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Abstract

Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding
challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of
these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the
identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the
genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene
regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites
were conserved among all three species, as expected based on their central role in regulating transcription. However, we
found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and
chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with
increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks.
Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-
specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic
contributors to transcriptional and phenotypic differences among primate species.
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Introduction

Understanding the molecular basis of phenotypic differences

between humans and other primates has been a priority in

medicine, behavior, and evolution research [1–3]. The genetic

basis for these differences can now be explored genome-wide due

in part to the rising number of completely sequenced primate

genomes. However, finding genotype-phenotype connections is

difficult since the vast majority of sequence changes do not

contribute to phenotypic differences across species. It was

hypothesized over 40 years ago that phenotypic differences

between humans and our closest primate relatives are shaped

largely by changes in non-coding regulatory elements [4].

Variation in gene regulation have been indirectly confirmed by

studying gene expression differences across matched cell or tissue

types isolated from different primates [5–12], but these studies

have failed to pinpoint the regulatory elements responsible for

these changes [13]. Genome-wide scans of non-coding DNA

sequences under branch-specific positive selection have identified

putative regulatory elements that have undergone functional

changes [14–16]. These studies identified hundreds of regulatory

regions with evidence of accelerated sequence substitution during

human origins, possibly reflecting adaptive changes in gene

regulation. Scans for selection do not, however, provide informa-

tion about the functional or trait consequences of these evolution-

ary changes.

Understanding the relationship between mutation, natural

selection, and variation in gene regulation is an important goal

in evolutionary genomics. Heritable differences in gene expression

must have a genetic basis, but exactly what sequence variants have
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led to these differences are largely unknown. In this study, we used

changes in chromatin configuration to better understand this

genotype-phenotype relationship. We identified evolutionary con-

served and altered regulatory element activity by performing

genome-wide DNase-seq [17,18] in primary skin fibroblasts and

lymphoblastoid cell lines (LCLs) isolated from three human and

three chimpanzee individuals (Figure 1a and Table S1). Each

DNase-seq experiment identifies nucleosome-depleted DNaseI

hypersensitive (DHS) sites that mark all types of regulatory

elements, including promoters, enhancers, silencers, insulators,

and locus control regions. The comprehensiveness of this assay is

supported by ChIP experiments for active histone marks, p300,

CTCF, and other transcription factors [19–21]. In addition to

human and chimpanzee, we performed DNase-seq on fibroblasts

from three Rhesus macaque individuals to polarize human-

chimpanzee chromatin differences and to distinguish between gains

and losses of regulatory elements on the human and chimpanzee

branches (EBV-derived lymphoblastoid cells are not available for

this species). We also performed Digital Gene Expression sequence

(DGE-seq) experiments using the same cell cultures to simulta-

neously compare levels of mRNA abundance [7,22]. Analyses of

these data provide insights into the relationship between evolution-

ary changes in regulatory elements, their tissue-specific activity, and

the resulting functional consequences in gene expression.

Results

DNase-seq identifies species-specific DHS sites
To directly compare DNase-seq data generated from human

and non-human primate fibroblast and lymphoblastoid cell line

(LCL) samples, we mapped all data to the human genome (build

hg19). Non-human DNase-seq sequences were first aligned to their

native primate genome and then converted to human coordinates

using liftOver [23] (Figure 1a). We limited analyses to high

confidence orthologous regions of the human, chimp, and

macaque genomes to eliminate potential artifacts due to mis-

aligned, missing sequence, or CNVs (Materials and Methods).

Comparisons across individuals within a species and against tiling

array DNase-chip [24,25] data generated from the same material

supported data accuracy and reproducibility (Materials and

Methods and Table S2). DNase-seq signals from individuals

within a species were more highly correlated than signals from

different species (Figure 1b). Human and chimpanzee DNase-seq

signals from fibroblasts were better correlated than human and

macaque signals as expected since human and chimp share a more

recent common ancestor. Chromatin structure differed more in

cell types (fibroblasts vs. LCLs) from the same species than in the

same cell-type across different species (Figure 1b). For example,

human and chimpanzee fibroblast DNase-seq signals are more

similar than human fibroblast and human LCL DNase-seq signals.

The same correlation patterns were also found in gene expression

data generated from the same samples (Figure 1c).

We identified genomic regions exhibiting significant differences in

DNase-seq signal between species [26] (Materials and Methods). Data

from macaque samples were used to classify regions as DHS gains or

DHS losses on the human or chimpanzee branch (Materials and

Methods). More specifically, we defined a human DHS gain as a

region with significantly more DNase-seq signal in human than in

either chimpanzee or macaque (Figure 2a), and a human DHS loss as

a region with significantly less DNase-seq signal in human than in

either chimpanzee or macaque (Figure 2b). In essence, these data

identify regulatory regions that originated or disappeared in fibroblasts

during human origins. Chimpanzee DHS gains and DHS losses were

similarly defined (Figure S1). For approximately 90% of gains, a

corresponding DHS site was completely absent in all three individuals

from each of the other species (Figure 2f). For the remaining sites,

DHS sites were annotated in multiple species, but a consistently higher

DNase-seq signal was present in one species compared to the others

(data not shown). We found that the majority of the human DHS

gains (72–79%) and chimpanzee DHS losses (73–74%), and a

minority of the human DHS losses (11–27%) and chimpanzee DHS

gains (8–17%), overlapped a DHS site found in one or more of three

independently derived human fibroblasts (Figure 3a, Table S3). We

also found similar trends comparing six independently derived LCLs

analyzed by our group (Figure 3b, Table S4), and 20 independently

derived human fibroblast samples analyzed by another ENCODE

group (Figure S2a-S2b) [27,28]. These provide evidence that the

identified DHS gains and losses represent significant and reproducible

functional changes between species. Fibroblasts have been shown to

have specific expression profiles associated with different biopsy

locations [29,30]. We note that DHS gains and losses are not enriched

around these genes (Materials and Methods).

Identified DHS gains (Figure 2a) and losses (Figure 2b) deviated

in sequence read depth from the general chromatin spectrum

(Figure 2c). To more directly compare DHS gains and losses with

sites that do not change between species, we also identified a set of

DHS regions with similar DNase-seq signal intensity across all

three species, which we call Common DHS regions (Figure 2d,

Materials and Methods, Supplemental data file 1 in Dataset S1).

Using a false discovery rate (FDR) of 1%, we detected 836 human

DHS gains, 286 human DHS losses, 676 chimpanzee DHS gains,

211 chimpanzee DHS losses, and 1259 Common regions

(Supplemental data file 1 in Dataset S1). The higher number of

DHS gains compared to DHS losses could be due to purifying

selection, or more simply may be related to the asymmetry in their

detection criteria (see Materials and Methods for a more complete

discussion). True species-specific DHS gains and losses could not

be identified in LCLs due to the lack of macaque EBV-derived

LCL samples. However, we identified 103 DHS sites with higher

DNase-seq signals in human (LCL human DHS gain), 181 DHS

sites with lower signals in human (LCL human DHS loss), and

1583 DHS sites with similar signals in both (LCL common DHS;

Supplemental data file 1 in Dataset S1).

Similar numbers of gains and losses were found when comparing

chimpanzee DNase-seq data to data from an independent set of

Author Summary

The human genome shares a remarkable amount of
genomic sequence with our closest living primate
relatives. Researchers have long sought to understand
what regions of the genome are responsible for unique
species-specific traits. Previous studies have shown that
many genes are differentially expressed between species,
but the regulatory elements contributing to these differ-
ences are largely unknown. Here we report a genome-wide
comparison of active gene regulatory elements in human,
chimpanzee, and macaque, and we identify hundreds of
regulatory elements that have been gained or lost in the
human or chimpanzee genomes since their evolutionary
divergence. These elements contain evidence of natural
selection and correlate with species-specific changes in
gene expression. Polymorphic DNA bases in transcription
factor motifs that we found in these regulatory elements
may be responsible for the varied biological functions
across species. This study directly links phenotypic and
transcriptional differences between species with changes
in chromatin structure.
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human fibroblasts and LCLs at the same FDR (Figure S3a–S3b).

Furthermore, only 66 differential open chromatin sites were

detected when comparing human fibroblast data to additional

independently derived human fibroblasts. Likewise, only 1 differ-

ential DHS site was detected when comparing human LCLs to

additional independently derived human LCLs. This is less than 1%

of all differential open chromatin sites when comparing human vs.

chimpanzee, indicating a low false positive rate (Figure S3a–S3b).

