 binds to the SH3 domain of ABI-1 fused to

GST (GST::ABI-1-SH3). By contrast, MIG-10 did not bind to

GST alone. Two concurrent studies have also found that MIG-10

can bind to full length ABI-1, using yeast 2 hybrid and also co-

immunoprecipitation [28,29]. Together, these observations iden-

tify ABI-1 as a potential member of the MIG-10 outgrowth-

promoting complex.

ABI-1 functions in UNC-6 and SLT-1 signaling
The AVM and PVM neurons are ideal for studying ventral

guidance because their axons are guided ventrally by both

attraction towards a source of UNC-6 guidance cue and by

repulsion from a source of the SLT-1 guidance cue. Previous work

with these neurons has indicated that MIG-10 functions in both

the UNC-6 and SLT-1 signaling pathways [16,17]. In these

experiments, null alleles were used to remove function of either the

UNC-6 or SLT-1 guidance cues. Since unc-6; slt-1 double null

mutants exhibit guidance defects that are nearly fully penetrant,

UNC-6 and SLT-1 are thought to be the predominant guidance

cues responsible for AVM and PVM axon guidance [16,17,30,31].

Therefore, the function of either guidance cue can be assayed by

removing the function of the other cue. For example, a null

mutation in mig-10 can enhance guidance defects in the unc-6 null

mutant background, indicating that mig-10 functions in SLT-1

signaling. Likewise, a null mutation in mig-10 can also enhance

defects in the slt-1 null mutant background, indicating that mig-10

functions in UNC-6 signaling. To determine if ABI-1 also

functions in UNC-6 and SLT-1 signaling, we repeated these

experiments with an abi-1 loss of function mutation.

To determine if ABI-1 functions in the UNC-6 signaling

pathway, we examined abi-1(tm494); slt-1(eh15) double mutants.

The abi-1(tm494) mutation is a hypomorphic loss of function allele

[32], whereas the slt-1(eh15) is a null allele. In this slt-1 null mutant

background, the AVM and PVM axons are guided by attraction

towards UNC-6. Thus, any enhancement of guidance defects in

the abi-1; slt-1 double mutant would indicate that ABI-1 functions

in the UNC-6 pathway. Indeed, we found that in abi-1; slt-1

double mutants, both AVM and PVM ventral guidance errors

were enhanced relative to slt-1 single mutants, indicating that ABI-

1 is involved in the UNC-6 attractive signaling pathway

(Figure 2A–2D).

To determine if ABI-1 functions in the SLT-1 signaling

pathway, we examined abi-1(tm494); unc-6(ev400) double mutants.

In this unc-6 null mutant background, these axons are guided by

repulsion from SLT-1. Both AVM and PVM axon guidance errors

were significantly enhanced by loss of abi-1 function in abi-1; unc-6

double mutants, indicating that ABI-1 is involved in the SLT-1

repulsive signaling pathway (Figure 2A–2D). Despite being

involved in both UNC-6 and SLT-1 signaling, we did not observe

Author Summary

To form neural circuits, axons must navigate through the
developing nervous system to reach their correct targets.
Axon navigation is led by the growth cone, a structure at
the tip of the growing axon that responds to extracellular
guidance cues. Many of these guidance cues and their
receptors have been identified. However, much less is
known about the internal signaling events that give rise to
the structural changes required for growth cone steering.
A key component of the internal response is MIG-10, a
protein that becomes asymmetrically localized in response
to the extracellular cues. MIG-10 is thought to serve as a
scaffold that can spatially control outgrowth-promoting
proteins within the growth cone. However, we do not
know the identity of the outgrowth-promoting proteins
that associate with MIG-10. Here we report that MIG-10
associates physically with the actin regulatory protein ABI-
1. We present genetic evidence indicating that ABI-1
functions downstream of MIG-10 to mediate its out-
growth-promoting activity. Additional genetic evidence
indicates that these proteins function in both attractive
and repulsive guidance signaling pathways. We also
present evidence suggesting that the connection between
MIG-10 and ABI-1 represents a phylogenetically conserved
mechanism for the control of cellular outgrowth.

MIG-10 Functions with ABI-1 to Guide Axons
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any AVM or PVM guidance defects in abi-1 single mutants,

suggesting that ABI-1, like MIG-10, functions redundantly with

other proteins to mediate UNC-6 and SLT-1 signaling.

Although double mutant analysis suggests that the AVM and

PVM axons are guided predominately by UNC-6 and SLT-1, we

can not exclude the possibility of a third guidance pathway. To

determine if ABI-1 might function in a third pathway, we

constructed an unc-6; slt-1; abi-1 triple mutant. Neither AVM nor

PVM axon guidance defects were enhanced in the unc-6; slt-1; abi-

1 triple mutant relative to the unc-6; slt-1 double mutant (Figure 2E

and Figure S1). These observations do not support a role for ABI-1

in a third guidance pathway.

