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Abstract

Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II),
the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II
function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces
cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis
of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription
phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues
function together to promote proper transcription, individual residues can be separated into distinct functional classes likely
relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining
sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our
data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP
levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating
the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process.
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Introduction

Cellular DNA-dependent RNA polymerases likely balance

fidelity in substrate selection with synthesis speed to achieve

appropriate transcriptome content and regulation in vivo. In

multisubunit RNA polymerases (msRNAP) from archaea, bacteria

and eukaryotes, a highly conserved subdomain known as the

trigger loop (TL) is critical for rapid catalysis and selection of

correct substrates [1–9]. The TL is present in the largest subunit of

eukaryotic Pol II, generally referred to as Rpb1 (Rpo21 in

Saccharomyces cerevisiae), and the analogous b9 subunit of bacterial

RNAP, and A0 subunit of archaeal RNAP.

Similarly to mobile domains of other classes of nucleic acid

polymerases, the TL undergoes conformational changes in

conjunction with the presence of an NTP substrate complemen-

tary to the DNA template (matched) in the msRNAP active site

[1,3]. These conformational changes are proposed to link TL-

substrate interactions to preferential catalysis of correctly matched

substrates over mismatched substrates. The TL can be observed in

distinct conformations depending on the presence of matched

NTP substrate, natural product polymerase inhibitors, and

msRNAP-interacting proteins, underscoring its flexibility [1–

3,10–15]. In addition to effects on phosphodiester bond catalysis,

the TL has been implicated in polymerase pausing, intrinsic

cleavage of RNA and translocation [7–9,16,17].

The TL comprises two mostly alpha-helical regions connected

by a short loop (Figure 1A). Deletion or structural compromise of

the TL in either E. coli (Eco) or T. thermophilus (Tth) strongly

reduces catalytic activity, but to different extents depending on

whether the substrate is matched to the template or not [3–5,7].

Two specific regions of the TL appear important for control of

TL function. First, conserved residues in the nucleotide

interacting region (NIR) recognize specific features of matched

NTP substrates and work in conjunction with non-TL residues,

Rpb1 N479 and R446, positioned for interaction with hydroxyl

moieties on the ribose of matched NTPs [1,3](Figure 1A).

Residues in the NIR showing NTP interactions in S. cerevisiae

and Tth substrate-bound structures are (using S. cerevisiae

Rpb1/Rpo21Ecob9/Tthb9 numbering) Gln1078Gln930/Gln1236, Leu-

1081Met932/Met1238, Asn1082Arg933/Arg1239 and His1085His936/His1242.

Second, in all kingdoms of life, substitutions in or near the helix

distal to the NIR alter elongation rate, in some cases increasing

elongation rate relative to WT (‘‘superactivity’’), [2,16,18,19].

These substitutions may alter dynamics of TL movement between

the substrate-interacting conformation and other conformations

because they are adjacent to the hinge region in the C-terminal
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TL helix (another hinge is apparent in the N-terminal TL

helix)(Figure 1B) [2,9].

NIR residues of the Eco and Tth RNAPs have different degrees

of contribution to catalytic activity, with individual Eco residue

substitutions having smaller effects on activity than homologous

substitutions in Tth, underscoring the diversity of TL residue

functions in msRNAPs [5,7]. A conserved histidine within the TL

NIR has been proposed to have an important or essential catalytic

role [1]. Many classes of structurally distinct nucleic acid

polymerases utilize a basic residue located at a position in the

active site analogous to that of the TL histidine and these residues

function as a general acid in the catalytic cycle of the polymerase

[20]. While clearly important for RNAP catalysis, the TL histidine

appeared not to be functioning as a general acid based on pH-

dependence curves for bacterial RNAPs [5,7]. Experiments in the

different bacterial systems show that a TL methionine residue

(equivalent to S. cerevisiae Leu1081) packs against a base-paired

NTP in the active site and has a greater contribution to activity

than ArgEco933/Tth1239 or HisEco936/Tth1242, which interact with the

triphosphate moiety of matched substrates [5,7].

