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Abstract

Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-
individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-
state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To
address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals.
Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap
lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across
genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii)
genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (jii)
genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay
across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in
10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay
rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses.
Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across
individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs"). All the observed rdQTLs
are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of
known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in
mRNA decay rates.
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trans ¢QTLs that have been identified is the low power to map
such loci compared to cis acting eQTLs (due to the stringent
significance criteria required to avoid false positives when mapping
across the entire genome, and generally small effect sizes of trans-
QTLs [8,19-25]).

Despite the recent success In mapping gene expression
phenotypes, we still know little about the specific regulatory
mechanisms that underlie eQTLs [26-29]. Partly, this gap is being

Introduction

Substantial variation in gene expression levels exists in natural
populations [1-5]. Over the past decade, we have learned that
much of this inter-individual regulatory variation is associated with
specific genetic polymorphisms, which can be identified by
mapping expression quantitative trait loci (eQTLs) [6-10].
Expression QTL mapping studies in different organisms have
led to important insights into the genetic basis for gene regulation

and, in a number of cases, into the mechanistic basis for complex
phenotypes. In particular, recent eQTL mapping studies in
humans have identified thousands of genetic variants affecting
gene expression levels [11-14], some of which are loci that are also
associated with complex diseases [15-18]. Nearly all human
eQTLs, regardless of the tissue in which they were found, have
been identified near the regulated genes and hence are assumed to
act in ¢s. A partial explanation for the relatively small number of
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addressed by a growing number of large-scale mapping studies of
inter-individual variation in genetic and epigenetic regulatory
mechanisms (which complement studies of gene expression
variation [13,30-34]). Yet, even by incorporating such studies,
the processes underlying regulatory variation and their relative
importance remain difficult to infer, because all eQTL studies to
date — regardless of the model system or species - have relied on
measures of steady-state gene expression levels.
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Author Summary

Recent studies of functional genetic variation in humans
have identified numerous loci that are associated with
variation in gene expression levels, called expression
quantitative trait loci (eQTLs). The mechanisms by which
these loci affect gene expression, however, are still largely
unknown. Specifically, since most studies rely on measures
of steady-state gene expression levels, they are unable to
distinguish between the relative influences of either
transcriptional- or decay-related processes. To address this
gap, we examined the specific impact of mRNA decay
processes on steady-state gene expression levels for over
16,000 genes in human lymphoblastoid cell lines. By
characterizing decay rates in 70 individuals, we show that
steady-state expression levels are significantly influenced
by variation in decay rates for 10% of genes. Yet, for
roughly half of these genes, we find that individuals with
higher expression levels also have faster decay rates. This
pattern points to a non-simple mechanistic interplay
between transcriptional and decay processes, especially
for genes involved in rapid cellular responses. Finally, we
identify 195 genetic variants that are significantly associ-
ated with both gene expression variation and variation in
mMRNA decay rates. Using these data, we estimate that that
a substantial fraction of eQTLs are associated with inter-
individual variation in mRNA decay rates.

Steady-state gene expression levels are generally the result of
two opposing biological processes: mRNA transcription, which
includes transcript initiation, elongation, and processing, and
mRNA decay, which includes spontanecous and targeted degrada-
tion of transcripts, as well as dilution [35,36]. Using only
measurements of steady-state gene expression levels, it is
impossible to determine the relative contribution of variation in
transcription rates and mRNA decay rates to overall regulatory
variation. In other words, without additional data, the particular
mechanisms underlying steady-state expression level Q'T'Ls cannot
be inferred with confidence.

To better understand the basis for variation in steady-state gene
expression levels requires data on specific aspects of gene
regulatory mechanisms. Most recent studies that have done so
(though only rarely in the context of QTL mapping), have focused
on understanding transcriptional processes contributing to gene
expression variation, such as splicing, DNA methylation, histone
modification, chromatin accessibility, and transcription factor
binding. Results from this emerging body of work indicate that
although transcriptional processes contribute substantially to
steady-state measurements of gene expression, neither the
independent or combinatorial effects of these mechanisms can
completely account for variation in steady-state gene expression
levels [28,29,37,38]. It is likely that a better account of regulatory
variation can be obtained once transcription initiation and RNA
decay mechanisms are considered together.

While the details of transcriptional regulation are becoming
increasingly understood, the mechanisms influencing variation in
mRNA decay rates have thus far received less attention,
particularly in mammalian systems [11,37-39]. This bias may
reflect the prevalent assumption that transcription initiation rates
are the major determinants of overall gene expression levels [40—
43]. Yet, a few recent studies of mRNA decay mechanisms have
challenged this historical view [3,33,44-47]. In particular, it has
been argued that the regulation of mRNA decay processes might
be a key determinant of the expression patterns of a large subset of
genes. Recent studies in eukaryotic cells have revealed a wide
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variability of mRNA decay rates across transcripts — with
individual mRINA half-lives ranging from a few minutes to several
hours — which can often be tied to differences in the functional role
of the regulated genes [44,48-50]. For example, studies in yeast,
worms, plants, and human primary cells have all found that genes
involved in the regulation of transcription tend to produce mRNA
that decays faster than mRINA from genes involved in cell cycle or
metabolic pathways [1,3,41,48,51,52]. Furthermore, the steady-
state mRNA levels of the lowest or highest expressed genes are
strongly correlated with mRNA decay rates [41,44,49,50],
suggesting that in these cases, regulation of mRNA decay is likely
an important determinant of gene expression levels.

A number of mechanisms are known to contribute to variation
in mRNA decay rates among genes. These include the roles of
certain RNA-binding factors such as small RNAs, RNA-binding
proteins, and larger RNA-binding complexes, all of which have
been shown to bind to both general (such as the AU-rich 3’
untranslated region elements; AREs [15,26,53]) and specific RNA
motifs [11,37,54]. For example, many RNA-binding small RNAs,
including miRNAs, have been shown to expedite decay of specific
transcripts by creating double stranded RNA that is targeted for
degradation by endonuclease enzymes [11,38,47]. Similarly,
certain interactions between RNA binding proteins and mRNA
have been shown to contribute to either higher (“destabilizing
proteins”) or lower decay rates (“stabilizing proteins”), though the
mechanisms by which they act are not yet fully understood
[11,54,55]. More generally, we now appreciate that, much like
transcription rates, mRNA decay rates are regulated by a
combination of frans elements (such as proteins, complexes, or
small RNAs) binding to a collection of ¢zs binding motifs (typically
included within the transcript itself) [6,56,57]. However, despite
increasing understanding about mechanistic details of mRNA
decay processes, we still know little about inter-individual variation
in mRNA decay rates, in any species.

