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Abstract

RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen
Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood.
Here, we explored the functions of S. aureus endoribonuclease Il (RNase Ill), a member of the ubiquitous family of double-
strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase lll, we performed
deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase Ill or two
different cleavage-defective mutant variants in vivo. Several newly identified RNase Il targets were validated by
independent experimental methods. We identified various classes of structured RNAs as RNase Ill substrates and
demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and
non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we
identified a positive effect of RNase Il on protein synthesis based on novel mechanisms. RNase lll-mediated cleavage in the
5" untranslated region (5'UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock
protein. Furthermore, RNase lll cleaved overlapping 5'UTRs of divergently transcribed genes to generate leaderless mRNAs,
which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance
antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase Il mutant
proteins. Thus, in addition to gene regulation, RNase lll is associated with RNA quality control of pervasive transcription.
Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase lII.
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Introduction

Bacteria are highly adaptive organisms that are able to rapidly
alter their gene expression in response to environmental changes.
In addition to transcriptional control, regulation of RNA decay
has emerged as a major pathway in fast adaptive processes.
Changes in RNA turnover facilitate stress responses, growth
phase transitions, and virulence factor production [1-3]. Over
the past decades, the knowledge on key ribonucleases that act in
processing and turnover of RNAs in Escherichia coli and Bacillus
subtilis has increased considerably [1-3]. Degradation of mRNA
can follow several pathways involving a combination of exo- and
endoribonucleases, and differs substantially between Gram-
negative and Gram-positive bacteria [3,4]. For instance, E. coli
uses the single-strand-specific RNase E to catalyze the initial rate-
limiting cleavage of a large number of mRNAs [1], while mRNA
decay in B. subtilis involves the action of the endoribonuclease
RNase Y and the bi-functional RNases J1/J2, which are
endowed with 5" exoribonuclease and endoribonuclease activities

[5,6].

@ PLoS Genetics | www.plosgenetics.org

Among the endoribonucleases, ribonuclease III (RNase III) is a
member of a highly conserved and universal family of double-
stranded-RNA (dsRNA)-specific enzymes with essential roles in
RNA processing and decay [1,3,7]. The discovery that RNase III-
type enzymes generate eukaryotic microRNAs and short interfer-
ing RNAs has triggered interest in defining the mechanisms of
action of this family [8,9]. Crystal structures of Aquifex aeolicus
RNase III in complex with different dsRNAs indicated that this
protein contains a long RNA-binding surface cleft denoted the
catalytic valley [9,10]. Bacterial RNase III is a homodimer that
forms a single processing center with each subunit contributing to
the hydrolysis of one RNA strand. Each monomer contains four
RNA binding motifs that make extensive contact with the ribose-
phosphate of the dsRNA up to 10 base pairs from the cleavage
site, while conserved acidic amino acids and Mg*" are responsible
for catalysis [9,11]. Biochemical studies have identified the
determinants of the dsRNA substrate and RNase III that are
required for substrate specificity and catalytic activity. RNase III
cleavage produces RNA fragments with 5'-phosphate and 3’'-
hydroxyl termini and a two-nucleotide 3’-overhang [11-14]. Aside

June 2012 | Volume 8 | Issue 6 | €1002782



Author Summary

Control of mRNA stability is crucial for bacteria to survive
and rapidly adapt to environmental changes and stress
conditions. The molecular players and the degradation
pathways involved in these adaptive processes are poorly
understood in Staphylococcus aureus. The universally
conserved double-strand-specific endoribonuclease Il
(RNase Ill) in S. aureus is known to repress the synthesis
of several virulence factors and was recently implicated in
genome-wide mRNA processing mediated by antisense
transcripts. We present here the first global map of direct
RNase Ill targets in S. aureus. Deep sequencing was used to
identify RNAs associated with epitope-tagged wild-type
RNase Il and two catalytically impaired but binding-
competent mutant proteins in vivo. Experimental valida-
tion revealed an unexpected variety of structured RNA
transcripts as novel RNase Il substrates. In addition to
rRNA operon maturation, autoregulation, degradation of
structured RNAs, and antisense regulation, we propose
novel mechanisms by which RNase lll increases mRNA
translation. Overall, this study shows that RNase Ill has a
broad function in gene regulation of S. aureus. We can now
address more specifically the roles of this universally
conserved enzyme in gene regulation in response to stress
and during host infection.

from the universal function of RNase III in the maturation of
ribosomal RNAs [15], E. coli RNase III plays a broad role in gene
regulation. Not only does RNase III autoregulate its own synthesis
[16], it also contributes to regulation by small RNAs [17,18]. In
addition, recent genomic analyses revealed that the absence of
RNase III in E. coli [19] and B. subtilis [20] affects the abundance
of numerous mRNAs and non-coding RNAs (ncRNAs).

Did the cellular functions and substrate specificity of the
ubiquitous RNase III diverge in Gram-positive bacteria? In
Streptococcus pyogenes, RNase III was identified as an essential host
factor for the prokaryotic CRISPR/Cas immunity system [21]. In
B. subtilis, the e gene is essential suggesting that RNase III-
dependent maturation of one or several critical mRNAs is
required for protein synthesis [20,22]. In Staphylococceus aureus, an
me mutant strain showed compromised virulence in a murine
peritonitis model [23], while ¢ deletion did not impair cell growth
[23,24]. Our previous studies in S. aureus have shown that RNase
IIT coordinates the repression of mRNAs encoding virulence
factors and a transcriptional regulator via the quorum-sensing-
dependent regulatory RNA, RNAIIT [24-26]. The RNAIII-target
mRNA complexes adopt various topologies, such as imperfect
duplexes and loop-loop interactions that are efficiently recognized
and cleaved by RNase III, thus leading to irreversible repression
[27]. In addition, a very recent study has shown an unprecedented
role of RNase III in antisense regulation restricted to Gram-
positive bacteria [28]. Deep sequencing of short S. aureus RNAs
revealed numerous 22-nt RNA fragments generated by RNase III
digestion of sense/antisense RNAs and almost 75% of the cleaved
mRNAs had corresponding antisense RNAs [28]. These data are
indicative of pervasive antisense regulation by RNase III
Collectively, the previous studies in E. coli [19], B. subtilis [20],
and S. aureus [28] evaluated the role of RNase III at a genome-
wide scale. However, these analyses of transcriptome changes by
tiling array or RNA-seq are not per se suitable to identify direct
RNase IIT substrates because they also score indirect regulatory
effects. This prompted us to more precisely analyze the functions
and direct targets of \S. aureus RNase III in gene regulation.
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Target RNAs of the Ubiquitous Endoribonuclease IlI

We present here the first global map of direct RNase III targets
in S. aureus. To this end, we used deep sequencing to identify RNAs
associated with epitope-tagged wild-type RNase III and two
catalytically impaired but binding-competent mutant proteins.
Newly identified RNase III targets were validated by a combina-
tion of in vivo and m wvitro approaches. Our analysis revealed an
unexpected variety of structured RNA transcripts as novel RNase
IIT substrates. In addition to rRNA operon maturation, autoreg-
ulation of ¢ mRNA decay, degradation of structured RNA
transcripts, and antisense regulation, we propose novel mecha-
nisms by which RNase III activates the translation of mRNAs
through ¢us- or trans-acting elements. Overall, our study explores
the broad function of RNase III in gene regulation of \S. aureus.

Results

Mutations in S. aureus RNase Il uncouple binding and
catalytic activities

Biochemical and structural studies performed on RNase III in
A. aeolicus and FE. coli demonstrated a stepwise hydrolysis
mechanism of the phosphodiester bonds mediated by two Mg?*
ions, involving mutual conformational changes of the RNA and
the enzyme [10,29]. The nuclease domain of RNase III is
characterized by two clusters of conserved acidic amino acids, in
which the side chains of E41, D45, D114, and E117 (in E. coli) are
coordinated to Mg** jons [13,30,31]. Two of these residues, E117
and D45, are essential for catalysis, as their substitution by alanine
strongly compromised cleavage without affecting RNA binding
[11,14,29,31]. Although S. aureus RNase III (Sa-RNase III) shares
only 33% amino acid identity with the E. coli enzyme, the acidic
amino acids are strictly conserved (Figure 1A). To obtain
catalytically inactive but binding-proficient variants of Sa-RNase
III, amino acids E135 and D63 (corresponding to E117 and D45
in E. coli, respectively) were changed to alanine (Figure 1A). A
histidine epitope tag was added to the N-terminus of the mutant
and wild-type (WT) proteins, and the proteins were purified to
homogeneity following expression in E. coli [27]. The activities of
the mutant enzymes were compared to that of the WT protein
using spa mRNA, a well-characterized Sa-RNase III substrate
[24]. Terminally labeled spa mRNA was used to map the cleavage
sites for WT and mutant S. aureus proteins and cleaved products
were resolved by polyacrylamide gel electrophoresis under
denaturing conditions (Figure 1B). As expected, WT RNase III
cleaved both sides of a helix at U70, C98, and G110 in the coding
sequence (CDS) of spa mRNA. The E135A mutation very strongly
compromised the activity of the enzyme, while the effect of D63A
was less pronounced (Figure 1B). Gel retardation assays were used
to monitor the binding of the mutant enzymes to terminally
labeled spa mRNA in a buffer containing Ca®* instead of Mg**
(Figure 1C). Ca®* inhibits the catalytic activity of E. coli RNase 11
but does not affect RNA binding [32]. In our study, the mutant
E135A (Figure 1C) and D63A (result not shown) enzymes bound
spa mRINA in a manner similar to the WT RNase III. Hence, the
two mutations uncoupled catalytic activity from RNA binding
capacity in a manner similar to that described for E. cols RNase 111
[11,14,29]. These two mutant proteins were used to capture RNA
substrates m vivo.