Genetic identification of mutants with substitutions in the TL

region, first in S. cerevisiae Pol II, then in Eco RNAP, demonstrated

that alteration of the TL could alter transcription in vivo [16,18,21–

23]. How changes in TL function or msRNAP catalysis alter

transcription in vivo are not well understood and to what extent

polymerase activity defects may be tolerated in vivo is not clear. In

S. cerevisiae, drugs that target nucleotide synthesis pathways such as

mycophenolic acid (MPA, targets GTP synthesis) [24] and 6-

azauracil (6-AU, targets UTP and GTP synthesis) [25,26] have

been shown to cause alterations in gene expression in vivo [27–30].

A large number of Pol II transcription-related mutant strains show

altered sensitivities to these drugs, leading to the broadly utilized

interpretation that these drugs are elongation inhibitors and that

sensitivity to them suggests defective Pol II elongation [18,31–54].

Notwithstanding the large number of mutants sensitive to these

drugs that have no known transcriptional role, many MPA-

sensitive mutants alter transcription of the gene IMD2 [35,38,47],

which encodes an MPA-resistant form of IMPDH, the enzymatic

activity targeted by the drug [55,56]. This gene-specific transcrip-

tion defect is not always considered when interpreting mutant

phenotypes. Intriguingly, IMD2 transcription involves a switch

between upstream transcription start sites and downstream

Figure 1. S. cerevisiae Rpb1 trigger loop conformations and sequence. A. Cartoon representation of ‘‘closed’’ Pol II TL in relation to nucleic
acids, Rpb1 bridge helix and a matched GTP substrate from structure PDB 2E2H [1] overlaid with TL constrained in open conformation by TFIIS (not
shown) from structure PDB 1Y1V [69]. Amino acids (all derived from Rpb1) adjacent to the matched GTP substrate are indicated by numbers and
single-letter amino acid codes. This figure was created with Pymol [111]. B. Schematic of TL showing amino acid sequence in single-letter code, with
positions of interest numbered, residues with direct contact to GTP substrate in structure 2E2H shown in green, and position 1103 shown in yellow.
Two hinge regions, about which the TL appears to change conformation from the open to closed positions are indicated.
doi:10.1371/journal.pgen.1002627.g001

Author Summary

Transcription by multisubunit RNA polymerases (msRNAPs)
is essential for all kingdoms of life. A conserved region
within msRNAPs called the trigger loop (TL) is critical for
selection of nucleotide substrates and activity. We present
analysis of the RNA Polymerase II (Pol II) TL from the model
eukaryote Saccharomyces cerevisiae. Our experiments
reveal how TL residues differentially contribute to viability
and transcriptional activity. We find that in vivo growth
phenotypes correlate with severity of transcriptional
defects and that changing Pol II activity to either faster
or slower than wild type causes specific transcription
defects. We identify transcription start site selection as
sensitive to Pol II catalytic activity, proposing that RNA
synthesis (an event downstream of many steps in the
initiation process) contributes to where productive tran-
scription occurs. Pol II transcription activity was excluded
from previous models for selection of productive Pol II
start sites. Finally, drug sensitivity data have been widely
interpreted to indicate that Pol II mutants defective in
elongation properties are sensitized to reduction in GTP
levels (a Pol II substrate). Our data suggest an alternate
explanation, that sensitivity to decreased GTP levels may
be explained in light of Pol II mutant transcriptional start
site defects.

In Vivo Dissection of Pol II Trigger Loop Function
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productive start sites that differ in initiating NTPs (upstream:

GTP, downstream: ATP) leading to the proposal that the initiation

process for these different classes of transcript stems from GTP

levels being sensed directly by Pol II [57,58].