Results

We characterized mRNA decay in 70 Yoruba lymphoblastoid
cell lines (LCLs) from the HapMap project [36,58]. These cell lines
have been extensively genotyped and/or sequenced at high-depth
[40,59,60], making them ideal for genetic mapping studies. To
determine decay rates, we measured changes in mRNA abun-
dance levels in each cell line at different times after treatment with
the RNA elongation complex inhibitor Actinomycin D (ActD),
which arrests transcriptional processes. We measured mRNA
abundance before treatment (time point 0) and at four time points
after treatment (at 0.5 hours, 1 hour, 2 hours, and 4 hours). To
account for the decrease in total RNA caused by the ActD
treatment over the timecourse experiment, we increased the
number of cells from which we extracted RNA as the experiment
progressed (Figure S1). We thus were able to hybridize the same
amount of mRNA from each time point to an Illumina HT-12
expression microarray. We processed a total of 350 samples over
the five time points and seventy cell lines (see Table S1). Our
experimental design allowed us to normalize transcript abundance
across all 350 arrays using standard approaches (see Methods for
more details).

To estimate mRINA decay rates, we fit an exponential decay
model to the normalized expression data to obtain estimated gene-
specific decay rates for each cell line. Due to our choice of
hybridization study design and normalization procedure, all
estimated decay rates are relative to the mean cellular mRNA
decay rate in the sample, which itself can be estimated by taking
into account the number of cells used to extract RNA across the
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time points (see Methods for more details). We excluded from all
further analyses genes that were not detected as expressed even
before the arrest of transcription (time point zero) in at least 80%
of individuals (see Methods). Overall, we obtained individual-
specific estimates of mRNA decay rates for 16,823 Ensembl genes
(see Table S1).

Characterization of genome-wide decay rates

As a first step of our analysis, we characterized the genome-wide
distribution of mRNA decay rates. To do so, for each gene we
used the median decay rate across individuals as a measure of the
gene-specific mRINA decay rate. We observed a wide range of
mRNA decay rates across genes (Figure 1A), consistent with
findings of previous studies. We also observed a substantial
amount of variation in decay rates across individuals within each
gene (Figure 1B), consistent with expectations from previous
studies in human cells [1,35,40]. We classified genes as either
consistently slow or fast decaying when their decay rates in at least
80% of individuals in our study were classified as slow or fast
relative to the individual-mean decay rate (see Methods). We thus
identified 146 genes that consistently decayed slower than average
across individuals and 716 genes that consistently decayed faster
than average.

In agreement with previous observations, we found that genes
with related biological functions often decayed at similar rates
[1,52,52]. Genes with slower decay rates tend to be involved in
cellular and organelle-related housekeeping processes, such as
cytoplasmic and mitochondrial processes (Table S2). Genes with
faster decay rates are enriched for gene regulatory functions that
might require rapid mRNA decay to ensure rapid turnover of
expression levels in response to changing cellular conditions (Table
S3). This includes enrichments for functional annotations such as
metabolic processes, regulation of gene expression, and regulation
of transcription.

We next investigated possible mechanisms that could account
for variation in mRINA decay rates across genes. Previous studies
have suggested that increased transcript length [3,41], and
specifically 3'UTR length [1,3], might significantly influence
mRNA decay rates. Indeed, we find that both are slightly but
significantly positively correlated with decay rates across genes

A. Genome-wide decay profiles

Inter-Individual Variation in RNA Decay

(Spearman p=0.17, P<10"'® for gene length and Spearman
p=0.09, P<10™'® for 3'UTR length). This association is also
evident when we limit this analysis only to genes classified as
decaying slower or faster than the mean decay rate (Figure 2A;
Figure S4; Spearman p=0.15; P<107'® for gene length and
Spearman p = 0.09; P<10~® for 3'UTR length). The increased 3’
UTR length in faster decaying genes is thought to indicate an
increase in potential regulatory space that could harbor RNA-
decay regulatory elements (reviewed in [6]).

Studies of mRNA decay of individual genes have previously
identified two main classes of ¢is regulatory elements that might
play roles in decay processes: microRNA (miRNA) binding sites
[11] and AU-rich elements [15,17]. To determine the possible
influence of miRNA binding on decay rates in the LCLs, we
curated several miRNA databases [19,20,22-25] to create a list of
confident miRNA target binding sites (see Methods S1). To
account for the confounding effect of transcript length (more
binding sites in longer 3'"UTRs), we standardized the number of
miRNA target binding sites by the 3'UTR length (see Methods).
Using this approach, we found a slightly positive correlation
between the density of miRNA target sites and decay rates. Again,
when we focused exclusively on the genes classified as decaying
slower or faster than the mean decay rate, we observed a stronger
association (Figure 2B, Spearman p=0.16; P<<0.003). We then
considered the presence of AU-rich elements (AREs) in slower
versus faster decaying genes. To do so, we used the AREScore
algorithm [26], which searches within 3'UTRs for features
associated with typical type-II AREs, to assign an AREScore to
each gene. A larger AREScore essentially implies increased
potential for binding by an ARE-recognizing RNA binding
protein to regulate the decay processes of the gene. We found
that there is a significantly increased median AREScore in faster
decaying genes compared to slower decaying genes (Figure 2C,
Spearman p=0.14; P<10~ '),

As our findings support the general notion that c¢is regulatory
elements, such as miRNA bindings sites or AU-rich elements, are
important determinants of mRNA decay rates, we next searched
for additional sequence motifs that might represent novel binding
sites for specific decay factors in LCLs. To do so, we used the
FIRE algorithm [30] to search for motifs in the 146 slow decaying
genes and 716 fast decaying genes. We identified three

B. Examples of individual-specific profiles
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Figure 1. Profiles of decay rates. A. Distribution of genome-wide decay profiles across the timecourse experiment (x-axis), where each decay
curve shows the decrease in gene expression level (y-axis) relative to the untreated time point. Each line represents the gene-specific median decay
profile, while the darkness of the lines indicates the number of genes sharing that decay profile (darker indicates more genes). B. Representative
examples of individual-specific decay profiles (dotted lines) for two genes: NFKBIE (in red), which decays faster than average and DCTN2 (in blue),
which decays slower than average. Solid lines indicate the gene-specific median decay profile across all 70 individuals.

doi:10.1371/journal.pgen.1003000.g001
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A. Distributions of gene and 3'UTR lengths
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B. Distributions of miRNA binding sites
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Figure 2. Genomic features influencing variation in decay rates across genes. A. Distributions of gene length (left) and 3'UTR length (right)
for genes decaying slower (blue) or faster (red) than average. B. Distributions of the number of miRNA binding sites (normalized by 3'UTR length; y-
axis) for genes decaying slower (blue) or faster (red) than average. C. Distributions of AREScores (y-axis) for genes decaying slower (blue) or faster (red)
than average. D. Motifs that are significantly over- (yellow) or under-represented (blue) in fast or slow decaying genes. The Ml refers to the mutual

information score from the FIRE algorithm.
doi:10.1371/journal.pgen.1003000.9g002

significantly enriched motifs — one enriched in the fast decaying
genes, and two enriched in the slow decaying genes (Figure 2D).
We performed the motif search across the entire promoter and
transcript region for each gene, yet all three enriched motifs are
located in 3'UTRs. The motif enriched in fast decaying genes
closely resembles a typical AU-rich element sequence. The two
motifs enriched in slow decaying genes could not be linked to any
currently known miRNA seed sequence or RNA-binding protein
motif and hence might be novel regulatory elements.