Identification of several classes of structured RNAs
associated with RNase llI

To identify RNase III targets i viwo, co-immunoprecipitation
(colP) assays were carried out with Flag epitope-tagged WT and
mutant proteins expressed from a plasmid-borne Cd**-inducible
promoter in a Ame S. aureus background. The Flag-epitope was
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Figure 1. Effect of mutations in the catalytic site of Staphylococcus aureus RNase lll. (A) Amino acid sequence alignment of RNase Ill from S.
aureus and Escherichia coli. Acidic amino acids colored in green and red are conserved residues present in the catalytic site of E. coli RNase Ill. The two

mutations (D63 to A and E135 to A) generated in S. aureus RNase lll are show

n in red. (B) RNase lll cleavage assays were performed on 5’ end-labeled

spa mRNA using the wild-type enzyme (RNase lll-wt), the E135A, and the D63A RNase Ill mutant enzymes. Lanes 1, 2: incubation controls set in the

absence of RNase lll. Cleavage reactions were performed in the presence o

f Mg2+ with increasing concentrations of RNase Il WT (lanes 3-5), the

E135A (lanes 7-9) or D63A (lanes 11-13) mutant proteins: (lanes 3, 7, 11) 0.165 uM; (lanes 4, 8, 12) 0.33 uM; (lanes 5, 9, 13) 0.66 uM. Control reactions

included Ca?* and 0.66 uM of RNase Il WT (lane 6), E135A (lane 10) or D63A (

lane 14) mutants. Lanes T, L: RNase T1 and alkaline ladders, respectively,

under denaturing conditions. Arrows denote the positions of RNase Il cleavages which are shown in the secondary structure of the RNase lll-binding
site on spa mRNA. (C) Binding of the wild-type (RNase Ill-wt) and mutant (E135A) enzymes to 5’ end-labeled spa mRNA as visualized by gel
retardation assays. Lane (—): incubation control of the free RNA in the absence of RNase Ill. Increasing concentrations of RNase Il WT (0.05, 0.1 and
0.2 uM) or RNase IlI-E135A (0.08, 0.16, 0.32 and 0.49 uM) were added to 5’ end-labeled spa mRNA in a buffer containing Ca*" instead of Mg“. (D)

RNase lll-Flag protein levels at mid-logarithmic phase were monitored i
complemented with the Flag-E135A mutant, the Flag-wt RNase Il and the

n various S. aureus strains: Arnc mutant strain, Arnc mutant strain
Flag-D63A mutant. Cells were collected before or after induction with

CdCl, for 90 min. 40 ug of total protein were resolved on an SDS-PAGE gel. The western blot was performed with an anti-Flag monoclonal antibody.

doi:10.1371/journal.pgen.1002782.9001

added to the C-terminus of the proteins. A control colP
experiment was performed with the untagged WT RNase III
expressed from the chromosome (strain RN6390). Bacteria were
harvested at two time points (4 and 6 h of growth at 37°C)
corresponding to exponential and late exponential phases of
growth, respectively. The growth curves of RN6390 (WT strain),
Ame mutant strain, and Arme complemented with WT RNase III,
E135A, or D63A mutant proteins, were similar in the BHI
medium (data not shown). Western blot analysis showed that the
two mutant proteins accumulated at comparable levels while the
WT protein was expressed at a lower level (Figure 1D), indicative
of a possible autoregulatory event on the m¢ mRNA.

RNAs isolated from the colP experiments with the four strains
were converted to cDNA libraries and analyzed by high-
throughput pyrosequencing as previously described [33]. Recov-
ered sequences ranged from 1 to 145 nt, but sequences below
18 nt were discarded in later analyses to increase the accuracy of
mapping (Table S1). In agreement with the impaired catalytic
activity of the mutants, we obtained more reads of =18 bp with
the E135A (77% of the total reads) and D63A (86%) mutant
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proteins than with WT RNase III (51%). Mapping of the cDNA
reads to the genome of S. awreus N315 revealed that the mutant
enzymes primarily recovered RNA fragments arising from rRNA
and tRNA operons (80 to 90% of the total number of mapped
reads) (Table S2). However, a high number of reads were mapped
to 58 different ncRNAs including the housekeeping ncRNAs
tmRNA, RNase P, and the RNA component (4.5S RNA) of the
signal recognition particle (SRP) (Tables S2, S3). Furthermore, in
the colPs of the mutant enzymes, reads were recovered for almost
1,500 individual mRNAs of the 2,653 annotated ORFs in the S.
aureus genome, but considerably fewer were recovered for
polycistronic mRNAs (mnhd-G, gapR, pdhA-D, and gox; Table S4).
Moreover, a significant number of reads corresponded to antisense
RNAs (asRNAs) that were assigned to the opposite strand of 1,175
mRNAs (Tables S1, S5). Given the limited number of sequenced
¢DNAs (~1x10°) (Table S1), the actual number of RNase III
targets may be underestimated. Based on comparison to sequences
from the control colP (W strain expressing untagged RNase III),
which should represent RNAs that are unspecifically bound during
the colP, we only considered transcripts as potential RNase III
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Figure 2. Processing of the rRNA operon by RNase lll. (A) Visualization of RNA fragments identified by deep sequencing in the S. aureus
genome using the Integrated Genome Browser (IGB, Affymetrix). For mapping of cDNAs, the genome sequence of strain N315 was used. Sequenced
cDNA reads of RNAs obtained from RN6390 strain (negative control) are shown in red, RNA fragments co-immunoprecipitated with the Flag-RNase Il
D63A mutant in blue, Flag-RNase Il wild type (wt) in green, and Flag-RNase IIl E135A mutant in magenta. (+) Indicates the leading and (—) the
lagging strand, respectively. The Y-axis indicates a relative score for the number of mapped reads per nucleotide normalized to the total number of
reads. (B) Analysis of rRNA and tRNA precursors in the WT and mutant Arnc strains. Northern blot analyses were performed with 5’ end-labeled
oligonucleotides using RNAs isolated from RN6390 (WT), the Arnc strain (Arnc) or the same strain transformed with a plasmid expressing either the
E135A mutant (Arnc-E135A), the wild type (Arnc-WT) or the mutant D63A (Arnc-D63A) enzymes. 5S rRNA was detected with a specific DIG-labeled
riboprobe, which was produced by in vitro T7 transcription from a PCR product amplified with the oligonucleotides 381/382 (Table S8). Arrows
denote the different precursors. (C) Identification of RNase Ill cleavages in vitro and in vivo using primer extension. The cleavages were mapped in
vitro on the 16S rRNA transcript carrying 134 nucleotides at its 5’ trailer region and 100 nucleotides at its 3’ trailer (lanes 1 to 4), and in vivo on total
RNA extract (lane 5, WT strain; lane 6, Arnc strain). RNase Ill cleavage sites were detected by reverse transcription using the 5’ end-labeled
oligonucleotide 405. Lane 1: Incubation control; lanes 2-4: in vitro cleavage assays performed with RNase Ill WT on pre-16S rRNA using two
concentrations of RNase Il (lane 2, 0.1 uM; lanes 3-4, 0.2 uM) in the presence of Mgz+ (lanes 1-3) or of Ca?* (lane 4); lanes U, C, G, A: sequencing
ladders corresponded to the RNA sequence. Primer extension was performed on total RNAs prepared from exponential cultures of RN6390 (lane 5)
and Arnc strains (lane 6). (D) Secondary structure prediction of the corresponding pre-rRNA operon. Black arrows show positions of the RNase llI
cleavages, which were experimentally mapped in the 16S pre-rRNA. PE denotes the primer extension stop (red arrow) obtained from total RNA
extract.

doi:10.1371/journal.pgen.1002782.g002

substrates if they were significantly enriched in the colP samples of
the tagged variants (Tables S2, S3, S4, S5). Not surprisingly, the
RNAs that were unspecifically bound in the control colP reflect
the abundance of the transcripts in the cell, i.e., most of these reads
were derived from rRNAs that represent >90% of the transcripts
in the cell (Table S2). We note that the co-immunoprecipitated
RNASs identified with the E135A and D63A mutant proteins were
very similar, supporting the reliability and reproducibility of the
method (Tables S2, S3, S4, S5). Moreover, many of the target
RNAs were detected at both time points of cell growth.
Representatives of each RNA class were then selected for
experimental validation using @ witro and i vivo approaches
(Table 1).

We first performed gel retardation assays to validate a direct
interaction between various classes of RNAs and the mutant
E135A protein. The data showed that the E135A protein bound
to a plethora of structured RNAs including ¢zs-acting regulatory

@ PLoS Genetics | www.plosgenetics.org

elements of mRNAs (e.g., the flavin mononucleotide (FMN)
sensing riboswitch), ncRNAs, structured mRNAs, and small
ORF-containing RNAs (Figure S1A). Competition binding assays
were also performed to monitor the specificity of RNase III
binding on ¢spd mRNA. Two forms of cspd mRNAs were
analyzed: ¢spd; containing a long 5'UTR (113 nt), which was
recovered with the two mutant proteins and ¢spds containing a
short 5’UTR (52 nt), which was pulled down with the WT
enzyme. We also used SA2097 mRNA, which was not co-
immunoprecipitated with the mutant and WT RNase III. The
experiments were carried out with the 5’ end-labeled cspA;,
mRNA bound to E135A mutant protein in the presence of
increasing concentrations of cold cspAy, espAds or SA2097 mRNA
(Figure S1B). The experiments showed that the concentrations of
espds and SA2097 necessary to compete for binding were 10
times higher than that for ¢spd; suggesting that the interaction of
RNase IIT with ¢spA;, is specific.

June 2012 | Volume 8 | Issue 6 | €1002782



Overall, the data strongly suggest that the immunoprecipitated
RNAs resulted from a direct interaction with RNase III. The
molecular mechanism of RNase III action on several target RNAs
was then studied in more detail both i vive and i vitro (Table 1).

RNase IlI initiates maturation of rRNA operons

A high number of reads were mapped to the five rRNA operons
and several isolated tRNA operons. The most highly enriched
RNA fragments, pulled down with the mutant proteins, corre-
sponded to the intergenic regions of the rRNA operons (Figure 2A).
This strongly suggests a role of RNase III in rRNA and tRNA
processing as it was previously demonstrated in E. col [34] and B.
subtilis [22]. We probed one of the five rRNA operons in WT and
mutant strains using antisense oligonucleotides complementary to
different tRNA and rRNA intergenic sequences (Figure 2B). As
expected in the case of impaired rRNA processing, 16S precursor
transcripts were observed in the Ame strain and in the same strain
complemented with either the E135A or D63A mutant enzyme,
but not in the RN6390 (WT) strain or in the Amc strain
complemented with  WT RNase III. In addition, aberrant
precursors from 5S rRINA and tRNAs were visible on Northern
blots probed with a specific DIG-labeled riboprobe or the 5" end-
labeled oligonucleotide 278, respectively, in Ame cells and in the
same strain expressing the mutant E135A protein (Figure 2B).

Secondary structure analysis of the rRNA operon transcripts
predicted that the termini of 16S rRNA and 23S rRNA might
each base-pair within long helical domains, generating a typical
RNase III substrate (Figure 2D). RNase III cleavage assays were
performed on an i vitro transcribed 16S rRNA containing the 5’
and 3’ end trailing sequences (see Text S1). Cleavage sites were
identified by primer extension on the cleaved rRNA with reverse
transcriptase using either the 5’ end-labeled oligonucleotide 405
(Figure 2C) or the 5" end-labeled oligonucleotide 279 (result not
shown). Two specific RNase III cuts were identified at positions A-
92 (Figure 2C) and U+64 (result not shown), respectively. These
cleavages produced a two-nucleotide 3’ overhang, a hallmark of
processing by RNase IIT (Figure 2D). Primer extension was also
performed on total RNA extracted from the WT and Arme strains.
Using the 5" end-labeled oligonucleotide 405 that hybridizes
within the 16S rRNA, a major reverse transcriptase (RT) stop at
A-91 within the 5" trailer of the 16S rRNA precursor was only
seen in the WT strain. Thus, the m vivo and m vitro RNase 111
cleavages within the 16S rRNA precursor were congruent
(Figure 2C). Interestingly, in the Amc strain, several RT stops
were detected upstream of A-92 i wvivo (Figure 2C, lane 6),
suggesting that another ribonuclease might target the same region
in the absence of RNase III. Such alternative rRINA processing
that permits the production of functional ribosomes tentatively
explains why the Arme¢ mutation in S. aureus has only minor effects

on cell viability [23,24].