The eukaryotic Pol II system provides an excellent model for in

vivo studies of how the TL functions in transcription. Because

nuclear transcription in eukaryotes is segregated among three

essential polymerases instead of one, as in bacteria and archaea,

strong defects may be more tolerated in Pol II than bacterial or

archaeal RNAPs in vivo. We utilized extensive site-directed

mutagenesis of the Pol II TL coupled with genetic screening to

identify viable substitutions in TL NIR residues and substitutions

conferring conditional growth phenotypes. We then used biochem-

ical characterization together with a number of in vivo genetic and

molecular phenotypes to probe the contributions of critical TL

residues to transcription in vivo. We determined the relationship

between NIR residues and superactivating TL substitutions and

found that superactivating substitutions were mostly mutually

suppressive with loss-of-function substitutions within the NIR in

genetic and biochemical assays. These results indicated that NIR

residues were not bypassed by superactivating substitutions and

were still required for Pol II activity. Using a series of TL mutants

that define a continuum of in vitro elongation rates, we demonstrated

that a number of in vivo phenotypes correlated closely with Pol II

activity in vitro. We provide support for models proposing that IMD2

transcription is directly sensitive to Pol II activity, therefore

explaining the MPA-sensitivity of superactive Pol II mutants, which

otherwise might have been expected to be resistant to reduced GTP

levels due to increased elongation activity. Finally, we determined

that start site selection at a number of other genes was similarly

sensitive to alteration in Pol II activity leading to a new model for

transcription-dependent polarity of start site selection in S. cerevisiae.

Results

Genetic Analyses of Rpb1 TL Mutants In Vivo
We have undertaken an extensive genetic dissection of the Pol II

TL: specifically, we examined the contribution of TL residues to

Pol II function, and how Pol II catalytic activity relates to

transcription in vitro and in vivo. To examine a large number of Pol

II mutants in vivo, we employed a yeast strain containing a deletion

of the endogenous copy of RPO21 (the gene encoding Rpb1, which

we henceforth refer to as RPB1) with RPB1 activity complemented

by a low copy CEN plasmid containing RPB1 genomic DNA or

mutant variants, allowing expression from the native RPB1

promoter. Site-directed mutagenesis was focused on TL NIR

residues to identify viable substitutions and was combined with

existing rpb1 TL alleles identified in genetic screens (Text S1,

genetic screens to be described elsewhere). For any viable mutants,

alteration in transcription in vivo was measured with two

phenotypic reporters for transcriptional defects, the lys2-128h
[59] and gal10D56 alleles [60,61](Figure S1). These reporters are

modulated by a number of transcription elongation factors and Pol

II mutants with known transcription defects [2,60,62–66].

Previous analyses indicated that some TL substitutions cause

increases in Pol II elongation rate in vitro (‘‘superactivity’’ or gain of

function (GOF))(e.g. E1103G) [2,9,18]; some of these increases in rates

for misincorporation were greater than in rates for incorporation of

templated NTPs, indicating possible loss of fidelity (F1084I, E1103G)

[2,9]. Other substitutions confer reduced elongation rate (loss of

function (LOF))(H1085Y, F1086S) [2]. In vitro activity appeared to

correlate with in vivo phenotypes for the few mutants examined [2].

Suppression of a growth defect on media lacking lysine conferred by

lys2-128h (the Spt2 phenotype) was observed for known TL GOF

alleles and neighboring substitutions [2]. Lysine auxotrophy of lys2-

128h relates to defective LYS2 transcription caused by a retro-

transposon insertion in LYS2 [59]. Some of these GOF alleles are also

sensitive to MPA or 6-AU, while the Spt2 phenotype and strong

MPA sensitivity have not been observed among known TL LOF

alleles [2,18]. Both known LOF and GOF alleles confer alteration of

growth phenotypes relating to transcriptional interference at the

GAL10-GAL7 locus when polyadenylation and termination at GAL10

are compromised in the gal10D56 allele [2].

In our current study, we found that the Spt2 phenotype was

concentrated in residue substitutions proximal to the two TL

‘‘hinges’’ (Figure 2A, 2E, see Figure 1B for positions of hinges).

Growth defects were conferred by substitutions throughout the TL

(Figure 2A, 2B). We found that MPA-sensitivity (MPAs) and Spt2

phenotypes generally co-occurred although the relative strength of

the two phenotypes varied among mutants (Figure 2A, 2D, 2E).

Finally, we found that the strongest suppressors of gal10D56, with

the exception of G1097D, were in TL NIR residues and were

mostly Spt+ or MPA-resistant (MPAr), indicating a distinction

between these phenotypes (Figure 2C). Taken together, these

conditional plate phenotypes behave as sensitive readouts for likely

complex sets of overlapping or distinct transcriptional defects in vivo.