Species-specific DHS sites are cell type–specific
As part of the ENCyclopedia Of DNA Elements (ENCODE)

project [31], we have generated DNase-seq data from 27 diverse

Figure 1. Comparison of DHS sites and DGE-seq data across species. (a) Analysis pipeline. DNase-sequences from each species were aligned
to the native genome and lifted over to the human genome for analysis. Regions are filtered at various steps of the analysis to remove alignment and
orthology artifacts (Materials and Materials). Correlation plots of DNase-seq signals (b) and DGE-seq signals (c) expression data show that both
chromatin and expression data from human (Hu), chimpanzee (Ch), and macaque (Ma) are more highly correlated between biological replicates from
the same tissue within a single species. Additionally, the same cell type from different species is more similar than different cell types from the same
species.
doi:10.1371/journal.pgen.1002789.g001

Figure 2. Identification of species-specific differences in DHS sites. Species-specific DHS sites were identified by edgeR (Materials and
Methods). Boxplots show the distribution of number of reads per sample in 300 bp windows. For human DHS gains (a), the 3 human samples are all
significantly more open than the other 2 species. Likewise, human DHS losses (b) show lower signal in human compared to both chimpanzee and
macaque. A representative sampling of distributions from all DHS is shown in (c), as well as Common DHS sites (d) found in all three species that are
matched for signal intensity compared to human DHS gains and human DHS losses. (e) Distribution of species-specific DHS Gains and DHS Losses
relative to promoters, introns, 39 UTR, and intergenic regions. (f) Representative screen shots of human-specific DHS Gains and Losses compared to a
Common region.
doi:10.1371/journal.pgen.1002789.g002
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human cell types [32] (Table S3, Crawford unpublished

ENCODE data). We determined the overlap of our identified

DHS gains and losses in fibroblasts with DHS sites in these other

human cell types. Seven hundred and sixty-seven (92%) fibroblast

human DHS gains were found in at least one of three other

independently derived human skin fibroblast ENCODE cell lines

from normal (Fibrobl) and diseased individuals (Parkinson’s:

FibroP; Progeria: ProgFib) supporting the reproducibility of these

data (Figure 4a, Figure S3a). Additionally, human DHS gains

showed a high level of overlap with some, but not all, non-

fibroblast human cell types (Figure 4a, Table S4, Figures S4, S5).

This suggests that DHS gains are largely cell-type specific. Few

human DHS losses were identified as a DHS site in any of the

other human cell types (Figure 4b and Figures S4, S5). In contrast,

Common DHS sites were detected in most other human cell types

(Figure 4c and Figures S4, S5) suggesting DHS sites active among

all three primates have more general roles in regulating

transcription. Similar trends were seen when comparing LCL

human DHS gain/loss/common regions (Table S5). This suggests

Common DHS sites mark DHS sites present in most or all non-

human primate cell types, as can be seen for chimp lymphoblast

DHS sites (Figure S6i). Expected chimp and macaque DNase

signal intensity are detected in orthologous regions (Figure 4d–4f).

Similar to previous analysis of cell-type specific DHS sites [32], we

found species-specific gains and losses of DHS sites depleted in

promoter regions relative to Common DHS sites and enriched in

distal intergenic regions and within introns (Figure 2e).

We also compared chimpanzee DHS gains and losses to DNase-

seq results from a diverse set of 27 human cell types. We found

that chimpanzee DHS gains did not largely overlap with DHS

sites from any of the 27 human cell types (5–23%, Figure S6a,

Table S4) while chimpanzee DHS losses were more likely to

overlap human DHS sites, especially those from human fibroblasts

(73%, Figure S6b, Table S4). Thus, comparisons to diverse cell

types indicate that Common DHS sites have been selectively

maintained through millions of years of primate evolution

suggesting a role in housekeeping function. In contrast, more

recently evolved DHS sites unique to humans and chimpanzees

are likely functional in a small fraction of cell types with related

functions.

Species-specific DHS sites are associated with biological
function

Species-specific DHS sites were compared to cell-type matched

human ChIP-seq data for multiple active histone marks and

transcription factor binding sites. We found that human-only DHS

sites were better associated with these marks compared to

chimpanzee-only DHS sites (Figure 5). This enrichment was

highest for H3K4me1, H3K4me2, H3K4me3, and H3K27ac,

consistent with chromatin marks predictive of enhancers [20,33]

(Figure 5, Table S6). H3K4 methylation signals were detected in a

higher percentage of LCL human DHS gains compared to

Common DHS sites, while CTCF, a known insulator protein, is

enriched in LCL Common DHS sites (Figure 5, Table S6). The

combination of adjacent chromatin marks and their location

relative to genes (Figure 2e) provides further evidence that species-

specific regulatory elements are functional. These data suggest

most regulatory elements gained or lost after the human-

chimpanzee divergence are preferentially associated with enhanc-

ers, while Common regions are preferentially associated with

promoters and insulators.

Species-specific DHS sites are near genes that exhibit
species-specific expression

We expect species-specific DHS sites that contribute to

phenotypic differences would be located near genes differentially

expressed across species. To test this, we measured the proximity

of fibroblast DHS site gains and losses to genes with variable

expression (Figure 1a). From matched fibroblast expression data,

we used edgeR [26] analysis to identify 1047 human upregulated

genes, 881 human downregulated genes, 785 chimpanzee

upregulated genes and 788 chimpanzee downregulated genes

(Supplemental data file 1 in Dataset S1). Human DHS gains were

significantly enriched (permutation test, P value = 0.00039) near

genes with increased expression in human and depleted (P = 0.008)

near genes with decreased expression in human (Figure 6a–6b).

Similarly, human DHS losses were enriched (P = 0.008) near genes

downregulated in humans and depleted (P = 0.002) near genes

upregulated in humans (Figure 6b). The same relationships

between DNase-seq signal and expression held true for chimpan-

zee (Figure 6b, and Table S7). Analogously, we found that

Figure 3. Comparison of species-specific DHS to independently derived cells. Human DHS gains show a high level of overlap to DHS
regions identified in (a) three independently analyzed human fibroblast cell lines and (b) 5 independently analyzed human LCL samples, compared to
human DHS losses. Common DHS are also similarly detected.
doi:10.1371/journal.pgen.1002789.g003
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significantly upregulated genes were more likely to be near

chromatin gains and downregulated genes near chromatin losses

in each species compared to genes similarly expressed in both

species (Figure S7a–S7b, Table S8, Materials and Methods).

These results support a direct role for species-specific DHS site

differences in species-specific gene regulation. The direction of

these correlations indicate that DHS site gains and losses are more

commonly associated with enhancers than repressors. The LCL

DNase-seq and expression data from human and chimp show a

similar trend (Figure S8).

Figure 4. Comparison of human DHS site gains and losses to DNase-seq data from other human cell types. The log of the DNase-seq
signal intensity value, defined as the maximum parzen score (output of F-seq) for each of the coordinates that are represented along the x-axis, are
represented as a heatmap in these figures. The color red represents a higher score, and thus a relatively higher DNase-seq signal, and the color blue
represents a lower score. (a) 836 DHS sites were identified as differentially open (human DHS gain) in human fibroblasts compared to chimpanzee/
macaque fibroblasts. These regions from Human Fibroblasts (Hu Fibro 1–3) were compared to DNase-seq data generated from 27 other human cell
types (Table S3). Additional human skin fibroblast samples (listed in black) are highly similar, while some non-fibroblast cell types show less but
substantial overlap and the remaining cell types show much less overlap. Only a small fraction of DHS sites were active in all 27 cell lines (Figure S5).
Sites with evidence for positive selection are indicated in the horizontal bar above the heatmap. The distribution appears roughly uniform. (b) 286
DHS sites identified as differentially closed (human DHS loss) compared to chimp and macaque fibroblasts. (c) DNase-seq signal values for Common
regions representing DHS sites in all three species. More than 50% of Common regions are also DHS sites in other human tissues. (d, e, f) DNase-seq
values for same regions as (a, b, c), but DNase data is from orthologous region from chimpanzee and macaque fibroblasts.
doi:10.1371/journal.pgen.1002789.g004

Figure 5. Species-specific DHS sites are associated with functional chromatin marks. DHS sites detected only in human, but not
chimpanzee, LCLs are more enriched for ChIP signals in matched human cell types. LCL histone modification and CTCF ChIP-seq data were previously
generated from the GM12878 cell line [33]. Fisher’s exact test P value significance levels indicated by asterisks or NS (not significant) are provide for
LCL human DHS gains compared to LCL human DHS loss and LCL common DHS regions (Table S6).
doi:10.1371/journal.pgen.1002789.g005

Primate Regulatory Element Evolution
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Many species-specific expression differences were not readily

explained by the presence of a nearby species-specific DHS site.

For example, though statistically, genes upregulated in human

were enriched near human DHS gains, this was true for only 58

of 1182 higher expressed genes (Figure 6a, Table S7). This may

be partially explained by our strict definition of human DHS

gains. Also, long-range interactions may confound the simple way

we assigned DHS sites to the nearest gene. Future studies

involving chromatin conformation capture (e.g., 3C, 4C, 5C)

could be used to better map DHS sites to target gene(s). Lastly,

expression differences between species may result from transcrip-

tion factor binding characteristics that do not alter chromatin

structure. Comparative ChIP-seq studies for specific transcription

factors will be necessary to determine the extent of this

phenomenon.