RNase Il autoregulates its own synthesis at the post-
transcriptional level

Reads, mapping to rne mRINA, were consistently recovered with
both the WT and the two RNase III mutants but not in the control
colP (Figure 3A). These data suggest that RNase III of S. aureus
specifically recognizes its own mRNA. This hypothesis is
supported by the Western blot of the E135A, D63A, and WT
proteins expressed in the Amc strain because the two mutant
proteins accumulated to higher levels than the fully catalytically
active WT enzyme (Figure 1D). Prior to mapping the RNase III
cleavage site, we determined the 5’ end of the rne mRNA i vivo by
primer extension (Figure S2A). Two major reverse transcriptase
(RT) stops were found, one located at G+306 in the coding

@ PLoS Genetics | www.plosgenetics.org
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sequence and the other >70 nt upstream of the AUG start codon
(Figure S2A). Several weaker stops were also observed, e.g. at
position U+296, after longer exposure of the autoradiography
(Figure S2A). Given the location in the CDS, the RT stop at
G+306 represented an internal cleavage of rnc mRNA. We then
mapped the RNase III cleavage sites on @ vitro synthesized full-
length ¢ mRNA (843 nt) and a truncated version (752 nt) in
which a large part of the 5’UTR had been deleted (Figure 3B).
The unlabeled RNAs were subjected to RNase III hydrolysis, and
the RNA fragments were separated on agarose gels under
denaturing conditions followed by staining with ethidium bromide
(for experimental details, see Text S1). RNase III specifically
cleaved the  vitro transcribed mec mRNA and generated at least
two main fragments in a Mg?*-dependent manner (Figure 3B).
Removal of the 5'UTR altered migration of the smaller fragment,
identifying this fragment as 5’ proximal. This result suggests that
RNase III recognizes and cleaves its own CDS.

The RNase III cleavage sites were then mapped more precisely
by reverse transcription i vitro (Figure 3C). This experiment
showed that position U+296, located within the CDS of me
mRNA, is the site of the major RNase III-dependent cleavage.
Notably, this cleavage coincided with the 5" end of the RNA
fragment recovered by colP with WT RNase III (Figure 3A). It is
surprising, however, that the primer extension performed on total
RNA identified a potential RNase III-dependent cleavage at
G+306 of m¢ mRNA, 10 nucleotides downstream of U+296
(Figure 3C and 3D). Although we do not exclude that RNase III
cleaves its own mRNA differently i vivo, additional trimming of
the cleaved RNA by an unknown ribonuclease could tentatively
explain this difference. Structure probing of the mc mRNA was
performed using the single-strand-specific RNases T2 and T'1, and
the double-strand-specific RNase V1 (Figure S2B and S2Q).
Enzymatic reactions were restricted to less than one cut per
molecule, and cleavages were mapped by reverse transcription
[35]. The structure probing supported the formation of three long
hairpins in the CDS, as indicated by numerous RNase VI
cleavages located in the arms and strong RNase T2/T1 cuts
occurring in the apical loops (I, II, and III) and the internal loop
regions (Figure S2C). The long irregular helix III, in which the
RNase III cleavage site at U+296 is located, appears to be the
preferred RNase III binding site (Figure 3D).

Taken together, the data support a model wherein RNase III
initiates decay of its own mRINA within the CDS, resulting in
negative feedback regulation of its expression. The deep sequenc-
ing analysis additionally revealed several RNA fragments that were
antisense to e mRNA (Figure 3A). However, expression of these
asRNAs was not detectable by Northern blot experiments in the
RN6390 strain, indicating a very low abundance and/or low
stability of these transcripts.

The 5’ untranslated region of cspA mRNA is processed by
RNase llI

The ¢spA mRNA, which encodes the major cold-shock protein
and RNA chaperone, was a candidate RNase III substrate because
the entire transcript was represented by reads from the colP with
the E135A mutant protein (Figure 4A; Table 1 and Table S4). To
validate this target, we used Northern blots to first compare ¢spA
expression in RN6390 and the Ame strain, in the presence or
absence of RNase III WT and mutant proteins (Figure 4B).
Surprisingly, the absence of RNase IIT (Ame strain) led to the
accumulation of a longer ¢spd mRNA (¢spA;) than that observed in
the WT strain (Figure 4B). While complementation of the Amc
strain by functional RNase III partially restored the WT pattern,
the two mutant variants did not (Figure 4B). Thus, RNase III
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Figure 3. RNase lll autoregulates its own expression. (A) Visualization of mapped cDNA reads on the S. aureus genome corresponding to rnc
mRNA fragments using the Integrated Genome Browser (IGB, Affymetrix). Same legend as described in Figure 2A. The red arrow indicates the start of
a cleaved fragment at position +U296. (B) In vitro RNase lll cleavage assays on unlabeled full-length rnc mRNA (FL-rnc 843 nt, lanes 1-7) or the rnc
mRNA lacking its 5" untranslated region (A5"UTR-rnc 752 nt, lanes 8-12). The RNA fragments were separated using an agarose gel under denaturing
conditions and visualized after ethidium bromide staining. Unlabeled rnc mRNA (200 nM) was incubated with purified wild type RNase lll (WT) (lanes
2, 3,9, 10) or the mutants E135A (lanes 4, 5, 11) or D63A (lanes 6, 7, 12). Lanes 1, 8: incubation controls of rnc mRNAs in the absence of enzyme.
Cleavage assays were performed with WT-RNase Ill at 0.33 uM in a buffer containing Mg2+ (lanes 2, 9) or Ca®* (lanes 3, 10), with the mutant E135A at
0.33 uM (lanes 4, 11) and 0.66 uM (lane 5), and with the mutant D63A at 0.33 uM (lane 6, 12) and 0.66 uM (lane 7). Lane M: Riboruler low range RNA
marker (Fermentas). (C) RNase lll cleavage sites were mapped on in vitro transcribed rnc mRNA using primer extension with the 5’ end-labeled
oligonucleotide 69 (Table S8). Reactions were performed in the presence of increasing concentrations of wild type RNase Il (0.33 and 0.66 uM) in a
buffer containing either Mg or Ca®*. Lanes U, C, G, A: DNA sequencing reactions but the labels correspond to the RNA sequence. The black arrow
denotes the RNase Ill cleavage at U+296. (D) Secondary structure of the RNase lll-binding site located in the coding region of rnc mRNA. A black
triangle indicates the in vitro cleavage site at position U+296 while the red arrow represents the primer extension stop.

doi:10.1371/journal.pgen.1002782.9g003

appeared to process the ¢spA transcript into a shorter form (cspAy).
Northern blot analysis was then performed on RNA samples
collected throughout growth from WT or Ame strains at 37°C,
after cold-shock at 15°C (at t0, Figure 4C), and after shifting
cultures back to 37°C (at t3, Figure 4C). Under all of these
conditions, ¢spd; mRNA only accumulated in the Arme strain,
suggesting that the maturation is not regulated by cold-shock but
rather is a step in the normal biogenesis of ¢sp4 mRNA. Next, we
performed primer extension on total RNA extracts for a
comparative mapping of the 5" end of ¢spA mRNA in WT and
Ame strains (Figure 4D). The 5" end of the processed cspdg
transcript (WT strain) mapped to U-52, while that of the
unprocessed ¢spAd; mRNA (in Ame) was found 60 nucleotides
upstream, at U-113 (Figure 4D). Importantly, the 5 end of the
¢espd;, transcript precisely matched the 5 boundary of RNA
fragments recovered in the colPs with the two mutant enzymes
(Figure 4A). Thus, the comparison of WT and mutant enzymes
pinpointed an RNase III-mediated processing event. We then
precisely mapped the RNase III cleavage sites on an m witro

@ PLoS Genetics | www.plosgenetics.org

synthesized unlabeled cspA; by reverse transcription (Figure 4E),
and by using 5’ end-labeled ¢spd; (Figure 5D). RNase III
hydrolysis of unlabeled ¢spd; followed by primer extension,
revealed a major cleavage site at G-53 and a minor one at A-88
(Figure 4E), generating the characteristic two-nucleotide 3’
overhang (Figure 4F). The cleavage at position A-88 was also
clearly detected with the 5" end-labeled espd; (Figure 5D).
Importantly, cleavage at G-53 matched the 5’ termini of ¢spdyg in
vivo (Figure 4D). Hence, the RNase III cleavage assay wn witro
faithfully recapitulated a major step of cspA; mRINA processing in
vivo.

Processing of cspA mRNA by RNase Il activates CspA
synthesis

Having confirmed that RNase III processing occurs within the
5'UTR of espAd mRNA, we set out to define the functional
consequences of this event. The secondary structures of ¢spd;, and
¢spAg were compared using single-strand-specific RNases (RINases
T2 and T1) and the double-strand-specific RNase V1 on i vitro
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Figure 4. RNase Ill processes the 5’ untranslated region of cspA mRNA. (A) IGB representation of the cspA locus. Same legend as in Figure 2A
is applied. The +1 site identified by primer extension in the Arnc strain is indicated by a red arrow (U-113). (B) Expression of cspA mRNA forms after
4 h of growth at 37°C in strains RN6390 (WT), Arnc and Arnc expressing the E135A, WT or D63A Flag-tagged RNase lll. CspA,; corresponds to the
longest form of the mRNA while cspAs corresponds to the processed form of the mRNA. (C) Growth curves of RN6390 (WT) and Arnc mutant strains
(Arnc). Two cultures were grown at 37°C (black diamonds: RN6390; black triangles: Arnc) while two other cultures (black squares: RN6390; black
circles: Arnc) were transferred to 15°C (t0) after 120 min of growth at 37°C, then incubated for an additional 120 min at 15°C, and retransferred to
37°C at time t3. In this experiment, a mild growth defect was observed for the Arnc strain. However, this defect was not reproducible and could be
attributed to a higher level of cell aggregation in this strain during the late exponential phase of growth. Northern blot analyses showing the
expression of cspA mRNA at 37°C or at 15°C at the indicated time-points are depicted in the insets. Lanes 1, 2: RNA samples prepared from RN6390 or
Arnc mutant strains, respectively. Lanes t-1 to t5: incubation times of cell cultures as shown in the growth curves. A DIG-labeled DNA probe (amplified
using the oligonucleotides 286 and 16) was used to detect cspA mRNA and the autoradiography was revealed after several seconds. (D) Primer
extension analysis performed on total RNAs isolated from cells grown at 37°C for 3 h and 4 h. Lane 1: RN6390 strain; lane 2: Arnc strain. The 5’ end
detected in each strain is indicated. The nucleotides are numbered relatively to the AUG start codon. Lanes C, U, A, G: sequencing ladders. Primer
extension was carried out using the 5’ end-labeled oligonucleotide 378 (Table S8). (E) RNase Il cleavage of unlabeled cspA; mRNA. The reactions were
done in the absence (—) and in the presence of RNase Ill (+, 0.33 uM; ++ 0.65 uM) in a buffer containing Mg2+ or Ca®". Lanes C, U, G, A: sequencing
reactions. The same oligonucleotide 378 was used for reverse transcription to analyze the cleavage sites. The RNase lll cut at position A-88 appears as
a faint band because the enzymatic reaction is too strong. Arrows denote the specific RNase Ill-induced cleavages at U-53 and A-88 (relatively to the
AUG). Lane (—): incubation control in the absence of RNase Ill. The cleavages were assigned after primer extension using the 5’ end-labeled
oligonucleotide 16. (F) Secondary structure of ¢cspA, is deduced from structure probing experiments. The structure of the 5'UTR of ¢spAs is shown in
the inset. The grey arrow corresponds to the RNase Ill cleavage sites obtained in vitro while the red arrow represents the reverse transcriptase stop,
which was assigned by primer extension in RN6390 (WT). The Shine and Dalgarno (SD) sequence and the AUG strat codon are indicated in red.
doi:10.1371/journal.pgen.1002782.g004

synthesized mRNAs (Figure S3A). The enzymatic cleavages were the short stable 5’ hairpin on transcript decay, we analyzed the i
mapped by primer extension (for experimental details, see Text viwo RINA stability of cspd mRNA by Northern blot experiments

