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Abstract

To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the
fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids
remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a
reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability.
Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a
chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of
mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid
viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also
affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids.
In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid
viability.
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Introduction

Aneuploidy is defined as a deviation from a multiple of the basic

chromosome number and is a major cause of developmental

defects in animals and humans [1]. Aneuploidy is implicated in

tumorigenesis [2]. Aneuploidy is caused by errors in chromosome

transmission and generally occurs at a low rate, but rates increase

when chromosome transmission fidelity is perturbed, e.g., by

mutations at the spindle assembly checkpoint [2]. Polyploidy is

related to aneuploid production; e.g., tetraploid cells generated by

cell fusion are an efficient source of aneuploid cells [3]. Crosses

between polyploids lead to aneuploid gametes in plants [4,5].

Aneuploidy causes a range of phenotypic consequences and is

usually detrimental to both cells and organisms (reviewed in [6]).

For example, mouse embryonic fibroblast lines with an extra

chromosome have cell proliferation defects [7], and in the yeasts

Saccharomyces cerevisiae and Schizosaccharomyces pombe, aneuploid cells

generally show defects in cell cycle progression and genome

stability [8–10]. As the grade of aneuploidy increases, i.e., the

number of chromosomes involved increases, aneuploidy becomes

lethal to the cell [8,9,11–13]. In addition, certain types of

aneuploids grow better in suboptimal conditions, e.g., under

elevated genotoxic stress [13]. Aneuploidy affects development of

the organism in various species across kingdoms [6]. In one model,

aneuploid cells are proposed to contain excess proteins that do not

participate in protein complexes because of a dosage imbalance in

gene products [6]. This idea is consistent with the fact that many

aneuploids are sensitive to proteasome inhibitors and to conditions

that interfere with protein chaperone function [9], and that among

mutations that improve the fitness of aneuploid cells, one is

defective in a deubiquitinating enzyme [14].

In S. cerevisiae and S. pombe, the higher the grade of aneuploidy,

the poorer the cell viability. S. cerevisiae (n = 16) generally does not

tolerate aneuploidy if the number of extra chromosomes exceeds

five [11,12], while in S. pombe (n = 3) all six types of aneuploids

between n and 2n are lethal or extremely unstable, except for cells

disomic for chromosome 3, the smallest of its chromosomes [15].

Aneuploids with higher grades of aneuploidy do not necessarily die

immediately; some sustain their viability for a period of time and

may survive to form a colony. This can occur when the grade of

aneuploidy is reduced, probably by incorrect mitotic chromosome

segregation, the rate of which is increased in aneuploid cells [8,10–
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12]. Given this, we reasoned that compromise of any gene that

functions to sustain aneuploid viability will reduce the efficiency of

colony formation from the aneuploid cells.

To identify such genes, we screened mutants in S. pombe that

affect the viability of aneuploid cells using a collection of deletion

mutants of non-essential genes. Our results suggest that an

evolutionarily conserved protein complex, CCR4-NOT, which is

central to the regulation of mRNA turnover, is necessary for

aneuploid viability in both fission yeast and budding yeast.

Further, other genes involved in mRNA decay and export were

identified. We also show that homologous recombination repair is

important for the survival of aneuploid cells.

Results

Screening of mutants that affect aneuploid cell viability
To identify genes involved in the viability of aneuploid cells, we

screened a collection of fission yeast deletion mutants (Materials

and Methods) [16] by investigating either spores from triploid

meiosis or mutants in which the c-tubulin gene (gtb1) and a spindle

checkpoint gene (mad2) are impaired, which are referred to as the

‘‘triploid meiosis method’’ and ‘‘gtub-mad2 method’’, respectively,

hereafter.

Triploid meiosis method. When spores produced in

triploid cells were incubated for several days, both large and small

colonies formed (Figure 1A) [8]. The euploid (haploid or diploid)

spores formed large colonies, and aneuploid spores formed small

colonies, although the small colonies actually contained mostly

euploid cells. Except for the chromosome 3 disome, aneuploids

formed visible colonies only after losing aneuploidy at an early

stage of colony formation. We speculated that mutations that

impair the viability of aneuploid cells would produce a lower

number of small colonies. For screening, we prepared spores

produced from triploid meioses in each of the deletion mutants

(see Materials and Methods) and determined the small to large

colony ratio (S/L). In the wild-type background, the ratio was

0.9160.11 (n = 10), similar to previous results [8].

Of 1659 deletion mutants examined (Table S1), 124 mutants

had an S/L,0.5, our cut-off for the study. We repeated the test

for 70 mutants arbitrarily selected from among the 124 candidates,

and found 41 mutants with a mean S/L,0.5 for both cultures.

gtub-mad2 method. The gtb1-93 mad2D double mutant has

a high level of chromosome instability and its colonies contain

many aneuploid and dead cells [17]. We therefore speculated that

mutations with a reduced ability to sustain aneuploid viability

might have synergistic deleterious effects when combined with the

double mutant. For screening, we marked the gtb1 mutation with

the hygromycin B-resistance gene (hph) and the mad2 deletion

mutation with the nourseothricin-resistance nat gene (see Materials

and Methods). We crossed this double mutant (strain YT708) with

individual deletion mutants constructed with the G-418-resistance

gene (kan). We first selected mutants that produced a reduced

number of triple drug-resistant recombinant colonies compared

with the wild-type, and obtained 336 candidates from among 1885

deletion mutants. We then isolated the triple drug-resistant

recombinants on a plate containing a low concentration of

thiabendazole (TBZ, an inhibitor of microtubule polymerization),

and tested whether the triple mutants showed reduced colony

formation compared to the parent YT708 in the absence of TBZ.

TBZ was used because it partially suppresses the gtb1-93 mutation

[17]. We then isolated the corresponding hph kan and nat kan

double mutants, and examined whether the double mutants could

grow similarly to the single mutants on a TBZ-free plate to verify

whether the poor viability was due to the triple mutation or to

aneuploidy. Among the 336 mutants, 188 were tested, and only 12

had an ‘‘aneuploid-specific’’ synergistic effect. Of these 12, a

triploid meiosis test showed that 6 had an S/L,0.5 and 3 had an

S/L.0.5, while the remaining 3 were not tested due to poor

sporulation. This indicates that a large number of mutants

showing synergistic effects in the gtub-mad2 screening had poor

spore viability in the triploid meiosis test.

