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Abstract

The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that
they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance
rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show
ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system.
Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This ‘‘iab-8 RNA’’ produces a micro RNA to
repress abd-A, but also has a second, redundant repression mechanism that acts only ‘‘in cis.’’ Transcriptional interference
with the abd-A promoter is the most likely mechanism.
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Introduction

Genome wide surveys for RNA transcription units in a variety

of eukaryotes have revealed a surprising number of transcripts

that are not traditional messenger RNAs. A variety of functions

have been suggested for these ‘‘noncoding’’ RNAs (ncRNAs),

although the large majority have no known purpose (reviewed in

ref [1]). In Drosophila melanogaster, primary transcripts cover at least

60% of the genome [2]. Many of these transcripts do not

correspond to defined genes, but they are evolutionarily

conserved. Particular attention has been given to ncRNAs in

the bithorax complex (BX-C), a cluster of three homeobox-

containing transcription factors required for segment identity

(reviewed in ref. [3]). Although much of the ,300 kb of BX-C

DNA is transcribed, the BX-C contains only one other protein

coding sequence [4]. Lipshitz et al. [5] first described apparent

ncRNAs from the BX-C in the bithoraxoid regulatory region. They

suggested that such transcripts could reflect nonspecific initiation

by RNA polymerase near a strong enhancer, a possibility that still

remains attractive. Several other ncRNAs in the BX-C have been

identified by Northern blots or RNA in-situ hybridizations [6–8].

It has been suggested that such transcripts might block silencing

by the Polycomb Group proteins [9], but this idea is not yet

supported by the analysis of existing mutations. A readthrough

product of the bithoraxoid ncRNA transcription unit may repress

features of early transcription from the Ultrabithorax (Ubx)

promoter [10], and the iab-4 and iab-8 ncRNAs are the likely

precursors for micro RNAs (miRNAs) [11–13]. Otherwise, these

ncRNAs still lack functions.

Prior indications of the iab-8 noncoding RNA
Here, we focus on the iab-8 ncRNA. Several lines of evidence

have suggested the existence of a 90 kb-long transcription unit,

extending between Abd-B and abd-A, with a likely start site within

the iab-8 regulatory region. RNA in-situ hybridizations to

embryos, using genomic DNA fragment from the iab-2 through

the iab-8 regulatory regions as probes, detect an RNA in the 8th

and 9th abdominal segments (parasegments 13 & 14). Strand-

specific probes revealed that it is transcribed in a distal-to-

proximal direction (from Abd-B towards abd-A) [7,8,14,15]. This

transcript is first seen at about stage 6 [11] in the epidermis, but

from stage 14 onward (germband shortening), the RNA is detected

only in the developing central nervous system (CNS). A promoter

for an uncharacterized RNA was independently mapped to the

iab-8 region, just downstream of the Abd-B transcription unit [16].

Additionally, a transcript starting in the iab-8 region has been

suggested as the precursor for a micro RNA, called miR-iab-8 or

miR-iab-4AS [11–13]. This miRNA is transcribed from the iab-3

regulatory region in the distal-to-proximal direction, and strand

specific genomic probes from this region indicate that the

precursor is made in the 8th and 9th abdominal segments, as

described above. This miRNA is required for male and female

fertility, and complementation tests with a series of rearrangement

breakpoints suggest that the start site of this RNA is in the iab-8

regulatory region, downstream of Abd-B [11].

Here, we characterize the structure and function of the 92 kb

long ‘‘iab-8 ncRNA’’. This ncRNA represses the expression of the

homeotic gene abd-A in the posterior CNS. This repression
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depends not only on the miR-iab-8 micro RNA, but also on

transcriptional interference in the region of the abd-A promoter.

Results/Discussion

Repression of abd-A in the 8th abdominal segment
In wild type embryos, abd-A expression is detected in the

epidermis and CNS of PS7 to PS12 but not in PS13 (Figure 1A).