We conducted gene ontology enrichment analysis for both

species-specific DHS sites using GREAT [34] and differentially

expressed genes using GO (http://david.abcc.ncifcrf.gov/), but

did not find many highly enriched categories in either analysis

(Table S9). This indicates that chromatin gains and losses occur

near many different types of unrelated genes representing a broad

spectrum of gene ontologies.

Species-specific DHS sites show evolutionary selection
and constraint

The functional interpretations of Common and species-specific

DHS sites outlined above naturally lead to predictions about the

operation of natural selection. We used HyPhy [35] to test for

signatures of positive selection within DHS gains and DHS losses

on either the human or chimpanzee lineage [15,16] (Materials and

Methods). Consistent with a functional change unique to humans,

both human DHS gains and losses showed significantly more

evidence for positive selection on the human branch than on the

chimpanzee branch (Mann-Whitney P = 0.03 for gains and

P = 0.0009 for losses, Figure 6c, Table S10). Similarly, both

chimpanzee DHS gains and losses showed increased positive

selection on the chimp branch (P = 0.002 for gains and P = 0.0004

for losses, Figure 6c, Table S10). Signatures of selection for

Common DHS sites were not significant on either branch. These

results provide evidence that positive selection contributes to

species-specific changes in chromatin, both gains and losses, and in

the altered use and activity of gene regulatory elements.

Despite this connection with evolutionary pressures, only two

DHS gains or losses in fibroblasts overlap previously defined

human accelerated conserved non-coding sequences (HACNSs),

Figure 6. Species-specific DHS sites are correlated with expression and evolutionary selection. (a) 58 human DHS gains (yellow arrow)
overlapped human upregulated genes (HumanExpUp), a highly significant enrichment compared to 100,000 random permutations (P = 0.00039).
Only 17 human DHS gains (blue arrow) overlapped human downregulated genes (HumanExpDown), which is lower than random permutations
(P = 0.008) (b) Comparison of DHS gains and losses with expression gains and losses. Yellow represents DHS and expression matches that occur more
often than random permutations, while blue represent less often. P value indicated in each box. (c) Percentage of regions that display evidence of
positive selection on the human (purple) or chimpanzee (brown) branch. Both human-specific DHS site gains and losses show more evidence of
positive selection on the human branch, while chimpanzee-specific DHS site gains and losses show more evidence of positive selection on the
chimpanzee branch (*P,0.03, ** P,0.002). Common sites show an equivalent amount of selection on both branches. (d) Percentage overlap of DHS
Gains (combined from both human and chimpanzee), DHS Losses, and Common DHS sites compared to evolutionarily constrained regions generated
using GSC (Materials and Methods). Regions were divided into three compartments: promoter, intron, and intergenic regions. The black dot
represents the null expectation of finding a constrained region and error bars represent one standard deviation.
doi:10.1371/journal.pgen.1002789.g006

Primate Regulatory Element Evolution

PLoS Genetics | www.plosgenetics.org 6 June 2012 | Volume 8 | Issue 6 | e1002789



chimpanzee accelerated conserved non-coding sequences

(CACNSs), or human accelerated regions (HARs; Table S11)

[14,36–38]. More generally, few DHS sites from any human cell

type we have analyzed, including embryonic stem cells, corre-

spond to genomic regions of accelerated turnover (Table S11e).

This lack of overlap may be due to the absence of DNase-seq data

from specific developmental cell types since HACNSs, CACNSs,

and HARs have been associated with developmental gene

regulation, or to regions of accelerated turnover representing a

different type of genetic element not detected by DNase mapping.

We examined sequence conservation in DHS gains, losses, and

Common sites using evolutionarily constrained regions defined by

PhastCons [14,39] and GERP [40] algorithms with Genome

Structure Correction (GSC) overlap test statistic [19,41,42]. By

PhastCons analysis, we found that Common DHS sites were the

most conserved, a characteristic of regions under negative

selection (Figure S9). Common regions also had the greatest

overlap with evolutionarily conserved elements, as defined by

GERP (Figure 6d; Materials and Methods). The presence of

Common DHS sites in most human cell types (Figure 4c) with

presumably greater functional demands may contribute to their

higher conservation levels relative to gains and losses. Additionally,

losses in both species were more conserved and overlapped more

with conserved elements than gains (Figure S9) suggestive of

relaxed selection and positive selection, respectively. These trends

held true even when noncoding genomic regions were partitioned

based on their relationship to genes (promoter, intron, intergenic;

Figure 6d). In general, higher degree of conservation within

specific regions of the genome can result from local differences

either in mutation rate or selection [43]. Given that localized

decreases in mutation rate below background are unusual, our

data suggest that sequence conservation within Common DHS

sites is primarily driven by negative selection to maintain function.

A large fraction of DHS gains (,70%), losses (,60%), and

Common (,40%) sites did not overlap any highly conserved

elements (Figure 6d). Thus, many DHS sites present in all three

species, and possibly many or all of 27 human cell types, are not

highly conserved. Understanding how these regions function in all

species and cell types without high sequence conservation poses an

interesting challenge for evolutionary genomics.

DHS gains near DHS losses are potential binding site
turn-over regions

Previous studies have shown that individual transcription factor

binding sites (TFBS) ‘‘turn over’’ rapidly during evolution [44–46].

Transposon-mediated shifts in the position of enhancers have also

been documented between mouse and human [47]. While these

showed evidence of TFBS positional change, the turnover of entire

DHS sites have not been shown previously. We identified ten

possible instances of regulatory-element shuffling where a human

DHS gain maps near (,50 kb) a human DHS loss (Figure S10).

These regions were found near genes associated with obesity

(MCR4, Figure S11), imprinting (GNAS, Figure S12), and glial

cell formation (METRNL, Figure S13). We also found cases of

nearby (,50 kb) human and chimpanzee DHS sites that were

independently gained (Figure S14, Figure S10). One region

mapped within an intron of the SRGAP2 gene (Figure S14),

which is involved in neuronal guidance during brain development.

Overall, the number of DHS gains and losses that mapped within

close proximity to each other was not largely enriched or depleted

based on randomized permutation tests, thus we cannot disprove

that these findings are due to chance observations. Further

detailed functional analyses are needed to determine the biological

significance, if any, of these closely mapped regulatory changes.

DHS sites are found in genomic segments deleted in the
human or chimp lineage

Our analyses above focused exclusively on DHS sites mapped to

genome sequences shared between all three primate species.

Recently, segments of DNA broadly conserved among mammals

were found deleted specifically in the human (hCONDELs) or

chimpanzee (cCONDELs) genome [48]. It has been proposed that

these largely gene-desert regions contain regulatory elements that

contribute to species-specific phenotypes [41]. We found human

and chimp DHS sites mapped to 6% of cCONDELs and 11% of

hCONDELs supporting their role in species-specific gene expres-

sion (Table S11). Many human fibroblast DHS sites that overlap

cCONDELs were also present in other human cell types (Figure

S15) indicating that some CONDELs contain regulatory elements

with pleiotropic consequences.

Specific motifs may confer species-specific DHS sites
We analyzed TFBS motifs found within DHS gain, loss, and

common sites across species to identify motifs associated with

differences in hypersensitivity. To quantify differences, we

determined log ratios of the best position weight matrix (PWM)

score in a DHS site between species (Materials and Methods).

Most motif scores from the JASPAR database were distributed

evenly between species (log ratio near zero) indicating no species-

specificity trend for that motif (Supplemental data file 2 and 3 in

Dataset S1). However, log ratios of AP1 motif scores deviated from

zero and correlated with species-specific DHS sites (Figure 7). For

example, in human DHS gains, AP1 motif match scores were

higher in the human sequences and lower in the orthologous

regions in chimp and macaque (Figure 7a). In contrast, AP1 motif

scores in human DHS losses were higher overall in both

chimpanzee and macaque sequences compared to human

(Figure 7b). Common regions showed even distributions of AP1

motif scores across all three species (Figure 7c). This trend was also

found in chimpanzee where chimp DHS gains had higher AP1

motif scores in chimp sequences compared to orthologous regions

from human and macaque (Figure 7d), and chimpanzee DHS

losses had higher AP1 motif scores in human and macaque

(Figure 7e). In a representative human DHS gain, we see that the

human allele results in a better match to the canonical AP1 motif

than the non-human primate alleles (Figure 7f).

These results suggest species-specific sequence changes within

the AP1 motif promote hypersensitivity in some species-specific

DHS sites in the human, chimp, and macaque genomes. AP1 was

the clearest example of this from motifs represented in JASPAR

(Figure 7g, Supplemental data files 2–3 in Dataset S1). Other

transcription factors may be acting similarly, but less frequently.

For example, we also found that ZNF354C (Supplemental data file

3 in Dataset S1, page 81) and NFE2L2 (Supplemental data file 3 in

Dataset S1, page 108) showed similar trends to AP1. In these

cases, motif scores positively correlated with the presence of a

species-specific DHS sites. In contrast, ZEB1 displayed the

opposite trend where higher motif scores correlated with the lack

of a species-specific DHS site (Figure 7g and Supplemental data

file 3 in Dataset S1, page 65). While the mechanism is not yet

clear, our findings and ZEB1’s known role as repressor [49] is

suggestive of its ability to induce a closed chromatin state via

binding to CtBP and HDAC [50].