S1). The derived secondary structure model supports that cspA;, after rifampicin treatment (Figure 5A). Quantification of the data
mRNA is highly structured and starts at the 5" end with several showed that the processing significantly stabilized ¢sp4, increasing
unpaired nucleotides followed by an almost perfect 32-bp helix transcript half-life from <2.5 min in the Ame strain to >16 min in
(Figure 4F and Figure S3B). This long 5" hairpin structure the WT strain (Figure 5A).

resembles a typical RNase III binding site. Shortening of the We then used toeprinting assays to monitor the formation of
5'UTR led to the formation of a smaller but stable 5’ hairpin translation initiation complexes comprised of S. aureus 30S
structure in ¢spAdg (Figure 4F, inset). Paired nucleotides at the 5’ subunits, initiator (RNA™ and ¢spd mRNA variants (for
end of mRNAs are known to protect against pyrophosphate experiment details, see Text S1). The experiment showed that
removal by RppH and degradation by the 5'-3" exoribonuclease ~50% of ternary initiation complexes were formed at 30S

activity of RNase J1 in B. subtilis [3,36]. To evaluate the effect of concentrations of 120 nM with espds and of 300 nM with ¢spA;,
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Figure 5. RNase lll-dependent processing stabilizes cspA mRNA and enhances translation. (A) Upper panel: cspA mRNA stability was
assessed in RN6390 and Arnc strains after rifampicin treatment. Expression of 55 rRNA was monitored in the same samples as a loading control.
Molecular weight ladders are indicated on the left of the gel. The two forms of cspA mRNA were detected using a DIG-labeled riboprobe transcribed
by T7 RNA polymerase from a PCR template amplified using the oligonucleotides 367-368 (Table S8). Lower panel: Quantification of cspA mRNA level
and half-life determination in RN6390 (cspAs, diamonds) and in Arnc strain (cspA,, squares) as a function of time. CspA, is the unprocessed mRNA and
cspAs, the processed mRNA. The value corresponding to the percentage (%) of the remaining mRNA was normalized with the control experiment
performed with 55 rRNA. The half-life was determined from a semi-logarithmic plot of the concentration of the mRNA over time. The slope of the
best-fit line was then determined to calculate the half-life, which corresponded to the time-point where 50% of the initial mMRNA amount remained.
Three experiments provided reproducible results. (B) Formation of the ternary 30S initiation complex using the two forms of cspA mRNA (cspA;, and
cspAs). Ternary complex formation was monitored in the presence of increasing concentrations of S. aureus 30S ribosomal subunit (5, 10, 50, 100, 200
and 300 nM), and the initiator tRNA™et (1 uM). (=): Incubation controls without 30S. Lanes C, G, U, A: sequencing ladders of cspA; mRNA. The
position of the toeprint at +16 and the +1 site corresponding to the AUG codon are indicated. Primer extension was done with the 5’ end-labeled
oligonucleotide 16 (Table S8). Lower panel: Quantification of 30S ribosome binding on c¢spA, (green) and c¢spAs (red) mRNAs. Relative toeprints were
calculated by relating the intensity of the band corresponding to the toeprint at +16 to the sum of the intensities of this band and the band
corresponding to the full length RNA. (C) Schematic model summarizing the role of RNase Il in cspA maturation. RNase Ill cleaves the long hairpin
structure at the 5’ end of cspA, to produce an mRNA with a shorter 5’ untranslated region, which is more stable and translated with a higher
efficiency. (D) Top panel: Northern blot analysis showing the expression of the antisense RNA as-cspA. Total RNAs were prepared from RN6390
(RN6390, WT) and Arnc mutant (Arnc) strains at 2, 4 and 6 h of growth at 37°C. Molecular weight ladders are indicated on the left of the gel. To detect
as-cspA, a DIG-labeled riboprobe was transcribed in vitro with T7 RNA polymerase from a PCR template amplified with the oligonucleotides 286 and
16 (Table S8). The asRNA signal was detected after a long exposure of the autoradiography (30 min). Bottom panel: autoradiography showing the
fractionation of RNase Il cleavages of 5’ end-labeled cspA; mRNA alone or in the presence of the antisense RNA (as-cspA). Incubation controls of
cspA; mMRNA alone or with as-cspA in the absence of RNase Ill are shown respectively in lanes 1 and 4. The RNase Ill cleavage assays were done in the
presence of Mg?" (lanes 2, 5-8) or Ca>* (lanes 3, 9) with cspA, mRNA alone (lanes 2-3) or with as-cspA (lanes 4-9). The cspA mRNA-as-cspA duplex was
formed with denatured RNAs (denaturing conditions) or with RNAs, which were separately renatured (native conditions) (see Text S1). Increasing
concentrations of asRNA were used: 10 nM (lane 5), 25 nM (lane 6), 50 nM (lane 7), and 100 nM (lanes 4, 8, 9). Lanes L, T: alkaline ladder and RNase T1
performed on cspA; mRNA under denaturing conditions, respectively. Lanes 3, 9 (native conditions): the experiments performed in the presence of
Ca* under native conditions show a residual activity of RNase Ill due to the presence of Mg>*, which was used to fold the RNAs prior to complex
formation. The arrow indicates the RNase Il cleavage at position A-88 occurring in free cspA; mRNA, and the bar shows the strongest cleavages
induced by the as-cspA binding.

doi:10.1371/journal.pgen.1002782.g005

(Figure 5B). Thus, ¢spds formed initiation complexes more readily in the WT strain, the RNase IIT processing event in the 5'UTR of

than c¢spA;. Similarly, a differential proteomic analysis based on ¢cspA;. stabilizes the mRNA and facilitates ribosome binding to
two-dimensional gel electrophoresis of cytoplasmic proteins increase CspA synthesis (Figure 5C). How the long 5’ hairpin of
prepared from WT and Ame bacteria showed that the synthesis ¢spA;, hampers ribosome binding remains to be studied. Interest-
of CspA protein was strongly reduced in the absence of RNase II1I- ingly, previous work showed that a stable hairpin structure located
mediated processing (data not shown). The increased initiation several nucleotides upstream of a SD sequence sterically interfered
complex formation of the processed cspds mRNA most likely with translational initiation [37].

reflects higher accessibility of the RBS as suggested by the The deep sequencing data indicated the existence of an asRNA
enzymatic structure probing of e¢spds mRNA. Indeed, single- complementary to the entire 5"UTR of ¢spd;, including the six first
strand-specific RNase cleavages were significantly enhanced in the codons (Figure 4A). Northern blot and primer extension exper-

region encompassing the SD sequence in ¢spds (Figure S3). Thus, iments confirmed the presence of this asRNA in both WT and
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Ame strains grown at 37°C (Figure 5D; Table S5). However, the
Northern experiments performed with DIG-labeled riboprobes,
covering the same region of the genome, suggested that the yield of
this asRNA was very low compared to that of cspd mRNA
(Figure 5D). We tested whether this asRNA guides RNase III
cleavage of cspA. End-labeled ¢spAd; mRNA was subjected to
RNase III hydrolysis i vitro, in the absence or presence of the
asRNA (Figure 5D). Two conditions were used to form the
asRNA-mRNA complexes: both RNAs were either denatured
together and directly hybridized (denaturing conditions), or were
denatured and refolded separately before hybridization (native
conditions). After RNase III hydrolysis, the labeled RNA
fragments were separated on a sequencing gel (Figure 5D, lower
panel). The results show that RNase III efficiently cleaved
preformed mRNA-asRNA duplexes into short RNA fragments i
vitro. Therefore, the asRNA suppressed rather than promoted the
generation of stable ¢spAg mRNA. This regulation could contribute
to fine-tuning of mRNA levels i vivo [28].

Overall, the RNase III-mediated processing step in the
biogenesis of ¢spd mRNA is determined by the intrinsic structural
properties of its 5'UTR alone. These data strongly suggest that
RNase III cleavage activates the synthesis of the major cold-shock
protein CspA at the post-transcriptional level.

Non-coding RNAs as RNase Ill targets

In addition to several mRNAs, the abundant housekeeping
RNAs, tmRNA, RNase P, 4.5S RNAs, and the transcriptional
regulator 6S RNA, were significantly enriched in the colPs with
the mutant proteins (Table S2). These ncRNAs are all processed
from precursor transcripts by the concerted action of several endo-
and exoribonucleases (e.g., [38,39]). However, the frequent
recovery of such abundant and highly structured RNAs does not
strictly imply their maturation by RNase III. For example,
although B. subtilis 4.5S RNA maturation involves RNase III
[39,40], we did neither observe an altered processing pattern or
precursor accumulation in the Ame¢ mutant strains in Northern
blot experiments (Figure S4A), nor did we detect RNase III-
dependent cleavages of 4.5S RNA i vitro (results not shown).
Likewise, the mature 230 nt product of 6S RNA was recovered by
colP, and its irregular hairpin structure was recognized by the
RNase III mutant E135A (Figure S1). Nevertheless, we failed to
observe RNase IlI-dependent processing on Northern blots
(Figure S4A) and i witro cleavage assays (results not shown). As
an aside, the 6S gene is located downstream of the aspS-fisS
operon, which is controlled by a T-Box motif [41,42]). Whether 6S
RNA expression responds to decreased pools of amino acids or
uncharged tRNAs remains to be investigated.

Many of the enriched RNA fragments recovered by colP (listed
in Table S3) originated from full-length and bona fide ncRNAs of .
aureus, such as RsaA, C, E, H, I, and J [43,44], the pathogenicity
island-encoded ncRNAs SprA, SprA3, SprB, SprC, and SprF3/
SprG3 [42,44], as well as RNAIII [45]. Several of these ncRNAs
(RsaA, RsaE, RsaX29/X39, Rsal, RsaO, SprA) were enriched
with the mutant proteins suggesting that they are substrates of
RNase III (Figure S5). These RNAs carry stable stem-loop
structures and typical Rho-independent terminator hairpins
(Figure 6, Figure S6) [46]. Experimental validation was performed
on RsaA (Figure 6). In addition to RsaA, a second larger RNA
(RsaAyr) was detected on Northern blots, which likely originated
from read-through at the transcriptional terminator. RsaA and
RsaAy, share a similar 5’ end as determined by RACE experiments
[43]. Half-live measurements revealed a significantly higher RsaA
stability in the Ame strain (>60 min) compared to WT strain
(~25 min for RsaA; Figure 6A). The longer RsaA;, RNA was also
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more stable in the Amc strain (10 min) than in the WT strain
(~2.5 min; Figure 6A). We also performed RNase III cleavage
assays on  vitro transcribed RsaA followed by primer extension.
Two main cleavages were identified in the bulged loop of the 5’
hairpin structure of RsaA (Figure 6B) and of RsaAp, (data not
shown). Notably, these RNase III-specific cleavages coincided with
the 5" ends of two RNA fragments recovered by colP with WT
RNase III (Figure S5). Thus, RNase III contributes to the turnover
of RsaA and RsaA;.