Abd-B is strongly expressed in PS13, and it was initially claimed

that Abd-B represses abd-A in PS13 [17], just as abd-A represses Ubx

and Ubx represses Antp [18]. This repression hierarchy can account

for the dominance of posterior homeotic genes over anterior ones,

often called ‘‘posterior prevalence’’ [19]. Indeed, embryos

homozygous for Df(3R)C4, which removes Abd-B, show ABD-A

expression extending throughout PS13 (Figure 1B). However, the

Df(3R)C4 deficiency extends downstream of the ABD-B transcrip-

tion unit, removing all of the iab-8 regulatory region and part of

iab-7 (Figure 2). Surprisingly, embryos homozygous for an Abd-B

null point mutation, Abd-BD16, show ABD-A derepression in PS13

of the epidermis, but not in the CNS (Figure 1C). Homozygotes for

Abd-BD18, a deletion removing all of the Abd-B coding sequences

(Figure 2), show the same ABD-A expression pattern (not shown).

This unexpected repression of ABD-A in the CNS can be seen

most dramatically in the Abd-BD14 mutation. Abd-BD14 deletes the

promoter for the Abd-B ‘‘m’’ transcript [20], expressed from PS10

through PS13, but leaves the promoters for the ‘‘r’’ transcripts

expressed in PS14. In the CNS of Abd-BD14 homozygotes, abd-A

does not fill in the gap left by the absence of Abd-B in PS13

(Figure 1D). Clearly then, there must be some function deleted by

Df(3R)C4 that is not affected by Abd-BD18 or more subtle Abd-B

mutations. Our attention turned to the iab-8 ncRNA, which

appeared to initiate in the iab-8 region deleted in Df(3R)C4.

Mapping the iab-8 ncRNA exons
The spliced product of the iab-8 ncRNA was initially uncovered

by a fortuitous insertion of an exon-trap mobile element. This

element, a derivative of the Minos mobile element, is called Hostile

takeover (Mi[Hto-WP]; Genbank #JN049642). An insertion was

recovered in the iab-6 domain of the BX-C (‘‘TA’’ target site bases

85,277 & 85,278), named Mi(Hto-WP)LNP or simply LNP, for

short (Figure 2). 39 RACE products were amplified with primers

within LNP and within the 39 exon of abd-A. The sequence of the

product revealed the exon structure diagramed in Figure 2. The

sequence included 5 novel exons before it spliced into abd-A, at the

5th exon of the predominant splice form of the abd-A mRNA

[4,17]. Many of these exons match those of a cDNA designated

MIP06894 (Genbank BT099824.1)(Figure 2), identified by the

Berkeley Drosophila Genome Project.

The exons of the LNP cDNA were used to generate primers for

59 and 39 RACE, using total RNA from Oregon R embryos.

Figure 2 diagrams the predominant splicing product, which spans

,92 kb. An RT/PCR product was recovered and sequenced that

extended from exon 1 through exon 8, as well as one that extended

from exon 1 through exon 7, and then included exons 5, 6, and 7

of the abd-A transcription unit. Figure 2 also shows three alternate

59 exons and five alternate 39 splicing patterns. RT/PCR products

included extensions of exons #2 or 4, ending at sites of genomic

poly(dA) stretches; these were likely derived from splicing

intermediates. Rare clones were also recovered that skipped

exons, splicing from exons 1, 2, or 6 into abd-A exons 5 or 6. Exon

1 had two start sites separated by 135 bases; the upstream start was

,3 fold more abundant. Exon 4 included only 6 bases, although

rare products included an alternate 39 extension of 92 bases.