Relationship between decay rates and steady-state
expression levels

We are specifically interested in the effect that mRNA decay has
on steady-state expression levels (in these analyses, we defined
“steady-state expression” as the mean expression across all time
points so that our estimates of steady-state expression levels would
be statistically independent of the estimated decay rates when the
null hypothesis of no association between steady-state levels and
decay rates is true; see Methods). Considering this relationship
across all genes (Figure 3A), we found little or no correlation
between decay rates and gene expression levels. However, we
observed a significant difference in expression levels between genes
classified as decaying significantly slower or faster than the mean
decay rate (as defined above; P<6x107°, Figure 3B; Figure S5).
This difference in expression levels is in the expected direction —
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that 1is, genes with slower decay rates have higher steady-state
expression levels than genes with faster decay rates.

We also observed a small number of cases in which genes with
faster decay rates are highly expressed (we refer to this as a
‘discordant’ relationship between gene expression levels and decay
rates). One example is the BTG/ gene, which is involved in
regulating the glucocorticoid receptor autoregulatory pathway
[35], and has both a significantly increased decay rate and a high
expression level (Figure S5). Interestingly, seven of the top nine
genes with discordant patterns (both the expression levels and
decay rates of these nine genes are within the top 5% of the
genome-wide distributions of gene expression and decay rates
respectively; Figure 3C; see Methods) have been experimentally
shown to be involved in auto-regulatory or regulatory feedback
pathways (Table 1) [61-69]. More broadly, the top 49 genes with
discordant patterns (constituting the top 10% of both the genome-
wide distributions of gene expression levels and decay rates;
Figure 3C) are enriched for genes with functions related to
signaling pathways, stress response, and immune function (when
genes expressed in LCLs are used as the background for the
analysis; Table S4).

We next examined the extent to which variation in decay rates
might contribute to overall variation in steady-state expression
levels across individuals. For each gene, we calculated the
correlation between gene expression levels and mRNA decay
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A. Genome-wide decay and expression

B. Gene expression in slow and fast

Inter-Individual Variation in RNA Decay

C. Genes with discordant decay and expression

decaying genes

- B FastDecaying Genes | < _|
== O Slow Decaying Genes  * 5 = -
9 o S @~
22 2
] FS
5o L~ |
— o
3 g |
] s~
o = ] o "
S =
o @ .
2= 2"
N I
b= [ W !
o @ 5] !
- 1
® - 0 - [
—r

I I
-02 0.0

!
Slow Decaying
Genes

0.2
median decay rates

0.4 0.6

: o _| W s%ofboth disuibutions =
PE——— B 10% of beth distributiens, .
c
_l_ o o _|
w .
1 @
1 © o ] 1
' o -
2 g
! o _ ;
{ o ~ 7]
c
O o _|
D -
)
I 2 ]
| oo —
PR E— 4
T ! I ! | |
Fast Decaying -0.2 0.0 0.2 0.4 0.6
Genes

median decay rates

Figure 3. Relationship between gene expression levels and mRNA decay rates across genes. A. Genome-wide scatterplot of median
decay rates (x-axis) versus median steady-state expression levels (y-axis) for all genes (black dots, where higher densities are in dark colors), slow
decaying genes (blue dots), and fast decaying genes (red dots). B. Genes that are within the top 5% (yellow) or top 10% (blue) of both the decay rate
and steady-state gene expression. C. Boxplots of the distribution of steady-state expression levels (y-axis) in genes decaying slower (blue) or faster

(red) than average.
doi:10.1371/journal.pgen.1003000.g003

rates across individuals and focused on genes with a significant
(FDR=10%) correlation between the two measurements
(Figure 4A). We found a significant negative correlation between
expression levels and decay rates for 695 genes. It is reasonable to
assume that inter-individual variation in steady-state expression
levels of these 695 genes is driven by corresponding variation in
decay rates. Based on gene ontology functional annotations, these
695 genes are enriched for genes involved in endopeptidase
inhibitor and regulator activity (Table S5).

On the other hand, we also found a discordant relationship
between gene expression levels and decay rates across individuals
for 989 genes (10% FDR; Figure 4A). This finding may seem
counter-intuitive as it contradicts our expectation that higher
decay rates should result in lower steady-state gene expression
levels. However, genes with a discordant relationship between
expression and decay are enriched for processes involved in the
regulation of cellular, metabolic, and transcriptional activities
(Table S6). A similar observation of discordant relationships

between decay rates and expression levels that are enriched for
genes in the same functional categories (metabolic, and transcrip-
tional activities) has been previously reported in yeast [37,38]. Put
together, these results suggest a role for mRNA decay in complex
regulatory circuits that have the property of fast response time, for
instance auto-regulation by negative feedback loops.

Studies across yeast species [37,38] have further suggested that
positive correlations between gene expression levels and decay
rates are often coupled with correspondingly increased transcrip-
tion rates — presumably to increase response speed [40]. To test
this notion in our system, we used a combination of previously
published [33] and newly generated Polll occupancy ChIP-seq
data from seven of the same Yoruba LCLs as a proxy
measurement of gene-specific transcription rate (Table S7). Our
hypothesis, based on the observations from the yeast studies, was
that transcription and decay rates are often positively correlated in
genes with discordant relationship between expression levels and
RNA decay rates across individuals. Indeed, we found a significant
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Table 1. Genes with discordant decay rates and steady-state gene expression levels.
Evidence for Negative Feedback Function

Gene Name(s) Ensembl ID Function (ref[s].)

Dec1, Stra13, BHLHE40 ENSG00000134107 control of cell differentiation and signaling pathways Autoregulation of gene expression ([53,54])

BTG1 ENSG00000133639 Regulates cell growth and differentiation Involved in GR autoregulatory pathway ([44])

CCR7 ENSG00000126353 Mediator of EBV effects on B lymphocytes; activates None

B and T lymphocytes

DDIT4 ENSG00000168209 Inhibits cell growth Negative feedback control of mTOR signaling
pathway ([55])

HCP5 ENSG00000206337 Regulates cellular response to stress None

PPP1R15A ENSG00000087074 Regulates cellular response to stress Negative feedback loop promoting basal cellular
activity ([56])

XBP1 ENSG00000100219 ER stress response element Autoregulates gene expression ([57,58])

ZFANDS5, ZNF216 ENSG00000107372 Involved in regulation of TNF-induced NF-«B activation ~ Overexpression leads to apoptosis ([59])

ZFP26 ENSG00000128016 Regulates response to growth factors Autoregulates mRNA stability ([60,61])

A list of the 9 genes that are in the top 5% of both the decay rate and steady-state gene expression distributions, thus showing evidence of both fast decay and high

expression. The table lists the gene name (column 1), the Ensembl ID (column 2), the function of the gene (column 3), and evidence from the literature pointing towards

negative feedback or autoregulatory functions for the gene (column 4).

doi:10.1371/journal.pgen.1003000.t001
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A. QQ-plot for associations of decay and
gene expression across individuals
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Figure 4. Relationship between gene expression levels and
mRNA decay rates across individuals. A. QQ-plot of the t-statistics
for association between steady-state expression levels and decay rates
across individuals (y-axis) compared to the null distribution of t-
statistics assessed by permutations (x-axis). The sign of the t-statistic
indicates the direction of correlation. Genes with concordant relation-
ships (orange) have negative t-statistics and genes with discordant
relationships (purple) have positive t-statistics. B. Density distributions
of the Pearson correlations (x-axis) between mRNA decay rates and Polll
reads for genes with either concordant (orange) or discordant (purple)
relationships between decay rates and steady-state expression levels
across individuals.

doi:10.1371/journal.pgen.1003000.g004
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increase in positive correlations between transcription and mRNA
decay rates for genes with discordant compared to genes with a
concordant relationship between expression and decay (P<10~;
Figure 4B; Figure S6) and compared to the distribution of
correlations between transcription and mRNA decay rates of all
genes in the data set (P<10~'°).