This study identified novel ncRNAs such as Rsal, RsaN, and
RsaO (Table S3; Figures S4B and S6). Northern blot analyses
showed that RsaO was expressed in all strains tested (Figure S4B),
while RsaN was only detectable in the Arne strain (Table 1 and
Table S3, data not shown). Other novel transcripts mapped to loci
with multiple copies in the genome. For instance, two of the
transcripts with the most abundant sequence reads corresponded
to homologous and redundant ncRNAs (RsaX29 and RsaX39)
that originated from a partial duplication of the 5S rRINA genes.
RsaX29 harbors a long helical structure that might be recognized
by RNase III (Figure S6; Table S3).

According to the deep sequencing data, several ncRNAs have
associated asRNAs. The abundance of these antisense transcripts
varied considerably according to Northern blot experiments
(Figure S4C and S4D). For instance, the putative asRNAs of
RsaA or RsaH were solely detectable by deep sequencing (results
not shown). Conversely, several sense-antisense RINA pairs
(SAS028/tegl02, SprF3/SprG3) gave strong signals on Northern
blots in WT and Ame strains (Figure S4C, S4D). Teg102 has been
previously identified as an asRNA complementary to SAS028
mRNA, which encodes a small hypothetical protein [44,47]. Its 5’
half was found in two copies in the same intergenic region of the
genome (Figure S4C). The levels of SAS028 mRNA were
reproducibly lower in the Ame strain overexpressing the WT
RNase III (Figure S4C). It remains to be seen whether this RNase
III-dependent effect is a consequence of asRNA regulation.
SprF3/SprG3, whose partial sequences are present in multiple
copies in the genome [42], may belong to the group I toxin-
antitoxin systems, with SprG being the putative toxin [48].
Whether SprG3 encodes a peptide is yet unknown. Measurement
of the half-lives in vivo showed that SprG3 (>60 min) is more stable
than SprF3 (<12 min) (Figure S4D). However, under the
conditions of growth used in the experiment, the i vivo half-lives
and the steady-state levels of SprI3 and SprG3 RNAs were similar
in the WT and Armne strains (Figure S4D) even though RNase III
efficiently cleaves the duplex formed w wvitro (data not shown).
These surprising results are reminiscent of a recent study of a B.
subtilis class 1 toxin (bsrG)-antitoxin (SR4) system, which showed
that the half-lives of bsrG and SR4 RNAs were increased only by
2-fold in a me¢ mutant [49].

A possible function of RNase Ill in the decay of structured
regions of mRNAs

Deep sequencing of RNase IIl-associated RNAs recovered
several mRINAs that encode proteins of various functions,
including regulatory proteins that control the expression of
virulence factors (repressor of toxin Rot, transcriptional regulatory
protein SarH, two component-system SrrA-SrrB), bona fide
virulence factors (protein A, the exotoxin Geh), and enzymes
involved in various metabolic pathways (Table S4). In many cases,
certain mRNA fragments were strongly enriched. This observation
might be due to fragmentation occurring during the purification
procedure, or alternatively reflect RNase III binding to structured
mRNA fragments as a step in promoting their subsequent
degradation. Many colP mRNA fragments contained long hairpin
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Figure 6. The ncRNA RsaA is a target of RNase lll. (A) (Left) The half-life of RsaA was measured as a function of time after rifampicin treatment in
the RN6390 and Arnc strains. A strand specific DIG labeled riboprobe was used to monitor RsaA expression. The oligonucleotides 374 and 376 were
used for PCR amplification and the RNA was transcribed in vitro with T7 RNA polymerase. (Right) Quantification of mRNA levels in the RN6390 (WT,
diamonds) and Arnc mutant strains (squares) as a function of time after rifampicin treatment. The value of the mRNA half-life was determined by
representing a semi-logarithmic plot of the concentration of the mRNA over time. The value corresponding to the percentage (%) of the remaining
mRNA was normalized with the control experiment performed with 55 rRNA. The slope of the best-fit line was then determined to calculate the half-
life. Three experiments provided reproducible results. (B) RNase Ill cleavages of cold RsaA in vitro. The reactions were done in the absence (=) and in
the presence of RNase Ill (+, 0.33 puM; ++ 0.65 uM) in a buffer containing Mg2+ or Ca%*. Lanes C, U, G, A: sequencing reactions performed on RsaA,. (C)
The secondary structure of RsaA was experimentally determined [43]. The two RNase Ill cleavages are represented as follows: empty and black arrows
denote weak and strong cleavages, respectively. The organization of the genes corresponds to the annotation of the N315 genome. The ncRNA

genes are shown in red.
doi:10.1371/journal.pgen.1002782.9g006

structures which are typical RNase III binding sites, as it is
observed for secl’ mRNA (Figure 7A). In vitro RNase III cleavage
assays were performed on i vitro transcribed and unlabeled sec?”
mRNA followed by reverse transcription. Two cuts were located in
a long hairpin structure within the CDS of one of the colP
fragments, generating typical RNA fragments with a two-
nucleotide 3’ overhang (Figure 7A).

Many mRNA fragments corresponded to highly structured
5'UTRs of mRNAs, e.g., ndrl and pisG (Figure S7). These 5'UTRs
were described as c¢is-acting regulatory elements of downstream
genes with functions in the translational machinery or metabolic
pathways (Table 1 and Table S4). They contain specific binding
sites for diverse ligands such as metabolites, deacetylated tRNAs,
or regulatory proteins (ribosomal proteins, antitermination regu-
latory proteins) [41,46,50]. A shared characteristic of most of these
structured leaders is the presence of a long Rho-independent
terminator structure, indicating that these RNA transcripts

@ PLoS Genetics | www.plosgenetics.org

13

resulted from premature transcription termination (Figure S7).
Other structured regions in the data sets corresponded to 3'UTRs
of mRNAs that all carried stable Rho-independent terminators
spanning at least one helical turn, i.e. the minimal substrate of E.
coli RNase III [51] (Table 1 and Table S4; Figure S7). Several of
these 3'UTRs are rather long (>100 nts) and two of them (RsaM,
Rsall) correspond to ncRINAs (Table 1 and Table S3) [44,47].

Opverall, these examples illustrate that RNase III might affect
the turnover of structured mRNAs, in addition to that of its own
transcript and the ¢sp4 mRNA.

Identification of numerous antisense RNAs against
MRNAs

The colP strategy using two catalytically impaired RNase III
mutant proteins facilitated the identification of asRINAs opposite to
44% of the annotated mRINA genes (Table S5). These asRNAs
generally seem to be expressed at a very low level, or are rapidly
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Figure 7. Effect of RNase Il on mRNA turnover. (A) RNase Ill cleavage assays on in vitro transcribed secY mRNA. The cleavages were assigned
after primer extension using 5’ end labeled oligonucleotide 292 (Table S8). RNase Ill cleavage reactions were done in the absence (=) and in the
presence of RNase Ill (+, 0.33 uM; ++ 0.65 M) in a buffer containing Mg?* or Ca®". Lanes C, G, A: Sequencing reactions. The arrows denote the RNase
lll-induced cleavages, which are reported on the secondary structure of the RNase Ill binding site located in the coding sequence of secY mRNA. (B)
Analysis of hu mRNA expression in RN6390 and the isogenic Arnc mutant strain. Upper panel: measurements of the half-life of hu mRNA by
monitoring mRNA levels after rifampicin treatment as a function of time (min). A strand specific labeled riboprobe was used to detect hu mRNA. The
riboprobe was transcribed in vitro with T7 RNA polymerase using a PCR template amplified with the oligonucleotides 370 and 371 (Table S8). As an
internal control, 55 RNA expression was detected on the same Northern blot experiment. Lower panel: quantification of hu mRNA stability in RN6390
(black diamond) and in Arnc strain (black square) is given as a function of time. The half-life was calculated as described in Figure 5A. The dotted line
represents the half-life for the fraction of hu mRNA, which appeared to be degraded in a manner dependent of RNase Ill. (C) Upper panel: Northern
blot analysis of the expression of hu mRNA and the antisense RNA (as-hu) in various strains: RN6390 (wild type strain), Arnc mutant strain (Arnc), and
the same strain transformed with plasmid expressing the mutant E135A RNase Ill (Arnc-E135A), the wild type RNase IIl (Arnc-wt), or the mutant D63A
RNase Il (Arnc-D63A). A strand specific riboprobe was used to detect as-hu expression. The riboprobe was transcribed in vitro with T7 RNA
polymerase using a PCR template amplified with oligonucleotides 270 and 71 (Table S8). Lower panel: Autoradiography showing RNase lll cleavage
products of 5’ end-labeled hu mRNA alone or associated with the as-hu mRNA. Incubation controls of hu mRNA alone or with hu-as in the absence of
RNase Ill are shown in lanes 1 and 5, respectively. The RNase lll cleavage assays were performed in the presence of Mg?* (lanes 2-4 and 6-8) or Ca*"
(lane 9) on hu mRNA (lanes 2-4) or bound to hu-as (lanes 6-9). The hu mRNA-as-hu duplex was pre-formed with denatured RNAs (denaturing
conditions). Increasing concentrations of RNase Il were used: 0.165 uM (lanes 2, 6), 0.33 uM (lanes 3, 7) and 0.66 uM (lanes 4, 8, 9). Lanes L, T1:
alkaline ladder and RNase T1 ladder of hu mRNA, respectively. The bar denotes the shortest hu mRNA fragments generated by RNase Ill cleavage
upon the as-hu binding.

doi:10.1371/journal.pgen.1002782.9007

degraded, since many of them were undetectable on Northern strongly cleaved into short RNA fragments (Figure 7C). Thus, fu
blots (Table 1). One example is fu mRNA and its asRNA mRNA may be subject to rapid degradation by the combined
(Figure 7B, 7C). The stability of iu mRNA was measured i vivo in action of the asRNA and RNase III.

