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Abstract

The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the
hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its
physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-
related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality
of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of
SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression
pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its
function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit
cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313

mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates,
resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network.
Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and
acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants
worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch
signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling,
while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key
roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene
for pancreaticobiliary duct malformation-related pathologies.
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Introduction

The pancreaticobiliary ductal system refers to the complex

network of ducts that compose the hepatopancreatic ductal (HPD)

system as well as the intrapancreatic and intrahepatic ductal

networks. The HPD system consists of the extrahepatic duct, cystic

duct, gallbladder, common bile duct, and extrapancreatic duct. It

connects to the intrahepatic biliary ducts to enable bile flow and

storage. The intrapancreatic ducts collect the digestive enzymes

secreted by the pancreatic acinar cells. Pancreatic juice and bile

flow to the hepatopancreatic ampulla to be released into the

intestine and allow digestion and absorption of nutrients [1].

Malformations of the pancreaticobiliary ductal system impair the

function of digestive organs and are associated with various

congenital conditions whose causes are mostly unknown.

In mammals, the transcription factor Sox17 is specifically

expressed in a segment of the ventral foregut from which the

pancreaticobiliary ductal system derives [2]. This factor has been

shown to be a master regulator of pancreaticobiliary ductal system

formation by specifying, in conjunction with Hhex and Pdx1,

different lineages of the liver, pancreas and HPD system [2]. The

liver is specified as a group of cells that expresses Hhex but not

Sox17 or Pdx1. The intrahepatic biliary network requires several

signaling pathways including TGFb, Notch and Wnt, to differen-
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tiate and mature (for a review, see [3]). In particular, Notch

signaling has been shown to promote intrahepatic biliary

differentiation and tubulogenesis [4–9]. Adjacent to the liver

domain, cells expressing both Sox17 and Pdx1 delineate a domain

that gives rise to the HPD system and pancreas [2]. After lineage

segregation, Sox17+/Pdx12 cells give rise to the HPD system

under the regulation of downstream factors such as HNF6,

HNF1b and Hhex [2] which themselves have been shown to play

important roles in the development of the HPD system [10–12].

As for the intrapancreatic ducts, they arise from a subset of

Pdx1+/Sox172 cells that also express HNF6 and HNF1b [13,14].

These two transcription factors regulate duct tubulogenesis as well

as the differentiation of the epithelial cells lining the ducts [14].

The HPD system in zebrafish is morphologically similar to the

one in amniotes. As in mammals, the zebrafish HPD system

develops from a specific domain within the foregut endoderm that

lies between the emerging liver and ventral pancreas [15]. HPD

system patterning and differentiation depend on Fgf10 signaling

[15], whereas the specification of the liver and ventral pancreas is

regulated by the transcription factors Prox1 [16,17] and Pdx1

[18], respectively. In the liver, hepatocytes and intrahepatic biliary

cells derive from bipotential hepatoblasts [19]. Multiple genes

encoding Jagged ligands and Notch receptors are expressed in the

zebrafish liver during intrahepatic biliary duct formation [20].

Perturbation of Jagged-mediated Notch signaling impairs differ-

entiation and morphogenesis of the intrahepatic biliary cells,

whereas constitutive Notch activation induces ectopic bile duct

formation [20,21]. These studies support an evolutionarily

conserved role for Notch signaling in intrahepatic duct develop-

ment. Regarding the intrapancreatic ducts, live-imaging analyses

of the Tg(Nkx2.2a(3.5kb):GFP) line revealed that they derive from

cells in the ventral pancreatic bud that migrate towards the

pancreatic islet to initiate the formation of a branched network

[18,22]. Molecular mechanisms regulating the development of the

intrapancreatic ducts remain poorly understood.

Studies in mouse have shown that the transcription factor

SOX9 is expressed in the intrahepatic and intrapancreatic ducts,

as well as in the developing HPD system including the common

bile duct, gallbladder and hepatopancreatic ampulla [23–25]. Sox9

belongs to the SRY-related box (SOX) gene family that encodes

transcription factors containing an HMG box DNA-binding

domain. In humans, SOX9 is expressed in the fetal brain, liver,

testis and skeletal tissue [26]. Haploinsufficiency of SOX9 is

associated with campomelic dysplasia (CD, OMIM #114290),

which is characterized by severe skeletal malformations and sex

reversal [26,27]. More recently, it has been shown that SOX9 is

also expressed in the early human fetal pancreas and analysis of

CD individuals have revealed pancreatic defects including islet

hypoplasia and reduction of hormone expression [28]. Consistent

with the defects observed in CD patients, heterozygous knock-out

mice are perinatal lethal due to skeletal abnormalities [29].

Conditional knock-out mice have been generated to study SOX9

function: pancreas-specific inactivation of Sox9 using Pdx1:Cre

reveals a critical role in the maintenance of the pancreatic

progenitor pool [25], whereas liver-specific inactivation of Sox9

using Albumin/a-fetoprotein (Alfp):Cre shows that it is required for

the timely maturation of asymmetrical structures to symmetrical

biliary ducts [23]. A potential role for SOX9 in HPD development

has not yet been investigated due to the lack of a HPD-specific Cre

line.

The zebrafish genome contains two sox9 orthologs, sox9a and

sox9b, which exhibit partially overlapping expression patterns in

the craniofacial cartilage, otic placodes and pectoral appendages

[30]. Null mutants of sox9a exhibit cartilage defects that mimic

those observed in human CD [31]. Although a similar phenotype

has been reported for the sox9bb971 mutant [30], the chromosomal

deletion which underlies the b971 lesion removes eleven other

genes, greatly limiting the use of this allele to study the function of

Sox9b.

Here, we dissect the requirement for Sox9b in the development

of the pancreaticobiliary ductal system in zebrafish. We show that

similar to mammalian Sox9, zebrafish sox9b is expressed in the

pancreaticobiliary ductal system. Detailed phenotypic analysis of a

sox9b TILLING mutant reveals that Sox9b regulates the formation

of the HPD system as well as the morphogenesis of the

intrapancreatic and intrahepatic ducts. Strikingly, the pancreati-

cobiliary phenotypes observed in larvae worsen during juvenile

stages and lead to cholestasis in the homozygous mutant adult fish.

We also observed a positive feedback loop between Sox9b and

Notch signaling in the developing intrahepatic biliary cells: Notch

signaling regulates sox9b expression, and in turn Sox9b is required

to maintain Notch activity in the intrahepatic biliary cells.

Results

sox9b is expressed in the developing pancreaticobiliary
ductal system

Intrigued by the recent data revealing Sox9 expression in the

ductal trees of the liver and pancreas as well as in the HPD system

in mouse [24], we analyzed the expression pattern of sox9b in

zebrafish by in situ hybridization. We found that in addition to the

head region and pectoral fins, sox9b is specifically expressed in the

pancreaticobiliary ductal system (Figure 1A–1D). At 30 hours post

fertilization (hpf), sox9b is expressed in a segment of the foregut

endoderm (bracket, Figure 1A) that appears to give rise to the liver

bud (arrow, Figure 1B) and the HPD primordium (bracket,

Figure 1B). At 60 hpf, sox9b expression becomes evident in the

intrahepatic ducts (arrow, Figure 1C) and then extends to the

extra- and intrapancreatic ducts (white arrow, Figure 1D). In

contrast to sox9b, sox9a does not appear to be expressed in the

pancreaticobiliary ductal system in zebrafish (Figure S1, left panel).