Components of the CCR4-NOT complex might be
involved in aneuploid viability

As indicated above, six mutants were selected from both

screening methods. Three of the genes, not3, not2, and btf3, were

orthologous to NOT3 (or NOT5), NOT2, and BTT1 in S. cerevisiae,

respectively (http://old.genedb.org/genedb/pombe/) (see Figure 2

for the gtub-mad2 phenotype). These genes are components of the

CCR4-NOT complex, which is a general transcription regulator

[18–21]. The other three mutants were swi6 (chromodomain

heterochromatin protein), clp1 (Cdc14-related protein phospha-

Figure 1. Colony formation from spores produced in triploid
fission yeast. (A) Heterogeneously sized colonies. Colonies were
incubated on YE medium at 30uC for 5 d. (B) Representative
morphologies of C1- (left) and C2- (right) type microcolonies. Colonies
were incubated on YE medium at 30uC for 48 h.
doi:10.1371/journal.pgen.1002776.g001

Author Summary

Aneuploidy is a major cause of abortive development and
is implicated in tumorigenesis in humans. Recent studies
revealed that the increased need for protein degradation
might account for the detrimental effects of aneuploidy on
a cell. Here, we investigated the genetic systems respon-
sible for aneuploid viability. Using a collection of gene
deletions in fission yeast, we isolated mutants that affect
aneuploid viability. We found that an evolutionarily
conserved transcription regulator, the CCR4-NOT complex,
and its related factors are required for aneuploid viability,
suggesting that regulation of mRNA turnover is required
to tolerate aneuploidy. In addition, homologous recombi-
nation repair is important for aneuploid viability.

CCR4-NOT Complex for Aneuploid Viability
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Figure 2. Synergistic effects of CCR4-NOT mutants on the gtb1 mad2 double mutant. The KYPD+TBZ plate represents a permissive
condition for the gtb1 mad2 double mutant. Chromosome instability of the double mutant was enhanced on the YE plate, particularly at lower
temperature. The indicated double and triple mutants were streaked on the plates and incubated at 30uC or 33uC for 3 d.
doi:10.1371/journal.pgen.1002776.g002
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tase), and SPAC1B1.04c (predicted to be an ortholog of PAN3, a

subunit of the poly(A)-specific ribonuclease complex) (Figure S1

and data not shown). In addition, another defective mutant in the

poly(A) nuclease (PAN) complex, ppk26, had a similar effect on

aneuploid viability: a low S/L = 0.52 and a weak but significant

synergy with the gtb1 mad2 mutant (see Figure S1). We did not

study these four mutants further.

The deletion collection contained five more mutants defective in

CCR4-NOT complex components. Two of these, caf4 (CAF4/

MDV1 in S. cerevisiae) and caf16 (CAF16), were indistinguishable

from the wild-type, although the caf16 mutant had a mild effect on

aneuploid viability in a subsequent study, as described below

(Table 1). The three other deletion mutants, ccr4 (CCR4), caf1

(POP2), and rcd1 (CAF40), had synergistic effects with the gtb1 mad2

double mutant, but the ccr4 and, in particular, caf1 mutations, also

had synergistic effects with the gtb1 mutation alone (Figure 2),

suggesting that their effects are not specific to aneuploidy. These

three mutants were not tested in the triploid meiosis screening

because they generated unhealthy spores (Table S1), but

subsequent examination showed that the aneuploid spores with

the rcd1 mutant had poor viability in the triploid meiosis test, as

described below (see Table 1).

We examined the mutants of the CCR4-NOT complex more

closely. Individual spores from triploid meiosis were randomly

separated using a micromanipulator and their growth profile was

microscopically observed (Materials and Methods). Microcolony

morphology was recorded 2 days after spore separation, and the

formation of visible colonies was scored 3 to 4 d later (Table 1).

We classified microcolonies/cells into six types [8]: type A, large

microcolonies comprising normally-shaped cells; C1, microcolo-

nies containing elongated cells with or without septa; C2,

microcolonies mainly comprising short and aggregated cells (see

Figure 1B for representative C1 and C2 types); D, one germinated

cell or two apparently dead cells; E, no apparent germ tube

formation or little morphologic change from spores; and others,

microcolonies with fewer cells than those in A-type microcolonies,

but different qualities from those in types C1 and C2. Types D and

E cells in most cases did not divide or showed limited division after

day 2. Previous tetrad analyses revealed that A-type microcolonies

are produced from haploid or diploid spores, and C1 and C2-types

from aneuploid spores [8]. The chromosome 3 disome (n+1)

spores made up the C2-type ([8] and present study). As for the D

and E types, many of them probably represented aneuploid cells,

but some of them were likely euploid cells [8]. Therefore, to

evaluate aneuploid viability, we focused on the C1 and C2 types.

As shown in Table 1, the frequencies of A-type microcolonies

among the mutants did not significantly differ from wild-type

(p,0.05), indicating that the mutations did not significantly affect

the viability of euploid spores. In contrast, formation of visible

colonies from C1-type microcolonies was reduced in the mutants

with the exception of caf4. Results from other genetic studies

indicate that at least two and possibly five types of aneuploids

produce C1-type microcolonies ([8] and O. Niwa, unpublished

results). It was not clear whether the CCR4-NOT mutations

differentially affected aneuploid types.

Colony formation from C2-type microcolonies appeared to be

reduced in the not3, not2, and particularly in the rcd1 mutants,

while only slightly in the btf3 mutant. Our previous genetic study

suggested that at least the majority of ‘‘C2-type’’ spores from

triploid meiosis are chromosome 3 disomes, suggesting that the

growth of the chromosome 3 disome is affected in these mutants.

To directly address this possibility, we examined the viability of

this aneuploid by crossing a ‘‘wild-type’’ disomic strain with a

haploid strain carrying one of these mutations. For the not2

mutant, because the locus is mapped on chromosome 3, we used a

different disomic strain, whose not2 locus was heterozygous with

not2D and not2+ (see Materials and Methods). With the exception

of rcd1, there was little bias against the mutations in meiotic

segregants, indicating that these mutations did not appreciably

affect the colony-forming efficiency of the disome (Table 2). Thus,

it was not clear why the colony-forming efficiency of ‘‘C2-type’’

spores was reduced in some of the CCR4-NOT mutants in the

triploid meiosis test. Comparison of the colony size of mutant

disomes with that of the wild-type disome, however, revealed that

not3 and not2 produced much smaller colonies on a selective plate

when incubated at 36uC (Figure 3A), a temperature at which the

growth of ‘‘wild-type’’ aneuploids was retarded (Figure 3A and Y.

Tange and O. Niwa, unpublished results). The temperature

sensitivity was more pronounced in the not3 mutant, so that

colonies were barely visible even after prolonged incubation at

36uC. Chromosome 3 disome with not2/+ heterozygosity did not

show the growth defect, indicating that the not2 deletion mutation

was recessive to the wild-type with respect to the temperature-

sensitive growth phenotype (data not shown), and that the

Table 1. Growth profiles of spores from triploid meiosis.