WT and Ame strains after rifampicin treatment (Figure 7B). Several sense-antisense transcript pairs that were strongly
Quantification of the data showed that RNase III moderately enriched by colP with the mutant proteins corresponded to
affected the half-life of siu mRNA (Figure 7B). Northern blot overlapping UTRs of divergent genes, as illustrated with pdf7/
experiments performed with DIG-labeled riboprobes, covering SA0943 and tagG/tagH mRNAs (Figure 8A; Tables S4 and S5).
identical region of the genome, suggested that the levels of the While pdfl encodes the essential peptide deformylase, the tagG/
asRNA were significantly below that of siu mRNA (Figure 7C). tagH genes encode the ABC transporter complex TagGH involved
Moreover, in the Ame strain complemented with the WT RNase in the export of teichoic acids. Northern blot analysis was
III, the signal of the asRNA was weaker than in the same strain performed using specific labeled riboprobes complementary to
complemented with the mutant enzymes (Figure 7C). To evaluate the 5'UTR of SA0943 or to the CDS of pdfl (Figure 8A). In
whether the asRNA can induce mRNA processing, RNase III addition to full-length SA0943 mRNA, we observed a weak but
cleavage assays were performed on in vitro synthesized and 5" end- reproducible signal for a ~350 nt long RNA fragment that was
labeled full-length iz mRNA either free or bound to the asRNA. only detected in the Arme strain (Figure 8A). In contrast, among the
The cleaved products were resolved on sequencing gels. While the three pdfI mRNA species, the longest mRNA accumulated
free hiu mRNA was not efficiently cleaved by RNase III i vitro strongly in the Ame strain (Figure 8A). A very similar pattern
(Figure 7C), the pre-formed asRNA-iz mRNA duplexes were was observed for the tagG/tagHH mRNAs. An RNA probe
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Figure 8. RNase Ill cleaves mRNAs with overlapping 5’ untranslated regions (UTR). (A) Effect of RNase Il on the overlapping 5’ UTRs of
SA0943/pdf1 (top) and tagG/tagH (bottom). RNA levels were monitored on Northern blots in various strains: RN6390 (WT), Arnc, and Arnc transformed
with plasmids expressing E135A RNase Il mutant (Arnc-E135A), the wild type RNase Il (Arnc-wt), or the D63A RNase Il mutant (Arnc-D63A). DIG
labeled riboprobes were used to monitor the expression of mRNAs. The riboprobes were transcribed in vitro with T7 RNA polymerase using PCR
templates amplified with the oligonucleotides 426/427 (SA0943), 429/433 (pdf1), 333/334 (5'UTR tagG) and 392/393 (tagG) (Table S8). Schematic
drawings summarizing the data are given below the Northern blot experiments. They show the overlapping 5'UTRs that form a typical RNase I
binding substrate. A second cleavage from an unknown RNase (?) generated RNA fragments of 300 nts corresponding to the size of the 5'UTRs of
SA0943 or tagG, which only accumulated in the Arnc strain. (B) Primer extension analysis was performed on total RNAs prepared from exponential
phase of growth. Oligonucleotides 408 and 334 were used to probe the 5’ ends of tagG and tagH mRNAs, respectively. Lanes 1, 2: samples prepared
from RN6390 and Arnc mutant strains, respectively. The 5’ ends (—140 in tagG mRNA and —25 in tagH mRNA) were detected both by primer
extension and by RACE experiments performed on circularized RNAs (Table S6). Additional 5’ ends as well as putative RNase cleavage sites are
indicated. The nucleotides are numbered relatively to the AUG start codon. Lanes C, U, A, G: sequencing ladders performed on tagG and tagH mRNAs,
which were transcribed from PCR templates amplified with primers 331/221 and 333/384, respectively. (C) RNase Il cleavage assays performed with in
vitro transcribed tagH mRNA. Cleavage sites were assigned by primer extension using the 5’ end-labeled oligonucleotide 410. Controls were done
with free mRNA (lane 1) or bound to tagG mRNA (lane 3); RNase Ill cleavage assays were performed on the mRNA alone (lane 2) or bound to tagG
mRNA in a buffer containing Mg?* (lanes 4, 5) or Ca** (lane 6). Reactions were set with 0.6 uM (lane 2, 5, 6) and 0.8 uM (lane 4) of wild-type RNase IIl;
lanes U, C, G, A: sequencing ladders. (D) Schematic representation of the tagG-tagH locus. The RNase Ill cleavage site in the 5'UTR of tagH mRNA at
position —160 is shown. An additional cleavage site induced by an unknown RNase is designated by a small arrow at position —77 of tagG mRNA.
The fragment detected by Northern blot in Arnc mutant strain (Figure 8A, lower panel) and the hybridization sites of the primers are indicated. The 3’
ends of both mRNAs were identified by RACE on circularized mRNAs (+826 for tagH and +869 for tagG, respectively).
doi:10.1371/journal.pgen.1002782.g008

complementary to fagG mRNA detected three forms of the oligonucleotide 410 complementary to tagl{ mRNA for primer
mRNA, the longest of which strongly accumulated in the Armc extension, we observed short RNA fragments that were generated

strains expressing the mutant proteins (Figure 8A). Concomitantly, by RNase III hydrolysis only when tagG associated with tagH
an RNA fragment (<300 nts) corresponding to the 5'UTR of tagG (Figure 8C). This processing resulted in the formation of a tagH
was detected in Are cells, suggesting an additional RNase cleavage mRNA with a shortened leader whose 5'-end lies several

event. Mapping of the 5" ends of the tagG/tagH mRNAs by primer nucleotides upstream of the SD sequence (Figure 8D). Thus,
extension and RACE confirmed that both mRNAs were processed RNase III likely targets the 5’ overlapping regions of divergent
by a mechanism that is partly dependent on RNase III (Figure 8B, mRNAs to generate species with shorter or even leaderless
Table S6). For tagG mRNA, RT stops mapped to positions — 140 5'UTRs.

and —250 in both the RN6390 and Ame strains and to position

—77 in the Arne strain. For tagH mRNA, two main RT stops were Discussion

mapped at —25 and —279 in both strains, while the RT stop at

—160 was only observed in the RN6390 WT strain (Figure 8B; Studies of specific transcripts from S. aureus have indicated that
Table 1 and Table S6). To assess a functional importance of the the regulation of mRINA turnover by RNase III plays an important
observed RNase processing, we further analyzed the RNase 111 role in its virulence and adaptation to stress responses [23,24,26].
cleavages on in vitro transcribed tagG/tagHl mRNAs containing the ~ Furthermore, a recent genome-wide analysis revealed an unprec-

long and overlapping 5'UTRs. Using the 5’ end-labeled edented high number of asRNAs that are weakly expressed and
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specifically degraded by RNase III in S. aureus and other Gram-
positive bacteria [28]. Here to gain better understanding of the
broad action of S. awreus RNase III, we identified direct target
RNAs of this enzyme by deep sequencing of RNAs that were
recovered i vivo with epitope-tagged variants of the protein. This
approach originally pioneered the genome-wide detection of
ncRNA and mRNA targets of the RNA chaperone Hfq at
single-nucleotide resolution [33,52]. To facilitate the identification
of nuclease targeted RNAs, which normally might be rapidly
degraded, we included mutant proteins in which the catalytic
activity was uncoupled from their RNA binding capacity
(Figure 1A). Based on prior works on E. coli RNase III
[11,14,31], we substituted residues E135 and D63 in S. aureus
RNase III by alanines. The catalytic activity of the D63A mutant
protein was indeed strongly decreased, and the activity of the
E135A variant was almost abolished (Figure 1B, 1C). Both
mutants retained full RNA binding capacity. Hence, the successful
separation of catalytic and RNA binding activity by mutation of
the S. auwreus mc gene provided independent proof for the
contributions of E135 and D63 to the active site of RNase III
[10,14,31].

Our analysis identified diverse structured transcripts of all gene
classes as potential RNase III substrates (Table 1, Tables S2, S3,
S4, S5). As expected, the longest RNA fragments were recovered
with the two cleavage-impaired mutant enzymes (Table S1), and
the highest fraction of mapped cDNA reads corresponded to
rRNA and tRNA operons (Figure 2A, Table S2). However, other
c¢DNA reads that mapped to mRNAs including 5" and 3'UTRs,
potential short ORF-containing mRNAs, RNAs from intergenic
regions, and asRNAs were specifically enriched in the colPs with
the mutant and WT enzymes (Tables S2, S3, S4, S5). Many of
these transcripts carry long hairpin structures, reminiscent of a
specific RNase III binding motif (Figures S6 and S7). Thus, RNase
III binds many different types of RNAs in the cell and, as discussed
below, has a broad effect on RNA processing and turnover. This
was recently demonstrated for the E. coli and B. subtilis RNase 111
and, interestingly, the steady-state levels of many transcripts
showed overlapping effects of £. coli RNase III and RNase E [19]
and of B. subtilis RNase III, RNase J1, and RNase Y [20]. Whether
S. aureus RNase III acts in a coordinated manner with RNase Y or
RNase J1, remains to be studied [53].

The catalytic activity of RNase lll is involved in rRNA
processing and rnc autoregulation

The requirement for the catalytic activity of RNase III was first
demonstrated for the maturation of ribosomal RNA precursors in
E. coli [34] and B. subtilis [22]. Under optimal growth conditions,
the synthesis of ribosomes consumes a major fraction of available
energy in cells. Thus, maturation of rRNA has to be efficient and
accurate for fitness. As in E. coli and B. subtilis [22,34], S. aureus
rRNAs are synthesized as long 30S precursor transcripts
containing the three rRNAs genes (165, 23S, and 5S) interspersed
by tRNA genes (Figure 2). Using specific probes that hybridized to
the spacer regions of rRNA operons, precursor transcripts were
detected in the Arne mutant strains (Figure 2B). The identification
of RNase III-dependent cleavage in the processing stalk of . aureus
16S rRNA precursors together with the conservation of the
precursor structure strongly suggest that the initial processing of
rRINAs is carried out by RNase III. Alternative pathways seem to
substitute for 16S rRNA maturation in the absence of RNase III
(Figure 2C), but the responsible enzymes are not yet known in .
aureus. In B. subtilis, the final maturation steps of 23S, 16S, and 5S
rRNAs involve the mini-IIT enzyme, the 5'-3" exoribonuclease
RNase J1, and the double-strand-specific RNase M5, respectively
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[54-56]. Because these enzymes are present in S. aureus, we may
speculate that these maturation pathways are generally conserved
in Gram-positive bacteria. Notably, analysis of tRNA/rRNA
precursors in the Ame strain (Figure 2B) strongly suggested that the
maturation of tRNAs is initiated by RNase III cleavage of the large
rRNA precursor stalk.

The present study also shows a role of RNase III in gene
regulation in S. aureus. The enzyme autoregulates its own synthesis
by a feedback mechanism similar to that identified in F. coli
[16,57] and Streptomyces coelicolor [58]. Autoregulation helps to
adjust the intracellular amount of the protein to that of the RNA
substrates and prevents a potential detrimental over-accumulation
of RNase III [59,60]. We show here that point mutations in the
catalytic site of S. aureus RNase III cause a two to three-fold
increase in the level of the mutant protein compared to the WT
enzyme (Figure 1D), which argues that autoregulation depends on
the catalytic activity of RNase III. Furthermore, S. aureus rnc
mRNA is efficiently cleaved by RNase III both i vitro and in vivo at
a specific position in a stem-loop structure located in the CDS
(Figure 3D), which is conserved among Staphylococci. The ability of
RNase III to cleave only one side of the helix is most likely due to
the presence of bulged residues that interrupt the helix [27,61].
We propose that cleavage at this site is responsible for e mRNA
destabilization under conditions when RNase III is in excess over
its other RNA substrates. Although the feedback mechanism is
preserved in distantly related bacteria, the regulatory site varies. In
E. coli, RNase III targets a 5’ terminal stem-loop of its own mRNA
[57], while the S. aureus and Streptomyces [58] enzymes regulate
themselves via the CDS of their respective gene. Such a structure
within the mc coding sequence might locally alter the speed of
translation elongation thereby facilitating the access of RNase III.

RNase Il cleavage has a positive effect on protein

synthesis

Our results show for the first time that the abundance and
translation efficiency of ¢sp4 mRNA, which encodes the major
cold-shock protein CspA, is modulated by RNase IIl-cleavages
within the 5 leader (Figure 4 and Figure 5). This RNase III
processing event generates a more stable mRNA with a shorter 5’
terminal hairpin, which results in strongly enhanced synthesis of
the major cold-shock protein. CspA was also found to be involved
in the susceptibility of S. aureus to an antimicrobial peptide of
human cathepsin G thus linking a stress response system to host-
pathogen interaction [62]. Interestingly, the 5'UTR of espd is
highly conserved in Staphylococcus species and Macrococeus species,
and a similar long hairpin may form upstream of the SD sequence
of ¢spB mRINA of Listeria monocytogenes (data not shown), suggesting
that RNase III-dependent activation may be a conserved
mechanism. The fact that RNase J1, a major 5-3’ exo- and
endoribonuclease in Gram-positive bacteria, is inhibited by a 5’
terminal hairpin [53,63] may explain why the shorter stem-loop
structure at the 5" end stabilizes csp4 mRNA. In addition, the
RNase IIlI-dependent processing of ¢spd mRNA  promotes
ribosome recruitment, most likely by resolving the inhibitory
structure at the RBS.