These data show that zebrafish sox9b recapitulates the expression

Author Summary

The liver and pancreas function as exocrine glands that
secrete bile and pancreatic juice, respectively, to aid the
digestion and absorption of nutrients. These fluids reach
the intestine via the pancreaticobiliary ductal system, a
complex network of ducts. Despite its pivotal role, the
development of this ductal system is poorly understood.
We have discovered that the zebrafish transcription factor
gene sox9b, like its mammalian ortholog, is specifically
expressed in the pancreaticobiliary ductal system. The
perinatal lethality of Sox9 heterozygous mice makes the
analysis of SOX9 function challenging; thus, we turned to
the zebrafish to analyze the role of SOX9 in pancreatico-
biliary ductal system development. We found that zebra-
fish sox9b mutants, which survive to adulthood, display
defects in the morphogenesis of this ductal network: the
intrahepatic and intrapancreatic ducts fail to form a
branched network, whereas the ducts connecting the liver
and pancreas to the intestine are malformed. These ductal
defects affect bile transport and lead to cholestasis in adult
mutant fish. At the molecular level, Sox9b interacts with
the Notch signaling pathway to regulate the development
of the intrahepatic biliary network. Therefore, our work in
zebrafish reveals a broad and complex role for SOX9 in
pancreaticobiliary ductal system morphogenesis.

sox9b in Pancreaticobiliary Duct Development

PLoS Genetics | www.plosgenetics.org 2 June 2012 | Volume 8 | Issue 6 | e1002754



Figure 1. sox9b is expressed in the pancreaticobiliary ductal system, and the sox9bfh313 lesion is a nonsense mutation. (A–D) sox9b
expression is observed in the head and fin buds (arrowheads in A–C), as well as the notochord (n) and part of the foregut endoderm (bracket) at
30 hpf (A). At 48 hpf, sox9b expression is observed in the liver bud (arrow) and hepatopancreatic duct primordium (bracket) (B). At 60 hpf, sox9b
expression covers the intra- (arrow) and extrahepatic (bracket) ducts (C), and extends to the intrapancreatic ducts by 72 hpf (white arrow, D). Dorsal

sox9b in Pancreaticobiliary Duct Development
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pattern of mammalian Sox9 in the intrapancreatic and intrahepatic

ducts as well as in the HPD system [23–25].

sox9bfh313 lesion is a nonsense mutation
To investigate the potential role of Sox9b in the formation of

the pancreaticobiliary ductal system, we isolated a novel mutation

in sox9b, sox9b fh313, in collaboration with the Zebrafish TILLING

Consortium. Contrary to sox9b b971 which consists of a deletion of

the lower tip of linkage group 3 [30], sox9b fh313 is a point mutation

located in the first exon of sox9b (Figure 1E). The A to T

transversion at position 302 leads to a premature stop codon at

amino acid Lys68. This nonsense mutation likely leads to the

synthesis of a truncated protein that lacks the HMG-box DNA

binding domain (Figure 1F) and therefore would be non-

functional. In situ hybridization analyses revealed a substantial

decrease of sox9b expression in sox9b fh313 mutants at 72 hpf (data

not shown), possibly via nonsense mediated mRNA decay. In

order to analyze a potential redundancy between sox9 gene

functions in zebrafish, we examined the expression of sox9a in

sox9b fh313 mutants (Figure S1). As in wild-type, sox9a expression

appears to be excluded from the digestive organs in sox9b fh313

mutants, suggesting that sox9a expression does not compensate for

the reduction of Sox9b function in these mutants. Hence,

sox9b fh313 is the first point mutation described for this gene in

zebrafish and is likely to represent a severe loss-of-function allele.

sox9b mutants survive to adulthood and exhibit
cholestasis associated with hepatic and pancreatic
fibrosis and duct dilation

In contrast to a previous report describing the phenotypes of

sox9b b971 mutants and sox9b morpholino-injected embryos [30],

homozygous sox9b fh313 mutants exhibit a normal external mor-

phology and do not show a curly-down body axis or craniofacial

defects (data not shown). sox9b mutants survive to the adult stage

but are much thinner than their wild-type or heterozygous siblings

(data not shown). Dissection of the digestive system of 5-month old

sox9b mutants revealed preserved anatomical relationships,

including a three-lobed liver and correctly-looped intestine;

however, both the liver and pancreas were strikingly dark green

suggesting abnormal bile accumulation (cholestasis) in these organs

(Figure 2A–2B). Hematoxylin-and-eosin staining of histological

sections of mutant organs showed that both organs exhibited

lesions with extensive proliferation and dilation of the ducts, which

were surrounded by fibrotic tissue (Figure 2C–2D0). Interestingly,

in the liver, ductal defects were restricted to the region that

connects to the extrahepatic ductal system (dashed rectangle,

Figure 2D) whereas the rest of the organ was much less affected. In

contrast, ductal defects in the pancreas were present throughout

the organ and worsened towards its distal part (Figure 2D). In the

pancreas, the acinar compartment was greatly reduced and

secondary islets could not be detected in the sections examined

(Figure 2D0).

Sox9b is required for the patterning and differentiation
of the HPD system

Due to the robust and highly conserved expression of sox9b in

the pancreaticobiliary ductal system and the striking liver and

pancreas phenotypes seen in the adult mutant fish, we decided to

further investigate the roles of Sox9b in the development of these

tissues. In zebrafish, the HPD system exhibits unique gene

expression profiles that separate it from the liver and pancreas

starting at early developmental stages [15]. At 50 hpf, the

primordium of the HPD system can be distinguished by strong

labeling with the 2F11 antibody, whose antigen remains to be

identified [15,32] (bracket, Figure 3A, 3A9), and low expression of

the transcription factor Prox1 [15] (bracket, Figure 3C). In

contrast, the liver and pancreas exhibit moderate labeling of 2F11

(Figure 3A, 3A9), but high expression of Prox1 (Figure 3C). In

sox9b mutants, 2F11 labeling was mostly absent from the region

where the presumptive HPD primordium resides (bracket,

Figure 3B, 3B9). Moreover, we observed elevated expression of

Prox1 in the same region (bracket, Figure 3D). 2F11 labeling

showed that by 80 hpf, the HPD system in wild-type larvae has

developed into different compartments, including the extrahepatic

duct, cystic duct, common bile duct, and gallbladder [15]

(Figure 3E, 3E9). At the equivalent stage, the differentiation of

the HPD system had partially recovered in sox9b mutants as

suggested by 2F11 labeling. However, it was severely dysmorphic,

with no clear morphological distinction between the cystic duct,

extrahepatic duct, and common bile duct (Figure 3F, 3F9).

Furthermore, the mutant HPD system often seemed to intrude

into the liver (Figure 3F), which was never observed in wild-type

larvae. These data indicate that the HPD primordium in sox9b

mutants exhibits patterning and differentiation defects.

Concordant with the dysmorphic HPD system, the gallbladder

in sox9b mutants was often indistinguishable based on morphology

(Figure 3F and Figure S3A, S3B). We analyzed the expression of

sox17 which marks the gallbladder and its primordium from 36 hpf

to 5 days post-fertilization (dpf) [33], and found that it was greatly

reduced or absent in sox9b mutants at 52 hpf (Figure 3G) and that

it did not recover during later development (Figure 3H). This

defect in sox17 expression supports the notion that gallbladder

development is severely impaired in sox9b mutants.

sox9b mutants fail to form a complex network of ducts in
the pancreas

We then addressed the role of Sox9b in intrapancreatic duct

formation by using the double transgenic line

Tg(Tp1bglob:GFP);Tg(Tp1bglob:H2B-mCherry) that expresses both

GFP and H2B-mCherry under the control of a Notch-responsive

element [34,35]. This line allows the visualization of the shape and

nuclei of the intrapancreatic duct cells, as indicated by the

overlapping expression of these fluorescent proteins with ductal

markers such as E-cadherin and 2F11 [34,35]. Intrapancreatic

ducts derive from cells within the ventral pancreatic bud that

migrate towards, and eventually surround, the principal islet at

48 hpf [22]. From 60 hpf, ductal progenitors start to migrate

caudally to form a row of cells that give rise to the main

intrapancreatic duct [22] (Figure 4A–4A9). The migration of the

ductal progenitors did not seem to be impaired in sox9b mutants;