To determine if ABI-1 functions cell autonomously to mediate

the axon guidance, we conducted a transgenic rescue experiment

in abi-1; slt-1 double mutants (Figure 2F). The mec-4 promoter was

used to drive expression of ABI-1 in the six touch neurons,

including the PVM neuron. Transgenic expression of ABI-1 in the

PVM neuron partially rescued the ventral guidance defects in the

abi-1; slt-1 double mutants. By contrast, siblings that had lost the

transgenic array did not show rescue of the ventral guidance

defects. These observations indicate that ABI-1 functions cell

autonomously to mediate the UNC-6 signaling pathway.

Since we found that ABI-1 functions in the UNC-6 signaling

pathway, we also wanted to determine if ABI-1 functions

downstream of UNC-40, the receptor for UNC-6. To determine

if ABI-1 functions downstream of UNC-40, we used a mec-7::unc-

40 transgene to create an UNC-40 gain of function phenotype.

The mec-7::unc-40 transgene caused ventral axon guidance defects

in the AVM and PVM neurons (Figure 2G and Figure S2). These

guidance defects are suppressed by loss of abi-1 function in both

the AVM and PVM neurons. These observations suggest that

ABI-1 functions downstream of UNC-40.

MIG-10 functions with ABI-1 and WVE-1 to mediate
ventral guidance of the HSN axon

The physical association between MIG-10 and ABI-1 suggests

that they could function together to regulate axon guidance. To

study genetic interactions between mig-10 and abi-1, we used the

HSN ventral axon migration, since single mutants in abi-1 or mig-

10 produce guidance defects in this neuron. Homozygous mig-

10(ct41) null mutants have guidance defects with a penetrance of

4464.4% [18]. Homozygous abi-1(tm494) hypomorphic loss of

function mutants have HSN guidance defects with a penetrance of

1463.4% (n = 100). To ask if ABI-1 and MIG-10 function

together, we used dosage sensitive genetic analysis (Figure 3A).

Both the abi-1 and mig-10 mutations were recessive, as neither mig-

10 heterozygotes (mig-10/+) nor abi-1 heterozygotes (abi-1/+) had

guidance errors in excess of wild-type animals. To test for a genetic

interaction between mig-10 and abi-1, we examined HSN axon

guidance in animals transheterozygous for mutations in mig-10 and

abi-1, that is containing one mutant and one wild-type copy of

each of these genes (mig-10/+; abi-1/+). These transheterozygous

mutants had HSN guidance defects with a penetrance of

10.761.8% (Figure 3A). Consistent with the physical association

between MIG-10 and ABI-1, these observations indicate that ABI-

1 functions with MIG-10 to regulate axon guidance.

Since mig-10 interacts genetically with abi-1, we also wanted to

test for interaction between mig-10 and wve-1. Studies of the

mammalian homologs of ABI-1 and WVE-1, known as Abi1 and

Wave, have indicated that Abi1 binds to Wave to enhance its

ability to promote lamellipodial protrusion by activating the

ARP2/3 complex to promote nucleation and branching of f-actin

[21,22,24,25]. Likewise, genetic studies in C. elegans have indicated

that ABI-1 and WVE-1 are required for subcellular enrichment of

f-actin and for the formation of cellular protrusions during cell

Figure 1. MIG-10 interacts physically with ABI-1. (A) Diagram of the RNAi screening strategy used to identify ABI-1. A sublibrary of RNAi clones
encoding proline-binding domains (SH3, WW, EVH1) was created. Each clone was screened for the ability to phenocopy the HSN ventral guidance
defect observed in mig-10 loss of function mutants. This strategy led to the identification of ABI-1 as a potential interaction partner for MIG-10. In this
study we have utilized the abi-1(tm494) allele, which is predicted to truncate the ABI-1 protein as indicated by the bracket. (B) Example of HSN axon in
wild-type animals. The axon makes a direct ventral migration. (C) Example of HSN ventral guidance defect observed in mig-10(RNAi) animals. The axon
migrates laterally prior to turning ventrally. (D) Example of HSN ventral guidance defect observed in abi-1(RNAi) animals. The HSN axon was observed
with an unc-86::myrGFP transgene. Arrowheads mark approximate position of the vulva. Note that the migration of the HSN cell body was also
affected by mig-10(RNAi) and abi-1(RNAi). However, previous analysis has indicated that HSN axon guidance defects are not secondary consequences
of defects in cell body migration [18,27]. Scale bars represent 5 mm. (E) MIG-10 binds to the SH3 domain of ABI-1. MIG-10::GFP was incubated with the
SH3 domain of ABI-1 fused to GST (GST::ABI-1-SH3) or GST as a control. Bound material was detected by western blotting with an antibody to GFP.
For reference, an amount equivalent to 5% of the MIG-10::GFP starting material was run on a gel (5% SM).
doi:10.1371/journal.pgen.1003054.g001
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migration [23]. To determine if WVE-1 is involved in HSN