Discussion

Precise measurements of transcript abundance enabled by RNA-

seq experiments have revealed extensive differences in gene expression

among closely related species [51] with 10–20% of transcripts within a
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given tissue found differentially expressed between humans and

chimpanzees [12,22]. Many transcripts are tissue-specific, and given

the relatively small number of cell types explored, the total number of

differentially expressed genes is likely to be considerably larger. An

important goal of molecular evolution research is to understand how

differences in transcript abundance have evolved, both because the

changes are extensive and because some may underlie the origin of

functionally significant traits [13,52,53].

Figure 7. Functional mutations associated with DHS gains and losses. (a–e) Scatterplots showing the enrichment of AP1 motif matches in
species with increased hypersensitivity. Each ‘‘x’’ represents a single DHS site. (a–c) positive values on each axis indicate better motif matches on the
human branch. For these regions, points in the upper-right quadrant are regions where the AP1 motif scores better in human than either chimp or
macaque, where the lower left represent AP1 motif scores worse in human. The number of DHS sites in these quadrants are indicated. (d–e) For
chimp gain and loss regions, positive values for each axis indicate a better motif match in the chimp branch. (f) The AP1 motif from JASPAR and an
example alignment of a representative human gain region representing a point along the diagonal in the upper-right quadrant in panel a. (g)
Boxplots summarizing the results from AP1 and three other motifs. The boxplots show the distribution of (combined) log-ratios (relative to the
appropriate species). P values for differences relative to common regions are significant (asterisk) in all 4 comparisons: human DHS gains, P,10231;
human DHS losses P,1023; chimp DHS gains, P,10213; chimp DHS losses, P,1028 (Materials and Methods). In AP1, the significant trends illustrate
the same principal observed in panels a–e. Most other transcription factors have plots that show no pattern in motif score among species, such as
SP1 and SOX10 (Supplemental data file 3 in Dataset S1). ZEB1, a transcriptional repressor, displays an inverse relationship with hypersensitivity.
doi:10.1371/journal.pgen.1002789.g007

Primate Regulatory Element Evolution

PLoS Genetics | www.plosgenetics.org 8 June 2012 | Volume 8 | Issue 6 | e1002789



Most gene expression differences across species likely have a

genetic basis, but it is difficult to relate expression changes to

variation in genome sequences. While many non-coding sequence

differences are unlikely to impact transcription, for the subset that

do, it is often not clear what genes are directly affected. In

addition, a non-coding regulatory mutation may only affect gene

expression in a subset of tissues or developmental stages, so many

functional consequences have gone unrecognized given the limited

number of studies performed thus far. Further complicating

analysis, transcription is influenced by environmental factors and

by epigenetic modifications. But the lack of a complete regulatory

element map across species and tissues is perhaps the most

important impediment to understanding gene expression differ-

ences in terms of genome sequence evolution. Changes in

transcript abundance may be caused by genetic differences within

individual regulatory elements in cis that affect transcription factor

binding affinity [54], or within transcription factors that affect

binding to many regulatory elements in trans. Even when the

genetic basis is known to be in cis, there is no reliable method for

identifying the causal mutations from sequence comparisons. As a

result, distributions of positive and negative selection genome-wide

correlate poorly with changes in transcript abundance [12,55,56].

In this study, we showed that analyzing chromatin accessibility

using DNase-seq provides a powerful approach to link genome

sequence changes to species- and tissue-specific differences in gene

expression. Chromatin accessible DHS sites have three properties

that make them especially valuable for evolutionary analyses of

gene expression [17,18]. First, DHS sites identify all known

functional classes of regulatory elements, including core promot-

ers, enhancers, repressors, boundary elements, and locus control

regions, thus revealing all cis components of transcription through

a single genome-wide assay. Second, DHS sites are only found

when a regulatory element is active or poised, which means that

DNase-seq can be used to identify evolutionary changes in tissue-

and developmental stage-specific regulatory elements. And third,

DHS sites represent only ,2% of the genome, making it possible

to focus analyses on regions that are involved in transcriptional

regulation and ignore regions that are not.

We performed DNase-seq on fibroblasts from three primate

species and identified more than two thousand regulatory elements

apparently gained or lost since the divergence of humans and

chimpanzees. Turnover of regulatory elements was enriched near

genes that display species-specific expression differences, indicating

that gains and losses in DHS sites have functional consequences on

transcript abundance. To our knowledge, this is the first evidence

correlating changes in DNase chromatin accessibility and gene

expression across species at a genome-wide scale. We found most

expression differences occurred without a detectable change in a

nearby regulatory element. One possibility is that mutations within

DHS sites affect transcription factor binding without causing large

changes in overall chromatin accessibility. Future experiments are

needed to identify the specific sequence changes that regulate

expression at long distances and/or via post-transcriptional

mRNA stability mechanisms.

Most regulatory element changes occurred within intergenic

regions and introns and were predominantly associated with cell

type-specific DHS sites. These results are consistent with expected

differences in the extent of pleiotropy: loss of core promoter

elements will more likely affect transcription in many tissues and

stages of development, while loss of distal enhancers will more likely

affect transcription in a subset of tissues. Lower rates of change in

core promoter elements and in regulatory elements actively utilized

in multiple tissues suggest negative selection is operating to maintain

regulatory elements with more critical functions.

Analysis of the DNA sequences within regulatory elements

provides evidence for the operation of natural selection within these

elements. Sequence within DHS sites utilized across all three species

show lower rates of substitution than surrounding DNA, which is a

proxy for neutral evolution by drift, consistent with negative

selection operating to maintain their function. In contrast,

regulatory element gains on the human and chimpanzee branches

have significantly elevated rates of substitution, consistent with

positive selection for altered function, while regulatory element

losses show slightly elevated rates, perhaps due to relaxed selection.

Explicit tests for positive selection using branch-specific likelihood

ratio tests [16] reveal that the highest association is with regulatory

element gains and the lowest with common regulatory elements

utilized in all three species. Thus, the genome-wide distribution of

both negative and positive selection within regulatory elements

correlates in predicted ways with the evolutionary conservation and

change in their function. Although we are not aware of any previous

evidence for such a relationship, it seems likely in principle that the

operation of natural selection is often tied to gains, losses, and

conservation of regulatory elements. Most instances of inferred

positive selection we identified do not overlap previously described

HARs [14] or HACNs [36] highlighting that our DHS gains and

losses represent a novel set of differential regulatory elements may

have played a role in adaptation during human evolution.

Many studies have documented evolutionary gains and losses of

individual transcription factor binding sites or H3K4me3 histone

marks among related species [44–46,57], but this is the first

evidence showing gains and losses of entire DHS sites. Since we

only examined two cell types and applied conservative identifica-

tion criteria, the full extent of regulatory element changes between

humans and chimpanzees is likely to be considerably greater than

we report. Nonetheless, the instances of turnover we identified

suggest regulatory element gains and losses are a common class of

functional change within evolving genomes.

We show that sequence differences among species within

particular motifs may result in species-specific DHS sites, which

suggests one way non-coding regulatory variants can alter

chromatin structure. In particular, mutations that produce better

matches to the activator protein 1 (AP1) motif on either the human

or chimpanzee genome correlate with the presence of species-

specific DHS sites, a result detected in human DHS gains and losses

as well as chimpanzee gains and losses. Sequence changes increasing

the affinity for AP1 motif more likely drive species-specific changes

in chromatin structure rather than species-specific coding mutations

within the AP1 components, FOS and JUN proteins, altering the

sequence-binding preference of AP1. Since only a minority of

species-specific DHS gains and losses has differential AP1 motif

scores (Figure 7), this indicates the majority of factors that govern

species-specific DHS sites remain to be discovered. AP1 has been

implicated in many aspects of cellular function ranging from

proliferation, transformation, differentiation, oncogenesis, apopto-

sis, hormone activation, to tumor suppression [58–61]. We provide

evidence that other factors act similarly to AP1 or in the opposite

direction as repressors, such as ZEB1. Mapping DHS sites across a

more diverse set of primate samples, as well as using additional de

novo motif discovery and performing ChIP-seq to reveal binding

sites, will be an important part of identifying additional factors that

confer changes in chromatin structure across species.