however, the number of cells within the intrapancreatic ducts was

significantly reduced (Figure 4B–4B9, 4G). In wild-type larvae, at

100 hpf, the pancreatic tail keeps elongating, the number of ductal

cells has slightly increased (Figure 4C–4C9, 4G) and secondary

branches (arrowheads, Figure 4C–4C9) start to form from the

views, anterior (A) to the left. (E) Genomic DNA sequence of wild-type (left panel) and sox9bfh313 mutant (right panel) showing an A.T transversion at
position 302 of the coding sequence. This mutation leads to a stop codon at amino acid Lys68. (F) Schema of Sox9b depicting the localization of the
amino acid affected by the fh313 mutation leading to a stop codon upstream of the HMG box DNA-binding domain. IPD, intrapancreatic duct; IHD,
intrahepatic duct; HPD, hepatopancreatic duct; HMG, high-mobility group; aa, amino acid.
doi:10.1371/journal.pgen.1002754.g001
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main duct. In contrast, in sox9b mutants, the number of ductal cells

did not increase from 80 to 100 hpf, and no secondary branches

appeared, resulting in a primitive ductal system (Figure 4D–4D9,

4G). At 120 hpf, the ductal network in wild-type larvae has

become more complex with numerous secondary branches

(arrowheads, Figure 4E0) spreading over the acinar compartment

(Figure 4E–4E90). In contrast, the intrapancreatic ductal system in

sox9b mutants remained poorly developed and clusters of cells

could be observed along the main duct (Figure 4F–4F90), which

was still devoid of secondary branches. These data indicate that

fewer intrapancreatic duct cells differentiate in the mutants and

those that do fail to undergo branching morphogenesis. Further-

more, the number of ductal cells in sox9b mutants did not increase

as in wild-types. Such a defect is likely due to a problem with cell

differentiation as we did not observe any obvious differences in

ductal cell proliferation or survival between wild-types and sox9b

mutants (data not shown).

Given that the adult mutant pancreas exhibits a loss of acinar

and potentially endocrine tissues, we analyzed the formation of

these compartments during larval and juvenile stages. As assessed

by Elastase staining, sox9b mutants showed apparently normal

proportion of pancreatic acinar tissue at all stages analyzed

(Figure 4B, 4D, 4F and Figure S2B0, S2D0, S2F0). As for the

endocrine tissue, we investigated the morphology of the primary

islet by analyzing TgBAC(neurod:GFP) expression which marks

early endocrine cells [36]. At late larval (7 dpf) as well as juvenile

(2 and 3 weeks) stages, the area of the primary islet appeared

similar in wild-type and sox9b mutant animals (Figure 4H),

suggesting that Sox9b is not required for primary islet formation.

At 4 weeks of age, the sox9b mutant primary islet was half the size

of the wild-type primary islet (Figure 4H). However, it is important

to note that at this stage, sox9b mutant pancreata were also much

less developed than wild-type pancreata (Figure S2E90, S2F90).

Indeed, sox9b juvenile mutants often exhibit growth retardation

compared to wild-types and thus, the smaller size of the primary

islet could be attributed to an overall growth defect.

In addition to the primary islet, we investigated the formation of

secondary islets that arise from progenitors in the intrapancreatic

ducts [34,35] and that, during larval and juvenile stages, appear as

small clusters of delaminated cells [34]. We decided to also count

single TgBAC(neurod:GFP)-positive cells that recently delaminated

from the ducts and assumed an endocrine fate. Hence, counting

the number of TgBAC(neurod:GFP)-positive cells/clusters along the

intrapancreatic ducts (Figure S2A9–S2F9), we observed a differ-

ence between wild-type and sox9b mutant animals at two weeks of

age. At 3 and 4 weeks of age, this difference became more

pronounced with respectively a 50% and 80% decrease in

TgBAC(neurod:GFP)-positive cell/cluster number in sox9b mutants

(Figure 4I). Given that the mutant intrapancreatic ductal network

remained primitive and failed to expand at juvenile stages (Figure

S2D90, S2F90), the defect in secondary islet formation could be

related to the lower number of progenitors within the pancreas.

Figure 2. Adult sox9b mutants develop cholestasis associated with fibrosis, duct proliferation, and dilation in both the liver and
pancreas. (A–B) Dissection of the digestive system of 5 month-old wild-type (A) and sox9b homozygous mutant (B) fish reveals a green mutant liver
and pancreas reflecting the accumulation of bile in both organs. Anterior to the top. (C–D) Hematoxylin-and-eosin (H&E) staining of histological cross-
sections of wild-type (C) and sox9b mutant (D) digestive tracts shows abnormal duct morphology in the mutant liver and pancreas. These duct
malformations are focalized around the connection with the extrahepatic duct (dashed rectangle in D) in the liver, whereas they are spread over the
entire pancreas. Higher magnifications of liver (C9–D9) and pancreas (C0–D0) reveal dilated ducts surrounded by fibrotic tissue (pink staining in D0
labeled as ‘‘f’’) in both organs in sox9b mutants. Li, liver; Pa, pancreas; I, intestine; PI, primary islet; a, acinar compartment. Scale bars, 1 mm in A–B;
500 mm in C–D; 50 mm in C9–D0.
doi:10.1371/journal.pgen.1002754.g002
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Altogether, these data indicate that Sox9b function is required for

the development of the intrapancreatic ductal system as well as -

directly or indirectly - for the formation of secondary islets.

Sox9b regulates intrahepatic biliary duct morphogenesis
and bile canaliculi formation

To examine the role of Sox9b in intrahepatic biliary develop-

ment, we used the Tg(Tp1bglob:GFP) line which also marks the

intrahepatic biliary cells [21,35]. During zebrafish liver develop-

ment, the intrahepatic biliary cells undergo significant morpho-

logical changes, whereby these initially contiguous cells separate

from one another and interconnect via cytoplasmic processes [21].

By 96 hpf, the wild-type intrahepatic biliary system is composed of

a lattice-like network of long ducts joined by short interconnecting

ducts [21] (Figure 5A). At the equivalent stage, sox9b mutant livers

contained similar numbers of intrahepatic biliary cells and

hepatocytes as wild-type (data not shown), suggesting that

differentiation of the biliary cells is not affected in the mutants.

We did not detect any apoptosis of the biliary cells in wild-type or

mutant larvae. Strikingly, we observed that most of the biliary cells

in the mutant livers failed to separate from one another (Figure 5B).

We quantified the percentage of single intrahepatic biliary cells

versus cells in cluster of two, three or four and more cells, and

found a significant decrease in the percentage of single intrahe-

patic biliary cells in sox9b mutants compared to wild-types

concomitant with a significant increase in the percentage of cells

in clusters of four and more cells (Figure 5C). Moreover, the long

bile ducts in the mutants appeared to be wider than those in wild-

types (diameters of the mutant ducts: 3.5 mm or wider; wild-type

ducts: 2.5 mm or thinner), and were less branched (Figure 5D).