Types of spores with indicated microcolony morphology (%)(a)

A C1 C2 others D E

genotype CF(b) CF(c) CNF(b) CF CNF CF CNF CNF CNF
Number of spores
tested

Wild type 14.3 13.1 (44.0) 16.7 6.7 0.4 1.6 1.1 22.3 23.8 551

not3 18.1 5.5 (26.1) 15.6 5.0 2.0 2.7 1.5 29.7 20.0 744

not2 16.9 4.6 (22.5) 15.8 3.3 3.1 2.9 2.4 31.0 20.0 549

rcd1 12.4 3.2 (18.3) 14.3 0.0 1.1 1.4 0.7 26.3 40.7 720

btf3 12.6 4.5 (28.5) 11.3 4.1 0.6 2.5 1.8 31.1 31.5 682

caf4 15.4 10.1 (50.0) 10.1 6.3 0.6 3.4 1.8 30.0 22.4 671

caf16 15.0 6.3 (27.0) 17.0 6.1 0.5 1.4 0.4 20.5 32.9 560

(a)For the morphology of C1 and C2 type microcolonies, see Figure 1B.
(b)CF: colony-forming; CNF: colony-not-forming.
(c)Numbers in parentheses indicate percent of colony-forming C1-type microcolonies.
doi:10.1371/journal.pgen.1002776.t001
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presence of the G418-resistance gene did not interfere with

aneuploid growth. We also noted that the mutant disomes were

less stable so that haploid colonies tended to emerge at increased

frequencies (see Figure 3B). Similarly, we compared the disomes of

caf4 and caf16 mutants with the wild-type. No differences were

noted in the colony-forming efficiency or the chromosome stability

of these mutant disomes (data not shown). The not3 and not2

mutants showed no temperature sensitivity when they were

haploid or diploid (see Figure 3A and Figure S2). These findings

indicated that deficiency of not3 and not2, but not caf4 and caf16,

affected the growth of the chromosome 3 disome, and indicated

that the effects of the not3 and not2 mutants were not limited to the

C1-type aneuploids. In addition, these data suggest that, among

the CCR4-NOT genes investigated in this study, the rcd1 gene has

the most important role in aneuploid viability.

Growth retardation of aneuploid cells in the not3 mutant
To examine how the not3 mutation affects the growth of

aneuploid cells, we compared the sizes of C1-type microcolonies.

Photographs of the microcolonies were obtained after incubation

for 52 h at 30uC. The mean area of C1-type microcolonies in the

wild-type was approximately two times that of the not3 mutant

(Figure 4). This was not due to a higher incidence of microcolonies

containing euploid cells, because microcolonies containing euploid

cells were not included in this analysis. The sizes of individual cells

in the mutant microcolonies appeared to be smaller than the wild-

type. In a control study using haploid spores, the size of the

microcolonies after 16 h incubation was indistinguishable between

mutant and wild-type. These findings suggest that the wild-type

not3 gene is required to maintain growth of at least some types of

aneuploid cells.

Effect of CCR4-NOT mutations on the genome-wide gene
expression profile in fission yeast

The primary function of the CCR4-NOT complex is thought to

be the general regulation of mRNA levels for a wide range of

genes. Accordingly, genome-wide gene expression analyses in S.

cerevisiae revealed that some observed genes were either overex-

pressed or underexpressed by at least 2-fold in deletion mutants of

the CCR4-NOT genes, although there are some inconsistencies

between studies in the observed frequencies of the affected genes in

each of the mutants [21,22].

We introduced a not3, not2, or caf4 deletion mutation in a wild-

type haploid fission yeast, and whole genome microarray analysis

was performed for these mutants as well as for the parental wild-

type strain to determine the effect of each mutation on the overall

gene expression pattern in exponentially-growing cells. The

expression profile of individual genes in a mutant was presented

as the ratio to wild-type (see Materials and Methods). The number

of genes with effective values for not3, not2 and caf4 mutants was

4940, 4926, and 4928, respectively. Among these, the number of

genes whose expression was affected by at least 1.5-fold (p,0.05)

was 141 (2.9%), 61 (1.2%), and 17 (0.3%), respectively (Table S2).

Of these, 30 genes were affected in both not3 and not2, 10 genes in

both not3 and caf4, and 4 genes in both not2 and caf4. Among the

genes affected in both not3 and not2, 27 of 30 were either

overexpressed or underexpressed in both of the mutants,

suggesting that Not3 and Not2 components of the CCR4-NOT

complex function in the same direction in the regulation of a

subset of genes. There are, however, exceptions to this rule. The

expression of urg1 (urg for uracil regulatable gene [23]) and urg2

(and, to a lesser degree, urg3 [data not shown]) was reduced in the

not3 mutant, but increased in the not2 and caf4 mutants (Table S2).

The expression profiles of SPAPB24D3.07c was opposite those of

the urg genes (increased in not3 and decreased in not2).

Another feature of the gene expression profile was that many of

the genes that were underexpressed in not3 and not2 mutants

(Table S2) mapped within two subtelomeric regions of chromo-

some 2; one is a 110-kb region centered 120 kb from the left

terminus and the other is a 70-kb region 90 kb from the right

terminus. Several genes were in these regions in the not3 (28 genes)

and not2 (16 genes) mutants, accounting for 36% and 41%,

respectively, of the genes listed as underexpressed in Table S2. It

should be noted that most of the genes that mapped to these

regions but are not listed in Table S2 also tended to be

underexpressed in these mutants (data not shown), suggesting that

Not3 and Not2 are involved in the regional control of gene

expression. Although we do not understand how these microarray

results are relevant to aneuploid phenotypes, the numbers of genes

affected in the not3, not2, and caf4 mutants roughly correlated with

the severity of aneuploid phenotypes, such as the temperature-

sensitivity of the chromosome 3 disome as well as the poor colony-

forming efficiency of aneuploid spores (see Figure 3 and Table 1).

Altered expression of some specific genes might be also relevant to

aneuploid viability (see Discussion).

The CCR4-NOT complex may be also required for
aneuploid viability in budding yeast

Because the CCR4-NOT complex is evolutionarily conserved,

we examined whether deficiency of the complex in S. cerevisiae also

affects aneuploid viability. We made triploid strains with not3 or

Table 2. Segregation analysis of chromosome 3 disome.

Relevant genotype of
strains crossed with
P219 or 56-1 (a)

Number of relevant mutant
per number of Ade+

segregants (b)

Wild type 0/50 (c)

not3::kan 33/50

not2::kan 15/24 (d)

rcd1::kan 32/50 (e)

btf3::kan 22/50

rad32::nat 0/20

rhp51::kan 0/50

rhp55::kan 1/50

eme1::kan 0/50

crb2::kan 6/50

rad3::kan 25/50

(a)P219 (h2 leu1 ade6-M210/ade6-M216) was crossed with a haploid strain that
was h+ with ade6-M216 (or ade6-M210) and one of the indicated alleles (except
not2, which is mapped on chromosome 3). Strain 56-1 (h2 leu1 ade6-M210
not2::kan/ade6-M216 not2+) was crossed with h+ ade6-M216 not2::kan. Ade+

segregants were selected on an EMM2 plate at 30uC.
(b)Ade+ colonies were randomly selected and tested for drug resistance. For the
not2 mutant, see (d).
(c)All tested 12 Ade+ segregants had the ‘‘unstable Ade+’’ phenotype, indicating
a chromosome 3 disome. Note, wild-type did not produce drug-resistant
segregants.
(d)For this cross, 24 of 26 Ade+ (disomic for chromosome 3) were G-418 resistant.
Of these 24 segregants, 15 were homozygous for the not2::kan mutant, while 9
were heterozygous (see Materials and methods).
(e)G-418 resistant Ade+ segregants in this mutant were generally small, and
upon restreaking on YE plates only stable Ade+ colonies (probably diploids) and
Ade2 haploid colonies were produced. Chromosome 3 disome was hardly
recovered thereafter.
doi:10.1371/journal.pgen.1002776.t002
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caf4 deletion mutations in otherwise similar genetic backgrounds

and tested the viability of the resulting spores (Materials and

Methods). As a control, we separated spores produced in wild-type

triploids either by tetrad dissection or by random spore analysis

and scored the number of spores that formed visible colonies after

incubation for 6 d at 30uC. Note that due to the large number of

chromosomes in this yeast (n = 16), virtually all the spores were

aneuploid. With a few exceptions, only aneuploids with fewer than

six extra chromosomes are tolerated in this yeast [11–13], which

comprise about 10% of the total spores produced in triploid yeast.