ventral guidance, we examined homozygous wve-1(ok3308)

mutants that had been maternally rescued. We found that these

wve-1 mutants had HSN guidance defects with a penetrance of

1363.3% (n = 150), suggesting that WVE-1 is involved in HSN

ventral guidance. To determine if MIG-10 functions with WVE-1,

we tested for dosage-sensitive genetic interaction between mig-10

and wve-1 (Figure 3B). Both wve-1(ok3308) and mig-10(ct41) are

recessive, as neither mig-10 heterozygotes (mig-10/+) nor wve-1

heterozygotes (wve-1/+) had guidance errors in excess of wild-type

animals. Animals transheterozygous for mig-10(ct41) and wve-

1(ok3308), (mig-10)/+; wve-1/+), had HSN guidance errors with a

penetrance of 20.763.3% (Figure 3B). We repeated this experi-

ment with the wve-1(ne350) allele [23] and found that animals

transheterozygous for mig-10(ct41) and wve-1(ne350) had HSN

guidance errors with a penetrance of 1862.7% (n = 200).

Together, these results indicate that MIG-10 functions with

ABI-1 to regulate guidance.

ABI-1 and WVE-1 mediate the outgrowth-promoting
activity downstream of MIG-10

Previous work has indicated that MIG-10 has an outgrowth-

promoting activity and that the actin regulatory protein UNC-34

can interact with MIG-10 [16,17]. However, complete loss of

UNC-34 function does not reduce the outgrowth-promoting

activity of MIG-10, indicating that UNC-34 does not account

for MIG-10’s outgrowth promoting activity.

Figure 2. ABI-1 is involved in both UNC-6 and SLT-1 signaling pathways. (A) Example of AVM neuron with normal ventral guidance. (B)
Example of AVM neuron with defective ventral guidance. (C–D) Genetic interactions between unc-6 and abi-1 as well as between slt-1 and abi-1 in the
AVM (C) and PVM (D), indicate that ABI-1 functions in both the UNC-6 and SLT-1 signaling pathways. (E) Loss of abi-1 function does not enhance
defects in the unc-6; slt-1 mutant background. (F) ABI-1 functions cell autonomously to mediate axon guidance. A mec-4::abi-1 transgene suppresses
PVM ventral axon guidance defects in slt-1; abi-1 double mutants. mec-4::abi-1(2) represents animals that have lost the mec-4::abi-1 transgene during
mitosis. These animals serve as controls and were scored simultaneously on the same slides as the mec-4::abi-1(+) animals, which carry the transgene.
Data was combined from 2 independently derived transgenic lines, cueEx1 and cueEx2, which showed similar results. (G) The abi-1(tm494) loss of
function mutation suppresses guidance defects in AVM neurons overexpressing UNC-40. Scale bars are 5 mM. Error bars represent standard error of
the proportion. Brackets indicate statistically significant difference, Z test for proportions (*p,0.05, **p,0.005). The AVM axon was visualized with
the zdIs5 transgene (mec-4::gfp). Scale bars are 10 mM. Alleles used were unc-6(ev400) null, slt-1(eh15) null, and abi-1(tm494) loss of function.
doi:10.1371/journal.pgen.1003054.g002
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Since ABI-1 and WVE-1 are part of a complex that can

promote lamellipodial protrusion, we asked if ABI-1 and WVE-1

can mediate the outgrowth-promoting activity of MIG-10. To test

this hypothesis, we determined if loss of WVE-1 function or loss of

ABI-1 function could suppress the outgrowth-promoting activity of

MIG-10. The ALM neuron normally has a single axon that grows

towards the anterior (Figure 4A). Transgenic expression of MIG-

10 in the ALM neuron causes the growth of a second posterior

process (Figure 4B). The growth of this second process is

suppressed by loss of function mutations in abi-1 or wve-1

(Figure 4C). By contrast, max-2(nv162), a likely null mutation,

had no effect on the growth of the second process. The lack of an

effect of the max-2 mutation is expected because MAX-2 is thought

to regulate axon guidance by functioning in a pathway that is

parallel to MIG-10 [18]. Together, these observations indicate

that ABI-1 and WVE-1 function downstream of MIG-10 to

mediate its outgrowth-promoting activity.