There are other examples wherein perturbation at the 5 end
impacts the stability and translation of bacterial mRNAs. Binding
of deacylated tRNA™ (o the 5' leader region of B. sublilis thrS
mRNA induces transcriptional read-through and mRNA cleavage,
causing mRNA stabilization due to the formation of a 5’
transcription attenuator hairpin structure [64]. More recently,
Streptococcus pyogenes ska mRNA is stabilized by the regulatory RNA
FasX through the formation of a 9 bp helix at the 5" end [65].
Similarly, Clostridium perfringens collagenase mRINA 1is stabilized by
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VR-RNA-dependent cleavage in the 5° UTR, which renders the
SD sequence more accessible for ribosome binding [66]. In
contrast with these examples wherein #rans-acting RNAs are
required, we have identified a new mechanism through which
RNase IIl-processing alone confers mRNA stabilization and
enhances translation (Figure 5C).

RNase Il is associated with non-coding RNA regulation

We detected 58 ncRNAs that co-immunoprecipitated with
RNase III (Table 1, Table S3). Most of these RNAs have been
identified previously, and many of them carry hairpin motifs that
could be specifically cleaved by RNase III (reviewed in [46]). FFor
instance, RNase III-dependent cleavages were detected in the 5’
hairpin motif of RsaA in vitro, and the stability of this RNA was
enhanced in the Amc strain (Figure 6). Similar to the quorum-
sensing-dependent RINAIIL, many of these ncRNAs presumably
regulate gene expression by antisense mechanisms [27] and it is
likely that they would be co-immunoprecipitated with their
respective target mRNAs. For instance, RNAIIl and two of its
major target mRNAs, encoding Rot and protein A, were detected
[24,26,67]. Likewise, we recovered the 5'UTRs of the sucC and
JfolD mRNAs, which are known to base-pair with RsaE [43]. Thus,
our colP data sets should be useful to improve the prediction of
ncRNA-mRNA interactions. Of note, E. coli and Salmonella RNase
IIT were also found to affect the steady-state levels of several
ncRNAs [19,68-70], suggesting that a significant portion of the E.
coli transcriptome was directly or indirectly affected by changes in
the abundance of the ncRNAs. Thus, RNase III may play a more
general role for trans-acting ncRNAs than it was previously
appreciated.

A significant number of reads representing putative asRNAs
complementary to all types of RNA species were found, namely
ncRNAs, sORF, and mRNAs (Tables S2, S5). This antisense
transcription was directed against 44% of the protein-coding
genes. Most asRNAs were present at a low level, suggesting that
they might arise from transcriptional noise (e.g., asRINAs against
¢spA and hu mRNAs; Figure 5D and Figure 7C). A recent study
demonstrated that RNase III might rapidly remove low levels of
asRNAs generated by pervasive transcription in . aureus and other
Gram-positive bacteria [28]. Interestingly, we observed that Au
mRNA was more rapidly degraded in the WT strain than in the
Ame strain (Figure 7B). Because iu mRNA was not efficiently
cleaved by RNase III (Figure 7C), its rapid degradation might be
mediated through asRNA regulation. It is tempting to propose
that this RNA quality control mechanism may also contribute to
fine-tune the final levels of mRINA in the cell. It is also conceivable
that asRNA transcription is transiently enhanced until its
concentration reaches a threshold that suffices to regulate the
expression of the sense transcript. Indeed, the expression of several
asRNAs was recently shown to be SigmaB-dependent, and their
decreased expression levels in a AsigB mutant strain correlated
with increasing expression of the sense transcripts [28]. Our data
support the view that RNase IIl-dependent processing indeed
contributes to regulate the level of sense mRNA.

Our study further reveals RNase III targets that are derived
from long 5'UTRs of divergently transcribed genes. Two of the
overlapping 5'UTRs (tagG/tagH and pdfi1/SA0943) are processed
by an unknown enzyme to generate mRNAs with shorter 5" ends,
while the processed 5'UTRs are rapidly degraded by RNase III
(Figure 8). Shortening of the 5" end of mRNAs could affect
translation and mRNA stability, as illustrated for csp4d mRNA
(Figure 5). A coordinated regulation of TagG and TagH enzymes
through overlapping 5'UTRs may be particularly important for
the efficient synthesis of teichoic acids in S. aureus. Teichoic acids

@ PLoS Genetics | www.plosgenetics.org

17

Target RNAs of the Ubiquitous Endoribonuclease IlI

contribute to the structural integrity and shape of the bacteria by
regulating the peptidoglycan cross-linking and metabolism during
cell division. They are also required for virulence and biofilm
formation (reviewed in [71]). Overlapping transcripts from
divergently transcribed protein-coding genes with long and
overlapping 5" or 3'UTRs have also been described in Listeria
[72]. This indicates a mechanism to regulate and coordinate gene
expression between neighboring genes.

Impact of RNase Ill on gene regulation

In conclusion, this study unveiled the sophistication and
complexity of post-transcriptional regulation mediated by RNase
IIT in S. aureus. The use of catalytically inactive but binding-
competent RNase III mutants allowed the identification of a large
set of structured RNase III substrates i vivo. For instance, we
demonstrated the involvement of the enzyme in rRNA and
mRNA processing, in RNA turnover, in the activation of
translation through cis- and trans-acting factors, as well as in
antisense RNA-mediated regulation. All of these functions are
mediated through the catalytic activity of RNase III. However, we
predict that the enzyme may also regulate gene expression through
its binding activity, as was shown for the cIII gene of
bacteriophage lambda. In this system, RNase III stabilized a
conformation of the mRNA that rendered the ribosome binding
site accessible to the ribosome [73]. Combining our methodology
with comparative proteomics and transcriptomics will help to
address more comprehensively the roles of this universally
conserved enzyme in gene regulation in response to stress and
during host infection.

Materials and Methods

Strains and plasmids

Mutations E135A and D63A were introduced into the S. aureus
RNase III enzyme following the Quickchange XL Site-directed
mutagenesis procedure (Stratagene). Experimental details for the
preparation of the biological materials and other detailed protocols
on Northern blot analysis, RNA structure probing, and toeprinting
are given in Text SI. The strains and plasmids used in this study
are listed in Table S7.

Co-immunoprecipitation assays

Wild-type (WT) strain RN6390 or the isogenic Ame mutant
strains alone or transformed with plasmids expressing either
E135A, D63A or WT enzymes were grown in BHI medium at
early exponential phase (OD 600 nm 0.2-0.3). Then, 10 uM of
CdCl, was added to the cultures, and after 2 h and 4 h of
induction, the cells were pelleted and snap-frozen in liquid
nitrogen. The bacterial cell pellet was suspended in lysis buffer
(TBS, 1% Triton X-100 and protease inhibitor cocktail),
transferred onto glass beads (provided by FastRNA Pro Blue
Kit, Qbiogene) and processed in the FastPrep instrument (3 x45 s
at a setting of 6.0). Samples were centrifuged at 13,000 rpm for
5 min. The supernatants were mixed with mouse IgG-agarose
(Sigma, A0919) to remove non-specifically binding proteins and
incubated at 4°C for 50 min. The beads were spun down (1,500 g,
5 min) and the pre-cleared supernatants (3 ml) were kept
separately. A fraction of the volume (0.2 ml) was removed for
total RNA isolation and the rest of the sample was mixed with
40 pl (packed gel volume) of Anti-Flag M2 Affinity Gel (Sigma,
A2220). Immunoprecipitation was performed according to the
manufacturer’s instructions. Briefly, the cleared lysates were
incubated with the Anti-Flag M2 Affinity Gel for 2 h at 4°C,
then the beads were washed three times with TBS. Elution was
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made with 0.2 ml of Flag Peptide (Sigma, F3290) prepared at the
concentration recommended by the supplier. The sample was
extracted with acidic phenol and then by chloroform: isoamylic
alcohol. RNA was precipitated with ethanol, treated with DNase I,
extracted with phenol and precipitated. The final RNA samples
were dissolved in 50 pl of sterile water and lyophilized.

Deep-sequencing analysis

cDNA library construction, pyrosequencing and data analysis
were done as previously described [33,52]. In brief, cDNA-seq
libraries were constructed with RNA samples from colP experi-
ments under exponential and late-exponential phase growth of the
Flag-tagged wild-type and mutant enzymes expressed from the
inducible plasmid. The resulting cDNA libraries were sequenced
on a Roche 454 sequencer using FLX and Titanium chemistry.
From the resulting ¢cDNA reads, 5'-linker sequences and polyA-
tails were clipped from the sequenced cDNA reads. Only reads of
=18 nt were aligned to the reference genome, which was retrieved
from the NCBI server (accession number of the chromosome:
NC_002745.2; accession number of the plasmid: NC_003140.1),
using the program segemehl [74]. Based on the resulting mapping
data, read coverage files were generated in the GR format
representing the number of mapped reads per nucleotide. The GR
files were visualized in combination with FASTA and GFT files of
the genome using the Integrated Genome Browser (IGB) [75].
Additionally, overlaps of mapped reads and gene annotation
positions were identified and counted. The overlap between
mapped read and a gene annotation had to be at least 10
nucleotides long to be taken into account. Each single overlap
counting was normalized by the number of positions to which the
overlapping read was mapped and the number of annotations that
overlap with the read. For instance, if reads map to multiple
regions with exactly the same score (e.g. this is the case for reads
that map to the different multiple copies of the rRNA genes), only
a relative fraction of one read is counted instead of a count of one
read. For example, if a read maps twice, each location gets a score
of 0.5 reads. Moreover, if a read overlaps two annotations, each
annotation gets a score of 0.5 reads (Table S1).

Text S1 provided experimental details for all the experiments
performed in this study.

Supporting Information

Figure 81 Mutant RNase III E135A binds to the co-immuno-
precipitated RNAs @ witro. (A) Binding of the mutant E135A
RNase III to various RNAs assessed by gel retardation assays. The
assays were performed with i vitro transcribed unlabeled RNA
fragments (50-100 nM), which were incubated with increasing
concentrations of E135A enzyme. The complexes were resolved
on native agarose gels and subsequently transferred to Hybond-N+
membranes. The free and bound forms of RNAs were revealed
after hybridization with a 5'-end labeled oligonucleotide. Data
were analyzed using a Phosphoimager (FujiFilm FLA-5100). For
the flavin mononucleotide (FMN) riboswitch, the assay was done
in the absence (—FMN) or in the presence (+FMN) of the ligand
(333 uM). The oligonucleotides used for hybridization are given in
Table S8. (B) Binding of the mutant E135A RNase III to the 5’
end-labeled ¢spd;, mRNA and competition assays. Complex
formation was done with the 5" end-labeled RNA and increasing
concentrations of E135A mutant protein (200 to 800 nM). For
competition assays, various concentrations of cold competitor
RNAs were added. We used espA;, (10, 50, 100, 200, 500 nM),
espAs (10, 50, 100, 200, 500 nM), and SA2097 (10, 50, 100,
200 nM). espdg 1s a truncated form of ¢spd; and SA2097 is a
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mRNA which was not co-immunoprecipitated with RNase III.
The concentration of E135A mutant protein was 800 nM. (Lane -)
no cold RNA was added. The samples were fractionated on 8%
(left) and 5% (right) polyacrylamide gel electrophoresis under non
denaturing conditions.