As summarized in Table 3, the overall colony-formation rate was

54.3% (n = 1483), with only a slight difference between the two

different triploid strains. This value is greater than those previously

reported (18% in [12]) and 38.5% in [24]), which may be due to

genetic variations among laboratory yeast strains. These colony-

forming efficiency values indicate that a significant portion of

aneuploid spores survive and produce colonies, most probably by

reducing the number of extra chromosomes during cell prolifer-

ation. Experimental spores from the mutant triploids had reduced

colony-forming efficiencies of around 34% (n = 987) and 36%

(n = 960) for the not3D and caf4D mutants, respectively (p,0.01 for

both). Because the mutants did not appreciably affect the viability

of haploid spores (Table 3), the reduced viability of spores from

triploid meioses suggests that these two genes have important roles

in sustaining aneuploid viability.

In a separate experiment, we counted the number of cells in

each microcolony grown from individual spores after incubation

for 15.5 h (Figure 5A), and scored the number of visible colonies

after 6 d of incubation. As summarized in Figure 5A, the number

of spores that remained single cells or divided only once was

significantly increased in both mutants compared to wild-type

(p,0.01): 25.3% (wild-type) vs. 35.8% (not3D) and 45.6% (caf4D).

In contrast, the number of spores that divided many times to

produce nine or more cells comprised 35.9% (wild-type), 25.5%

(not3D), and 20.6% (caf4D), indicating that the proliferation rate of

many types of aneuploids was significantly reduced in the mutants

(p,0.01). In this experiment, visible colony formation rates were

55.2% (wild-type, n = 384), 39.6% (not3D, n = 384), and 31.6%

(caf4D, n = 384). For haploid spores, the timing of spore

germination and subsequent cell divisions did not significant differ

between wild-type and mutants (Figure 5A). Thus, it is likely that

these CCR4-NOT mutants decreased the cell proliferation

potential of aneuploid cells in S. cerevisiae. The caf4D mutation

tended to have a greater effect on spore viability than the not3D
mutation, which contrasts with the results for S. pombe, suggesting

that the roles of individual components in the CCR4-NOT

complex for aneuploid viability differ among these yeasts. More

Figure 3. Characterization of chromosome 3 disomes of the CCR4-NOT mutants. (A) Temperature sensitivity of chromosome 3 disomes. 5-
fold serial dilutions of the disomes with the indicated mutations were spotted on a selective EMM medium (-adenine) at 30uC for 4 d or at 36uC for
5 d. For all strains, the target cell number for the last dilution was 25. All or most of the large colonies forming after incubation at 36uC were diploid.
(B) Stability of chromosome 3 disomes. The indicated strains were spotted on EMM with a low concentration of adenine. Colonies were incubated at
30uC for 4 d. Red colonies represent haploids that lost one copy of chromosome 3. Enlarged images of the third spots (*) on the right show the
presence of sectored colonies in the mutants.
doi:10.1371/journal.pgen.1002776.g003
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importantly, however, the CCR4-NOT complex appears to have

a role in aneuploid viability, suggesting that its function in

aneuploidy may be conserved in other eukaryotes.

Effect of CCR4-NOT gene defects on disomic budding
yeast

To address how the CCR4-NOT defects in S. cerevisiae impact

defined types of aneuploids, we examined the growth rate of

several types of disomes that contain not3, caf4, or btt1 (btf3 in S.

pombe) deletion mutants (see Materials and Methods). Disome XV

has a significantly longer doubling time than the wild-type haploid

[9]. We found that deficiency of the NOT3 gene further decreased

the growth rate of this type of disome (Figure 5B), which was

consistent with the smaller colonies produced by the mutant

disome compared with disome XV carrying wild-type NOT3. Mild

detrimental effects of the not3 and btt1 mutants might be seen in

disome XIII and disome XV, respectively. As for disomes I and II,

we detected no effects of any of the mutants on growth rate (data

not shown).

Many types of aneuploids in S. cerevisiae are hypersensitive to

genotoxic agents, including camptothecin (CPT), phleomycin, and

hydroxyurea (HU), and some other types of aneuploids are rather

resistant to some drugs such as rapamycin and bleomycin [10,13].

We examined whether the CCR4-NOT mutations affected the

sensitivity of the disomes to CPT, HU, and phleomycin. Based on

their colony size, disome I (and disome XIII less clearly) became

more resistant and disome II became more sensitive to CPT in the

absence of NOT3 (Figure S3A). Also, disomes II became very

weakly resistant to CPT in the caf4 mutant. In addition, haploids

with the NOT3 defect were slightly sensitive to HU and the

sensitivity became more conspicuous in disome I (Figure S3B).

With regard to phleomycin, we noted no specific effect of the

CCR4-NOT mutants on disomes I, II, XIII, and XV (data not

shown). Thus, the CCR4-NOT defects did not have strong effects

on the defined types of aneuploids with only one extra

chromosome, yet the CCR4-NOT defects did have some specific

interactions with the aneuploids.

Other genes that may affect aneuploid viability
In the course of the present study, we observed that a rad32 (a

homolog of MRE11) mutant was defective in maintaining

chromosome 3 disomy (Table 2). It was also synergistic with the

gtb1 mad2 double mutant (Figure 6), suggesting that DNA

recombination/repair is involved in aneuploid viability and/or

maintenance. We tested whether deletion mutations in recombi-

nation/repair-related genes had a synergistic effect with the gtb1

mad2 double mutant. As shown in Figure 6, rhp51 (the RAD51

homolog), rhp55 (RAD55), rhp57 (RAD57), and eme1 (MMS4)

showed synergistic interactions with the double mutant. The

effect of rad55 and rad57 deletions seemed weaker than that of

rad51, but some ambiguity remains due to the emergence of fast-

growing colonies with unknown genetic properties (see Figure 6).

All results from this and other repeated tests indicate that these two

Table 3. Viability of spores produced in triploid cells in S. cerevisiae.