Mapping mRNA decay QTLs

Finally, we investigated the genetic basis for inter-individual
variation in mRNA decay rates. To do so, we treated the mRNA
decay rates as a quantitative trait and mapped genetic loci
influencing variation in this trait. We tested for association
between individual-specific estimates of mRNA decay rates and
genotypes in a ¢s candidate region of 25 kb centered around the
target transcript boundaries. Using this procedure, we found 31
genes with significant RNA decay quantitative trait loci (rdQ'T'Ls)
ata 15% FDR (Figure 5A). Expanding our mapping procedure to
include genome-wide polymorphisms, we found no evidence for
significant trans-acting rdQT'Ls, likely because our experiment is
underpowered to detect frans effects (see Methods S1).

Given the observed significant correlation between steady-state
gene expression levels and decay rates across individuals, we
hypothesized that we might have better power to detect more
rdQTLs at a given FDR if we focused on SNPs already identified
as steady-state expression QTLs. To do so, we first mapped
eQTLs using the mean expression data across time points. We
identified 1,257 eQTLs (at 15% FDR; see Methods), most of
which were previously observed in these cell lines. Within this set,
195 (16%) of the eQTLs were also significantly (at 15% FDR)
associated with variation in mRNA decay rates (Figure 5B, Table
S8). In other words, 195 of the steady-state gene expression QTLs
are also classified as rdQTLs using our approach; a significant
enrichment of decay effects compared to that expected by chance
(P<0.001). Using the method of Storey et al. to conservatively
estimate the proportion of tests where the null hypothesis is false
(while accounting for incomplete power [48]), we estimate that
35% of the most significant eQTL SNPs are also associated with
decay rates (Figure S7).

We asked whether SNPs that are identified as rdQTLs are
enriched in particular genomic annotations, especially when
compared to eQTL SNPs. Since our mapping approach does
not allow us to identify with confidence the causal site, we
proceeded by considering and comparing the strength of
association with decay rates across SNPs in different genomic
annotations. Using this approach we found that, in general, the
same functional annotations that were previously found to be
enriched for eQTLs are also enriched for rdQTLs (e.g., exons,
UTRs, and promoter regions; Figure S8A). Yet, while eQTL are
generally enriched in 3" UTRs (Figure S8B), rdQTLs are
specifically enriched in predicted miRNA binding sites within 3’
UTRs (Figure 6). This observation is consistent with the
hypothesized importance of miRNA-mediated regulation of
mRNA decay.

Explaining variation in gene expression levels

We next examined the relationship between eQTLs and
rdQTLs in more detail. We found that in the majority of the
joint QTLs (55%), the allele that is associated with lower steady-
state expression level is also associated with faster mRNA decay
rate, as expected if differences in decay rates drive differences in
expression levels across individuals (Figure 5C). However, in the
remaining 45% of cases, the allele that is associated with lower
gene expression levels is associated with slower mRINA decay rates
(Figure 5D). This implies a more complicated regulatory
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Figure 5. Genome-wide identification of rdQTLs and representative examples. A. QQ-plot for all tests of association between mRNA decay
rates and variants within a cis region of 25 kb around the target gene (y-axis) compared to a null distribution of p-values based on permutations (x-
axis). B. QQ-plot for all tests of association between the most significant eQTL SNP for a gene and the mRNA decay rate for the same gene (y-axis)
compared to a null distribution of p-values based on permutations (x-axis). C. Example of an rdQTL with concordant eQTL-rdQTL effects (for the gene
DDX55). D. Example of an rdQTL with discordant e-QTL-rdQTL effects (for the gene C170rf97).

doi:10.1371/journal.pgen.1003000.g005

mechanism, which counters the effect of decay at these loci to drive
opposite patterns of gene expression across individuals (see
Discussion). We thus focused only on the 55% of eQTLs-rdQTL
sites with concordant genotypic effects, for which a more intuitive
and simple mechanistic explanation is likely. We again used the
method of Storey ef al. [48] and estimated that as many as 19%
(95% CI by bootstrapping: 15%-21%) of eQTLs might be
regulated, at least in part, by differences in decay rates. We
acknowledge that (as with any comparison and combination of
results from genome-wide mapping studies) any factor that affects
the power to find associations may result in a biased estimate of the
proportion of eQQ'TLs that are also classified as rdQ'T'Ls. It is unclear
how one could identify and test for all possible relevant factors. In
our analysis, we have taken into account the possible effect of overall
gene expression levels on eQTL/rdQTL mapping (see Methods),
and confirmed that the distributions of the number of SNPs in the
proximal window are similar whether one considers sites classified
as either eQTLs only or as eQTLs/rdQTLs (Figure S9). On the
other hand, we did find a difference in the distribution of minor
allele frequency, and the distributions of the number of individuals
that are homozygote to the minor allele, between eQTLs and
eQTLs/rdQTLs (Figure S9), but this would be conservative with
respect to the estimated proportion of eQTLs that are also rdQTLs
(namely, the true overlap might be higher than 19%).

PLOS Genetics | www.plosgenetics.org

Using a similar approach, we have previously found that up to
55% of eQTLs might be explained by variation in DNase
sensitivity (these eQTLs were also classified as dsQTLs [32]). We
expected that the combination of RNA decay data and DNase
sensitivity profiles might explain a larger proportion of inter-
individual variation in gene expression levels. To test this using
LCLs from the 66 individuals used in both the DNase sensitivity
[32] and the current study, we first examined the overlap between
SNPs identified as either eQTLs, rdQTLs or dsQTLs. In order to
standardize the analyses, we re-mapped eQTLs, rdQTLs, and
dsQTLs using only the set of 66 YRI LCLs used in both our study
and Degner et al. [32]. We identified 1,147 eQTLs (15% FDR), of
which 171 were also classified as rdQTLs (15% FDR) and 168 as
dsQTLs (15% FDR; Figure S10). There is a slight enrichment in
the overlap of eQTLs classified as both rdQTLs and dsQTLs (33
SNPs; 25 are expected by chance along; P=0.03). This might
reflect variation that affects gene expression levels through coupled
transcription and decay processes.