In Vitro Transcription Elongation Rates Correlate with In
Vivo Growth Defects and Plate Phenotypes

As TL substitutions causing the Spt2 phenotype included those

with known TL GOF phenotypes (F1084I, E1103G) [2], we asked

if our plate phenotypes were predictive of biochemical phenotypes.

Analysis of TL substitutions in an in vitro transcription assay using

reconstituted Pol II elongation complexes indicated a good

correlation between elongation rate defect in vitro and growth

defect in vivo (Figure 3, Figures S4 and S5). We note that we did

not detect strong expression differences for tested mutant Rpb1

proteins (Figure S6). We previously showed that LOF substitution

H1085Y and a putative GOF substitution (G1097D) caused severe

growth defects in vivo [2]. In this study we find that these two

mutants also represent extremes of Pol II activity defects, but

interestingly at different ends of the activity spectrum. Biochemical

analysis of Spt2 and MPAs G1097D and L1101S shows that they

are GOF substitutions conferring increased maximal elongation

rate in vitro. In fact, G1097D elongates too quickly for accurate

measurement in our short template run off assay (Figure 3)(Figures

S4 and S5). We evaluated a number of other TL substitutions and

found that WT elongation rate in vitro correlates with robust

growth in vivo, and that the greater the deviation from WT for

elongation rate in vitro, the greater the deviation from WT growth

in vivo (Figure 3, right panel). We note that the non-TL LOF

substitution, N479S, deviates slightly from this relationship as it

has the most severe in vitro defect but has a less severe growth

defect. This could be consistent with a factor(s) functioning in vivo

that can compensate for the biochemical defect caused by the

N479S substitution but not the H1085Y substitution; for example,

a hypothetical factor that may work through the TL.

Role of E1103-T1095 Interactions in Superactivation of
E1103G

For msRNAPs from each kingdom of life, GOF substitutions

have been reported in TL residues distal to the NIR and proximal to

the C-terminal ‘‘hinge’’ region [2,9,16,18,19], which is the portion

of the TL that changes conformation from open to the closed NTP-

interacting orientation (Figure 1). There is evidence that the Pol II

GOF substitution E1103G promotes a closed TL state [9]. An

increased frequency or duration of this state could have conse-

In Vivo Dissection of Pol II Trigger Loop Function
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Figure 2. Genetic analyses of Pol II TL single substitution mutants. A. 10-fold serial dilutions of saturated cultures of Pol II TL mutant strains
plated on different media. YPD is rich medium with dextrose as a carbon source. YPRaf is rich medium with raffinose as a carbon source. YPRaf/Gal
has both raffinose and galactose, allowing assay of gal10D56-dependent galactose toxicity phenotypes. SC-Leu is defined, complete medium lacking
leucine. MPA was added to this medium (SC-Leu+MPA) to 20 mg/ml final concentration, showing that a number of Pol II mutants are sensitive to this
drug. SC-Lys is defined, complete medium lacking lysine, and detects the Spt2 phenotype (Lys+) for strains containing lys2-128h. WT strains grow
robustly on most media, but will not grow on SC-Lys when lys2-128h is present and grow very poorly on YPRaf/Gal when gal10D56 is present. Mutant-
dependent transcriptional phenotypes allow modulation of these specific growth defects. B. Schematic of TL (as diagrammed in Figure 1B) showing
distribution of viable substitutions with their growth defects on YPD as well as lethal substitutions. All mutants were examined in the background of

In Vivo Dissection of Pol II Trigger Loop Function
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quences for catalysis (increased activity with all substrates and net

increase in misincorporation) and translocation (reduced transloca-

tion rate likely due to stabilization of closed state after catalysis). The

E1103 sidechain interacts with the T1095 sidechain and makes

backbone contacts with K1112 in elongation complex crystal

structures where the TL is in the open conformation or constrained

by other factors [67–69]. Loss of this E1103-T1095 interaction has

been posited to explain the effect of E1103G on Pol II transcription

[9]. We found that the T1095A substitution was phenotypically

indistinguishable from wild type (WT), indicating that loss of

T1095-E1103 contacts are not responsible for E1103G growth

alteration or, most likely, biochemical superactivity (Figure 2).

T1095R, presenting a much longer sidechain that might disrupt

‘‘out conformation’’ hinge folding, only confers weak MPAs, Spt2

and Galr phenotypes, consistent with C-terminal hinge function or

TL dynamics being controlled more strongly by distal residues or

other contacts of E1103 (Figure S3).