Spore viability

ploidy Relevant genotype Visible colony formed (%) Total number of spores tested Method

triploid a/a/a wild type 182 (60.7) 300 Tetrad dissection

a/a/a wild type 288 (52.9) 544 Tetrad dissection

335 (52.4) 639 Random spores

a/a/a not3D 103 (36.3) 284 Tetrad dissection

222 (31.6) 703 Random spores

a/a/a caf4D 124 (38.8) 320 Tetrad dissection

206 (32.2) 640 Random spores

diploid a/a wild type 57 (95.0) 60 Tetrad dissection

a/a not3D 58 (92.1) 63 Tetrad dissection

a/a caf4D 60 (93.8) 64 Tetrad dissection

doi:10.1371/journal.pgen.1002776.t003

Figure 4. Comparison of C1-type microcolony size in wild-type
and not3 mutant. Pictures are representative images of C1 type
microcolonies from aneuploid spores. The difference was statistically
significant for aneuploid spores (Mann-Whitney U-test; p = 461027),
while for the control haploid spores there was no significant difference
(p = 0.41). The size estimation procedure is described in the Materials
and Methods.
doi:10.1371/journal.pgen.1002776.g004
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mutants had synergistic effects with the gtb1 mad2 double mutant.

This finding is consistent with Rhp55 and Rhp57 functioning as a

complex to stimulate Rhp51 activity [25]. The Mus81/Eme1

complex is a DNA structure-specific endonuclease that functions

in a late stage of homologous recombination repair [26]. Because

the eme1 mutant showed synergistic effects with the gtb1-93

mutation alone, it is possible that its effect was not specific to

aneuploidy. Rad3 and Crb2 are involved in DNA damage

checkpoint control [27], but these proteins do not appear to be

involved in aneuploid viability, based on the negative results of

both the gtub-mad2 assay (Figure 6) and the triploid meiosis test

(Table S1). Overall, the results suggest that the core machinery for

recombination repair, e.g., Rad32, Rhp51, Rhp55, and Rhp57,

are involved in aneuploid viability. Because these gene products

are, to a certain extent, required for sporulation, the triploid

meiosis test could not be performed adequately. It should be noted

that in these mutants, unlike in wild-type cells, the minichromo-

some Ch16 was not stable ([28] and data not shown). Thus a

chromosome-destabilizing effect may explain why triple mutants

became sicker than the parental double mutants. It is conceivable

that recombination repair is required for aneuploid viability,

however, because chromosome-destabilizing mutants did not

necessarily have synergistic effects with the gtb1 mad2 double

mutant (see Table S1), and particularly because many types of

aneuploid cells have defective DNA damage repair [10]. In the

segregation analysis of the chromosome 3 disome, rad32, rhp51,

rhp55 and eme1, no or very few disome segregants were recovered

(Table 2). This suggests that these homologous recombination

repair genes are required for viability of the disome, maintenance

of the extra chromosome, or both.

In addition, we fortuitously found that an mRNA transport

mutant, mex67 (the ortholog of S. cerevisiae MEX67) [29], had

suppressor activity for the gtb1 mad2 mutant. That is, the triple

mutant produced slightly larger colonies than the parental strain

on YE plates, a condition that enhances aneuploid production

(Figure S1). We then tested other transport-related mutants by the

gtub-mad2 method, including SPAC14C4.06c (S. cerevisiae NAB2),

nup97 (NIC96), SPAC328.05 (HRB1/GBP2), and crp79 (no ortholog

known in other species). Interestingly, crp79 had a similar effect on

the gtb1 mad2 mutant, although the effect was weaker than that of

mex67. Crp79 was identified as a multicopy suppressor of the

essential transport mutant rae1 [30]. Among other tested mutants,

SPAC14C4.06c made the gtb1 mad2 mutant sicker, while the others

had little or no effect.

Discussion

The two yeasts S. cerevisiae and S. pombe are in distantly related

subgroups of the phylum Ascomycota [31,32], thus comparisons of

these yeasts should provide good insight into the operations of

eukaryotic cells. The present results suggest that deletion

mutations in at least some components of the CCR4-NOT

complex affect the viability of aneuploids in both fission yeast and

budding yeast. Genetic as well as biochemical studies in S. cerevisiae

and other species revealed that the complex is involved in several

aspects of mRNA metabolism, including negative and positive

regulation of transcription initiation, mRNA elongation, RNA

degradation in the nucleus, and deadenylation of the poly(A)-tail

for mRNA decay, with its primary function being the regulation of

mRNA level in response to different environmental conditions

[18–20,33]. In addition, Not4 has ubiquitin ligase activity [34,35]

and the CCR4-NOT complex interacts with a nascent-associated

polypeptide complex [35], which suggests a protein metabolism

function. In S. cerevisiae, a discrete form of the complex,

approximately 1 MDa in size and containing 10 subunits,

Cdc39 (also known as Not1), Cdc36 (Not2), Not3, Mot2 (Not4),

Not5, Ccr4, Pop2 (Caf1), Caf40, Caf130, and Btt1, have been

identified [19–21]. This ‘‘core’’ complex is associated with other

components, including Caf4 and Caf16, probably in a loose

manner to form a larger form of the CCR4-NOT complex. The

CCR4-NOT complex is thought to be conserved in fission yeast

[36,37], although some structural and functional divergence in its

evolution has been proposed [38].

The Ccr4-Pop2(Caf1) moiety of the complex in S. cerevisiae has

poly(A)-specific deadenylase activity, which together with the PAN

complex accounts for the cytoplasmic deadenylase required for

mRNA degradation [39]. S. pombe Caf1 also has deadenylase

activity [37,40]. Although triploid meiosis data are missing for the

ccr4 and caf1 mutants, these mutants had a strong synergistic effect

in the gtub-mad2 assay (Figure 2). Further, we identified two

genes, SPAC1B1.04c and ppk26 (presumed components of the PAN

Figure 5. Effects of CCR4-NOT mutants on the proliferation of
aneuploid cells in S. cerevisiae. (A) Effect of not3 and caf4 mutants
on aneuploid spores. Randomly selected spores prepared from triploid
meioses were individually plated on YPD plates and incubated at 30uC
for 15.5 h. The number of cells in each microcolony was counted. A cell
with an emerging bud whose diameter was smaller than approximately
two-thirds that of the mother cell was counted as one. For haploid
spores (wild-type: n = 226; not3: n = 216; caf4: n = 210), the number of
cells was counted after 4.5 h of incubation. (B) Doubling times of S.
cerevisiae haploid and disomes. Disomes having an extra chromosome
(XV or XIII) with the indicated mutations were used. Colonies were
incubated in a synthetic SD medium selective for disomy (2His+G418)
at 22uC. Culture densities were measured every 2 h. Doubling time was
calculated from an exponentially growing phase of each culture (OD600

values, approximately from 0.15 to 1.0). Data are shown as mean 6 SD
(n = 3).
doi:10.1371/journal.pgen.1002776.g005
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complex in S. pombe), whose deficiency was associated with

synergistic effects with the gtb1 mad2 mutant and reduced viability

of spores from triploid meioses. Thus, the decrease in cytoplasmic

deadenylase activity appeared to be associated with reduced

aneuploid viability. The deficiency in deadenylase activity should

stabilize the mRNA, resulting in too much functional mRNA,

which in turn leads to an increase in protein production that could

result in an increased need for protein degradation.