Put together, 26.7% eQTLs are also classified as either rdQTLs
and/or dsQTLs. Combining all three annotations (see Methods;
Figure S11) we estimated (by using the Storey method [48])that up
to 63% of eQTLs could be driven, at least in part, by either decay
or chromatin accessibility-related mechanisms. We note that for
this comparison we are including both concordant and discordant
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Enrichment of rdQTLs within miRNA binding sites
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Figure 6. miRNA binding sites are enriched with rdQTLs. The
QQ-plots of expected versus observed quantiles of the -log10(p-values)
testing the null hypothesis that there is no association between the SNP
and RNA decay, for all 3’"UTR SNPs (red) and in two known 3'UTR
functional annotations - predicted miRNA binding sites (dark blue) and
AU-rich element pentamers (light blue).

doi:10.1371/journal.pgen.1003000.g006

rdQTLs, since both patterns could be representative of either
simpler or complex mechanisms underlying gene expression
variation.

Discussion

We conducted a genome-wide study of inter-individual varia-
tion in mRNA decay levels in 70 human LCLs to investigate the
extent to which variation in mRNA decay might account for
overall gene expression variation. Our observations, both across
genes as well as across individuals, lend support to the notion that
regulation by decay processes is a significant mechanism by which
steady-state transcript levels are modulated.

Consistent with previous studies, we found substantial variation
in mRNA decay rates across genes [44,49,50]. We caution that the
experiments to obtain decay rates involve treatment with an
antibiotic (ActD), which is toxic to cells and may therefore be
associated with certain artifacts. That said, ActD is a well-
established reagent for studies of this type and the conditions we
used here closely reflect those of earlier studies of mammalian
mRNA decay. One inherent limitation of our study design is the
mnability to calculate absolute decay rates and thus mRINA half-
lives. Instead, we were only able to estimate decay rates relative to
the mean cellular mRNA decay rate. Using data collected using
commercial microarrays (rather than, for example, RNA sequenc-
ing data), this was the only way we were able to normalize the data
across time points without making explicit assumptions regarding
the distribution of decay rates. Our normalization approach
allowed us to maintain the relative order of genome-wide decay
rates across genes and individuals. Yet, it also likely resulted in a
limited range of the estimated variance of decay rates across genes
compared to the true underlying distribution of absolute decay
rates. Thus, the results and analyses presented here may
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underestimate the magnitude of variation in mRNA decay rates
across genes.

The relationship between RNA decay and steady-state
gene expression levels

In many cases, our observations across genes were consistent
with the intuitive model whereby faster mRNA decay rates are
assoclated with lower steady-state gene expression levels. Accord-
ingly, we observed lower and higher steady-state gene expression
levels for the most rapidly and slowly decaying genes, respectively.
Focusing only on these intuitively simple regulatory interactions
across QTLs, we estimated that up to 19% of eQTLs might
influence gene expression variation through an effect on mRNA
decay rates. Incorporating rdQ'TLs with data on DNase sensitivity
QTLs (dsQTLs), we estimated that a combination of variation in
RNA decay rates and chromatin accessibility might explain the
majority (63%) of eQTL effects. In addition, we find that SNPs
within miRNA binding sites show an enrichment for association
with variation in decay rates compared to all 3'UTR SNPs,
leading to a hypothesis that variation in miRNA binding plays a
particularly important role in regulating decay rate variation.

Interestingly, however, we observed many instances of the
opposite (discordant) relationship between mRNA decay rates and
steady-state gene expression levels. Overall, 59% of genes with a
significant correlation between decay rates and expression levels
across individuals show a discordant relationship (though only
45% of eQTL/rdQTL pairs). The frequency of this phenomenon
seems somewhat unexpected especially given the stronger overall
concordant relationship between decay and expression when all
genes are considered. It may also cast doubt on the mechanistic
explanation we offered for the more intuitive — concordant —
relationship between RNA decay and gene expression levels. On
the other hand, prevalent discordant decay rates and expression
levels across genes have been previously observed in yeast. We
speculate that these discordant patterns are the result of complex
regulatory circuits, which have evolved to address the need for
shorter response time or to stabilize steady-state gene expression
levels within the cell. Indeed, the majority of genes with discordant
decay and expression patterns are known to be involved in
biological processes that require fast response time (Table S3). In a
subset of these cases, an auto-regulatory or regulatory feedback
circuit has been demonstrated (Table 1). Since many stress and
immune response pathways are activated (namely, these genes are
highly expressed [53]) in LCLs due to the EBV infection which
causes immortalization, we hypothesize that we were able to
identify discordant patterns of decay and gene expression at a
higher frequency than otherwise expected in resting cells.

Discordant differences in the rates of transcription and mRNA
decay could be achieved by a coupling of decay and transcrip-
tional regulatory mechanisms. Dori-Bachash and colleagues
suggested that discordant patterns between two closely related
yeast species might be due to such coupling whereby the same cis
elements may regulate both processes [37]. Supporting these
findings, Shalem et al. found that Polll binding in yeast could
regulate coordinated mRINA synthesis and degradation processes
[38], building on work from Harel-Sharvit et al. that implicated
Polll as a factor linking both transcription and mRNA decay to
translation in yeast [55]. Additional evidence has pointed to an
intrinsic role for the same promoter binding elements promoting
both mRNA synthesis in the nucleus and mRNA degradation in
the cytoplasm [56,57]. Our observations also lend support to an
explanation based on coupling of the transcription and RNA
decay processes.
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Such mechanistic coordination implies complex regulatory
circuitry, which suggests that decay processes might be playing
an important role in maintaining an upper limit of steady-state
gene expression, while allowing for rapid transcriptional response -
a classical auto-regulatory feedback loop motif [36]. Coupling
different regulatory mechanisms to cause such regulatory motifs
has been suggested as a way by which cells optimize systems-level
functionalities [40]. This is especially important in the context of
transcriptional responses to external stimuli or stress. In these
situations, coupling of transcription and mRNA decay might be an
efficient strategy that allows rapid and precise control of cellular
response to external perturbations [40].

Previous studies provided evidence for the important role of
mRNA decay in regulating cellular response. For instance,
Raghavan et al. found that activation-induced genes in human
T-lymphocytes cells, which are enriched for transcriptional
regulatory functions, tend to have fast decay rates [52]. Shalem
and colleagues evaluated changes in mRINA decay and transcrip-
tion rates in yeast subjected to either transient or enduring stresses
[70]. Yeast subjected to the enduring stress displayed an expected
behavior whereby most induced genes were stabilized, while under
the transient stress, most induced genes exhibited faster decay rates
regardless of their increased steady-state expression levels [70].
Our rdQTL data suggest that variation in regulatory elements that
affect mRNA decay rates may play an important role in the
individual-specific efficiency of response regulatory circuitry.

Summary

We have taken some of the first steps towards characterizing the
impact of variation in mRNA decay rates on variation in gene
expression levels. Our results indicate that decay processes might
play a crucial role in fine-tuned genome-wide regulation of gene
expression variation in humans. In particular, we found that a
moderate proportion of eQTLs might be due to variation in decay
rates, and that negative feedback regulatory circuits involving
mRNA decay processes may be common in humans. Further
study of the mechanisms underlying variation in mRNA decay
rates 1s needed to increase our understanding of the genetic basis
of steady-state gene expression levels and the underlying regula-
tory circuits.