We also examined a role for ABI-1 in mediating the MIG-10

outgrowth-promoting activity in the AVM and PVM neurons. In

these neurons, the outgrowth-promoting activity of MIG-10 can

be oriented by either the UNC-6 or SLT-1 guidance cues [17].

Thus, transgenic expression of MIG-10 does not cause multipolar

outgrowth in the wild-type, unc-6 null, or slt-1 null backgrounds.

However, transgenic expression of MIG-10 does produce multi-

polar outgrowth in the unc-6; slt-1 double null background. We

found that the abi-1(tm494) loss of function mutation significantly

suppresses the MIG-10 outgrowth activity in the unc-6; slt-1 double

null mutant background in the AVM and PVM neurons

(Figure 4D and Figure S3). These results further support our

conclusion that ABI-1 mediates the outgrowth-promoting activity

of MIG-10.

ABI-1 (Abi1) mediates a conserved pathway that
promotes formation of lamellipodia downstream of MIG-
10

Overexpression of C. elegans MIG-10 in cultured mammalian

cells induces the formation of lamellipodia, suggesting that MIG-

10 can interact with a conserved pathway to promote the

formation of lamellipodia [17]. To determine if ABI-1 might be

a part of that conserved pathway, we asked if the mammalian

homolog of ABI-1 (Abi1) is required for the lamellipodia-forming

activity of MIG-10 in cultured mammalian cells. To address this

question, we knocked down expression of mammalian ABI-1

(Abi1) in HEK293 cells expressing MIG-10::GFP (Figure 5).

Control cells expressing GFP have a round morphology with only

minimal lamellipodia (Figure 5A, 5D). Expression of MIG-

10::GFP induces the formation of lamellipodia (Figure 5B, 5D),

which is significantly reduced by co-expression of an Abi1 shRNA

(Figure 5C, 5D). By contrast, co-expression of a scrambled control

shRNA had no effect on lamellipodia formation (Figure 5D).

These results indicate that MIG-10 promotes the formation of

lamellipodia in mammalian cells by functioning with a conserved

pathway that includes mammalian Abi1.

Figure 3. Dosage-sensitive genetic interactions indicate that MIG-10, ABI-1, and WVE-1 function together to mediate axon
guidance. (A) Transheterozygous genetic interaction between abi-1(tm494) and mig-10(ct41). HSN ventral guidance in animals heterozygous for
either abi-1(tm494) or mig-10(ct41) was comparable to those in wild-type animals. Animals transheterozygous for abi-1(tm494) and mig-10(ct41) had
significantly greater ventral guidance errors compared to wild-type animals. Heterozygous animals were constructed by crossing unc-86::myrgfp
males with abi-1(tm494) or mig-10(ct41) hermaphrodites and scoring F1 cross progeny. Transheterozygous animals were constructed by crossing abi-
1(tm494); unc-86::myrgfp males with mig-10(ct41) hermaphrodites and scoring F1 cross progeny. (B) Transheterozygous genetic interaction between
wve-1(ok3308) and mig-10(ct41). HSN ventral guidance was comparable to wild-type in animals heterozygous for wve-1(ok3308) or mig-10(ct41). HSN
ventral guidance in animals heterozygous for either wve-1(ok3308) or mig-10(ct41) was comparable to those in wild-type animals. Animals
transheterozygous for wve-1(ok3308) and mig-10(ct41) had significantly greater ventral guidance errors compared to wild-type animals. Similar results
were obtained using the wve-1(ne350) allele instead of the wve-1(ok3308) allele. The hT2 balancer covers both wve-1 and mig-10 and was used to
construct wve-1 heterozygotes, mig-10 heterozygotes, and the wve-1; mig-10 transheterozygotes. The kyIs262 transgene (unc-86::myrgfp) was used for
observing the HSN axon. For the labels in both (A) and (B), ‘‘het.’’ means heterozygous for the mutant or for the unc-86::myrgfp transgene. Whereas,
‘‘+’’ means homozygous for the wild-type gene or homozygous for the unc-86::myrgfp transgene. Brackets indicate statistically significant difference
between transheterozygotes and single heterozygotes, Z test for proportions (*p,0.0005).
doi:10.1371/journal.pgen.1003054.g003
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Discussion

Several actin regulatory proteins have been implicated in the

control of growth cone morphology [10]. A few of these have been

implicated in the directional response to specific guidance cues.