We found that deletion mutants of mRNA export-related

factors (Mex67 and Crp79) had opposite effects in the gtub-mad2

test, that is, these mutations partially rescued the poor colony

formation of the gtb1 mad2 double mutant (Figure S1 and Y. Tange

and O. Niwa, unpublished results). In these mutants, the amount

of functional cytoplasmic mRNA might be decreased, which is

opposite to the case in the deadenylase mutants. Our preliminary

examination by the triploid meiosis test as well as by the

segregation analysis for chromosome 3 disomy, however, indicated

that the mex67 deletion mutation reduced, rather than increased,

aneuploidy viability (Y. Tange and O. Niwa, unpublished results).

More specifically, the chromosome 3 disome was extremely

unstable and the other types of aneuploids had reduced colony-

forming efficiency associated with retarded growth. Further studies

Figure 6. Synergistic effects of DNA repair-related mutants on the gtb1 mad2 double mutant. See Figure 2 legend for details. *Enlarged
black and white image of this portion is shown on the right side.
doi:10.1371/journal.pgen.1002776.g006
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are needed to understand why there is an apparent rescue of the

poor colony growth of the gtb1 mad2 double mutant by the mex67

mutant. Nevertheless, it is interesting that a class of putative

regulators of mRNA dynamics also probably affects the viability of

aneuploids.

How do the other mutations in the CCR4-NOT components,

that is, not3, not2, rcd1, and btf3, affect aneuploid viability? In the

present study, we performed a gene expression analysis of the

fission yeast not3, not2, and caf4 mutants. The results indicated that

the numbers of genes whose expression is strongly affected in the

deletion mutants of the CCR4-NOT complex is lower than that in

corresponding mutants in S. cerevisiae [21,22]. This finding suggests

that components of the CCR4-NOT complex or the complex as a

whole in S. pombe might have different functions in the gross

regulation of mRNA metabolism from those in S. cerevisiae, or that

fission yeast might have a system against perturbations in mRNA

turnover to ensure mRNA homeostasis, at least in haploid cells.

Several interesting points may be drawn from our microarray

data. Firstly, as already mentioned, the numbers of genes affected

in each of the mutants correlated with the severity of aneuploid

phenotypes, e.g., the growth defect of the chromosome 3 disome is

most severe in the not3 and least severe in the caf4 mutant. The

larger number of genes affected in the not3/not2 mutants may be

more detrimental to the gene expression imbalance occurs in

aneuploid cells. Second, among genes whose expression is affected

in the not3 and not2 mutants, a number of genes are involved in

transport between the cell and its environment. This may be

relevant to the fact that fission yeast aneuploids are generally

sensitive to environmental changes, including temperature and

nutrition ([8] and present study). Third, we observed that a

kinetochore protein, CENP-C homolog (Cnp3), is underexpressed

by 1.8- and 1.9-fold in the not3 and not2 mutants, respectively

(Table S2). Fission yeast Cnp3 is required for correct chromosome

segregation [41], but because the minichromosome Ch16 is not

appreciably destabilized in either of these CCR4-NOT mutants

(data not shown), this level of reduction in Cnp3 expression does

not seem to interfere with chromosome segregation in the quasi-

haploid situation. Also, this reduction may not readily explain the

growth retardation observed in a type of aneuploid cells (Figure 4).

Provided that chromosome stability is generally reduced in

aneuploid yeasts [8,10], the lower expression of CENP-C may

bring about further chromosome destabilization, and thus reduced

viability. It remains to be examined whether Cnp3 expression is

also reduced in other CCR4-NOT mutants.

Another important point that must be considered is that

mutants of the CCR4-NOT complex and its interacting factors are

hypersensitive to DNA-damaging agents in both S. cerevisiae and S.

pombe [42–45], suggesting that the complex is involved in DNA

damage repair and/or checkpoint. In S. cerevisiae, CCR4 and DHH1

(an RNA helicase interacting with Ccr4/Pop2) are required for

resistance to ionizing radiation and other DNA-damaging agents.

POP2(CAF1), NOT3, NOT2, and some other interacting genes

confer radiation hypersensitivity when deleted [43]. In S. pombe,

caf1, ccr4, rcd1, and not2 mutants are sensitive to DNA replication

stress and/or to an ultraviolet light mimetic agent [44,45].

Provided that, in both fission and budding yeast, homologous

recombination repair function for DNA double strand breaks may

be generally impaired in aneuploid cells [10], it is conceivable that

the DNA repair function of the CCR4-NOT complex is involved

in aneuploid viability. This is consistent with our finding that the

genes required for homologous recombination repair had a

synergistic effect with a chromosome instability mutant that

continuously produced aneuploid cells.

In summary, the present findings demonstrate that the CCR4-

NOT complex and other factors involved in the regulation of

cellular mRNA level as well as proteins that are required for DNA

recombination/repair play a crucial role in determining the fate of

aneuploid cells.

Materials and Methods

Strains and genetic methods
Culture media used in the study were YE and YPD (rich media),

EMM and SD (synthetic media), MEA (for conjugation and

sporulation in S. pombe), and Sporulation medium (for S. cerevisiae)

[46,47]. YE medium was prepared for fission yeast using Bacto

Yeast Extract (Becton Dickinson, Franklin Lakes). YES medium

contained five supplements (adenine, uracil, leucine, histidine, and

lysine) in YE [47]. Phloxine B plates were prepared as described

previously [47]. YPD was prepared with Bacto Yeast Extract,

Bacto peptone, and dextrose, and used for S. cerevisiae. KYPD (K

for Kyoto) was analogous to YPD medium, but Polypeptone (394-

00115, Nihon Seiyaku, Tokyo) and Yeast Extract (42007000,

Oriental-Yeast, Tokyo) were used instead of Bacto Peptone and

Bacto Yeast Extract. KYPD was originally used as an optimal

medium for the fission yeast aneuploid study, particularly for

cultivating the chromosome 3 disome. EMM was another good

medium for the chromosome 3 disome, when sodium glutamate

(5 g/l) was used as the nitrogen source. NH4Cl was a very poor

nitrogen source for aneuploid proliferation. KYPD was also used

with 5 mg/ml of TBZ as a permissive incubation medium for the

gtb1 mad2 double mutant. Malt Extract Broth was purchased from

Oxoid (Basingstoke, UK) for MEA. For SD, Difco Yeast Nitrogen

Base (without amino acids or without amino acids and ammonium

sulfate) was used (Becton Dickinson).

Preparation of spores from triploid meiosis
The yeast collection we used in this study was an early version of

a deletion library and consisted of 2663 deletion mutants, which

covered approximately 73% of non-essential fission yeast genes

(3630 genes according to Kim et al. [16]). Their genotype was h+

leu1-32 ura4-D18 ade6-M210 (or M216) orfD::kanMX4 (most of the

open reading frame [ORF] of a gene was disrupted with the

G418-resistance gene) [16]. For the triploid meiosis analysis, each

strain was crossed with a wild-type h2 strain, L972, to isolate h2

orfD::kanMX4 and h+ leu1-32 orfD::kanMX4 segregants. G-418

(G5013, Sigma-Aldrich Inc, St. Louis, MO) at a concentration

equivalent of 100 mg/ml was used for the selection. We failed to

obtain the targeted segregants in crosses for 643 deletion mutants.