Quantitative PCR was also used to show that termination at exon

8 was ,500-fold more common than splicing into abd-A. The

sequences of the predominant and alternate exons are given in

Figure S1. Two recent genome-wide searches for novel non-

coding transcripts in embryos have uncovered some of these same

Figure 1. ABD-A expression in Abd-B mutant embryos. Stage 14
embryos in A–C were stained with antibody to ABD-A, opened along
the dorsal midline and flattened for photography. ABD-A is absent from
PS13 in wild type (A), but appears throughout PS13 in Df(3R)C4
homozygotes (B). In Abd-BD16 homozygotes, ABD-A is only in the lateral
and dorsal epidermis of PS13 (C). Dissected CNS’s from stage15
embryos in D were doubly stained for ABD-A (red) and ABD-B (green). In
wild type, the expression domains overlap through PS10-12, with some
nuclei expressing both proteins. In Abd-BD14 homozygotes, ABD-B
expression is absent from PS10-13, but the ABD-A pattern is
unchanged, leaving PS13 without either protein.
doi:10.1371/journal.pgen.1002720.g001

Author Summary

Although long, noncoding RNAs have been found in many
organisms, it has been difficult to assign to them any
molecular function. The homeotic gene clusters in the fruit
fly, Drosophila melanogaster, contain many such noncod-
ing RNAs. We have characterized one such noncoding
RNA, a 92 kb transcription unit from within the bithorax
complex. This transcript, called the iab-8 ncRNA, is made in
the cells of the central nervous system in the eighth
abdominal segment, along with the homeotic transcrip-
tion factor Abdominal-B. Another homeotic transcription
factor, abdominal-A, is repressed in these cells. It has
generally been assumed that abdominal-A repression in
these cells is mediated by the Abdominal-B protein.
However, here we show that it is not Abdominal-B that
represses abdominal-A, but the iab-8 ncRNA. This repres-
sion is accomplished by two redundant mechanisms; the
iab-8 precursor produces a micro RNA, which targets the
abdominal-A mRNA, and iab-8 transcription interferes with
the abdominal-A promoter, which lies just downstream of
the iab-8 ncRNA poly(A) site.

abd-A Regulation by the iab-8 Noncoding RNA
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transcripts [2,21]. Graveley et al. [2] also reported transcripts from

adult males with most of the same exons, but an alternate start site,

in the iab-6 region.

The promoter for the iab-8 RNA maps distal to the Fab-8

boundary, in the iab-8 regulatory region [22]. The iab-8 region

should be under Polycomb Group repression in parasegments 1–12,

which explains why the transcript is only expressed in PS13 and 14

[11] . Exons 1–7 appear to be evenly spaced across the abdominal

region of the bithorax complex, with one in each of the iab cis-

regulatory domains. A comparison with the genomic sequences of

various Drosophila species suggests that the sequences of the exons

are not more conserved than those of the introns. However, the

existence of the exons does appear to be conserved, in that the

splice junctions are among the most conserved features of the

exons. This is illustrated in Figure 3A for exon 3, in the iab-6

region. The embryonic expression pattern is also conserved;

expression is restricted to PS13 and 14 in D. pseudoobscura and D.

virilis, as it is in D. melanogaster (see Figure S2).

The spliced product of the iab-8 RNA is non-coding by

traditional criteria, but the possibility of small peptides [23,24]

cannot be ruled out. In particular, exon 8 includes a potential 9

amino acid peptide, with appropriate translation initiation and

termination signals, and the coding potential for this peptide is well

conserved in D. ananassae, D. pseudoobscura and D. willistoni

(Figure 3B), although it is not found in D. virilis and more distantly

related species.

abd-A repression by the iab-8 RNA
There are many chromosome rearrangements, mostly from the