However, little is known about how actin regulatory proteins

interact with one another to establish a directional response to

guidance cues. Here, we uncover an interaction between the MIG-

10 cytoplasmic scaffold and the ABI-1 actin regulatory protein.

This interaction could help to explain how actin polymerization is

spatially regulated during guidance, since MIG-10 is asymmetri-

cally localized in response to guidance cues [15,18]. Concurrent

work has indicated that the interaction between MIG-10 and ABI-

1 can also regulate excretory canal morphogenesis and synapse

formation [28,29], Moreover, recent work has also shown that

axon guidance cues and receptors are involved in regulating the

WVE-1 complex during embryonic morphogenesis [33]. Togeth-

er, these observations suggest that the interactions between axon

guidance signaling components and the WVE-1 actin regulatory

complex may be important in multiple aspects of actin-dependant

developmental processes.

Genetic studies of UNC-6 (netrin) signaling in C. elegans have

revealed a direction-sensing module that includes the UNC-40

receptor, PI 3-Kinase, Rac and MIG-10 [15–19]. UNC-6 is

secreted from ventrally localized cells and is thought to form a

gradient that causes the HSN axon to migrate ventrally. In

response to the UNC-6 gradient, UNC-40 becomes asymmetri-

cally localized to the ventral side of the HSN cell. UNC-40 is

thought to initiate signaling events that involve activation of Rac

and production of PI(3,4)P2 by PI 3-Kinase. MIG-10 binds to

both Rac and PI(3,4)P2 and thus becomes asymmetrically

localized to the ventral side of the cell. This direction-sensing

module is reminiscent of chemotaxis in neutrophils, where Rac

and PI 3-Kinase are thought to form a positive feedback loop that

transforms directional information from shallow gradients of

chemotactic cues into sharply localized directional signal that

promotes actin-based motility [34,35]. Likewise, we propose that

UNC-40, Rac, PI 3-Kinase and MIG-10 form a direction-sensing

module that can transform a shallow gradient of UNC-6 into a

sharply localized outgrowth-promoting activity.

Our current results provide a link that connects MIG-10 to an

actin polymerization-promoting complex, thereby explaining how

the directional information encoded by asymmetric localization of

MIG-10 can be transformed into directed axon outgrowth. We

have found that MIG-10 interacts with ABI-1 and WVE-1 to

mediate axon guidance. Previous work has indicated that ABI-1

binds to WVE-1 to promote its ability to activate the ARP2/3

complex [21]. The ARP2/3 complex can nucleate actin branches,

thereby producing the meshwork of actin that is thought to

provide the force that drives motility [36]. Therefore, the

interaction between MIG-10 and ABI-1 can explain how MIG-

10 is able to spatially direct outgrowth activity. We have been

Figure 4. ABI-1 and WVE-1 mediate outgrowth-promoting
activity downstream of MIG-10. (A) Example of normal ALM neuron
with a single anterior axon. (B) Example of ALM multipolar defect

caused by transgenic expression of MIG-10A by the mec-4::mig-10a
transgene. (C) Loss of function mutations abi-1(tm494) and wve-
1(ok3308) suppress MIG-10 transgenic expression phenotype. The
max-2(nv162) mutation, a likely null, does not suppress the MIG-10
transgenic expression phenotype. The wve-1(ok3308) mutants were
maternally rescued. The AVM axon was visualized with a zdIs5
transgene (mec-4::gfp). (D) The abi-1(tm494) loss of function mutation
suppresses the AVM multipolar phenotype that results from transgenic
expression of MIG-10 in the unc-6; slt-1 double null mutant background.
*Statistically significant difference compared to wild-type or unc-6; slt-1
double mutant, z-test for proportions (p,0.005).
doi:10.1371/journal.pgen.1003054.g004
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unable to visualize ABI-1::GFP in the HSN neuron. However,

studies of Abi1 in mammalian cells indicate that it is located at the

leading edge of migrating cells [37]. Since we have found that

ABI-1 functions with MIG-10, it is likely that ABI-1 localizes to the

leading edge of the HSN neuron. Alternatively, ABI-1 might be

localized throughout the cell. However, since MIG-10 is localized

to the leading edge, the functional interaction between MIG-10

and ABI-1 would still be confined to the leading edge.