The h2 segregant obtained was then treated with methyl 2-

benzimidazole carbamate (MBC; Wako, Osaka) to induce

diploidization. Briefly, MBC stock solution (7.5 mg/ml) in

dimethyl sulfoxide was added to a logarithmic phase culture in

YE medium at 1/300 volume of the medium, followed by

incubation at 26uC for 4.5 h. After incubation, we separated the

affected cells (elongated cells with swelling or a short protrusion

near the middle of the cell) with a micromanipulator on a Phloxine

B plate, and incubated them at 26uC to obtain diploid colonies.

More than 50% of the separated wild-type cells formed diploid

colonies. In some cases, we spread the MBC-treated cell culture

directly onto Phloxine B plates and isolated dark-colored colonies

as diploid colonies. Stability of the diploid cells was assessed by

spreading the cells on Phloxine B plates. For those showing poor

stability, we tested the stability of the Ch16 minichromosome.

Table S1 provides semi-quantitative data regarding the stability of

the diploid and the minichromosome.
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The obtained h2/h2 diploid strain was then crossed with a

corresponding h+ haploid strain on MEA at 26uC for 2 to 3 d. To

isolate spores, the cell mixture on the MEA plate was digested with

0.5% (v/v in water) b-glucuronidase (G7770, Sigma-Aldrich) at

36uC for 3 h or longer. The number of spores was counted

microscopically with a counting chamber. Very few vegetative cells

escaped from digestion, allowing subsequent experiments to be

performed without purifying the spores.

Observation of cell growth/colony formation from spores
A known number of spores was plated on YE plates and

incubated at 30uC for 4 d. The numbers of small and large

colonies were manually counted, and their ratio was calculated. In

the initial phase of screening, we observed the plates after 2 d

incubation, and visible colonies were counted and marked,

followed by further incubation for 2 d, when newly appearing

small colonies were counted. At this time, the previously marked

colonies had generally grown to be ‘‘large’’ colonies. For a detailed

analysis of the spores, individual spores were separated with a

micromanipulator onto a YE plate. After 2 d incubation at 30uC,

the morphology of each cell/microcolony was observed micro-

scopically and classified into six classes according to Niwa et al.

(2006) [8] (see text and Table 1 and Figure 1), followed by another

3 to 4 d of incubation after which we determined which

microcolonies produced visible colonies.

To compare their size, we took photographs of microcolonies

after 52 h incubation at 30uC. The photographs were printed with

the images of each microcolony, cut out along the edge and

weighed to determine their relative sizes. For a control experi-

ment, spores produced by diploids were incubated for 16 h and

the size of their microcolonies was determined.

Screening of deletion mutants that affect the viability of
the gtb1 mad2 double mutant

A gtb1 mad2 double mutant, YT708 (h2), contained the

hygromycin B-resistance gene, hph, which was inserted 600 bp

upstream of the start codon of the gtb1-93 mutant gene, and the

nourseothricin-resistance nat gene, which was used to disrupt the

mad2 gene according to the previously described procedure

[48,49]. YT708 was crossed with h+ segregants as described above

to introduce the G418-resistant deletion mutations to the gtb1,

mad2 background. Hygromycin B (H0654, Sigma-Aldrich) and

clonNAT (Werner BioAgents, Jena, Germany) were used for hph

and nat gene selection at 50 mg/ml and 100 mg/ml, respectively,

together with G418 to select triple-drug resistant recombinants on

YES plates with or without 5 mg/ml TBZ (T8904, Sigma-Aldrich)

at 33uC. In an initial screening, we selected deletion mutants that

produced a reduced number of triple-drug resistant recombinant

colonies on the TBZ-free YES plate, compared with wild-type.

The rad32 deletion we used in this study was not obtained from the

deletion library. Instead, it was made separately by replacing the

whole ORF with the nat gene. We confirmed that all deletion

mutants listed in Table 1, Table 2, Figure 6, and Figure S1 had the

correct disruption.

Analysis of disomy in the deletion mutants
Strain P219 was a chromosome 3 disome with the mating type

of h2. Each chromosome 3 contained the ade6-M210 and ade6-

M216 alleles. Because the ade6 mutations complement each other,

the Ade+ phenotype was used to indicate chromosome 3 disomy.

As anticipated based on a previous study [8], the Ade+ phenotype

was associated with the C2-type microcolony morphology. P219

was crossed with an h+ haploid strain carrying a deletion mutation

(kan) and ade6-M210 (or M216). In the rad32 mutation, the nat

resistance gene was used for gene disruption. For the not2

mutation, we used strain 56-1 (h2), which was disomic for

chromosome 3 and one of the chromosomes carried the not2

mutation. Random spores produced from these crossings were

plated on EMM plates, followed by incubation at 30uC for 5 d to

select for Ade+ colonies. Fifty (or 20) colonies were randomly

chosen and tested for G-418 (or clonNAT) resistance. From the

drug-resistant segregants as well as drug-sensitive segregants, up to

12 colonies were randomly selected and tested for instability of the

Ade+ phenotype (a genetic characteristic of disomy) by streaking

them out on YE plates on which the Ade+ (white) and Ade2 (red)

phenotypes could be discerned based on colony color. For the

cross using the not2 mutation, we first selected Ade+ and G-418-

resistant colonies. Each of them was streaked on YE plates

containing G-418, and we determined whether they were

homozygous or heterozygous for the not2 alleles based on the fact

that each of the two ade6 alleles produce characteristic colony

colors (ade6-M210; deep red; M216: pale red). Therefore, disomes

that produced an even mixture of two different red colonies on the

G-418 plate were judged to be homozygous for the not2 deletion

allele, while if (almost) all of the Ade2 colonies were one of the two

red colors, we considered them heterozygous.

Microarray analysis of the CCR4-NOT mutants in fission
yeast

Fission yeast wild-type strain L972 was used as the parental

strain. The whole ORF of not3, not2, or caf4 gene in the parent was

replaced with the G418 resistance gene according to the standard

procedure [48]. Gene expression analysis was performed inde-

pendently twice for each of the mutant and parental strains as

described below.

We used the Agilent DNA microarray (15k68 format; Agilent

Technologies, Santa Clara, CA) containing 15,208 probe spots in

each array. The 5529 probes representing 5529 fission yeast genes

from the S. pombe genome sequences [50] (GeneDB:: http://old.

genedb.org/genedb/pombe/) were designed using the Agilent

eArray platform. Each probe was spotted twice (1484 genes) or

three times (4030 genes) to fill 15,058 spots in the array format.

Probes for 15 genes selected as replicate probes were spotted 10

times.

PolyA-RNA targets for microarray were prepared as follows. A

single colony of S. pombe cells on a YES plate was inoculated into

YES liquid medium. Cells were incubated at 30uC and collected

with filtration when they reached a density of 56106 cells/ml.