We then used the Tg(fabp10:ras-GFP) line [37] to analyze

hepatocyte organization, and co-labeled the animals with an

antibody against the bile transporter BSEP to mark the bile

canaliculi [38] (Figure 5E, 5G). At 96 hpf, hepatocytes in wild-type

livers are arranged as tubules surrounding intrahepatic biliary

ducts [20] (Figure 5E). Bile canaliculi are located on the

hepatocyte apical membrane which can be marked by the

activated leukocyte cell adhesion molecule Alcam [39]. However,

in sox9b mutants, hepatocytes often formed spherical rosettes with

bile canaliculi and Alcam expression located in the center

Figure 3. sox9b mutants display defective HPD patterning during organ development. (A–B) Labeling for the hepatocyte marker
Tg(fabp10:ras-GFP) (green) and the HPD marker 2F11 (red) in wild-type and sox9b mutant embryos at 50 hpf. 2F11 labeling in the HPD primordium is
noticeably reduced in sox9b mutants. (A9–B9) Same views as (A–B), but only showing the 2F11 immunostaining. (C–D) In wild-type, Prox1 expression
marks the liver and pancreas and is largely absent from the HPD primordium (C). In contrast, Prox1 is abnormally expressed in the HPD primordium in
sox9b mutants (D). (A9–B9, C–D) Brackets mark the HPD primordium. (E) By 80 hpf, different compartments of the HPD system, including the cystic
duct (CD), common bile duct (CBD), gallbladder (GB), extrahepatic duct (EHD) have become evident in wild-type. (F) In sox9b mutants, the HPD
system is dysmorphic and its compartments are indistinguishable based on morphology. The gallbladder is also often missing. (E9–F9) Same views as
(E–F), but only showing 2F11 immunostaining. (G–H) Whole-mount in situ hybridization showing sox17 expression in the gallbladder primordium in
wild-type and sox9b mutants at 52 (G) and 72 (H) hpf. sox17 expression is greatly reduced or absent in sox9b mutants. The proportion of mutants
showing the corresponding phenotype is indicated. Arrows point to the gallbladder primordium. (A–F, A9–F9) All images are projections of confocal z-
stacks. Ventral views. (G–H) Dorsal views. Anterior (A) to the top. Pa, pancreas; Li, liver; EPD, extrapancreatic duct. Scale bars, 20 mm.
doi:10.1371/journal.pgen.1002754.g003
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Figure 4. sox9b mutant larvae fail to form a complex intrapancreatic ductal network. (A–F) Confocal images of Tg(Tp1bglob:GFP);Tg(Tp1b-
glob:H2B-mCherry) wild-type (top row) and sox9b mutant (bottom row) pancreata at 80 (A,B), 100 (C,D) and 120 (E,F) hpf. Elastase antibody staining
(blue) labels acinar cells. Although acinar and endocrine tissues appear morphologically unaffected in sox9b mutants (data not shown), the
intrapancreatic ductal network is less complex and secondary branches are missing in the mutants (D–D9) whereas they start to form by 100 hpf in
wild-type larvae (arrowheads and insets, C–C9). (E90–F90) Higher magnifications of the area marked by dashed squares in (E–F9) show that at 120 hpf
the main duct forms secondary branches (arrowheads) in wild-type larvae (E0–E90), whereas in the mutants, secondary branches remain absent and
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(Figure 5G). This phenotype coincided with the aberrant

clustering of intrahepatic biliary cells. Moreover, we found that

the canaliculi in sox9b mutants appeared to be shorter and wider

compared to wild-types (arrows, Figure 5F, 5H), which is

consistent with recent data showing the highly coordinated

development of intrahepatic biliary cells and bile canaliculi [21].

In liver-specific Sox9-inactivated mice, intrahepatic biliary duct

morphogenesis is delayed until birth [23], which incited us to track

the development of the intrahepatic biliary system in wild-types

and sox9b mutants during juvenile stages. We found that

intrahepatic biliary duct morphogenesis did not recover in sox9b

mutants and that these animals did not generate morphologically

normal bile ducts (Figure S2G–S2L). These data show that,

despite a conserved requirement for SOX9 in intrahepatic biliary

duct development, zebrafish sox9b mutants exhibit a much more

severe intrahepatic biliary duct phenotype than the liver-specific

knockout mouse model.

Loss of Sox9b function causes severe defects in bile
transport

To determine whether the cholestasis-like phenotype observed

in adult sox9b mutants occurred during early larval development,

we administered fluorescent lipid analogs used to visualize bile

transport [40] to 6 dpf-old wild-type and mutant larvae. These

fluorescent analogs consist of fatty acids with acyl chains of 5- and

2-carbons (C5:0 and C2:0, respectively) tagged with the BODIPY

fluorophore. We selected these two analogs because of the

different cells and subcellular details each analog reveals following

ingestion. BODIPY-FL C5:0 reveals a high degree of subcellular

detail in hepatocytes and acinar cells, such as lipid droplets and

zymogen granules, as well as in the ductal networks in the liver and

pancreas. The shorter BODIPY-FL C2:0 illuminates the hepatic

and pancreatic ducts, as well as the gallbladder providing a

functional readout of gallbladder and ductal integrity.

Wild-type larvae fed BODIPY-FL C2:0 exhibited a strong

fluorescence signal in their gallbladders (Figure S3A), indicating

that bile production, drainage and accumulation was normal.

Conversely, no gallbladder BODIPY-FL C2:0 signal was observed

in sox9b mutants, consistent with their defective gallbladder

development (Figure S3B). In the pancreas, BODIPY-FL C2:0

fluorescence was detected throughout the entire intrapancreatic

ductal network in wild-type larvae (Figure S3E, S3E9), while it was

restricted to the anterior region of the pancreas in sox9b mutants

(Figure S3F, S3F9), suggesting that the distal intrapancreatic ducts

were not functional. Moreover, we observed large pools of

fluorescent fluid accumulating in the mutants’ pancreatic tail

(Figure S3F), which is not typically observed in wild-type larvae

unless the gallbladder ruptures. This abnormal extracellular

accumulation of fluid (likely pancreatic juice or bile) in and

around sox9b mutant pancreata is consistent with their malformed

pancreaticobiliary ductal system.

Administering BODIPY-FL C5:0 to sox9b mutant livers

confirmed the dilation and lack of branching morphogenesis of

the intrahepatic biliary ducts described above as well as the

deformation of bile canaliculi in hepatocytes (Figure S3C, S3C9,

S3D, S3D9). Taken together, these data support the notion that

the cholestasis-like phenotype observed in the adult sox9b mutants

results from defects in early ductal morphogenesis.

Notch regulates sox9b expression during intrahepatic
biliary network formation

The defects in intrahepatic biliary ducts and bile canaliculi

observed in sox9b mutants are strikingly similar to those reported in

the mouse and zebrafish models of Notch deficiency

[6,9,20,21,41]. In particular, it has been shown in zebrafish that

Notch signaling directs the segregation of intrahepatic biliary cells

between 70 and 96 hpf [21]. Given that the intrahepatic biliary

cells in sox9b mutant livers fail to separate from one another, we

hypothesized that Sox9b interacts with Notch signaling to regulate

the morphogenesis of the intrahepatic biliary ducts. To test

whether inhibiting Notch signaling affects sox9b expression, we

treated wild-type and sox9b heterozygous animals with a low dose

of the c-secretase inhibitor DAPT from 75 to 99 hpf [42], and

assessed sox9b expression by in situ hybridization (Figure 6A–6E).

Such DAPT treatment caused a reduction in sox9b expression

which was more pronounced in sox9b heterozygotes than in wild-

types. We also performed the reverse experiment by using

Tg(hsp70l:Gal4);Tg(UAS:myc-Notch1a-intra) hemizygous larvae to

induce ubiquitous overexpression of the Notch intracellular

domain (NICD) upon heat-shock treatment [43]. These animals

were heat-shocked at 80 hpf and sox9b expression was analyzed

26 hours later by in situ hybridization. The heat-shock treatment

efficiently induced overactivation of Notch signaling activity in the

Tg(Tp1bglob:GFP); Tg(Tp1bglob:H2B-mCherry) larvae (Figure 6H,

6I). We observed an increase in sox9b expression throughout the

pancreas, liver and HPD system (bracket) in the double–transgenic

larvae compared to their single-transgenic control siblings

(Figure 6F, 6G). Expression of sox9b could even be detected in

the gallbladder (arrowhead, Figure 6G), which was not seen in

control larvae (Figure 6F). This increase in sox9b expression is

unlikely due to an NICD-induced proliferation of sox9b-positive

cells because we could already detect higher levels of sox9b

expression as early as four hours after heat-shock treatment (data

not shown). Taken together, these loss- and gain-of-function

analyses reveal that Notch signaling regulates sox9b expression

during intrahepatic biliary duct morphogenesis. These data are

consistent with studies in mouse showing that Notch1 can directly

bind to the Sox9 promoter [9].