Materials and Methods

Cell types and tissue culture
We obtained two cell types from Coriell for this study: skin

fibroblast cells and lymphoblastoid cell lines (LCLs). Primary skin
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fibroblast cells from three human, three chimpanzee, and three

macaque individuals. LCLs, which are B cells immortalized with

Epstein-Barr Virus, were obtained from the same three human

and three chimpanzee individuals that fibroblasts were isolated

from (Table S1). EBV does not reliably transfect macaque

lymphocyte cells, so matched macaque LCLs cells were not

available for this study. Importantly, other recent genome-wide

studies that used macaque LCLs were of B-Lymphocyte cells

transformed with rhesus herpes papio virus, a close relative of

human EBV [57]. Cells from all species were grown in standard

growth media. Fibroblast growth media consisted of Gibco’s

MEM (10370-021), L-Glutamine (25030-081), Pen/Strep (15140-

122), and 10% FBS (Hyclone SH30070). LCLs growth media

consisted of Gibco’s RPMI (21870) media with L-Glutamine, Pen/

Strep, and 15% FBS. We harvested fifty million cells for each

individual biological replicate and allocated 35 million cells for

DNase assays (DNase-seq and DNase-chip), 10 million for

genomic DNA (used as control for DNase-chip array hybridiza-

tion), and 5 million for RNA DGE-seq expression analysis.

DNaseI HS library preparation
DNase-seq libraries we generated as previously described

[17,18] and sequenced via Illumina’s GAII sequencer. DNase-

chip library preparations, used for validation of our DNase-seq

results were performed as previously described [24,25] and were

hybridized to 1% ENCODE Nimblegen arrays [19]. Custom

arrays were designed to cover the orthologous regions from

chimpanzee and macaque. DNase-chip array intensities were

compiled and significant DHS sites were called using ChIPOTle

[62] (P,0.000001 peak cutoff).

DNase-seq aligned to native genomes and lifted to hg19
DNase-seq data generated from each species was aligned to the

native genome (human hg19, chimpanzee panTro2, and macaque

rheMac2) using BWA [63]. To directly compare three different

primate species requires that they be aligned to a single reference

sequence. Because both the chimpanzee (panTro2) and macaque

(rheMac2) reference sequences were built from the existing human

reference, we converted all sequences to human coordinates. To

do this, we converted each 20-mer DNase-seq sequence from

panTro2 or rheMac2 to hg19 with liftOver [23], using a match

setting of 80 percent. After conversion to hg19 coordinates, we

used F-seq [64] to identify DNaseI hypersensitive (DHS) sites. The

F-seq scores from the top 100,000 peaks from each sample were

used to determine how well chromatin openness correlates among

all 15 samples (Figure 1). This analysis uses a pairwise Pearson

correlation to compare the similarity among samples.

Identifying species-specific hypersensitive sites and filters
to eliminate liftOver artifacts and CNVs

We used the bioconductor edgeR package to define species-

specific hypersensitive regions [26]. EdgeR is designed to detect

differences in count data among groups of samples. Briefly, it

compares within-group variances to between-group variances

using a negative binomial model, and selects entries with

significant between-group differences. It was designed for differ-

ential expression data such as DGE-seq or RNA-seq, but it is

similarly applicable to read counts generated by DNase-seq. One

key advantage of edgeR is a normalization procedure specifically

designed for high-throughput sequencing studies [26].

To locate significant differences in DNase-seq signal between

species, we first identified the union set of the top 100,000 DHS

sites (as scored by F-seq) from all 15 samples (9 fibroblasts and 6

LCLs). We used bx-python (https://bitbucket.org/james_taylor/

bx-python) to analyze the data. We divided these regions into

windows, attempting to maximize the resolution of the windows

while minimizing the number of windows required:

Defining windows. We divided the union set into overlapping

windows of 300 bp. DHS sites smaller than 300 bp were expanded to

300 bp. Regions larger than 300 bp were tiled with overlapping

windows; the overlap varies depending on the size of the

hypersensitive region to tile. We start by finding the number of

windows that would fit completely inside the defined HS site using the

default overlap (100 bp). If these windows discard fewer than 10% of

the bases on each edge of the HS site, we tile the site using these

windows, because the initial peak calls tend to run a bit wide. If using

the default overlap would cause us to lose more than this edge

threshold (10%), we add another window and adjust the overlap so

the windows exactly cover the entire HS region. These windows

cover almost all of the HS bases in the original, while minimizing the

number of non-HS bases considered for the downstream analysis.

After defining the windows, we liftOver each window back to chimp

and macaque and discard any windows that don’t map. We also

eliminated any windows mapping to the Y chromosome, because we

have female samples. This resulted in ,1.2 million windows across all

DHS sites (Supplemental data file 4 in Dataset S1).

Zero counts filter. We next counted the number of reads

(DNase cuts) that mapped within each window for each sample. To

be certain to compare only regions that are actually found in all 3

primates, we omitted any windows that did not have at least one

read count in at least one individual from each species. We believe

this is a reasonable filter since there is a basal level of DNase

digestion throughout the genome, and regions without any mapping

reads in one species are likely caused by alignment ambiguities (such

reads are lost in the liftOver process) or reference problems.

Significant differences. We then used edgeR to call

windows with significantly different counts in each pairwise

comparison at a false discovery rate of 1%. This defined species-

specific HS windows. For example, to define human-fibroblast-

specific (human DHS gain) regions, we selected any windows with

significantly more counts in humans compared (pairwise) to both

chimp and macaque fibroblasts. We then merged any significant

neighboring windows.

Reciprocal liftOver filter. To confirm that DNase sites

detected in only a single species were not due to a liftOver artifact or

copy-number variation (CNV), we performed a reciprocal liftOver.

Reciprocal liftOver discards regions that do not map 1:1 between

species assemblies. After defining a species-specific or Common

DHS sites (Common DHS described below) in human coordinates,

we the lifted these windows back to panTro2 or rheMac2. We then

compared number of reads from the original native genome

alignment to the read count on the lifted (hg19) reference. We found

that, in general, these scores correlate well. However, some windows

differ in counts on each reference, indicates liftOver artifacts or

CNVs. Windows with native counts exceeding the reference counts

could result from counts from the native assembly being lifted to

multiple places on hg19. Likewise, windows with more reads on

hg19 than on the equivalent native assembly could be caused by

several regions from the native genome lifting to a single location on

hg19. Since these may possibly artificially appear as chromatin gains

or losses, we filter out these scenarios by requiring that the number

of reads on hg19 for chimp/macaque data be within 10% of the

number of reads on the native assembly.

Sharp peaks and assembly filters. Some regions mapped to

areas in the genome that are clear artifacts, most likely CNVs. These

artifacts are expanses where one of the species has much higher levels

of hypersensitivity than the others, and are often located near
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centromeres or telomeres. A DHS resulting from a massive expansion

in one of our samples compared to reference genome appears as a

large (kb to Mb-scale) DHS site encompassing the entire CNV and/

or DHS sites that cluster closely together. We manually curated a list

of such areas and filtered data mapping within these regions

(Assembly filter). We also eliminate abnormally sharp peaks, which

are likely caused by PCR artifacts, reference assembly inaccuracies,

or small differences in copy number between our samples and the

reference genomes. If any 30 bp window within a region contains

75% or more of the reads in the entire region, these regions are

filtered out as ‘‘sharp peaks’’. Ultimately, we confirmed the regions by

visually inspecting many using both the Integrative Genomics Viewer

(IGV) [65] and the UCSC Genome Browser [23]. These filters apply

to DHS gains, losses, and common regions.

Addressing the confounding effects of skin biopsy
location and Fibroblast heterogeneity

Chang et al. (2002) showed that human skin- and non-skin-

fibroblast samples collected from different locations along the body

plane showed notable differences in transcriptional profiles [29].

Aware of this issue, we made an effort to use fibroblast cultures

made from only skin samples and from the same region of the

upper arm. All 3 replicates of macaque Fibroblasts and one human

Fibroblast were confirmed from Coriell to be from skin biopsies

from the upper arm (the other two locations were unknown). Since

our analysis poses a strict requirement of DHS sites to be present

in all three human individuals to be called a human DHS gain,

having at least one human sample with the biopsy site confirmed

to be from the upper arm ensures that the human gains are not a

result of human DHS gains being a result of, for example, all

human fibroblasts isolated from lower leg. Likewise, to be called a

human chromatin loss, DHS sites have to be absent in all three

human samples (but present in all chimp and macaque samples);

this biopsy location bias is again mitigated by at least one human

sample being from the upper arm.

The Yerkes National Primate Center, from where the chim-

panzee skin fibroblasts were obtained from, unfortunately do not

document the exact location of biopsy. While the standardized

skin punch protocol calls for the location of the skin biopsies to be

from the ear pinna (personal communication with Fawn Conner-

Stroud from Yerkes), we cannot be 100% sure that the samples

were isolated from this location. As described above, human DHS

losses are a result of signal being present in all three chimpanzee

and macaque samples, supporting that these regions are not due to

chimp biopsy location. We also want to reiterate that our skin

fibroblast results are highly similar in LCL lines that are all

uniformly derived from blood samples.

We find that none of our chromatin gains and losses overlap the

Hox genes described in the Chang et al., 2002 paper [29]. In

addition, a more recent analysis by Rinn et al. [30], using more

comprehensive microarrays and more biopsy sites, identified 337

expression array probes (299 unique genes) that were shown to be

highly associated with five different general biopsy site locations.

We have compared this list of genes to both species-specific

chromatin gains/losses, as well as species-specific gene expression,

and find ,3% of the species-specific and common DHS overlap

with the 299 position specific genes. Similarly, species-specific and

commonly expressed genes also show ,3% overlap (Table S12).