Previous work has implicated ABI-1 and WVE-1 in axon

guidance, but the guidance cues were not known [11,13,14]. Our

current work indicates that ABI-1 and WVE-1 are involved in

both the attractive UNC-6 signaling pathway and the repulsive

SLT-1 signaling pathway. Despite being involved in both UNC-6

and SLT-1 signaling, the single abi-1 loss of function mutant does

not have any defects in AVM or PVM guidance, suggesting that

ABI-1 functions redundantly with other proteins to mediate

guidance in these neurons. The lack of AVM and PVM guidance

defects in abi-1(tm494) mutants might also be due to the fact that

this is a hypomorphic allele [32]. In fact, recent work has indicated

that RNAi depletion of GEX-3, another member of the WVE-1

complex, can cause mild guidance defects in the AVM [33]. In our

study, the role of ABI-1 in axon guidance is revealed in abi-1; unc-6

or abi-1; slt-1 double mutants, in which guidance information has

been reduced to create a sensitized genetic background. Mutations

in several other axon guidance genes (including null alleles) also

give only weak or non-existent phenotypes as single mutants, but

are enhanced by unc-6 or slt-1 null mutations. These mutations

include mig-10(null), age-1(maternally rescued), unc-34(null), ced-10(hy-

pomorphic), unc-115(null) and madd-2(null) [16–18,30,31]. Together,

these observations suggest that guidance signaling functions with a

great deal of redundancy in these neurons.

Our results, when considered with previous findings, suggest

that CED-10, MIG-10, ABI-1 and WVE-1 may be organized into

a complex or complexes that features redundant physical

interactions (see Figure S4). Our previous and current results

suggest that CED-10 can interact with MIG-10 and that MIG-10

interacts with ABI-1 [18]. Previous studies have indicated that

CED-10 can interact with a subcomplex that contains Sra1 (GEX-

2) and Nap1 (GEX-3) [21]. This GEX-2/GEX-3 subcomplex

interacts with ABI-1. Thus, ABI-1 could be redundantly bound by

both MIG-10 and the GEX-2/GEX-3 subcomplex. This redun-

dant binding could occur within a single complex or could occur

within separate complexes (see Figure S4). Discrimination between

these two possible configurations will require biochemical and

structural studies. We propose that guidance signaling molecules

may be organized into networks that include redundant physical

interactions. This redundancy could provide a more robust

mechanism for the control of the actin polymerization. This

model is consistent with the observation that mutations in genes

that encode guidance signaling proteins (such as mig-10, age-1, unc-

Figure 5. ABI-1 mediates the lamellipodia-forming activity of MIG-10 in cultured HEK293 cells. (A) Example of cell transfected with GFP
and control shRNA. (B) Example of cell transfected with MIG-10::GFP and control shRNA. (C) Example of cell transfected with MIG-10::GFP and Abi1
shRNA. (D) Knockdown of Abi1 suppresses the lamellipodia-forming activity of MIG-10. Graph shows the average cell perimeter with lamellipodia.
‘‘Ctr.’’ means cells transfected with scrambled control shRNA. ‘‘2’’ means cells were not transfected with any shRNA. ‘‘Abi1’’ means cells were
transfected with the PAV197 shRNA against Abi1. Error bars represent the standard error of the mean. *Bracket indicates statistically significant
difference, t-test (p,0.0001). Scale bars are 5 mm.
doi:10.1371/journal.pgen.1003054.g005
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34, ced-10, unc-115 and madd-2), generally lead to only weak or

nonexistent guidance defects [16–18,30,31].

In our study, ABI-1 is shown to act in both the UNC-6 and

SLT-1 pathways. Several other intracellular outgrowth-promoting

proteins have also been implicated in both attractive and repulsive

signaling pathways including MIG-10, Rac, Pak, UNC-34 and Abl

[16,17,38–41]. In addition, overexpression of the repulsive UNC-5

receptor can promote neurite outgrowth in cultured cells [42].

Together, these observations suggest that a common set of

outgrowth-promoting proteins are involved in both attractive

and repulsive responses. A likely explanation for the dual roles of

outgrowth-promoting proteins is that they could be oriented by

both attractive and repulsive signals, thereby promoting growth

towards or away from the source of guidance cue, respectively.

Thus, the difference between attraction and repulsion could be in

where and how a common set of outgrowth-promoting proteins

are localized.

Finally, ABI-1 may link to multiple upstream signaling modules

to mediate distinct aspects of axon growth. For instance, recent

work has found that the UNC-53 scaffold protein interacts with

ABI-1 to promote longitudinal axon growth in C. elegans [32]. In

unc-53 loss of function mutants, longitudinal, but not circumfer-

ential axon growth is disrupted. Conversely, MIG-10 is thought to

mediate circumferential, but not longitudinal axon growth [16,17].

These observations suggest that the mechanisms that control actin

polymerization to drive longitudinal outgrowth are distinct from

those that control actin polymerization to drive circumferential

guidance. We propose that for the process of circumferential axon

guidance, ABI-1 links to the MIG-10 scaffold. By contrast, for the

process of longitudinal axon extension, ABI-1 links to the UNC-53

scaffold. Therefore, each of these distinct upstream regulatory

processes can both utilize the same actin regulatory complex.