Sox9b is required to maintain Notch signaling in the
intrahepatic biliary duct cells

To further analyze the dynamics of Notch signaling in sox9b

mutants, we utilized Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:Venus-

Pest) animals in which the Notch-responsive element drives the

expression of both H2B-mCherry and VenusPest fluorescent

proteins. Contrary to H2B-mCherry which is very stable, the

destabilized fluorescent protein VenusPest has a short half-life

(2 hours for GFP-Pest in mammalian cells) [44]. Thus, the

clusters of ductal cells are sometimes observed (F0–F90). (A–F) All images are projections of confocal z-stacks. Ventral views, anterior (A) to the top.
Scale bars, 50 mm. (G) Graph representing the number of Tg(Tp1bglob:GFP);Tg(Tp1bglob:H2B-mCherry)-double positive cells (average6SEM) in the
intrapancreatic ducts of wild-type and sox9b mutant larvae at different time points. 7 to 11 larvae of each genotype were counted at each stage. (H)
Graph representing the area (in arbitrary unit, a.u.) of the primary islet (average6SEM) of TgBAC(neurod:GFP) wild-type and sox9b mutant larvae
(7 dpf) and juvenile animals (2, 3 and 4 weeks (wks)). 6 to 11 animals of each genotype were analyzed at each stage. Area of primary islet was
determined using ImageJ. (I) Graph representing the number of TgBAC(neurod:GFP)-positive cells/clusters (average6SEM) along the intrapancreatic
ducts (IPD) in wild-type and sox9b mutant larvae (10 dpf) and juvenile animals. 7 to 11 animals of each genotype were analyzed at each stage.
Asterisks indicate statistical significance: *p,0.05; **p,0.01; ***p,0.0005; ****p,0.0001; ******p,0.000005.
doi:10.1371/journal.pgen.1002754.g004
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Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:VenusPest)-double posi-

tive cells are currently Notch responsive, whereas the

Tg(Tp1bglob:H2B-mCherry)-positive;Tg(Tp1bglob:VenusPest)-nega-

tive cells were positive for Notch signaling in their recent past but

have since switched it off [34].

In wild-type and sox9b heterozygous livers, the expression of

Tg(Tp1bglob:H2B-mCherry) and Tg(Tp1bglob:VenusPest) largely

overlapped at 75 hpf (Figure 7A, 7A9, 7G, and data not shown).

Between 99 and 123 hpf, a small proportion of intrahepatic biliary

cells switched off Notch signaling and became Tg(Tp1bglog:H2B-

mCherry)-single positive (Figure 7B–7C9, G). Up to 99 hpf, sox9b

mutant livers exhibited a similar pattern of Notch signaling activity

as wild-type with a clear overlap between Tg(Tp1bglob:H2B-

mCherry) and Tg(Tp1bglob:VenusPest) expression (Figure 7D–7E9,

7G). However, at 123 hpf, the proportion of Tg(Tp1bglog:H2B-

mCherry)-single positive cells was significantly higher in sox9b

mutants compared to wild-types or heterozygotes (Figure 7F, 7F9,

7G), suggesting that sox9b mutants fail to maintain Notch signaling

in the intrahepatic biliary cells. Interestingly, we did not observe

any obvious phenotype when assessing Notch signaling activity in

the mutant intrapancreatic ducts.

To follow up this observation, we treated wild-type and mutant

larvae with 50 mM DAPT, a dose that only partially inhibits Notch

signaling. Upon treatment between 106 and 154 hpf, DAPT-

treated wild-type larvae showed a specific loss of Notch signaling

activity in the proximal (p) rather than the distal (d) region of the

liver (Figure S4C). In DAPT-treated mutant larvae, we observed a

drastic loss of Notch signaling throughout the entire liver (Figure

S4D, S4E), indicating that sox9b mutant biliary cells are more

likely to lose Notch signaling activity than wild-type cells.

Altogether, these data indicate that Sox9b is required for the

maintenance but not the initiation of Notch signaling in the

intrahepatic biliary cells. Considering our previous data showing

that Notch signaling regulates sox9b expression, we hypothesize

that Notch and Sox9b interact in a positive feedback loop to

ensure the development of the intrahepatic biliary network.

To better understand the biological significance of Notch

responsiveness during intrahepatic biliary duct morphogenesis, we

compared the distribution of Tg(Tp1bglob:H2B-mCherry)-single

positive cells and Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:Venus-

Pest)-double positive cells in wild-type livers. At 123 hpf, 89% of

the double-positive cells existed as individual cells connecting to

one another through cellular extensions (Figure 7C9; 467 cells in 5

larvae were analyzed). On the other hand, 60% of the

Tg(Tp1bglob:H2B-mCherry)-single positive cells, which had

switched off Notch signaling, were intermingled with each other

to form larger groups (Figure 7C9, arrows; 110 cells in 5 larvae

were analyzed). Interestingly, these clusters of Tg(Tp1bglob:H2B-

mCherry)-single positive cells were mostly present in the multicel-

lular large bile ducts contiguous with the extrahepatic duct,

whereas the individual Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:

VenusPest)-double positive cells were localized in the distal part of

the liver and formed smaller bile ducts (Figure 7C9). These data

suggest that Notch responsiveness correlates with the relative

position of the intrahepatic biliary cells, with the cells turning off

Notch signaling forming the large bile ducts in the proximal region

of the liver. In sox9b mutant livers, we observed more clusters of

Tg(Tp1bglob:H2B-mCherry)-single positive cells in both the prox-

imal and distal regions (Figure 7F9, arrows; 243 cells in 6 larvae

were analyzed).

We then addressed whether Notch responsiveness was related to

the proliferation status of the intrahepatic biliary cells, which

would correlate with the increase in ductal structures observed in

mutant adults. We incubated wild-type and mutant animals with

the replication marker 5-ethynyl-29-deoxyuridine (EdU) during

two intervals of larval development, and analyzed EdU incorpo-

ration in Tg(Tp1bglob:H2B-mCherry)-single positive and

Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:VenusPest)-double posi-

tive cells (Figure 7H). In wild-type larvae, approximately 30% of

the Tg(Tp1bglob:H2B-mCherry)-single positive cells incorporated

EdU after incubation from 96 to 120 hpf. The Tg(Tp1bglob:H2B-

mCherry);Tg(Tp1bglob:VenusPest)-double positive cells exhibited a

slightly higher percentage of EdU incorporation, although the

difference between these two cell populations was not statistically

significant (p.0.08). Similar rates of EdU incorporation were

observed when we incubated the animals from 120 to 144 hpf. In

sox9b mutants, we detected an increase in EdU incorporation in

both the single and double positive cells compared to wild-type

(Figure 7H), with the increase being more pronounced in the

Tg(Tp1bglob:H2B-mCherry)-single positive cells than in the double

positive cells. To further support the hypothesis that loss of Notch

signaling correlates with increased proliferation of biliary cells, we

found that partial inhibition of Notch signaling in wild-type larvae

by a low dose DAPT treatment led to an increase in biliary cell

proliferation similar to that observed in sox9b mutants (data not

shown). Hence, taken together, these data suggest that the

reduction in Notch signaling in sox9b mutants promotes the

clustering and proliferation of the intrahepatic biliary cells, which

is consistent with the biliary duct defects observed in the mutant

adults.

Discussion

In this study, we analyzed a novel sox9b mutant in zebrafish,

revealing for the first time that global loss-of-function of Sox9b

severely impairs the development of the pancreaticobiliary ductal

system. In particular, we showed that in the mutant animals, the

HPD system is malformed, and the intrahepatic and intrapancre-

atic ducts fail to form a functional ductal network. We also

uncovered the existence of a Notch-Sox9b positive feedback loop

that is crucial for intrahepatic biliary duct development. Our study

thus brings new insights into our understanding of pancreatico-

Figure 5. Intrahepatic biliary network morphogenesis and bile canaliculi formation are impaired in sox9b mutants. (A–B) Distribution
of hepatocytes and biliary cells in 96 hpf wild-type and sox9b mutant larvae as revealed by Prox1 (red) and Tg(Tp1bglob:GFP) (green) expression. In
wild-type, the cell bodies of biliary cells are separated from one another and interconnected via cellular processes (A). In sox9b mutants, the biliary
cells are clustered together (B). Dashed lines mark the long bile ducts and arrows in (A) point to the short interconnecting ducts that are missing in
the mutants. (C) Percentage (average6SEM) of biliary cells that exist as single cells, doubles, triples, or clusters of four or more at 96 hpf. 6 wild-type
and 6 sox9b mutant larvae were analyzed. (D) Number (average6SEM) of branching points observed along the bile ducts per liver. 7 wild-type and 7
mutants were analyzed. (C–D) Asterisks indicate statistical significance: *p,0.05; ****p,0.0001; *****p,0.00001. (E, G) Wild-type and sox9b mutant
livers stained for BSEP (red) which marks the canaliculi, Alcam (blue) which marks the apical side of the hepatocytes, and Tg(fabp10:ras-GFP) (green)
which labels the hepatocytes. The hepatocytes in wild-type livers are organized in parallel arrays (highlighted by pseudo-colors), while the sox9b
mutant hepatocytes are arranged in rosettes (highlighted by pseudo-colors). (F, H) High magnification confocal images showing the morphology of
biliary cells and bile canaliculi. The canaliculi (arrows) in sox9b mutant livers appear shorter and wider compared to wild-type. (A–B) All images are
projections of confocal z-stacks. (E–H) Single confocal plane images. (A–B, E–H) Ventral views, anterior (A) to the top. Scale bars, 20 mm.
doi:10.1371/journal.pgen.1002754.g005
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biliary ductal system formation, an important but understudied

process.