Methods

Cell culture, Actinomycin D treatment, RNA isolation

Cell lines were grown using standard procedures (as recom-
mended by Coriell) by culturing cells in RPMI 1640 (supplement-
ed with 2 mM L-glutamine and 15% fetal bovine serum). Each of
the cell lines was treated with Actinomycin D (ActD) to inhibit
transcription, with one biological replicate from each cell line.
Because ActD terminates active transcript elongation by binding
directly to DNA in a reversible manner [12-14,71,72], it is
generally thought to be the most effective transcriptional inhibitor
[16,18,72-74]. ActD treatment was performed by culturing cells at
a concentration of 750,000 cell/ml with 7.5 ug/ml of ActD.

Based on the results from a pilot experiment (see Methods S1,
Figure S1, Figure S2, Figure S3), we extracted RNA at a total of
five timepoints: before the treatment with ActD (0 hours) and after
treatment (0.5 hours, 1 hour, 2 hours, and 4 hours). To account
for the decrease in total RNA resulting from the treatment and to
obtain enough RNA from each timepoint for subsequent
microarray hybridization, we increased the number of cells from
which we extracted RNA over the timecourse (Figure S1). Total
RNA was extracted using an RNeasy Mini Kit (Qiagen) and RNA
quality was assessed using an Agilent Bioanalyzer.

PLOS Genetics | www.plosgenetics.org
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Microarray analysis and normalization

We estimated gene expression levels in all samples (350 total
samples across all 5 time points and 70 cell lines) by hybridizing
RNA to the Illumina HT-12 v4. Expression BeadChip arrays. As
RNA vyield is expected to change across samples from different
time points (due to RNA decay), previous microarray based studies
of RNA decay have typically normalized their data using spiked-in
samples [3,8,21]. The Illumina HT-12 arrays, however, do not
include non-human probes that would allow us to use spike-ins.
Instead, we hybridized the same quantity of RNA from each time
point to the microarrays using standard Illumina hybridization
protocols. Subsequently, we normalized the array data using
standard approaches across all the arrays [27-29,75,76].

All low-level microarray analyses were performed in R using the
Bioconductor software package lum: [13,31-34,77]. Specifically,
we performed a log2 variance stabilizing transformation and
robust spline normalization (RSN). Following normalization, we
removed probes with intensities indistinguishable from back-
ground noise in either the 0 and/or 4 hour time points on the
array (as measured by the negative controls present on each array).
In addition, we mapped the Illumina 50 bp probe sequences using
BWA v.0.4.6 [36,78] and retained only probes that mapped
uniquely with 100% identity to an exon within an annotated gene
from the Ensembl database (2009-12-31 version). Following
filtering based on detection and probe mapping (see Supplemental
Materials), data from 23,065 probes corresponding to 16,823
genes were used for all further analyses. For gene-based analyses,
we considered the mean expression across the set of probes
corresponding to a single gene as the expression level of that gene.
For all genotype analyses, SNPs located within probes could bias
probe hybridization and downstream measures of steady-state
gene expression across individuals. For the 3,327 probes overlap-
ping one or more SNPs, we aimed to remove the effect of SNPs on
probe hybridization by regressing steady-state expression levels on
the genotype of the SNP located within the probe. In cases where
this regression was significant (P<<0.05), we used the residual of the
regression as the steady-state expression measurement [28,29,79].

After all normalization and filtering steps, genes whose
transcripts decayed at an “average” rate appeared to be expressed
at a constant level through the timecourse measurements (Figure
S2). For ease of visualization, the expression levels across time
points in all decay profiles plotted throughout this manuscript have
been standardized by the total number of cells from which RNA
was extracted (Figure S1).

Calculation of mRNA decay rates (and fast/slow decaying

genes)

Because mRNA decay has been shown to exhibit properties of
first-order decay [11,39,80,81], we estimated gene-specific RNA
decay rates in each cell line by using a regression equation of the
form (a linear transform of the first-order exponential decay
model):

In(y(t))=By—kt+¢ (1)

where y(t) is the mRNA abundance at time ¢, By is the mRNA
abundance at the untreated time point (time point ‘0°), £ is a gene-
specific decay rate constant, and variance &~N(0,6%). For
subsequent analyses, we used the gene-specific decay rate constant
k as an estimate of a decay rate. Under these conditions, genes with
decay rates close or equivalent to the mean cellular decay rate are
represented by £=0. To identify genes that decay significantly
faster or significantly slower than the mean mRNA decay rate in
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LCLs, we identified genes for which £ significantly differed from
zero (mean decay rate). We fit gene-wise decay rates for each cell
line and identified genes for which least 80% of individuals had
estimated values of k that differed significantly from 0 (P<0.1) in
the same direction (either faster or slower decay than the mean
decay rate).

To rank genes by their combined gene expression and decay
values, we examined the genome-wide distributions. For example,
genes with discordant patterns are those with high (or low)
expression levels and whose mRNA decays rapidly (or slowly). To
classify such patterns, we independently identified genes within the
top 5% and 10% tails of the decay rate and steady-state gene
expression distributions and then considered the overlaps across
the two data sets (Figure S5B). We identified 9 and 49 genes at the
top 5% and 10%, respectively, of both the gene expression and
decay rate distributions.

Determination of genomic annotations

To determine the effect of gene length and 3'UTR length on
mRNA decay rates, gene lengths and 3'UTR lengths were
calculated using information extracted from the Ensembl gene
database (2009-12-31 version). [41-43,82]. Total gene length was
defined as the distance between the upstream most TSS and the
downstream most transcription end site (inclusive of both exons
and introns). Total 3'UTR length was calculated as the number of
bases annotated as being within a 3'UTR in any isoform of the
given gene.

In order to create a comprehensive set of microRNA (miRNA)
binding site predictions, we downloaded the miRNA binding
predictions from three databases: microRNA.org, PicTar, and
targetScan [3,19,20,22-25,44-47]. By parsing the predictions for
all miRNAs in these three databases, we obtained a combined set
of miRNA predictions that were present in one, two, or all three
databases. Because each of these databases uses different sets of
annotations and identifiers, we applied a series of conversion and
filtering steps for each database (see Methods S1 for details). We
used the AREScore algorithm (http://arescore.dkfz.de/arescore.pl)
[26,44,49,50] to calculate an AREScore as a proxy for the number
of AU-rich elements present in 3"UTRs. The program was run
with default parameters on RefSeq defined 3'UTR regions for all
genes in our dataset [1,3,41,51,52,83].

To identify significantly over- or under-represented motifs in
either fast or slow decaying genes, we used the FIRE algorithm
(https://tavazoielab.c2b2.columbia.edu/FIRE/) [30,41]. We test-
ed for motif enrichment in promoter regions and full gene bodies
of both fast and slow decaying genes, using default FIRE
parameters. In all tests, we compared against a background set
of all genes that were present in our study.