Identifying DNaseI hypersensitive sites in all species
(‘‘Common’’ sites)

In order ensure that our tests for selection were meaningful, we

wanted to compare chromatin gains and losses with a set of regions

that were open in all species. Rather than simply choose DHS sites

that have the highest scores, we wanted to mirror the level of

hypersensitivity to that of the species-specific regions. This is

important because species-specific DHS sites are not necessarily

the strongest DHS sites. We also wanted to select a set of regions

similar in size to our sets of gains and losses to retain

computational tractability.

To select a set of matched Common DHS sites, we required

that each window be similarly open in all 9 samples from all 3

species. To be considered ‘‘similarly open’’ in a given sample, the

number of counts must lie between the 20% and 80% quantiles for

that sample in the corresponding species-specific regions. For

example, we used the human DHS gains identified by edgeR to

define the distribution for each of the three human samples, and

similarly for chimp and macaque. As such, our set of Common

regions is the set of all windows with DNase counts within this

range for each of the 9 samples (Figure 2d). To reduce the number

of Common regions we found to the most representative set (those

that most closely match the average signal intensity of the differential

DHS sites), we narrowed the quantiles until we found a set of

around one thousand Common regions, which we reasoned would

be a sufficient number to examine summary statistics. To ensure

that our results are not biased for a specific set of Common

regions, we repeated our experiments on a significantly larger set

(,11,000) of Common DHS sites using less stringent criteria

(10%–90% quantile). This larger set is even more enriched for

promoter regions but does not change our conclusions (data not

shown).

After identifying an initial set of potential Common DHS sites,

we filtered out any that appeared to be ‘‘appendages’’ to other

hypersensitive sites. Without this step, many Common DHS sites

would map to the edge of a strong hypersensitive sites. To ensure

that a Common DHS site is a standalone DHS site, we examined

the neighboring windows surrounding the initial set of Common

DHS sites. If a Common DHS site window contained fewer than

80% of the number of reads in the adjacent window on either side,

we filtered it out as most likely an ‘‘appendage’’ to a stronger DHS

site. This resulted in a final list of 1259 Common DHS sites

matched in intensity to the species-specific DHS sites. We also ran

this filter on DHS gains and losses, and found that very few of the

gains (3–5%) and losses (3–8%) get flagged as ‘‘appendages.’’ Of

these, many of them are flagged as a result of FDR threshold issues

that simply didn’t quite highlight a neighboring window, and we

would actually still consider this a legitimate gain region. Because

gain/loss appendages are relatively rare and are largely due to

threshold issues, we elected to retain them in our final list.

Why are there more species-specific increases than
decreases?

In every comparison, we reported more species-specific gains

than losses. The most important factor in determining the size of

these lists is the level of significance we set by choosing a FDR. To

obtain lists that match in length, we could simply adjust the FDR

value for the lists to yield about the same number of regions.

Instead, we decided to keep the FDR constant and select varying

numbers of DHS sites for each category.

However, it is still constructive to consider the disparity. In

other words, ‘‘at a constant FDR (1%), why are there more

species-specific increases than decreases?’’ This is possibly a result

of purifying selection. Because DHS sites are regulatory (and

therefore tend to be conserved), a loss of a DHS site probably

confers a fitness disadvantage. In this case, we would expect to see

more gains than losses.
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It is also possible that the prevalence of increases is simply a

result of the way we constructed the significance test. A DHS site is

a sparse signal (there are more ‘‘closed’’ regions than ‘‘open’’

regions). Combined this with the asymmetry of the evolutionary

tree: the chimp and human are more similar to each other than

either is to the macaque. A human-specific increase requires both

macaque and chimp to be closed (the default), while a human-

specific decrease requires both macaque and chimp to be open.

This latter scenario will happen less often because the relationship

between chimp and human is closer than either to the macaque.

In short, the greater number of gains than losses in our analysis

may reflect purifying selection on DHS sites; however, it may also

simply be a result of the way we constructed the test, particularly

due to using an outgroup species to polarize the chromatin

structure changes.

Testing for selection
We tested for evidence of positive selection using the DHS sites

indicated as DHS gains, losses, and commons defined by edgeR

and common analyses (see above). A branch model test [66] in

HYPHY [35] was used to assess evidence for positive selection on

each the human and chimp branches. HYPHY uses a likelihood

ratio test to compare two opposing models. For the null

hypothesis, we specified a composite model that allowed for

negative selection, neutral evolution, or relaxed constraint

specifically on the branch of interest (i.e. the human branch), with

negative or neutral evolution across the rest of the tree. The

alternative hypothesis modeled positive selection only on the

branch of interest, with negative or neutral evolution on the rest of

the tree. For each region, HYPHY performed a likelihood ratio

test comparing these hypotheses and output a P value that can be

interpreted as a level of evidence for positive selection. In order to

test the likelihood of either the null or alternative hypothesis, we

specify both the alignment of the region of interest, as well as a

background sequence alignment assumed to be evolving neutrally

[67]. For the alignment of the region of interest, we used

alignments of human, chimp, macaque, and orangutan precom-

puted at UCSC. For the background sequence, we collected a

separate set of local introns for each region to test, following

Haygood et al. [16]. To define these background alignments, we

started with the UCSC knownGene definition of intron annota-

tions, and then filtered out all first introns, splice junctions, and

hypersensitive sites (in any of the 15 samples in this study). In this

way, we aimed to select sequences that are evolving neutrally.

After defining this set of neutral introns, we used an expanding

window centered on the region of interest to collect introns in a

region up to 100 kb surrounding the center. We added introns to

this collection sequentially as the window expanded until we

reached an alignment of 2000 nucleotides. If we were unable to

find 2 kb of background introns within 100 kb of sequence, we

discarded these regions (this happens rarely). Introns are

commonly assumed to be evolving neutrally [43,68], particularly

when our filtering steps are taken into account; however, there are

still likely to be regulatory sequences present in our background

model, either due to sequences containing DNaseI HS sites in

other cell types not tested or due to unannotated or mis-annotated

transcripts. In order to further correct for this possibility, we

performed each likelihood-ratio test 50 times, using 50 different

bootstrapped versions of the background model. We then

averaged these P values to assign a final P value for each region.

This method has the effect of possibly discarding any elements

under selection in some of the bootstrap replicates, increasing our

ability to detect positive selection even if we inadvertently chose

some background regions under selection. To test significance, for

a given set of regions (e.g. human DHS gains) we ordered the P

values for selection on both hg19 and panTro2, then did a Mann-

Whitney test to see if one branch has higher P values than the

other (Table S10).

The fibroblast DHS sites where we can polarize the differences

using macaque all have significant differences in the direction we

expect, while the Common regions do not have significant

differences. In the LCLs, where we are unable to polarize (no

macaque LCLs were available), we do not detect a significant

difference. This is likely due to a combination of two categories

(gains and losses) that have competing selection (i.e. LCL human

DHS loss = human DHS loss+chimpanzee DHS gain).

Testing for evolutionary constraint
We calculated the observed fraction of overlaps between DHS

sites and evolutionarily constrained regions using constrained

regions defined by the Genome Evolutionary Rate Profiling

(GERP) method [40] executed on Enredo, Pecan, Ortheus (EPO)

[69,70] 33-way alignments. EPO alignments and GERP regions

are available for download at the Ensembl browser (http://

ensembl.org). We then constructed a null distribution of the

fraction of expected overlaps by using the conservative Genome

Structure Correction (GSC) methodology described previously

[19,41,42]. We performed 1000 randomizations and calculated

the mean and standard deviation from the null distribution to

assess the statistical significance of the observed overlap (Figure 6d).

We also used PhastCons to explore degree of sequence

conservation. For each region, we extracted the mean and max

PhastCons score from the primate PhastCons table at UCSC. We

then compared the distribution of these scores across the regions to

see how sequence conservation is related to hypersensitivity

conservation (Figure S9).

Expression analysis using digital gene expression (DGE-
seq)

Total RNA purified from 5–10 million cells harvested from the

same cell culture used for DNase-seq were also used to generate

DGE-seq expression libraries as previously described [12,71].

Polyadenylated RNA is captured for enrichment of mRNA and

the oligo dT primer is used to make cDNA. Briefly, DGE-seq is

similar to Serial Analysis of Gene Expression (SAGE) where

mRNA abundance is assessed via counting short sequences of their

cDNA at specific restriction site locations. These DGE-seq

libraries were sequenced using Illumina’s GAII sequencer, and

averaged 10 million 20mer sequences for each sample, which were

then aligned to the samples’ native reference sequence using BWA.

We used EdgeR to detect differences in tag counts across species

by comparing intra-species variances to inter-species variances

using a negative binomial model, and selects expressed genes with

significant between-species differences [26].

Cross-species correlation of genome-wide expression
Unlike the analysis performed for comparing cross-species DHS

sites, we did not liftOver any non-human expression sequences to

human. Instead, we simply compared the DGE-seq sequence

counts that aligned to exonic regions within each species’ native

sequence alignment (Supplemental data file 5 in Dataset S1).