We showed that loss of Sox9b function leads to mispatterning of

the HPD primordium. Fgf10 signaling also plays a pivotal role in

the formation of the HPD system in zebrafish [15]. Zebrafish fgf10

is expressed in the mesenchyme surrounding the HPD system and

intestine but not that surrounding the liver or pancreas [17]. fgf10

mutants show a dysmorphic HPD with a reduction or loss of the

common bile duct as well as reduced extrapancreatic and

extrahepatic ducts. Moreover, fgf10 mutants misexpress hepatic

markers such as Prox1 and Hnf4a in their HPD system and

pancreas, leading to the ectopic differentiation of some cells in

these organs towards a liver fate. Based on the similarities of the

fgf10 and sox9b mutant phenotypes, it is possible that Fgf10 and

Sox9b interact; for example, Fgf10 signaling could induce or

maintain sox9b expression in the HPD primordium to modulate

the patterning of this tissue. However, we did not observe any

obvious change in sox9b expression in the HPD upon Fgf receptor

pharmacological inhibition treatment, nor in fgf10 expression in

the surrounding mesenchyme in sox9b mutants. Thus, Fgf10 and

Sox9b functions might intersect in other ways.

Our data show that Sox9b is involved in gallbladder develop-

ment, whose primordium specifically expresses sox17. sox17 is

expressed in all endodermal cells during gastrulation [45] and

starts to be reexpressed at 36 hpf in a small region of the liver close

to the extrahepatic duct [33]. It is then detected in the gallbladder

at 60 hpf where it persists until 5 dpf. It will be interesting to

determine whether Sox9b directly regulates sox17 expression and

also to identify the additional factors involved in inducing sox17

expression in a subset of sox9b positive cells.

The intrapancreatic ductal network is severely disrupted in sox9b

mutant larvae, leading to the formation of dilated ducts

surrounded by fibrotic tissue in mutant adults. At first glance,

this adult phenotype is reminiscent of the one caused by pancreas-

specific inactivation of mouse Sox9 [25]; however, given that the

pancreatic remnants described in the mouse mutants come from

unrecombined Sox9+ progenitor cells, the zebrafish adult pheno-

type appears much less severe than the one seen in mouse. The

discrepancy between the two models could be explained by

differences during early pancreas development. Indeed, mouse

SOX9 is expressed in pluripotent pancreatic progenitors and is

required to stimulate their proliferation and survival [25].

However, in zebrafish at the earliest stages of pancreas develop-

ment, endocrine cells derive first from the endodermal epithelium

[18] and then from the extrapancreatic duct [46]; only during

larval stages, do endocrine cells derive from progenitors within the

intrapancreatic ducts [34], likely following mechanisms similar to

those regulating the secondary transition in mouse. Analysis of

zebrafish sox9b expression at early stages suggests that it is present

in a subset of ventral pancreatic bud cells, which may correspond

to the ductal progenitors. If this interpretation is correct, the lack

of Sox9b function in zebrafish would first impair these ductal

progenitors, leading to a reduced number of intrapancreatic ductal

cells. The first two waves of endocrine cells, as well as the acinar

cells, which originate from sox9b negative tissue, would therefore

not be affected in a sox9b mutant.

Loss of Sox9b function in zebrafish severely impairs the

development of the intrahepatic biliary network including the

morphogenesis of the bile canaliculi. These phenotypes are more

severe than those seen in liver-specific SOX9-depleted mice [23].

During mouse liver development, SOX9 expression is first

detected at E10.5 in the endodermal cells lining the lumen of

the liver diverticulum [23]. This expression is lost as the liver cells

migrate into the septum transversum, but re-emerges at E11.5 in

cells that form the ductal plate. The Alfp:Cre line that was used to

recombine the Sox9 locus becomes active at E11.5, thus likely only

inhibiting the second phase of SOX9 expression. Therefore, the

phenotypic differences between the zebrafish sox9b mutant and the

mouse model might be related to the consequences of an earlier

depletion in Sox9b in zebrafish than in mouse, illustrating the

value of the zebrafish Sox9b global loss-of-function model to

uncover functions of this critical transcriptional regulator. How-

ever, differences in the expression or function between sox9b

(zebrafish) and Sox9 (mouse) may also explain the phenotypic

differences between the two models.

Intrahepatic biliary cells in sox9b mutant livers fail to segregate

from one another and remain clustered, leading to a primitive

ductal network. Such defects are strikingly similar to Notch-

deficient zebrafish and mouse models [6,9,20,21,41] which

phenocopy the human Alagille syndrome (OMIM#118450),

which itself is associated with JAGGED1 and NOTCH2 mutations.

Notably, this developmental disorder is characterized by chole-

stasis due to a paucity of biliary ducts. Our data indicate that

Sox9b interacts with Notch signaling in a positive feedback loop to

regulate intrahepatic biliary duct morphogenesis. Studies in mouse

have provided possible mechanisms underlying this Sox9-Notch

crosstalk: the Sox9 promoter displays ten consensus Rbpj binding

sites and is a direct target of Notch signaling [9]. In addition,

SOX9 modulates Notch signaling by positively regulating the

expression of the Notch downstream target gene Hes1 in the liver

[23] as well as in other organs such as the pancreas [25]. These

mechanisms are likely to be at play in zebrafish as well, and it will

be interesting to delve deeper into the complexities of this positive

feedback loop.

Figure 6. Notch signaling regulates sox9b expression in the intrahepatic and intrapancreatic ducts. (A–D) Whole-mount in situ
hybridization (ISH) showing sox9b expression in larvae obtained from a wild-type to sox9b heterozygote cross that were treated with DMSO control or
20 mM DAPT between 75 and 99 hpf. In DMSO-treated controls, sox9b was strongly expressed in the liver and pancreas at 99 hpf (A, Class I). In
animals treated with 20 mM DAPT (B–D), some showed a slight reduction of sox9b expression in the liver (Li) and pancreas (Pa) (B, Class II), others only
retained expression of sox9b in the liver (C, Class III), and the remaining ones did not exhibit any obvious expression of sox9b in either organ (D, Class
IV). Dorsal views, anterior (A) to the top. (E) Percentages of larvae showing different classes of phenotypes. sox9b heterozygotes exhibited a more
severe reduction in sox9b expression than wild-type upon DAPT treatment. The numbers of larvae analyzed are indicated at the bottom. (F–I) Larvae
obtained from crossing Tg(hsp70l:Gal4);Tg(UAS:myc-Notch1a-intra) hemizygous and Tg(Tp1bglob:GFP);Tg(Tp1bglob:H2BmCherry) parents were heat-
shocked at 80 hpf to induce myc-Notch1a-intra expression and fixed 26 hours later. (myc-Notch1a-intra)-overexpressing larvae were selected based
on the increased expression of both Tg(Tp1bglob:GFP) and Tg(Tp1bglob:H2BmCherry), and their genotype was confirmed by anti-myc antibody
labeling (data not shown). (F–G) in situ hybridization showed an increased expression of sox9b in the liver (Li) and pancreas (Pa) as well as in the HPD
system (bracket) including the gallbladder (arrowhead) in (myc-Notch1a-intra)-overexpressing larvae (G) compared to (myc-Notch1a-intra)-negative
siblings (F). 10 larvae of each genotype were analyzed. Dorsal views, anterior (A) to the top. (H–I) Confocal images of (myc-Notch1a-intra)-negative (H)
and (myc-Notch1a-intra)-overexpressing (I) larvae showing elevated expression of Tg(Tp1bglob:GFP) and Tg(Tp1bglob:H2BmCherry) in the liver (Li),
pancreas (Pa), gut (g) and gallbladder (gb) in (myc-Notch1a-intra)-overexpressing larvae after heat-shock. Dashed lines in (I) mark the pancreas. All
images are projections of confocal z-stacks. Ventral views, anterior (A) to the top. Scale bars, 50 mm.
doi:10.1371/journal.pgen.1002754.g006
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Intriguingly, we found that the biliary cells in the proximal

region of wild-type livers tend to lose Notch signaling more quickly

and are more susceptible to Notch inhibition than the distal cells.