Materials and Methods

Strains
AGC1: slt-1(eh15); abi-1(tm494); cueEx1, AGC2: slt-1(eh15); abi-

1(tm494) cueEx2, AGC3: abi-1(tm494); cueIs3, AGC4: cueIs3,

AGC5: cueIs3; wve-1(ok3308)/hT2 [bli4(e937); let-?(q782); qIs48],

AGC6: slt-1(eh15); abi-1(tm494) cueEx4, AGC8: wve-1(ok3308)/hT2

[bli4(e937); let-?(q782); qIs48]; kyIs262, AGC9: mig-10(ct41)/hT2

[bli4(e937); let-?(q782); qIs48]; kyIs262, AGC10: mig-10(ct41)/hT2

[bli4(e937); let-?(q782); qIs48]; wve-1(ok3308)/hT2; kyIs262,

AGC12: abi-1(tm494); slt-1(eh15); zdIs5, AGC13: abi-1(tm494);

unc-6(ev400); zdis5, AGC14: abi-1(tm494); zdIs5, AGC15: cueIs3;

max-2(nv162), AGC16: wve-1(ne350)/hT2; mig-10(ct41)/hT2,

AGC18: unc-6(ev400); slt-1(eh15); abi-1(tm494); zdIs5, AGC19:

unc-6(ev400); slt-1(eh15); abi-1(tm494); urEx305. AGC20: cueIs7; abi-

1(tm494); zdIs5, AGC21: cueIs7; zdIs5. The wve-1(ne350) allele was

a gift from Martha Soto [23,43]. The wve-1(ok3308) allele was

obtained from the CGC and out-crossed 3 times. We found that

the ok3308 mutation behaved as a zygotic sterile. The abi-1(tm494)

hypomorphic allele was provided by Shohei Mitani.

Transgenes
cueEx1 and cueEx2 [mec-4::abi-1; odr-1::dsred] were created by

injecting pAGC2 at 25 ng/ul and odr-1::dsred at 50 ng/ul. urEx305

[mec-4::mig-10a; flp-20::gfp] was created as described previously

[17]. cueIs3 [mec-4::mig-10a; flp-20::gfp] was created by integrating

urEx305 with a gamma radiation source. cueEx4 [mec-7::abi-1; odr-

1::dsred] was created by injecting pAGC3 at 25 ng/ul and odr-

1::dsred at 50 ng/ul. kyIs262 [unc-86::myrgfp] was kindly provided by

Cori Bargmann. zdIs5 [mec-4::gfp] was obtained from the CGC.

evEx344 [mec-7::unc-40; unc-129::gfp] was a gift from Joseph Culotti.

cueIs7 was created by integrating evEx344.

DNA constructs
pAGC2 contains the mec-4::abi-1 and was created by amplifying

the abi-1 cDNA using the following primers fwd: gcagcagctagc-

caccatgagtgttaatgatcttcaag and rev: gcagcaggtacctcatactggaactacg-

tagtttc. The PCR product was cut with NheI and KpnI and ligated

into the Nhe1 and Kpn1 sites of pIM207 [17,44].

pAGC3 contains mec-7::abi-1 and was created by using Nhe1

and Kpn1 to subclone the abi-1 cDNA from pAGC2 into pIM211

[17].

pAGC4 contains GST::abi-1-SH3 and was created by using the

following primers to amplify DNA encoding the SH3 domain of

ABI-1: fwd:gccacaagcgatccagtctctttgatacgagtgct and rev: gcca-

caaggaattctcatactggaactacgtagtt. The PCR product was cut with

BamHI and EcoRI and cloned into the same sites of pGEX-2T.

PAV197 contains an shRNA construct for Abi1 and PAV16

contains a scrambled control shRNA. Both of these constructs

were kindly provided by Giorgio Scita [21].

GST binding assay
GST binding assays were performed as described previously

[45]. Briefly, a GST fusion with the SH3 domain of ABI-1

(GST::ABI-1-SH3) was prepared by transforming BL21(DE3) cells

with pAGC4. Cell lysates containing MIG-10::GFP were prepared

by transfecting HEK293 cells with a plasmid encoding MIG-

10::GFP and lysing cells 24 hours later. The GST::ABI-1-SH3

fusion protein was purified and coupled to glutathione-sepharose.

Cell lysates were added to the glutathione-GST::ABI-1-SH3

complex and incubated for 2 hours. The glutathione-sepharose-

protein complexes were washed three times with 0.1% Triton X-

100, boiled in loading buffer and run on and SDS PAGE gel.