collection of E. B. Lewis, which interrupt the iab-8 ncRNA

transcription unit. These can be used to test whether truncated

versions of the iab-8 RNA can repress abd-A. Rearrangement

Figure 2. Map of the abdominal half of the bithorax complex. The horizontal bar indicates the DNA sequence map, numbered in kb
according to Martin et al. [4] (Genbank U31961). Base #1 corresponds to base 12,809,162 on chromosome 3R in release 5.37 of the Drosophila
genome. The coordinates proceed distal to proximal on chromosome 3R, which is opposite in orientation to the whole genome numbering. The
regulatory domains iab-2 through iab-8 are color coded; the domain borders are defined by deletion mutations (Fab8 [22], ; Fab7, [41]; Mcp, [44]; iab-
3/iab-4, L. Sipos personal communication), or inferred from the binding sites of the CTCF factor [45]. Below the DNA bar are shown the splicing
patterns of abd-A and Abd-B (in black), a cDNA derived from the Mi(Hto-WP)LNP insertion (red), and the MIP06894 cDNA (green). At the bottom, the
splicing pattern for the iab-8 ncRNA is shown in dark blue, with numbered exons, and alternate 59 or 39 extensions indicated with light blue lines.
Mutant lesions are indicated above the DNA bar. The rearrangement breakpoints are color coded according to their phenotypes when heterozygous
with the mfs5649 insertion.
doi:10.1371/journal.pgen.1002720.g002

Figure 3. Evolutionary conservation. A. A comparison of exon 3 and neighboring bases with the homologous regions from the genomes of
three other Drosophila species. B. Potential nine amino acid peptide within exon 8 of the iab-8 ncRNA. The D. melanogaster sequence is compared to
that of D. ananassae. The initial methionine codon is preceded by a perfect translation start consensus sequence [46], and there are two stop codons
after the 9th amino acid. The three bases altered in D. ananassae are highlighted in red; only one changes the predicted amino acid.
doi:10.1371/journal.pgen.1002720.g003

abd-A Regulation by the iab-8 Noncoding RNA
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breaks that truncate the iab-8 RNA near its start site cause a

dramatic derepression of abd-A in the CNS of the 8th abdominal

segment, indistinguishable from that seen in Df(3R)C4 homozy-

gotes (Figure 1). Rearrangements with this effect include iab-

7SGA62, iab-611, iab-5843, iab-42330, and iab-4186 (Figure 2 & 4). The

same spread of ABD-A into the CNS of PS13 is seen with the Fab-

864 deletion, which removes the iab-8 ncRNA promoter (Figure 2).

Interestingly, embryos homozygous for chromosome breaks

mapping closer to abd-A show a much more subtle derepression

of abd-A. In iab-35022 homozygotes, for example, weak misexpres-

sion is limited to a few cells (Figure 4). Similar weak misexpression

is seen in homozygotes of iab-4,53245 and iab-4302 (Figure 2).

Finally, embryos homozygous for the iab-333 rearrangement show

abd-A misexpression in only a very few CNS cells in the most

anterior part of the 8th abdominal segment (Figure 4). This break

lies downstream of the poly(A) addition site of the major iab-8

transcript, but upstream of the abd-A transcription start site.

The difference between the two classes of breakpoints seems to

be the expression of miR-iab-8. The iab-4186 break, maps just

upstream (within 3 kb) of the miR-iab-8 coding region and shows

complete loss of abd-A repression in PS13. In contrast, the iab-35022

break maps ,5 kb downstream of miR-iab-8 and shows only

slight misexpression. Thus, one might guess that miR-iab-8 is

responsible for most of the repression of abd-A, especially since the

39 UTR of abd-A includes sequences homologous to the ‘‘seed’’

region of miR-iab-8 [12,13]. However, embryos homozygous for a

deletion of miR-iab-8 (DmiR-iab-8) do not show a dramatic

misexpression of ABD-A in the PS13 CNS [11]. A closer

examination of these homozygous embryos does reveal a weak

misexpression of abd-A in a small number of nuclei in anterior

PS13 (Figure 4), but clearly not the strong and widespread

misexpression of iab-4186. Thus, it appears that miR-iab-8 does

repress abd-A in the PS13 CNS, but there must be a second,

redundant function of the iab-8 RNA to completely represses abd-

A. UBX expression in embryos is apparently not affected by this

second function; its expression pattern in iab-7SGA62 homozygous

embryos is the same as that in miR-iab-8 deletion homozygotes

(not shown).

Fertility function of the iab-8 ncRNA
A deletion of the miR-iab-8 causes sterility in both sexes [11].