Notably, the biliary cells in the proximal region form large ducts

whereas the distal cells form small ducts. In sox9b mutants, loss of

Sox9b function tempers Notch signaling in all biliary cells.

Consequently, the mutant livers exhibit aberrant clusters of

Tg(Tp1bglob:H2B-mCherry)-single positive cells in their distal

region, suggesting that lack of Sox9b-mediated maintenance of

Notch signaling could promote the formation of large ectopic

ducts in distal regions of the liver. Interestingly, it has been shown

in mouse that SOX9, which is expressed in all biliary cells at

E18.5, persists in small ducts but regresses from large ducts after

birth [23]. Therefore, it is possible that in wild-type animals, the

loss of Notch signaling in the proximal region of the liver induces

the local loss of sox9b expression, leading to the formation of large

bile ducts. To begin to test this hypothesis, it will be necessary to

generate a Sox9b antibody in order to examine Sox9b expression

at cellular resolution. The identification of markers that

distinguish large and small bile ducts would also greatly facilitate

such studies.

Our data suggest that in addition to regulating biliary

morphogenesis, the Notch-Sox9b module also influences the

proliferation of biliary cells. In sox9b mutants, the biliary cells that

turn off Notch signaling exhibit a higher proliferation rate. Recent

lineage tracing studies in mouse have shown that Sox9 is expressed

in liver progenitor cells that reside within the biliary ducts [47,48].

It will be interesting to determine whether zebrafish sox9b is also

expressed in liver progenitor cells, whether loss of Sox9b function

affects their proliferation rate, and investigate into the underlying

mechanisms.

In addition to bringing new insights into our understanding of

the development of the pancreaticobiliary ductal system, the

analysis of zebrafish sox9b mutants should lead one to consider

SOX9 as a candidate gene for human diseases associated with

HPD, intrapancreatic or intrahepatic duct malformations. In

particular, numerous cases of congenital non-syndromic or

syndromic extrahepatic biliary atresia have been reported [49]

and their causes remain unknown [50]. These conditions likely

have multifactorial causes and do not display simple Mendelian

inheritance. Given the expression pattern of SOX9 in mammals

[24,26,28] as well as the phenotypes caused by loss of SOX9

function in zebrafish and mouse, SOX9 is therefore an interesting

gene to sequence in those patients. Campomelic dysplasia has

been shown to be essentially associated with heterozygous

mutations that are predicted to severely disrupt SOX9 protein

structure and function [51]; but milder lesions could be associated

with pancreaticobiliary duct malformations and contribute to the

onset or severity of these malformations without necessarily

impairing skeletal development.

Materials and Methods

Zebrafish strains and lines
Embryos and adult fish were raised and maintained under

standard laboratory conditions [52]. The sox9b fh313 heterozygote

was crossed with Tg(fabp10:ras-GFP)s942 [37], Tg(Tp1bglob:GFP)um14

[35], Tg(Tp1bglob:H2B-mCherry)s939, Tg(Tp1bglob:VenusPest)s940 [34],

TgBAC(neurod:GFP)nl1 [53] and genotyped according to the

TILLING center protocol with AcuI or SfcI (http://labs.fhcrc.

org/moens/Tilling_Mutants/sox9b/allele_1.html). We also used

Tg(hsp70l:Gal4)1.5kca4 and Tg(UAS:myc-Notch1a-intra)kca3 [43] hemi-

zygous or double hemizygous fish.

In situ hybridization and immunohistochemistry
Whole-mount in situ hybridizations were performed as described

previously [54] using sox9b [30] and sox17 [45] probes. Animals were

photographed with a Zeiss Axioplan using an Axiocam digital

camera. Immunohistochemistry on whole-mount animals or cryosec-

tions was performed as previously described [16], using the following

antibodies: chicken polyclonal anti-GFP (1:1000; Aves Labs, Tigard,

OR, USA), rabbit polyclonal anti-Prox1 (1:1000; Chemicon, Bill-

erica, MA, USA), mouse monoclonal 2F11 (1:1000; Abcam,

Cambridge, UK), rabbit polyclonal anti-dsRed (1:500; Clontech,

Mountain View, CA, USA), rabbit polyclonal anti-ABCB11/BSEP

(1:1000; Kamiya Biomedical), mouse monoclonal anti-Alcam/Zn8

(1:20; ZIRC), rabbit polyclonal anti-elastase (1:200; Millipore

AB1216) and fluorescently conjugated Alexa antibodies (1:250;

Molecular Probes, Carlsbad, CA, USA). Samples were imaged on a

Zeiss Pascal confocal microscope. The width of the bile ducts was

measured using the ‘‘local thickness’’ function in Fiji software.

Heat-shock experiment and chemical inhibitor treatment
Heat-shock treatments of Tg(hsp70l:Gal4)1.5kca4 larvae were

performed at 38uC as described [16]. To inhibit Notch signaling,

larvae were treated with 20 mM or 50 mM DAPT (Sigma) in egg

water [42]. Control larvae from the same batch were treated with

0.4% DMSO in egg water. Statistical analyses were performed

using the Student’s two-tailed t-test.

Histology
Five-months old zebrafish (one wild-type and one mutant) were

euthanized and their digestive systems were dissected and fixed

overnight with formalin at 4uC. The samples were embedded in

paraffin, cut into 5 mm sections, and stained with hematoxylin and

eosin.

Figure 7. The pattern of Notch signaling activity is altered in sox9b mutants. (A–F) Expression of Tg(Tp1bglob:H2B-mCherry) (red), 2F11
(blue), and Tg(Tp1bglob:VenusPest) (green) in wild-type (A–C) and sox9b mutant (D–F) larvae at 75 (A, D), 99 (B, E), and 123 hpf (C, F). At each time
point, 6 larvae of each genotype were analyzed. (A9–F9) Diagrams showing the distribution of Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:VenusPest)-
double positive cells (yellow) and Tg(Tp1bglob:H2B-mCherry)-single positive cells (red) in (A–F). Livers are outlined by solid white line. In wild-type
livers, expression of Tg(Tp1bglob:H2B-mCherry) and Tg(Tp1bglob:VenusPest) largely overlaps at 75 hpf (A, A9). At 99 and 123 hpf (B–B9, C–C9), a few
Tg(Tp1bglob:H2B-mCherry)-single positive cells (arrows) appear along the intrahepatic duct that connects to the extrahepatic system. In sox9b
mutants, Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:VenusPest)-double positive cells and Tg(Tp1bglob:H2B-mCherry)-single positive cells show similar
distribution as in wild-type at 75 and 99 hpf (D–D9, E–E9). However, at 123 hpf (F, F9), we observed big clusters of Tg(Tp1bglob:H2B-mCherry)-single
positive cells in the mutant livers (arrows). (G) Percentages (average6SEM) of Tg(Tp1bglob:H2B-mCherry)-single positive cells relative to the total
number of Tg(Tp1bglob:H2B-mCherry)-expressing cells. Whereas wild-type and sox9b heterozygous livers contained similar percentages of
Tg(Tp1bglob:H2B-mCherry)-single positive cells at all stages examined (p.0.4), this percentage was significantly higher in sox9b mutants at 123 hpf
(p,0.0005). (H) Percentages (average6SEM) of Tg(Tp1bglob:H2B-mCherry)-single positive cells or Tg(Tp1bglob:H2B-mCherry);Tg(Tp1bglob:VenusPest)-
double positive cells that were labeled by EdU. EdU incubation was conducted from 96 to 120 hpf or from 120 to 148 hpf. Under both conditions, the
hepatic Notch responsive cells in sox9b mutants showed higher EdU incorporation compared to wild-type, and the difference was more pronounced
for Tg(Tp1bglob:H2B-mCherry)-single positive cells. 7 wild-types and 7 sox9b mutants were examined for each experimental condition. Asterisks
indicate statistical significance: *, p,0.05. (A–F) All images are projections of confocal z-stacks. Ventral views, anterior (A) to the top. Scale bar, 20 mm.
doi:10.1371/journal.pgen.1002754.g007
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BODIPY assay
6–7 dpf larvae were fed with BODIPY C2.0 or BODIPY C5.0