Gene Ontology analyses

We  used GeneTrail  (http://genetrail.bioinfo.uni-sb.de)
[15,26,84] to test for enrichments of functional annotations
among different classes of genes: (a) genes consistently decaying
faster or slower than the mean cellular decay rate, (b) genes at the
top 10% of both the gene expression and decay rate genome-wide
distributions, and (c) genes showing either concordant or
discordant relationships between decay rates and gene expression
levels. In all tests, we used a background set of all genes that were
present in our study and detected as expressed in either the zero or
four hour timepoints. The tests were performed using all GO
categories and KEGG pathways. We calculated p-values using a
hyper-geometric distribution and report false discovery rates for
each p-value.
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Inter-individual correlation between decay rates and
expression levels

To investigate the contribution of variation in decay rates to
overall variation in steady-state gene expression levels across
individuals, we identified genes whose expression levels and decay
rates were significantly correlated. Specifically, for each gene, if y;
denotes the steady-state expression level (defined here as the mean
of the expression levels across all time points in order to increase
statistical independence from the estimated decay rates) for
individual 7 and 7; denotes the corresponding decay rate estimate,
we fit a linear model of the form:

2)

where the coefficient, f/, measures the strength of the association
between decay rate and steady-state gene expression levels. In
order to identify genes where the coefficient, f, represents a
significant association, we repeated the analyses with 3 sets of
permuted decay rates, recorded the significance of f from each
permutation, and used these permuted p-values as an empirical
null distribution. We estimated the FDR by comparing the true
distribution of p-values of f to this null distribution.

Yi=p+Prite

Analysis of Polll ChIP-seq data

Polll ChIP-seq data on six YRI LCLs (GM18505, GM18522,
GM19141, GM19193, GM 19204, and GM19238) were collected
within the context of another study within the lab. ChIP-seq
libraries were prepared as described previously [11,54,85], using
the non Polll antibody H-224 (Santa Cruz Biotechnology, sc-
9001x). In addition, raw Polll ChIP-seq reads from a seventh YRI
LCL, GM19099, was obtained from a previously published study
[11,33,47] and analyzed in a similar fashion to the Polll ChIP-seq
data generated in-house.

Raw Polll ChIP-seq reads were mapped back to human
genome (hgl8) using BWA v.0.4.6 [11,54,78] and reads from
multiple lanes from the same individual were combined into a
single mapped file. For each individual, we used Samtools [6,86]
to isolate reads in genic regions (as defined in the Genomic
Annotations section above) and promoter regions (defined as 1 kb
upstream and 1 kb downstream of the transcription start site). For
genic regions, read counts were normalized by the total length of
the genic region to be able to compare across genes with varying
length. For individual-specific measures of Polll occupancy for
each gene, read counts were normalized by the total number of
mapped reads per individual.

Quantitative trait loci (QTL) association mapping

For all QTL mapping analyses, we used close to full genotype
information for each of the 70 YRI individuals, achieved by
combining available datasets and imputing missing genotypes with
the BimBam software [58,87,88] as described previously
[32,59,60]. Briefly, we built a reference panel consisting of the
largest set of all 210 YRI HapMap individuals and gathered
genotypes for any SNP or short insertion/deletion (indel) called in
either HapMap (Release 28; October 2010, [1,35,59]) or 1000
Genomes (May 2011 interim phase 1 release, [1,52,60]) datasets.
Missing genotypes in the individuals in this study were imputed
using this reference panel, resulting in a total of approximately
15.8 million variants genome-wide.

All associations between genotypes and either decay rates or
gene expression were examined using a linear regression model in
which each phenotype was regressed against genotype. For all
analyses, we only tested association under the assumption that
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SNPs affected the resulting phenotype in an additive manner (i.e.
heterozygote phenotypic mean equals the average of the two
homozygote means). For each gene, we tested for association of the
phenotype with the genotypes of SNPs and indels within a cus-
candidate region of 25 kb around the gene (25 kb upstream of the
TSS and 25 kb downstream of the TES). We chose this definition
of a ¢is-candidate region to map variation in mRNA decay rates in
an unbiased manner by including SNPs outside of transcript
regions. Indeed, recent reports have indicated that elements in
intergenic promoter elements [56] and RNA binding proteins
binding intronic regions [89] could regulate mRNA decay
mechanisms. To evaluate genotypic effects on decay variation
for a given gene, we tested associations with SNPs or indels with a
minimum allele frequency greater than 10%, using the following
model:

3)

where 7 is defined as in model (2) and gj corresponds to the
genotype of individual ¢ at variant j, coded as 0, 1, or 2 copies of
the minor allele. In this model, the coefficient 7 indicates the
strength of association between the mRINA decay rate of the gene
and genotypes at variant j. To estimate the false discovery rate, we
permuted phenotypes three times, re-performed the linear
regressions, and recorded the minimum p-value (across SNPs/
indels) for each gene for each permutation. These sets of minimum
p-values were used as our empirical null distribution. We
estimated the FDR by comparing the true distribution of the
minimum p-values to this null distribution, as previously described.
Previous studies mapping cis-associations have found that statis-
tical power to detect associations can be dramatically increased by
accounting for unmeasured confounders within quantitative
measure of the phenotype [3,12,13,31,32,41,90,91]. When con-
sidering decay as the phenotype, we did so by performing principal
components analysis (PCA) on the (70 by 70) correlation matrix of
decay rate estimates. We found the strongest rdQ)'T'L signal (largest
number of findings at a fixed FDR) when 13 principal components
(PCs) were regressed out.

ri=u+7gi+ &

When considering steady-state gene expression as the pheno-
type, we performed all analyses on mean expression levels across
all time points per individual in order to reduce the variance of
expression measurements and increase the statistical independence
between the eQTL estimates and the estimates of decay rates. We
quantile normalized these measurements and performed PCA to
account for unmeasured confounders. For the eQTL analyses, we
again found the most QTL signal when 13 PCs were regressed out.
The eQTL analyses were performed by testing for association
between mean expression levels and SNPs or indels with a
minimum allele frequency greater than 10%, using the following
model:

Yi=p[+78ij+ & (4)

where y; is defined as in model (2) and gj corresponds to the
genotype of individual 7 at variant ;. In this model, the coefficient y
indicates the strength of association between the mean steady-state
expression level of the gene and genotypes at variant ;. FDR
calculations were performed as described above.

To assess whether the enrichment of significant mRNA decay
effects among eQTL SNPs could occur by random chance, we
performed a permutation based significance test. Specifically, we
evaluated the effect of genotype on mRNA decay variation using
the most significant cis-eQ'TLL SNP for all genes in our dataset
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(regardless of the genome-wide significance of the SNP). Then, we
randomly chose 1,257 SNPs from this full set (representing the
number of genome wide significant eQTLs identified) and
calculated the number that showed significant association with
mRNA decay variation among this set. We also ensured that the
distribution of gene expression levels associated with the randomly
sampled SNPs matched the distribution of expression levels for
genes with significant eQTLs. By repeating this 1,000 times, we
were able to arrive at a permutation-based expectation for the
enrichment of significant mRNA decay effects among eQTL
SNPs.