Thus, we expected that any combination of alleles that failed to

make the miR-iab-8 micro RNA would be sterile, including, for

example, an iab-7 break (iab-7MX2 or iab-7SGA62) heterozygous with

DmiR-iab-8 [11]. There is an insertion of the ‘‘PZ’’ P element

,4.2 kb downstream of the iab-8 RNA start site, designated

mfs(3)05649 (here called mfs5649; Figure 2). Homozygotes are

sterile in both sexes, and the females show the same phenotype

(blockage of the oviduct) as is seen in DmiR-iab-8 homozygotes

[25]. We assume the mfs5649 insertion truncates the iab-8 RNA,

since it fails to complement with DmiR-iab-8 for the sterility

phenotype. The Fab864 deletion (derived from the mfs5649 P

element; Figure 2; [22]) is also sterile as a homozygote or as a

heterozygote with DmiR-iab-8.

We tested rearrangement breakpoints in the iab-2,3, and 4

regions, downstream of the miR-iab-8 template, for fertility when

heterozygous with the mfs5649 P element. Surprisingly, many

rearrangement breakpoints 39 to the miR iab-8 template have a

female sterility phenotype when heterozygous with mfs5649

(Figure 2); males of these genotypes are fertile. These sterile

females show a failure of mature oocytes to move through the

oviduct, much like mfs5649 homozygotes or the DmiR-iab-8

homozygotes. It does not seem likely that breakpoints downstream

of the miR-iab-8 template interfere with the proper processing of

the micro RNA, because these same breakpoints are fertile when

heterozygous to DmiR-iab-8. It is possible that the subtle

misexpression of ABD-A in PS13 seen in iab-3 breaks is responsible

for the female sterility, especially if the misexpression it is more

dramatic at later times in development. Not all breakpoints give

this female sterility phenotype, and there is no apparent order to

Figure 4. ABD-A expression in rearrangements truncating the iab-8 ncRNA. Embryos homozygous for the indicated mutations were doubly
stained for ENGRAILED (green) and ABD-A (red), and the CNS’s were dissected and photographed. The posterior end of each CNS is shown; the
ENGRAILED stripes mark the parasegmental boundaries. The iab-4 and iab-7 breaks cause widespread misexpression of ABD-A in PS13, but iab-3
breaks show only subtle misexpression in a few nuclei. Embryos homozygous for a deletion of the iab-8 miRNA also show misexpression in only a few
nuclei.
doi:10.1371/journal.pgen.1002720.g004

abd-A Regulation by the iab-8 Noncoding RNA
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the fertile and sterile breakpoint alleles (Figure 2). Some of the

rearrangements may fuse the iab-3 region with novel transcription

units, restoring the repression of abd-A in the critical cells.

Mechanism of repression
The iab-8 ncRNA could make a product, such as another

miRNA, that represses abd-A. Indeed, there is a secondary

structure hairpin in exon 6 of the spliced transcript that could

serve as a miRNA precursor. The iab-8 ncRNA could also code

for tiny peptides, as noted above (Figure 3B). These possibilities

prompted us to misexpress the iab-8 ncRNA spliced product. A

cDNA cassette, representing the major splicing product (Figure 2)

plus 236 bp of genomic DNA downstream of the poly(A) addition

site, was cloned into the pUAST vector [26]. P element transgenes

were recovered and crossed to flies expressing the yeast GAL4

activator in abdominal segments 3–8 (parasegments 8–13).

However, embryos containing both the GAL4 activator and the

UAS/iab-8 cDNA target showed no apparent reduction in the

ABD-A levels in the segments expressing GAL4 (not shown).