Combinatorial Analyses of TL Substitutions Reveal
Functional Distinctions between Residues with Similar
Single-Mutant Behavior

We next wished to probe genetic relationships between TL

GOF and LOF substitutions, particularly those between TL hinge

residues and TL NIR residues, as these relationships might

provide mechanistic insight into TL function (Figure 4A, Figure

S2, Figure S3, Text S1). Surprisingly, by combining TL GOF with

TL NIR substitutions, we found that either E1103G or G1097D

GOF mutations were able to suppress lethality of many, but not

all, inviable (LOF) single substitution NIR mutants (Figure 4A,

Figure S2, Table 1). Examination of double mutant plate

phenotypes provided more evidence of mutual suppression in

E1103G-NIR mutant combinations because Spt2 and MPAs

phenotypes of E1103G were suppressed together with moderate

Galr phenotypes of individual NIR substitutions (Figure S2). In

contrast, tested pairwise combinations of genetically and biochem-

ically similar GOF substitutions, F1084I, G1097D and E1103G

resulted in lethality (Figure 4A). Additionally, combination of

viable LOF NIR-residue substitutions with the GOF substitution

E1103G resulted in mutual suppression of conditional plate

phenotypes and growth defects (Figure S2).

If observed plate phenotypes directly relate to elongation rate,

as suggested by our analysis of single substitution mutations

(Figure 3), the observations above predict that the double mutants’

in vitro elongation rates might be closer to WT than those of the

single substitution mutants. We therefore measured elongation

rates of doubly substituted TL mutants to further examine the

an Rpb1 T69 change, which is the allele present in the S288C reference genome as well as being normally found in our strains, representing a
distinction for the subset of mutants described previously [2](see Materials and Methods, Text S1 and note concerning viability of Q1078S). Scoring of
phenotypic strength is based on visual inspection of (A). C. Distribution of gal10D56 suppression (Gal resistance) or enhancement (Gal super-
sensitivity) among TL substitutions. Scoring of phenotypic strength is based on visual inspection of (A). *Indicates strength of gal10D56 suppression is
likely underestimated due to confounding generic growth defects. D. Distribution of MPA phenotypes among TL substitutions. Scoring of phenotypic
strength is based on visual inspection of (A). E. Distribution of lys2-128h suppression (Spt2 phenotype scored as Lys+) among TL substitutions.
Scoring of phenotypic strength is based on visual inspection of (A).
doi:10.1371/journal.pgen.1002627.g002

Figure 3. Pol II TL substitution mutants show a wide range of elongation rates in vitro. Pol II TL single substitution elongation rates as
determined in vitro using reconstituted Pol II elongation complexes with synthetic oligonucleotides and an RNA primer (Materials and Methods). Raw
data for some mutants (*) are from [2] and are shown for comparison. Plotted data are maximal elongation rates as determined by non-linear
regression of elongation rates determined for different NTP substrate concentrations, and error bars indicate the range of the 95% confidence
intervals (Figures S4, S5). Growth on rich medium of mutants is shown in the right panels for comparison with elongation defects (from Figure 2).
doi:10.1371/journal.pgen.1002627.g003

In Vivo Dissection of Pol II Trigger Loop Function
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relationships between GOF and LOF variants (Figure 4B)(Figures

S4 and S5). We found that combination of E1103G and individual

viable LOF substitutions F1086S, H1085Q or H1085Y resulted in

enzymes with activity intermediate between the relevant singly

substituted enzymes. Combination of E1103G individually with

the lethal single substitutions Q1078A, N1082A or H1085A

resulted in viable strains and Pol II enzymes with activity reduced

compared to E1103G alone. The fold enhancement of viable LOF

substitutions F1086S, H1085Q and H1085Y by E1103G was

roughly similar in each case.