as described in [40] for 6–8 hours before being mounted and

imaged live. The larvae were subsequently genotyped and 9 wild-

type and 9 sox9b mutant animals were analyzed.

EdU cell cycle analysis
To assess the proliferation of the intrahepatic biliary cells, wild-

type and sox9b mutant larvae were incubated in 7 mM EdU

dissolved in egg water during the stages indicated. Control larvae

collected from the same batch were treated with 1.7% DMSO.

Animals were fixed after incubation and processed using the Click-

iT EdU Imaging Kit (Invitrogen). Quantification of EdU

incorporation was conducted using the Cell Counter plug-in in

ImageJ.

Supporting Information

Figure S1 sox9a in situ hybridization in wild-type and sox9b

mutant larvae at 80 hpf. sox9a does not appear to be expressed in

endodermal tissues in wild-type or sox9b mutant animals. Dorsal

views, anterior (A) to the left.

(TIF)

Figure S2 Time course analyses of the pancreas (A–F) and liver (G–

L) in wild-type and sox9b mutant larvae at 2, 3, and 4 weeks. (A–F)

Tg(Tp1bglob:H2B-mCherry);TgBAC(neurod:GFP) double transgenic fish

from sox9b heterozygote incrosses were raised together and 40 of them

were fixed and genotyped at each time point. The pancreas, along with

the gut, of 6 to 11 wild-type or sox9b homozygous mutant fish were

dissected, stained with anti-dsRed (red), anti-GFP (green) and anti-

Elastase (blue) antibodies and mounted for confocal imaging. Whereas

wild-type pancreata showed complex intrapancreatic duct networks at

2 and 3 weeks of age with several main pancreatic ducts (A, C), sox9b

mutant pancreata failed to expand and ductal cells stayed in clusters (B,

D). At 4 weeks of age, the morphological differences between wild-type

and sox9b mutant pancreata were even more obvious: wild-type

pancreata spread over the gut starting to form lobes whereas sox9b

mutant pancreata were still primitive in appearance (E, F). The defect

in pancreatic growth in sox9b mutant fish is associated with a global

growth retardation of the fish as indicated by the smaller size of the fish

and the frequent occurrence of an unlooped gut at 4 weeks (data not

shown). In addition to pancreatic duct morphological defects, sox9b

mutant fish showed a deficiency in secondary islet formation as assessed

by TgBAC(neurod:GFP) expression (arrowheads in B9, D9, F9). However,

at the equivalent stages, wild-type fish exhibited multiple clusters of

TgBAC(neurod:GFP)-positive cells along the intrapancreatic ducts

(arrowheads in A9, C9). All images are projections of confocal z-stacks.

Ventral views, anterior to the top right. Dashed lines delineate the

pancreas. Scale bars, 100 mm. (G–L) Wild-type and mutant larvae

were sorted at 5 dpf based on their intrahepatic ductal system

phenotypes (as assessed by the pattern of Tg(Tp1bglob:GFP) expression)

and raised separately. At 2 (G, J), 3 (H, K), and 4 weeks (I, L) of age, 2

wild-type and 2 mutant fish were fixed for immunostaining.

Cryosections were stained with 2F11 (red) and anti-GFP (green)

antibodies. In the liver, whereas the intrahepatic biliary network

continued to expand between 2 and 4 weeks in wild-types (G–I), the

biliary cells in sox9b mutants remained clustered and never assumed

normal morphogenesis (J–L). Moreover, the expression of

Tg(Tp1bglob:GFP) largely overlapped with 2F11 labeling in wild-type

livers (G–I). In contrast, in sox9b mutant livers, we observed an

increasing number of cells that were labeled by 2F11, but did not

express Tg(Tp1bglob:GFP) (J–L). These cells formed large clusters by 4

weeks of age (L). All images are projections of confocal z-stacks. Sagittal

sections, anterior to the top. Dashed lines in (G–L) delineate the liver.

Li, liver; Pa, pancreas. Scale bar, 20 mm.

(TIF)

Figure S3 sox9b mutants show defects in bile secretion and

transport as assessed by BODIPY-FL analog feeding. (A–B)

Fluorescent micrographs of 7 dpf live wild-type (A) and sox9b

mutant (B) larvae after BODIPY feeding showing lack of filling of

the gallbladder (arrowhead) in sox9b mutants (B). Lateral views,

anterior (A) to the left. (C–F) Confocal images of Tg(Tp1bglob:H2B-

mCherry) wild-type (upper panel) and sox9b mutant (lower panel)

larvae showing morphological and functional defects of both

intrahepatic (D) and intrapancreatic (F) ductal networks compared

to wild-type (C and E). In the mutants, both intrahepatic and

intrapancreatic ducts appear to be dilated (D and F). Fluids (bile or

pancreatic juice) also appear to accumulate in the pancreatic tail

(arrows, F). Dashed squares represent areas shown in higher

magnification for intrahepatic (C9–D9) and intrapancreatic (E9–F9)

ducts in wild-types (upper panel) and sox9b mutants (lower panel).

sox9b mutants showed defects in bile canaliculi (comparing

arrowheads in C9, D9) and terminal pancreatic ducts (comparing

arrowheads in E9, F9). 9 larvae were analyzed for each genotype.

(C–F) All images are projections of confocal z-stacks. (C–F) Lateral

views, anterior (A) to the left. Dashed lines in E and F outline the

pancreas. g, gut; Li, liver. Scale bars, 20 mm.

(TIF)

Figure S4 The intrahepatic biliary cells in sox9b mutants are more

susceptible to Notch signaling inhibition. (A–D) Confocal images of

livers in Tg(Tp1bglob:VenusPest); Tg(Tp1bglob:H2B-mCherry) wild-type (A,

C) and sox9b mutant (B, D) larvae treated with DMSO (A–B) or 50 mM

DAPT (C–D) from 106 to 154 hpf. DAPT treatment caused an

increase in the relative proportion of Tg(Tp1bglob:H2B-mCherry)-single

positive cells in all the animals, yet sox9b mutants exhibited a more

severe increase compared to wild-type larvae. In DAPT-treated wild-

type larvae (C), loss of Notch activity was more prominent in the region

proximal to the extrahepatic duct (p, left side of yellow line), whereas

the distal biliary cells still maintained Tg(Tp1bglob:VenusPest) expres-

sion (d, right side of the yellow line). (A–D) All images are projections of

confocal z-stacks. Ventral views, anterior (A) to the top. Dashed lines

outline the liver. Scale bar, 50 mm. (E) Percentages (average6SEM) of

Tg(Tp1bglob:H2B-mCherry)-single positive cells relative to the total

number of Tg(Tp1bglob:H2B-mCherry)-expressing cells. 10 DMSO

control and 14 DAPT-treated larvae were analyzed for each genotype.

Asterisks indicate statistical significance compared to equally-treated

wild-type larvae: ***, p,0.005; ******, p,0.000005.

(TIF)
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