The cDNA misexpression experiment does not rule out a

product made from an intron, such as an RNA component of a

diffusible repressive complex, as alleged for non-coding RNAs in

mammalian HOX complexes [27]. If the putative second

repressor involves a diffusible molecule, it should be able to act

on both chromosomes, even if it is only produced by one. The

miR-iab-8 micro RNA should be diffusible in this way, and so, to

examine the second repressive function, we needed to test

genotypes lacking miR-iab-8. Specifically, heterozygotes were

made with the DmiR-iab-8 deletion on one chromosome, and with

a mutation truncating the iab-8 RNA upstream of the miRNA

template (mfs5649, iab-7SGA62, or iab-5845) on the other chromo-

some. Such embryos make the iab-8 RNA from only one

chromosome, and cannot make the micro RNA from either. As

shown in Figure 5, these embryos showed strong ABD-A

misexpression in the CNS of PS13 (the 8th abdominal segment),

suggesting that the iab-8 RNA can only repress the copy of abd-A

on the chromosome from which it is transcribed. To control for a

potential effect of haploinsufficiency of the iab-8 RNA, the DmiR-

iab-8 deletion was also tested over DfP9, a deletion that removes

the entire bithorax complex. These DmiR-iab-8/DfP9 embryos

show no apparent misexpression of ABD-A in PS13. Thus, the

second iab-8 RNA repressive function must act only in cis.

In a similar test, we employed a duplication for the proximal

two thirds of the complex, Dp(3:2)D109, which extends into the

iab-5 region (at ,110 kb; [28]). This duplication includes abd-A,

but lacks the iab-8 RNA promoter. Embryos homozygous for the

DmiR-iab-8 deletion but containing this duplication also show

ABD-A misexpression in the PS13 CNS (Figure S3). Thus, there

are two mechanisms by which the iab-8 RNA represses abd-A, first,

through production of the iab-8 miRNA (acting in trans), and

second, a repressive function acting only in cis. The Supplemen-

tary Table S1 summarizes which genotypes supply which

repressive functions.

The cis-repression of one transcription unit by another is often

termed transcriptional interference. This term, however, encom-

passes several possible molecular mechanisms [29]. An example of

a long, ncRNA involved in transcriptional cis-repression is the

XIST RNA, involved in mammalian X chromosome inactivation

[30] (A recent report suggests that the XIST RNA can also work in

trans [31]). Nascent transcripts are involved in repression in RNAi

silencing of heterochromatin is fission yeast [32] and in RNA-

directed DNA methylation in Arabidopsis [33]. By analogy to these

systems, the iab-8 RNA could recruit gene silencing machinery to

the site of its transcription. The RNA sequences required for such

recruitment might be mapped by examination of deletions in the

BX-C. Ideally, the iab-8 miRNA should be removed to have a

clear assay for the cis repressor. We have checked embryos

homozygous for the Fab3,5DV deletion (Figure 2), which covers the

site of the iab-8 miRNA precursor; they still show abd-A repression

in the posterior CNS. Likewise, a double deletion chromosome,

with DmiR-iab-8 and Fab71, also retains the cis repression. The

Fab71 deletion (Figure 2) was tested because it removes a Polycomb

Response Element [34,35] which is coincident with exon 2 of the

cDNA. Two other deletions have been examined which span the

iab-4 through iab-7 regions, although both retain the iab-8 miRNA

(iab-4,5,6DB and iab-6,7IH; Figure 2). In these, we looked for more

subtle misexpression, such as that seen in iab-3 breaks (Figure 4),

but no such misexpression was seen. This analysis does not yet

cover the iab-2 and iab-3 regions, nor does it exclude the possibility

of multiple redundant sequences throughout the transcription unit

that could recruit repressive factors.

A more likely represion mechanism, perhaps, is that the RNA

polymerase transcribing the iab-8 RNA somehow interfers with

the abd-A promoter. Examples of this type of transcriptional

interference come from budding yeast, where the GAL7 gene is

repressed by the upstream GAL10 transcript [36], and the SER3

gene is repressed by the upstream, noncoding SRG1 transcript

[37]. In these cases, the 39 ends of the upstream transcripts are

close to the downstream promoters, suggesting repression by

occlusion of the downstream promoters or their proximal

enhancers. If the iab-8 RNA interferes with an abd-A enhancer,

that enhancer must lie downstream of the iab-4186 breakpoint,

since abd-A is totally derepressed in the PS13 CNS in embryos

homozygous for this break (Figure 4). The abd-A promoter seems

like the most likely target of interference, since the major poly(A)