In order to look at overlaps between the set of identified
rdQTLs and previously identified dsQTLs, we focused on the set
of 66 YRI LCLs that were used in both studies. Using mean gene
expression measures from this study, we re-mapped eQTLs as
described above in this set of 66 LCLs and identified 1,147 steady-
state eQTLs (15% FDR). Using these 1,147 eQTL SNPs, we
tested for association between each SNP and DNasel sensitivity as
described previously [32] and between each SNP and RNA decay
rates (as described above). To obtain an estimate of the total
proportion of eQTLs we might be able to account for by either
RNA decay variation or variation in DNasel sensitivity, we
assessed, for each SNP, the evidence for association with either
data type. We then chose the minimum p-value for the association
with decay rates or DNasel sensitivity and compared the resulting
distribution to the following analytical transformation:

if X1, X2~U[0,1]

X =min(X1, X2)

P(X<x)=1—(1—x)?

We then applied the Storey et al. qvalue approach to account for
incomplete power [48] to this transformed distribution of p-values.

Data submission
All raw data and tables of all rdQ)'TLs are available under GEO
accession number GSE37451.

Supporting Information

Figure S1 Distributions of the amount of total RNA extracted
across individuals from increasing cell quantities over time. In
order to account for the decrease in total RNA due to the Act-D
treatment, we increased the amount of cells from which we
extracted RNA over time (x-axis). This allowed us to obtain similar
amounts of total RNA (y-axis) for each time point, with no
significant differences in median levels of total RNA (across
individuals) for each time point.

(TIF)

Figure 82 Examples of gene-specific mRNA decay data from
pilot experiments across 5 cell lines. In every plot, time course (x-
axis) estimates of normalized (un-transformed) gene expression
levels (y-axis) from each of the five cell lines are plotted. The top
panels show examples of genes whose transcripts decay at a rate
similar to the mean decay rate in the cell lines. The observed
pattern of no apparent decay is a result of our normalization
approach. To visualize decay, we standardize (described in the
main paper) the normalized expression values by the number of
cells from which RNA was extracted at each time point. The
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bottom panels show two examples of genes decaying faster (left)
or slower (right) than average. It is evident that the later time
points (8 and 12 hours) do not provide significant additional
information to the decay fit when compared to earlier time
points.

(TIF)

Figure S3 Boxplots of distributions of pairwise correlations.
Pearson correlations (y-axis) are plotted for (from left to right on
the x-axis): biological replicates (from the pilot experiment data),
data from different time points of the same cell line (from full
dataset), data from different cell lines for the same time points
(from full dataset), and data from different cell lines across time
points (from full dataset).

(TIF)

Figure S84 Influence of gene length on decay rates after
accounting for 3'UTR length. Distributions of non-3"UTR region
gene lengths (y-axis) for slow decaying genes (blue) and fast
decaying genes (red).

(TTF)

Figure 85 Significant difference between expression levels of
slow decaying genes and fast decaying genes. Genome-wide
scatterplot of median decay rates (x-axis) versus median steady-
state expression levels (y-axis). Colors of the regions indicate the
density of points (higher density in darker colors). The yellow circle
indicates B7G1, an example of a gene with a high decay rate and
high expression level.

(TIF)

Figure S6 Distribution of Polll ChIP-seq tags in gene body
regions. Increase in the density (y-axis) of positive Pearson
correlations (x-axis) for genes with discordant (purple) compared
to concordant (orange) relationship between mRNA decay rates
and gene expression levels.

(TIF)

Figure 87 Estimates of the proportion of most significant eQ'T'LL
SNPs that are significantly associated with decay rates. All
analyses are done using the R package ‘qvalue’ as described in
Storey and Tibshirani 2003. A. Estimated fraction of test statistics
(mp) that are generated under the null hypothesis (no association
with decay), as a function of the tuning parameter A (solid line).
The 95% bootstrap confidence band is also shown (dashed lines).
The vertical dashed line corresponds to A for which the bootstrap
mean square error for the estimate of @y is the smallest. B.
Distribution of the p-values for tests of association with decay
rates and the distribution that would be expected if all test
statistics were generated under the null hypothesis (no association
with decay) mp=1 (dashed red line), and the fraction (solid red
line) of null tests estimated to be present from the observed
sample.

(TTF)

Figure S8 Evidence for association with decay and expression
for SNPs in functionally annotated regions. A. The QQ-plots of
expected versus observed quantiles of the —loglO(p-values) for
association with decay for SNPs located in coding exons (green),
5'UTRs (dark red), 3'UTRs (red), promoter regions (5 kb
upstream of TSS; in orange), and all other intergenic and
intronic SNPs (black). B. The QQ-plots of expected versus
observed quantiles of the —loglO(p-values) for association with
expression for all 3"UTR SNPs (red) and in two known 3'UTR
functional annotations — predicted miRINA binding sites (dark
blue) and AU-rich element pentamers (light blue).

(TTF)
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Figure 89 LEvaluating factors causing bias in the estimation of
the proportion of eQQTLs also classified as rdQ’T'Ls. A. Boxplots of
the distribution of the total number of SNPs in all cis-candidate
windows for genes with only eQTLs (left) and genes with eQTLs
that are also rdQTLs (right). B. Boxplots of the distribution of
minor allele frequencies for SNPs identified as only eQTLs (right)
or eQTLs that are also rdQTLs (right). C. Boxplots of the
distribution of the number of minor allele homozygotes for SNPs
identified as only eQTLs (right) or eQTLs that are also rdQTLs
(right).

(TTF)

Figure S10 Numbers of eQTLs that are also classified as
rdQTLs (right), dsQTLs (left), or both (middle).
(TIF)

Figure S11 Estimates of the proportion of most significant
eQTL SNPs that are associated with either decay rates or
DNasel sensitivity. All analyses are done using the R package
‘qvalue’ as described in Storey and Tibshirani 2003. A.
Estimated fraction of test statistics (7o) that are generated under
the null hypothesis (no association with either decay or DNasel
sensitivity), as a function of the tuning parameter A (solid line).
The 95% bootstrap confidence band is also shown (dashed
lines). The vertical dashed line corresponds to A for which the
bootstrap mean square error for the estimate of @y is the
smallest. B. Distribution of the transformed minimum p-values
for tests of association with either decay rates or DNasel
sensitivity and the distribution that would be expected if all test
statistics generated under the null hypothesis (no
association with decay or DNasel sensitivity) mp=1 (dashed
red line), and the fraction (solid red line) of null tests estimated
to be present from the observed sample.

(TIF)

were

Methods S1 Supplementary materials and methods for analyses
presented in the main text.

(DOC)

Table S1 Summary of data for expression timecourse and decay
rate calculations.

(TXT)

Table $2 Gene Ontology categories for genes decaying slower
than average (FDR<<0.1%)
(XLSX)

Table S3 Gene Ontology categories for genes decaying faster
than average (FDR<0.1%).
(XLSX)

Table 84 Gene Ontology categories for the 47 genes in the top
10% of both decay and gene expression distributions (FDR<1%).
(XLSX)

Table 85 Gene Ontology categories for genes with a concordant
relationship between decay and gene expression across individuals
(FDR<0.1%).

(XLSX)

Table S6 Gene Ontology categories for genes with a discordant
relationship between decay and gene expression across individuals
(FDR<0.1%).

(XLSX)

Table S7 Summary of data for Polll ChIP-seq reads.
(XLSX)

Table 88 Information on rdQQTLs identified in this study.
(TXT)
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