(TIF)

Figure S2 Mapping of the 5 end and secondary structure
probing of mc¢ mRNA. (A) Determination of the 5" end of me
mRNA by primer extension. Total RNA was extracted from
different stages of growth of the wild type strain (RN6390). Primer
extension was done with 10 pg of RNA. Lanes 1, 4: 240 min of
growth; lanes 2, 3: 150 and 180 min of growth, respectively. Two
independent experiments were performed with AMV (lane 1) and
Superscript (lanes 2-4) RT, respectively. Lanes C, U, A, G:
represent DNA sequencing reactions on the full-length m¢ mRNA
transcript, the labels corresponded to the RNA sequence. The 5’
start of the primary transcript is indicated by +1 (approximately 70
nucleotides upstream of the initiation codon AUG). Red arrow
corresponds to the RT stop at G+306, the black arrow to the
RNase III cut obtained @ witro at U+296. Numbering of
nucleotides is given relatively to the AUG start codon. A shorter
exposition of the autoradiography was performed for a better
visualization of the sequencing reactions. For primer extension, the
5" end-labeled oligonucleotide 380 was used (Table S8). (B)
Unlabeled m¢ mRNA was hydrolyzed in the presence of increasing
concentrations of RNase V1 (0.001, 0.002 and 0.01 U), RNase T'1
(0.1, 0.2 and 0.4 U) and RNase T2 (0.0125, 0.025 and 0.125 U).
Lane (—): incubation control of mc mRNA; lanes A, C, G, U:
sequencing reactions. Cuts were detected by primer extension
using 5’ end-labeled oligonucleotide 380. (C) Enzymatic cleavages
summarized on the secondary structure model of the coding
sequence (nts 130-393) of e mRNA. The grey arrow indicates
the RNase III cleavage site at position U+296 obtained i vitro and
by deep sequencing (Figure 3), and the red arrow corresponds to
the reverse transcriptase stop. The annotations of the cleavages
induced by RNase T1 (unpaired guanine), RNase T2 (unpaired
nucleotides) and RNase V1 (paired nucleotides) are given in the
inset.

(TIF)

Figure 83 Analysis of the secondary structure of ¢sp4 mRNA
using enzymatic probing. (A) Enzymatic hydrolysis was performed
using i vitro transcribed ¢sp4 mRNAs having a long (espA;y) or short
(espAg) 5'UTR. Increasing concentrations of enzymes were added:
RNase V1 (0.0001, 0.001 and 0.002 U), RNase T1 (0.1, 0.2 and
0.4 U) and RNase T2 (0.0125, 0.025 and 0.125 U). Lane (—)
incubation controls; lanes C, U, G, A are DNA sequencing
reactions performed on ¢spAd; mRINA, the labels corresponded to
the RNA sequence. Cuts were detected by primer extension using
the 5’ end-labeled oligonucleotide 16 (Table S8). The region of
¢espAg, which is more accessible to single-strand specific RNase, is
marked by a bar on the right side of the autoradiography. (B)
Enzymatic cleavages reported on the secondary structure models
of espA;, mRNA (nts —112 to 257 relatively to AUG). The 5’ end
of the processed cspAds mRNA (red arrow) as well as the labels for
the RNase cleavages (grey arrow) are given.

(TTF)

Figure S4 Effect of RNase III on the expression of several
ncRNAs and antisense RNAs from Staphylococcus aureus. (A) The
expression of housekeeping non-coding RNAs (4.5S and 6S RNA)
was monitored in various strains: RN6390, the isogenic Arnc
mutant strain (Ame), the Amc mutant strain transformed with
plasmid expressing the mutant E135A RNase III (Ame-E135A),
the wild type RNase IIT (Amc-wt), and the mutant D63A RNase 111
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(Amc-D63A). Grey arrows represent the ncRNA genes. Schematic
representation of the genes is according to the N315 genome
annotation. (B) Expression of the ncRNA, RsaO, in various strains.
Strain annotations are the same as in (A). (C) Expression of SAS028,
a mRNA containing a putative small ORF, and its antisense RNA
(Sau-02 [17], teg102 [18]). (D) Expression of SprG3 and SprF3 [19]
and quantification of RNA stability in RN6390 (diamonds) and Arne
mutant (squares) strains. Same legend as in B. All the experiments
were reproduced at least three times.

(TIF)

Figure S5 Examples of the distribution of cDNA reads
represented with the Integrated Genome Browser. Genomic
annotation is given at the top of each profile panel. The ncRNA
genes are shown by black arrows. (+) and (—) indicate leading and
lagging strand, respectively. ColP RNA was from RN6390
parental strain, and from the mutant Arme strain transformed with
plasmid expressing wt RNase III, the mutant enzymes RNase III-
D63A and RNase III-E135A. E is for exponential phase (4 h) of
growth and LE for late-exponential phase (6 h) of growth. Red
arrows denote the 5’ end of RsaA RNA fragments that were co-
immunoprecipitated with the WT enzyme and which correspond-
ed to RNase III cuts identified by cleavage assays @ vitro.

(TIF)

Figure S6 Examples of secondary structure motifs as found in
several intergenic regions. The genomic organization is depicted
and red arrows represent ncRNA genes. Examples of secondary
structure motifs found in several ncRNAs as predicted by
contrafold [20] and RNAFold [21].

(TIF)

Figure S7 Secondary structures of mRNA fragments co-
immunoprecipitated with RNase III. The RNA fragment of smA4-
srB mRNA co-immunoprecipitated with the mutant enzymes
corresponded to the translational coupling site. The stop codon of
snd 1s depicted in green, the start codon, and the Shine and
Dalgarno sequence (SD) of srB are given in red. UTR stands for
untranslated region. The secondary structure models were
predicted using contrafold [20] and RNAFold [21].

(TIF)

Table S1 Read numbers and Mapping  statistics.
NC_002745=S. aureus N315 genome; NC_003140=S. aureus
N315 plasmid. Immunoprecipitation experiments were carried out
in RN6390 strain (wild-type and referent strain) as a control, and
in the mutant Ame strain transformed with a plasmid expressing
either the WT flag-tagged RNase III (IP_EL79), the mutant D63A
flag-tagged RNase III (IP_ELS80) or the mutant E135A flag-tagged
RNase III IP_E78). Total RNAs were prepared from cells grown
at the exponential phase (4 h) and late exponential phase (6 h). *
Other stable ncRNAs referred to tmRNA, 4.5S RNA, 6S RNA
and RNase P.

DOCX)

Table 82 List of reads corresponding to rRNA and tRNA
operons and to their antisense RNAs. Co-immunoprecipitation
(colP) was done with flag tagged E135A (strain EL78), WT (strain
EL79) and D63A (strain EL80) RNase III. In yellow: control
experiment was carried out with the untagged WT protein
(RN6390). Total RNAs were prepared from cultures grown at the
exponential (4 h, Exp) and late exponential (6 h, Late Exp) phase.
The overlap between a mapping location and a gene annotation
was at least 10 nucleotides long. Each single overlap counting was
normalized by the number of mappings of the overlapping read
and the number of overlaps of the mapping.

(XLS)
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Table S3 Reads corresponding to small non coding RNAs
(sRNAs) and their antisense RNAs (asRNA). Co-immunoprecip-
itation (colP) was done flag tagged E135A (EL78), WT (EL79) and
D63A (EL80) RNase III. In yellow: control experiment was
carried out with the untagged WT protein (RN6390). Total RNAs
were extracted from cultures grown at exponential (4 h, Exp) and
late exponential (6 h, Late Exp) phases. The overlap between a
mapping location and a gene annotation was at least 10
nucleotides long. Each single overlap counting was normalized
by the number of mappings of the overlapping read and the
number of overlaps of the mapping.

(XLS)

Table S4 Recads corresponding to mRNAs. Co-immunoprecip-
itation (colP) was done with flag tagged E135A (EL78), WT
(EL79) and D63A (EL80) RNase III. In yellow: control experiment
was carried out with untagged RNase III (RN6390). Total RNAs
were prepared from exponential (4 h, Exp) and late exponential
(6 h, Late Exp) phase of growth. CDS is for coding sequence and
UTR for untranslated regions of mRNAs. In purple: reads that
were not enriched in the colP with the WT and mutant proteins.
They were not considered in the present study. The overlap
between a mapping location and a gene annotation was at least 10
nucleotides long. Each single overlap counting was normalized by
the number of mappings of the overlapping read and the number
of overlaps of the mapping.

(XLS)

Table S5 Reads corresponding to antisense RNAs complemen-
tary to mRNAs. Co-immunoprecipitation (colP) was done with
flag tagged E135A (EL78), WT (EL79) and D63A (EL80) RNase
III. In yellow: control experiment was carried out with untagged
RNase IIT (RN6390). Total RNAs were prepared from cultures
grown at the exponential (4 h, Exp) and late exponential (6 h, Late
Exp) phase. The overlap between a mapping location and a gene
annotation was at least 10 nucleotides long. Each single overlap
counting was normalized by the number of mappings of the
overlapping read and the number of overlaps of the mapping.
(XLS)

Table S6 Transcriptional start sites (I'SS) of several RNAs that
were co-immunoprecipitated with RNase III. (a) Numbering
according to N315 genome. (b) Start site as defined by primer
extension (PE) analysis using the indicated primer (+1 site detected
in wt and Ame strains was identical unless otherwise indicated). (c,
d) Start site and size of RNAs as defined by deep sequencing data,
respectively. Only the longest RNA fragment pulled down by
either of the two mutant proteins was indicated. (d) Size of as-cspA
according to the fragment pulled down with RNase III from
samples prepared at the exponential phase of growth (EP); a small
fragment was also detected starting at 1408841 from samples
prepared at the late exponential phase of growth (SP). (e)
References are given for the non coding RNAs for which the
exact ends were not mapped in previous studies. Where more than
one +1 sites were detected, the main site is indicated in bold letters.
In the case of tagG and taglH mRNAs, the main +1 site was detected
by 5’-3" RACE but could correspond to processed RNA; in the
case of rne the main +1 start site is estimated based on the size of
the sequenced fragment). nd: not detected.
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Table 87 Strains and plasmids used in this study.
DOCX)

Table S8 Oligonucleotides used in this study. (a) With bold
letters the mutated nucleotides are indicated; (b) With italics the
enzyme restriction sites are indicated; (c) With small letters the
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sequence hybridizing to pQE30 vector is indicated; (d) With small
bold letters the Flag-tag is indicated; (¢) Underlined is the T7
promoter sequence. Cand is for candidate RNAs: Candl is for
SprFG3; Cand3: RsaX28; Cand4: RsaN; Candba/b: asSAS028
(SAU-02); Cand6: RsaX31; Cand7: RsaX41; Cand8: Rsal;
Cand9: RsaM; for additional details see Table S1.
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Text S1 Supplementary Material and Methods.
DOCX)
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