Because of the high level of homology of the exonic regions

between the 3 primate species, we directly compared tag count

numbers between each of the orthologous genes. For the genome-

wide expression correlation comparison (Figure 1), we normalized

tag counts using edgeR to calculate the total library size for each

sample and adjusting the tag counts accordingly so that relative
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differences between the depth of the sequencing reads did not

influence the results. Next, we filtered out genes that did not have

at least 10 combined tag counts between all of the samples to

decrease the noise associated with genes that fall below the

meaningful level as recommended for edgeR. Following these

filters, we compared the Spearman correlation values between all

of the samples and plotted the results as a heatmap with

hierarchical clustering to show similarities within and between

species and tissue types.

Identification of differentially expressed genes between
species

Using edgeR, we identified genes that were significantly

differentially expressed between the 3 primate species. Compar-

isons between species were performed on a pairwise manner

comparing 3 individuals of one species against 3 individuals from a

second species. The same normalization method and filters used in

the expression correlation analysis was also used prior to defining

the differentially expressed genes. Differential gene expression was

defined as genes having a P value cutoff of 0.05. Using the

Macaque expression result as an outgroup, we identified genes that

displayed high or low expression specifically on the human and

chimp branch. For example, genes we defined as highly expressed

in human (human upregulated genes) are differentially expressed

in both human/chimp and human/macaque comparisons, but not

differentially expressed in the chimp/macaque comparison.

Similar criteria were used to identify genes that display low

expression in human compared to chimp and macaque (human

downregulated genes).

Correlation of species-specific DHS site gains and losses
with species-specific gene expression gains and losses

To firmly establish the connection between differential chro-

matin and differential expression, we tested for significance in

overlap in both directions: First, we tested if differential DHS sites

tend to be located near differentially expressed genes, and second,

we tested if differentially expressed genes tend to have differential

DHS sites nearby.
Comparing differential DNase-seq signal to differential

gene expression. We compared human DHS gain, human

DHS loss, chimpanzee DHS gain, and chimpanzee DHS loss

regions to species-specific genes (e.g., human upregulated/

downregulated genes, etc.). We first assigned each DHS site its

nearest gene, then intersected these with each differential

expression set. The number of overlaps for every pairwise

combination of DHS sites vs. differentially expressed genes are

shown in Table S5a. We calculated P values by permuting

(100,000 times) the set of all expressed Fibroblast genes, randomly

selecting the number of genes for each comparison, and

intersecting those random sets with the genes nearest species-

specific DHS sites (Table S7b–S7c). This established a null

distribution of overlaps in random intersects.
Comparing differential gene expression to differential

DHS sites. To establish the connection in the opposite

direction, we did a similar analysis in the reverse direction. Using

the UCSC knownGene table, we merged all isoform coordinates

for each gene and found all DHS sites within a surrounding 20 kb

window. We calculated pairwise overlaps of DHS sites between

each differential DHS site list and these lists of all nearby DHS

sites. If a gene contained a differential DHS site within 20 kb, it

was counted as a match. The number of overlaps for every

pairwise combination of sites near differentially expressed genes vs.

differential DHS sites are shown in Table S6a. We then permuted

genes similar to above (1,000 times), located all nearby DHS sites,

and tested for overlap to create a null distribution of overlap count

(Table S8b–S8c).

Identification of mutations in motifs associated with
species-specific DHS sites

To connect sequence changes to species-specific DHS sites, we

compared JASPAR motif scores across species. We first extracted

the orthologous DNA sequences for human, chimpanzee, and

macaque for each of our DHS gain, loss, and common sites. We

scanned and scored each of these sequences for all the position

weight matrices (PWMs) in the JASPAR database. We scored a

sequence for a given PWM as the highest motif score anywhere in

that sequence. This resulted in a region-by-motif matrix of scores;

each score is the highest score for each motif/sequence

combination. To compare species, we took the log ratio of scores

(human/chimp, human/macaque, and chimp/macaque). Where

this score is 0, the highest score does not differ between species.

Deviations from 0 indicate the direction of improvement in motif

match (in a human/chimp comparison, a positive number means

the best match in the human sequence scored higher than the best

match in the chimp sequence). After calculating these scores and

each pairwise log-ratio, we plotted the log-ratios (Supplemental

data files 2–3 in Dataset S1 and Figure 7) to examine trends. We

calculated the pairwise log-ratios for multiple species comparisons

and plotted these on different axis to check whether increases over

one species correlate with increases over the other. In these two-

dimensional plots, each axis quantifies a different pairwise species

relationship. Points that cluster in the upper-right quadrant have

higher scores than either of the other species; points that cluster in

the lower-left have lower scores. The most interesting variation in

these plots is whether the points congregate in the upper-right or

lower left. To assess significance, we project each data point onto

the y = x line to reduce the dimensionality to 1. We then used the

Wilcoxson rank-sum test to compare each distribution to the

distribution of the common regions (Figure 7g and Supplemental

data file 3 in Dataset S1).

Supporting Information

Dataset S1 Supplemental data file 1. Species-specific DHS

Gains, Losses, and Common regions. Excel file containing

coordinates (hg19) of differential DHS gains, DHS losses, DHS

common regions, as well as a list of upregulated, downregulated,

and commonly expressed genes (UCSC gene symbols). A BED

format (non-Excel) version of the same datasets are also included

(SupplementalDataFile1.zip). Supplemental data file 2. Motif

analysis boxplots. Boxplots showing pairwise comparisons of log

ratios of the best position weight matrix (PWM) in a DHS Gain/

Loss/Common site between each species. Motifs for 130

transcription factors are represented on the X-axis. The Y-axis

shows the ratio of the PWM score change for all DHS sites in the

set of regions (DHS Gains/Losses/Common) being compared for

each TF. Supplemental data file 3. Motif analysis scatterplots.

Scatterplots showing the level of enrichment of a transcription

factor motif in each species to the level of DNase hypersensitivity.

One hundred and thirty TFs were analyzed separately. Supple-

mental data file 4. BED file containing sequence counts for all

DHS regions used for differential DHS analysis. Supplemental

data file 5. Excel file containing sequence counts for all genes

captured by DGE-seq used for differential Expression analysis.

(GZ)

Figure S1 Representative examples of chimpanzee DHS gain

and chimpanzee DHS loss.

(PDF)
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Figure S2 Species-specific gains and common DHS sites are

highly reproducible in independently isolated matched cell types.

(a) Human DHS gains/losses, Chimp DHS gains/losses, and

Common DHS sites detected in fibroblast cells were compared to

independently derived ENCODE Fibroblast DNase-seq data

generated by the University of Washington ENCODE group. (b)

LCL human DHS gains/losses/common compared to 4 indepen-

dently derived ENCODE lymphoblastoid samples also identified

by the University of Washington ENCODE group.

(PDF)

Figure S3 Differential edgeR analysis of original human and

chimpanzee samples to independently analyzed cell samples.

Similar numbers of human gains and losses are identified when

comparing independently derived human fibroblasts (a) and LCLs

(b) to chimpanzee fibroblasts and LCLs. Very few differentially

open chromatin regions were identified by edgeR when comparing

the 3 original human samples to 3 independently derived human

fibroblast and LCL samples.

(PDF)

Figure S4 Box plot showing DNase intensity of human DHS

gains/losses and common regions across 27 human cell types

shown in Figure 4 heatmaps.

(PDF)

Figure S5 Boxplot of the binary comparison of human DHS

gain/loss, chimpanzee DHS gain/loss, and Common regions to

the DHS peak calls from the 27 other human cell types.

(PDF)

Figure S6 Comparison of chimpanzee DHS gains and DHS

losses to DNase-seq data from other human cell types. These

regions were compared to DNase-seq data generated from 27

other human cell types (Table S3). Heatmap signal intensities are

of maximum DNase-seq parzen scores in log scale, where red

indicates a higher DNase-seq score and blue indicates lower

DNase-seq scores. (a) Chimpanzee DHS sites were identified as

differentially open (chimpanzee DHS gain) in chimpanzee

fibroblasts compared to human/macaque fibroblasts. (b) Chim-

panzee DHS sites identified as differentially closed (Chimpanzee

DHS loss) compared to human and macaque fibroblasts. (c)

DNase-seq signal values for Common regions representing DHS

sites in all three species. Note that more than 50% of Common

regions are also DHS sites in other human tissues. (d, e, f) DNase-

seq signal values for same regions as (a, b, c), but DNase-seq data is

from orthologous region from human and macaque fibroblasts. (g,

h, i) DNase-seq values for same regions as (a, b, c), but from

human and chimpanzee LCLs. (bottom) Box plot shows intensity

values shown in heatmaps.