site of the iab-8 RNA lies only 1.1 kb upstream of the initiation site

of abd-A, and the iab-8 RNA primary transcript likely continues

past its poly(A) addition site [38]. In any case, minor splice variants

Figure 5. Test for trans repression by the iab-8 ncRNA. CNS’s,
stained for ABD-A, were dissected from embryos of the indicated
genotypes. In DmiR/mfs5649 embryos, only one chromosome makes a
full length iab-8 ncRNA, and neither chromosome produces the iab-8
miRNA, as diagrammed. The strong expression of ABD-A in PS13 in this
genotype shows that the abd-A gene on the mfs5649 chromosome is
not repressed, i.e. the iab-8 ncRNA acts only in cis.
doi:10.1371/journal.pgen.1002720.g005

abd-A Regulation by the iab-8 Noncoding RNA
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clearly do continue past the poly(A) site and into the abd-A

transcription unit (Figure 2).

The function of the iab-8 ncRNA fits with the rule of posterior

dominance - it blocks expression of a more anterior homeotic gene

in more posterior segments. The repression of Ubx by the bxd

ncRNA [10], although subtle, fits the same pattern. The novel

aspect, here, is that this posterior repression can be accomplished

by noncoding transcription units, in addition to DNA binding

proteins. The mechanism of transcriptional interference would fix

the arrangement of these ncRNAs in the bithorax complex. It

seems possible that the ancestral HOX complex turned off

anterior genes by readthrough transcripts of more posterior genes,

or by noncoding RNAs initiating from their posterior enhancers.

Such a method of repression would dictate the linear order of the

HOX genes, 39 to 59, anterior to posterior.

Materials and Methods

Drosophila strains
Wild type stocks were Canton S or Oregon R. Mutations

included abd-AMX1, iab-3277, iab-4302, iab-5843, iab-7SGA62, iab-7MX2,

Abd-BD16, Abd-BD14, Df(3R)C4, Df(3)P9 (ref [39]); iab-333, iab-3B1

(ref [17]) iab-611 ref [40]); Fab71 ref [41]); mfs(3)05649 (ref [25],

Fab864 ref [22]; Fab3-5DV ref [42]; iab-386A, iab-35022, iab-4186, iab-

42330, iab4,53245, iab-5843, DmiR-iab-8 (ref [11]);); T(3:2)DpD109

[28] and Mi[Hto-WP] (described here).

Antibody staining
Embryos were fixed, stained, and mounted as described by [17].

Primary antibodies used were mouse anti-ADB-B (1:2 dilution,

developed by S. Celniker, Developmental Studies Hybridoma

Bank), mouse anti-UBX (1:10, developed by R. White, Develop-

mental studies Hybridoma Bank), rabbit anti-ß-galactosidase

(1:1500, Cappel/MP Biomedicals), mouse anti-ß-galactosidase

(1:1000, Promega), rabbit anti-En (1:500, Santa Cruz Biotechnol-

ogy), mouse anti-ABD-A (1:500, 6A18.12, gift of I. Duncan), and

goat anti-ABD-A (1:100, Santa Cruz Biotechnology). Secondary

antibodies were donkey anti-mouse, donkey anti-goat, and donkey

anti-rabbit, coupled to either Alexa 488 or Alexa 555 (1:500,

Invitrogen), and HRP coupled goat anti-mouse (1:1000, Bio-Rad).

The CNS’s were hand dissected with tungsten needles and

placed on a glass slide in a drop of Immu-Mount (for HRP

staining, Shandon) or Vectashield with DAPI (for fluorescence,

Vector Laboratories), and then gently flattened under a coverslip.

Fluorescence images were taken with a Leica SP2 AOBS confocal

microscope; the fluorescence pictures show free projection

averages of stacks of images, after scanning through the depth of

the tissue. Homozygous embryos were identified by the absence of

lacZ staining from the TM3 ftz-LacZ balancer.