Bound proteins were detected with an antibody against GFP.

Cell culture
HEK293 cells were grown in DMEM with 10% FBS. Fugene 6

was used to transfect or co-transfect cells with the appropriate

plasmids. For co-transfection experiments 2 mg of DNA encoding

the appropriate shRNA was mixed 1 mg of DNA encoding GFP or

MIG-10::GFP. Cells were transfected in plastic dishes and allowed

to grow for 72 hours after transfection. Next, cells were removed

from the plastic dishes and were replated onto glass coverslips

coated with polylysine. After 24 hours, the cells were fixed with

paraformaldehyde and mounted for observation and analysis.

Analysis of phenotypes
For analysis of axon guidance phenotypes, animals were

mounted on a 5% agarose pad and observed with a 406
objective. For AVM and PVM ventral guidance, an axon was

scored as defective if it failed to reach the ventral nerve cord. For

HSN ventral guidance, an axon was scored as defective if it

traveled laterally for a distance equivalent to 2 cell bodies or more

prior to migrating ventrally. For analysis of multipolarity in the

ALM, AVM and PVM neurons, a cell was scored as defective if it

had a posterior axon that was longer than 2 cell bodies.

Supporting Information

Figure S1 Loss of abi-1 function does not enhance PVM ventral

axon guidance defects in the unc-6; slt-1 mutant background. In the

PVM axon the unc-6(ev400) null allele results in partially penetrant

ventral axon guidance defects. The slt-1(eh15) null allele results in

only rare ventral guidance defects. The double unc-6; slt-1
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guidance defects are highly penetrant, suggesting that UNC-6 and

SLT-1 are the predominant guidance cues for PVM ventral axon

guidance. These defects are not further enhanced in the unc-6; slt-

1; abi-1 triple mutant.

(TIF)

Figure S2 ABI-1 functions downstram of UNC-40. A mec-7::unc-

40 transgene was used to overexpress UNC-40 in the PVM

neuron. Overexpression of UNC-40 caused ventral axon guidance

defects in the PVM neuron. These guidance defects were

suppressed by an abi-1(tm494) loss of function mutation. Error

bars represent standard error of the proportion. *Statistically

significant difference compared to wild-type animals, z-test for

proportions (p,0.05).

(TIF)

Figure S3 Loss of abi-1 function suppresses MIG-10 outgrowth-

promoting activity. The PVM neuron normally has a single

process growing out of its cell body. Transgenic expression of

MIG-10 in the unc-6; slt-1 double mutant background produces a

multipolar phenotype, where one or more additional processes

grow out of the PVM cell body. This outgrowth-promoting activity

of MIG-10 is suppressed by the abi-1(tm494) loss of function

mutation. *Statistically significant difference compared to unc-6;

slt-1 double mutant, z-test for proportions (p,0.0001).

(TIF)

Figure S4 Model for redundant physical interactions between

molecules involved in axon guidance. The observations presented

in this paper indicate that MIG-10 binds to ABI-1. A previous

report has indicated that activated CED-10 binds to MIG-10 [18].

Previous work has also defined the Wave complex, consisting of

Sra-1 (GEX-2), Nap1 (GEX-3), Abi1 (ABI-1), and Wave (WVE-1).

A subcomplex consisting of Sra-1 (GEX-2) and Nap1 (GEX-3) can

bind to activated Rac (CED-10) and also to another subcomplex

consisting of Abi1 (ABI-1) and (Wave) WVE-1 [21]. Taken

together, these observations suggest that CED-10, MIG-10, ABI-1,

WVE-1, GEX-2 and GEX-3 could be organized into a complex

that features redundant physical interactions (see upper panel). In

this Single Complex Model, CED-10 would be simultaneously

bound to both MIG-10 and the GEX-2/GEX-3 subcomplex.

Alternatively, these proteins could be organized into two separate

complexes, each linking CED-10 to the ABI-1/WVE-1 subcom-

plex (see lower panel). In this Separate Complex Model, MIG-10

would essentially be doing the function of the GEX-2/GEX-3

subcomplex, which is linking CED-10 and phospholipids to the

ABI-1/WVE-1 subcomplex. Discrimination between these two

models would require detailed structural and biochemical studies,

which have been done for the WVE-1 complex [46], but not for

MIG-10. In both models, the ABI-1/WVE-1 subcomplex would

be linked to activated CED-10 by two redundant physical

interactions, one with MIG-10 and the other with the GEX-2/

GEX-3 subcomplex. These redundant physical interactions could

provide for a more robust regulation of actin polymerization.
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