(TIF)

Figure S7 Species-specific upregulated/downregulated gene

expression levels are correlated with species-specific DHS gains/

losses, respectively. (a) 48 Human upregulated genes (Huma-

nExpUp) intersect genes that were located closest to human DHS

gains (yellow arrow), which is higher than random permutations. 6

Human upregulated genes (HumanExpUp) overlap with genes

located closest to human DHS losses (blue arrow), which is less

than random permutations. (b) Comparison of upregulated genes

(expression gains) and downregulated genes (expression losses) to

genes located nearest to DHS gains and losses. P values were

derived from 1000 random permutations (Materials and Methods).

(PDF)

Figure S8 Comparison of chromatin DHS gains and DHS losses

with genes that are upregulated and downregulated in human vs.

chimpanzee lymphoblastoid cell lines (LCLs). Yellow represents

chromatin and expression matches that occur more often than

random permutations, while blue represent less often. P value

indicated in each box.

(PDF)

Figure S9 Phastcons figure showing sequence conservation.

Histograms comparing the distribution of maximum PhastCons

scores for pooled DHS gains (both human- and chimp-specific

increases), pooled DHS losses (both human- and chimp-specific

decreases), and Common regions. We pooled regions because the

distributions look similar when divided (data not shown). Common

regions have higher PhastCons scores. Average PhastCons scores

show similar trends (data not shown).

(PDF)

Figure S10 Potential regulatory element shuffling: Number of

instances (within 50 k) where fibroblast human DHS gain, human

DHS loss, chimpanzee DHS gain, chimpanzee DHS loss, or

Common regions map other nearby species-specific gains, losses,

or common regions. This plot shows the number of DHS sites that

fall within 50 kb of each other for each pairwise comparison. It

also shows a P value for the significance of the overlap. To

calculate the P values (upper number in each box), we used a

permutation test to compare the number of true overlaps (lower

number in each box) to the number of expected overlaps with a

random set of DHS sites of matching size. Significant enrichments

are bright yellow and depletions bright blue, with both significance

and count shown in the appropriate box. The significance levels

are limited by the number of permutations (1000), so a 0 indicates

a permutation P value ,10‘-3. We find insignificant or only

marginally significant overlaps in most comparisons; for example,

comparing human DHS gains to human DHS losses: human DHS

gains are not located near human DHS losses more often than

expected by chance. The same is true for chimp gains and losses.

However, we do see more significance when comparing human

DHS gains to chimp DHS losses, and chimp DHS gains to human

DHS losses. This indicates that these regions tend to be located

near one another more often than expected by chance.

(PDF)

Figure S11 Potential regulatory element shuffling associated

with obesity. Shown is a human DHS gain nearby a human DHS

loss between the PMAIP1 and melanocortin 4 receptor (MC4R).

MC4R is a gene shown to cause autosomal dominant obesity.

(PDF)

Figure S12 Potential regulatory element shuffling associated

with an imprinted gene. GNAS is an imprinted gene that is

regulated by the GNAS1 antisense transcript. A human DHS gain

is located at the 39 end of the GNAS1 gene, and human DHS loss

in the intron of GNAS1 (upstream of GNAS).

(PDF)

Figure S13 Potential regulatory element shuffling associated

with alternative promoter and glial cell formation. Human DHS

loss associated with meteorin-like (METRNL), a gene associated

with glial cell formation. Nearby is a human DHS gain near an

alternative promoter of the BG3NTL1, a gene with putative

glycosyltransferase activity. Also note a great ape specific DHS

between METRNL/BG2NTL1 genes (present in chimpanzee/

human, but absent in macaque).

(PDF)

Figure S14 Potential case of an independently gained human

and chimpanzee DHS sites associated with neuronal guidance.

Human DHS gain found nearby (,50 kb) a chimpanzee DHS
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gain. Both mapped within an intron of the SRGAP2, a gene

associated with neuronal guidance during brain development.

(PDF)

Figure S15 Chimp Condel (cCondel) regions heatmap. Shown

are DNase-seq signal intensities (maximum parzen scores) of the

344 cCONDEL regions. The color scale (log) ranges from red,

representing the highest signal intensities, down to black,

representing little/no signal intensity. All 15 primate samples

(fibroblasts and LCLs) used in our DNase-seq analysis and 27

different ENCODE cell lines are represented. Ubiquitous DHS

sites that overlap cCONDELs are clustered on the right, and more

common DHS sites are found in the middle. Note that these

regions are do not have signal in chimpanzee data (C_L or C_F

samples), and a small number also do not contain signal in

macaque data (Q_F samples).

(PDF)

Table S1 Samples used for DNase-seq and DGE-seq analyses.

Basic sequence count statistics are provided with each sample.

(PDF)

Table S2 DNase-seq data is validated by DNase-chip. DNase-chip

libraries from the 15 samples were hybridized to 1% ENCODE DNA

arrays of the corresponding species type. Probes consisted of segments

of DNA sequences matching reference sequence builds hg18

(human), panTro2 (chimpanzee), and rheMac2 (macaque), respec-

tively. The array intensities were compiled and significant DHS sites

were called using ChIPotle (P,0.000001 peak cutoff). We intersected

the DNase-chip sites from each of the 3 individuals samples for each

species and determined the amount that overlap DNase-seq data.

The top 100,000 F-seq called sites were used from each DNase-seq

sample for this comparison.

(PDF)

Table S3 Human cell types analyzed by DNase-seq for the

ENCODE project by our group. All data is available on the

UCSC genome browser (http://genome.ucsc.edu/) and more

specifically at: http://genome.ucsc.edu/cgi-bin/hgTrackUi?hg

sid = 246298273&c = chr21&g = wgEncodeOpenChromDnase

(PDF)

Table S4 Percent overlap of human- and chimpanzee- DHS

gains/losses/common detected in fibroblasts with DHS sites

identified in ENCODE human cell types. FibroP, Fibrobl, and

ProgFib cells were independently derived fibroblasts samples.

(PDF)

Table S5 Percent overlap of human-DHS gains/losses/common

detected in lymphoblasts with DHS sites identified in ENCODE

human cell types. Note high degree of overlap with independently

derived LCLs (GM).

(PDF)

Table S6 Fisher’s exact test for Histone modification and CTCF

ChIP-seq peaks that intersect LCL Human DHS gains/losses/

commons.

(PDF)

Table S7 Relationship between species-specific DHS sites and

differentially expressed genes. Species-specific DHS sites (Human

DHS gain/loss and Chimpanzee DHS gain/loss regions) for the

fibroblast cell type were compared to the expression state of the

closest gene (human up/down and chimp up/down expressed

genes).

(PDF)

Table S8 Relationship between differentially expressed species-

specific genes (human DHS gains/losses, chimpanzee DHS gains/

losses) and the likelihood of finding a species-specific DHS site

within a 20 kb window surrounding those genes.

(PDF)

Table S9 Gene Ontology enrichments associated with species-

specific DHS gain/loss and common regions and human up- and

down- regulated genes. (a) Gene ontology analysis tool, GREAT,

was used to look for any enrichments of biological process or

disease ontologies of genes associated with human and chimpanzee

DHS gain/loss/common regions. (b) Genes identified as differen-

tially expressed in human or chimpanzee fibroblast samples were

analyzed for GO biological process enrichments using DAVID. A

P value threshold of 0.001 was set as the minimum.

(PDF)

Table S10 Testing for selection, P values (Two-tailed Mann-

Whitney test). To test significance, for a given set of regions

(Fibroblast: human DHS gain, human DHS loss, chimpanzee DHS

gain, chimpanzee DHS loss, Common; LCLs: LCL human DHS

gain, LCL human DHS loss, Common) we ordered the P values for

selection on both hg19 and panTro2, then did a Mann-Whitney test

to see if one branch has higher P values than the other.

(PDF)

Table S11 The most rapidly evolving Conserved Non-coding

Sequences (CNSs) minimally overlap species-specific DHS gains

and losses. Human Accelerated Regions (HARs) and Chimpanzee

CONDELs (cCONDELs) did not overlap any species-specific

DHS gains, losses, or common regions. (a) Genome coordinates of

Human Accelerated Conserved Non-coding Sequences (HACNSs)

that overlapped 1 human-specific DHS loss and 1 common DHS

region identified in fibroblasts. (b) Genome coordinates of Chimp

Accelerated Conserved Non-coding Sequences (CACNSs) that

overlapped 1 chimp-specific DHS losses and 1 common DHS

region. (c) Percent of HACNSs, CACNSs, HARs, and cCON-

DELs that overlap the top 100 k DHS peaks (defined by p-value)

from fibroblast and LCL samples in hg19 space. (d) Percent of

Human CONDELs (hCONDELs) that overlap the top 100 k

DHS peaks (defined by P value) from fibroblast and LCL samples

in panTro2 space. (e) The number of HACNSs, CACNSs, HARs,

and cCONDELs that overlap DHS sites identified in 27 diverse

cell lines is consistently low.

(PDF)

Table S12 Genes located closest to human-specific DHS gain/

loss and common regions as well as genes identified as

differentially expressed among the 3 primate species are not

highly associated with genes used to identify Fibroblast biopsy

locations in Rinn et al. 2006 PLoS Genetics [30].

(PDF)
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