Fertility tests
Each of ten mutant virgin females was placed in a vial with

three wild type males. Likewise ten mutant males were mated,

each with three wild type virgin females. Vials were maintained at

25u for five days, and then examined for the presence of larvae.

cDNA analysis
Adults heterozygous for Mi[Hto-WP] and Hsp70-Gal4 (Bloo-

mington stock #1799) were heat shocked for 45 min. at 37u to

induce GAL4 expression, and then left to express the LNP

transcript at room temperature for 4 h. RNA was then isolated

using TRI reagent (Sigma) and reverse transcribed with MMLV

reverse transcriptase (Promega) using an adaptor primer (GAA-

GACAGACACCGGACT18V). PCR was then performed using a

forward primer in Hto and a reverse primer in the 6th exon of abd-

A. The resulting amplicon was sequenced to identify the splicing

pattern.

Total RNA from Oregon R embryos was prepared using the

RNAqueous-4PCR kit (Ambion), and 39 RACE and RNA ligase-

mediated 59 RACE reactions were performed using the First-

Choice RLM-RACE kit (Ambion). The 59 RACE procedure was

designed to recover only capped 59 ends. Gel-isolated products

were sequenced directly, or cloned first into the PCR-Blunt vector

(Invitrogen). Quantitative PCR reactions used cDNA prepared

from 6–12 h old embryos. The initial cDNA products were

compared to measured dilutions of amplified cDNA products

covering the relevant exons.

RNA in situ hybridization and embryo staining
The production of digoxigenin-labeled probes and the hybrid-

ization of embryos was as described by Fitzgerald and Bender

[11], except that acetone treatment [43] was used instead of

proteinase K for permeabilization of the embryos. Clones

spanning exon 8 from D. melanogaster, D. pseudobscura and D. virils

were recovered after PCR reaction on genomic DNAs with the

following pairs of oligonucleotiedes: D. melanogaster 59CGCTCGA-

GAGATTACAAACG39 and 59GGTGTATTACGGTCAAG-

GGGG39 generating a fragment of 1013 bp; D. pseudobscura

59CAGGCATTCAGTAAACACGGC39 and 59GGATGTGTC-

GAGTGGTGTGG39 generating a fragment of 1477 bp; D.virilis

59CTTTCGGTCCTATTCAACGG39 and 59CCGATCCTGC-

TGGTGTC39 generating a fragment of 1364 bp.

Supporting Information

Figure S1 Sequences of iab-8 ncRNA exons. The first and last

bases of each exon are numbered according to the SEQ89E

coordinates of Martin et al. [4] (Genbank U31961).

(PDF)

Figure S2 Conserved iab-8 noncoding RNA expression patterns

in D.melanogaster, D. pseudobscura and D. virilis embryos. The top 3

panels show embryos at stage 8, while the bottom panels show

embryos at stages 14–17.

(TIF)

Figure S3 Additional test for trans repression by the iab-8

ncRNA. Males of the genotype T(2;3) DpD109, DmiR, Fab/TM2

were crossed to DmiR/TM3, ftz-LacZ females. The TM3-

containing embryos were recognized by their LacZ expression.

Among the remaining embryos, half showed no apparent ABD-A

expression in the CNS of PS13 (presumed to be TM2/DmiR), and

half gave clear PS13 misexpression (presumed DpD109, DmiR/

DmiR). Thus, the repression fails to act in trans on the duplication.

The PS13 misexpression is weaker than the PS7-12 level, because

the former derives from only the one abd-A copy on the

duplication, but the latter represents three doses of the abd-A

gene. DpD109, +/DmiR embryos produced in a control cross

displayed little, if any, ABD-A misexpression in PS13.

(TIF)

Table S1 Two mechanisms, iab-8 miRNA trans-repression and

cis-repression mediate abd-A repression in PS13 of the CNS. The

table summarizes which of these 2 mechanisms is/are affected in

the various mutant alleles. Note that complete ectopic

expression in PS13 is only observed when both mechanisms

are affected.

(TIF)
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