Total RNA was isolated by the acid phenol method [51] (http://

www.sanger.ac.uk/PostGenomics/S_pombe/). Using the Low

Input Quick Amp Labeling Kit, one-color including Cy3-CTP

(Agilent Technologies), labeled targets were prepared with 200 ng

of total RNA. The labeled targets were purified using an RNeasy

Mini Kit (Qiagen Japan, Tokyo). Hybridization and washing were

performed under the manufacturer recommended conditions

(Agilent Technologies) with 50 ng of labeled targets.

Microarrays were scanned using an Agilent array scanner

(G2505C). The fluorescence intensity of each spot was processed

using the Feature Extraction software (ver. 10.7.3. as recom-

mended in the manufacturer instructions (Agilent Technologies).

All subsequent data processing and analyses were performed with

the GeneSpring GX software (ver. 11.5; Agilent Technologies). A

coefficient of variation of 50% was used as the cutoff value.

Averaged values from the replicates were used to calculate fold-

changes in the gene expression in the mutants compared with

wild-type. Genes whose expression was changed by at least 1.5-

fold are listed (Table S2: unpaired T-test, P,0.05). The sequences
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of the probes and original data from the microarray experiments

were submitted to GEO (http://www.ncbi.nlm.nih.gov/geo/

index.cgi; accession number GSE36454).

Construction of triploid strains in S. cerevisiae
Four isogenic derivatives of SK1 [52] were kindly provided by

A. Shinohara (Osaka University): MATa HO:::LYS2 lys2 ura3 leu2

trp1 (HM785), MATa HO:::LYS2 lys2 ura3 leu2 trp1 (HM786),

MATa HO:::LYS2 lys2 ura3 leu2 his4B-LEU2 arg4-nsp (HM787), and

MATa HO:::LYS2 lys2 ura3 leu2 his4X-LEU2-URA3 arg4-bgl

(HM788). Diploid cells (nonmater) from conjugation between

HM785 and HM786 were lightly irradiated with ultraviolet light

and plated onto a rich medium plate. To select a mating-proficient

diploid colony, colonies formed from this plate were replica plated

onto the lawn of HM787 or HM788 cells placed on an

appropriate minimal plate. Triploid cells were simultaneously

isolated as Leu+ Trp+ His+ Arg+ (Ura+) colonies on the minimal

plate and incubated overnight on a fresh minimal medium plate

without prior purification, followed by inoculation onto the

sporulation medium. For random spore analysis, asci were

digested with 0.25 mg/ml Zymolyase-100T at 36uC for 2 h.

When required, individual spores were separated with a micro-

manipulator on YPD plates and incubated for the indicated

period. Diploid cells for control sporulation were made from

HM785 and HM787. To obtain triploid cells with homozygous

not3D or caf4D mutations, respective genes were disrupted

individually in HM785, HM786, and HM787 by replacing the

whole ORF with the G418 resistance kan gene. The resulting three

mutant strains were used to construct triploid cells as described

above.

Disomic strains in S. cerevisiae
Media used for disomic S. cerevisiae were as follows. SD

(2His+G418) was a selective medium for all disomic strains

(Table S3). Sodium glutamate (1%) was used as a nitrogen source.

G418 was added to a final concentration of 200 mg/ml. All

disomic strains and control strains were kindly constructed and

provided as frozen stocks by J. Sheltzer (Massachusetts Institute of

Technology, Cambridge, MA). Disomic strains were tested by

CGH [9] to confirm correct whole chromosome disomy imme-

diately before freezing the cultures. Frozen cells were inoculated

and incubated on the selective plates at 26uC overnight. The

resulting patches were scraped to inoculate liquid selective

medium, followed by incubation at 22uC with vigorous shaking.

To determine the doubling time of each strain, the OD600 was

measured every 2 h and values between 0.15 and 1.0 were used to

indicate an exponentially growing culture. To minimize possible

overgrowth of an unwanted fast-growing cell population in the

culture, the OD measurement was started within 24 h from the

inoculation for liquid culture, with one interim dilution in fresh

medium. At the end of the OD measurement, cultures were

spotted on selective plates to ensure that the culture did not

contain an abnormal number of fast-growing cells compared with

the original frozen stock. Phleomycin (ant-ph-1, InvivoGen, San

Diego, CA), camptothecin (208925, Calbiochem, Darmstadt,

Germany), and hydroxyurea (H8627, Sigma-Aldrich) were added

to YPD medium at the indicated concentrations for the test.

Supporting Information

Figure S1 Synergistic effects of the indicated mutants on the gtb1

mad2 double mutant. See Figure 2 legend for details.

(TIF)

Figure S2 Temperature effect on haploid strains with not3 and

not2 deletion mutations. Serial dilutions were spotted as in Figure 3

and incubated at 30uC or at 36uC for 3 d.

(EPS)

Figure S3 Drug sensitivity of S. cerevisiae disomes. (A) Sensitivity

of S. cerevisiae disome I (Dis1), II (Dis2), or XIII (Dis13) with

indicated CCR4-NOT mutations to CPT. YPD plates with the

indicated concentration of CPT were incubated at 30uC for the

indicated periods. As a control, haploid strains were also tested. (B)

HU-sensitivity of Dis1.

(EPS)

Table S1 Effect of the deletion mutant on aneuploid cells. The

triploid meiosis shows the S/L ratio (see text for details). The gtub

mad2 column indicates whether the gene mutation had a

synergistic toxic effect on the gtb1 mad2 double mutant. n: no

or little effect; y: appreciable effect. When applicable, the second

result was obtained using a different assessment method (see text).

The diploid column indicates diploid stability. ‘‘1’’ indicates that

this diploid makes a small and deep red colony on the Phloxine B-

plate; ‘‘2’’ indicates that the colony size is heterogeneous,

especially in the diploid colony; ‘‘3’’ indicates that the haploid

makes a small colony; ‘‘4’’ indicates that the colony size is

heterogeneous in the haploid colony; ‘‘5‘‘ indicates the colony size

and color are heterogeneous in the diploid colony; and ‘‘6’’

indicates that the color varies in the diploid colony. 6 and 2/+
indicate weak and weaker phenotypes, respectively. Cells that have

no value indicate the diploid is stable. For those mutants, only the

gtub mad2 test was performed, and the diploid stability test was

not. The last column shows the instability of the Ch16

minichromosome. ++: highly unstable (,50% colonies were

Ade2); +: unstable (about 10%); 6: mildly unstable (1–2%); 2/+:

slightly unstable (less than 1%); and n: stable (no Ade2 found).

(DOC)

Table S2 Microarray analysis of gene expression in the CCR4-

NOT mutants. Genes whose expression changed by at least 1.5-

fold in the CCR4-NOT mutants (not3, not2, and caf4). In the two

columns next to the fold-change column in each mutant section, a:

gene expression was increased at least 1.5-fold in the indicated

mutant; b: gene expression decreased at least 1.5-fold; c: gene

expression was changed but in the opposite direction. *Genes

underexpressed in not3 and/or not2 mapped within a region near

the left terminus of chromosome 2; **mapped near the right

terminus (see text for details).

(XLSX)

Table S3 S. cerevisiae disomes and control haploid strains used in

the present study.

(XLSX)
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