Figure 4. Combination of TL substitutions alters in vivo growth and in vitro biochemical phenotypes. A. GOF-GOF and GOF-LOF genetic
interactions among rpb1 TL and other substitutions. GOF (yellow) and LOF (blue) classifications were determined by biochemical and genetic
phenotypes of single substitution mutants, with lethal single substitutions shown in black. Double mutant phenotypes are illustrated as the colored
lines connecting colored nodes of particular single mutants. Schematic of TL sequence and orientation is as in Figure 1B. Data were compiled from
Figure S2, Figure S3 and Table 1. N1082S/F1084I shows a complex interaction with exacerbation of growth defects on rich medium but mutual
suppression of other conditional plate phenotypes. B. In vitro elongation rates determined as in Figure 3 for select Pol II TL double mutant enzymes.
Single mutants and their relevant E1103G double mutants are indicated by color-coding: F1086 and F1086/E1103G, yellow; H1085Q and H1085Q/
E1103G, green; H1085Y and H1085Y/E1103G, blue. Black bars indicate double mutants with E1103G for which the counterpart single substitution
mutant is inviable (Q1078A, N1082A, H1085A). Single mutant data are from Figure 3. Raw data for some mutants (*) are from [2] and are shown for
comparison. Error bars indicate the ranges of the 95% confidence intervals. Note that x-axis is logarithmic scale. Growth on rich medium of mutants is
shown in the right panels for comparison with elongation defects (from Figure 2, Figure S2). C. Interaction diagram showing phenotypes of pairwise
combinations of rpb1 LOF alleles (legend shown in (A)). D. Interaction diagram illustrating genetic interactions between pairs of Rpb1 substitution
mutants each in the presence of the E1103G substitution (yellow shading encompassing all relevant residues, legend shown in (A)).
doi:10.1371/journal.pgen.1002627.g004

In Vivo Dissection of Pol II Trigger Loop Function
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Table 1. Mutational analysis of the Pol II TL.

Substitution Phenotype Note

Q1078A Inviable

Q1078N Inviable [2]

Q1078E Inviable

L1081I Inviable

L1081A Inviable

L1081G Inviable

L1081F Inviable

N1082A Inviable

H1085A Inviable [2]

H1085D Inviable

H1085N Inviable

H1085F Inviable [2]

N479S/N1082S Viable Figure S3

N479S/F1084I Viable Figure S3

N479S/H1085Q Inviable Double mutant lethality

N479S/H1085Y Inviable Double mutant lethality

N479S/F1086S Inviable Double mutant lethality

Q1078S/N1082A Viable Q1078S suppresses N1082A lethality, Figure S3

Q1078S/N1082S Viable Figure S3

Q1078S/F1084I Viable Figure S3

Q1078S/H1085Y Inviable Double mutant lethality

Q1078S/H1085Q Inviable Double mutant lethality

Q1078S/H1085A Inviable

Q1078A/N1082A Inviable

N1082S/F1084I Viable Figure S3

N1082S/H1085Y Inviable Double mutant lethality

N1082A/F1084I Viable Figure S3

N1082A/H1085Y Inviable Double mutant lethality

F1084I/H1085Q Viable Figure S3

F1084I/H1085Y Inviable Double mutant lethality

F1084I/E1103G Inviable Double mutant lethality

G1097D/E1103G Inviable Double mutant lethality

N479S/Q1078S/E1103G Viable Figure S3

N479S/N1082A/E1103G Inviable Triple mutant lethality

N479S/H1085A/E1103G Viable Figure S3

N479S/F1084I/E1103G Viable Suppression of F1084I/E1103G lethality, Figure S3

Q1078S/N1082A/E1103G Viable Figure S3

Q1078A/N1082A/E1103G Viable Figure S3

Q1078A/H1085Y/E1103G Inviable Triple mutant lethality

Q1078A/H1085A/E1103G Inviable Triple mutant lethality

Q1078S/H1085A/E1103G Viable Figure S3

N1082S/F1084I/E1103G Viable Figure S3

N1082A/F1084I/E1103G Viable Figure S3

N1082S/H1085Y/E1103G Viable Figure S3

N1082A/H1085Y/E1103G Inviable Triple mutant lethality

N1082A/H1085A/E1103G Inviable Triple mutant lethality

F1084I/H1085Y/E1103G Inviable H1085Y cannot suppress F1084I/E1103G

Q1078S/N1082A/H1085Y/E1103G Viable Figure S3

A1076V/Q1078S/N1082A/H1085Y/E1103G Viable Figure S3

A1076V/Q1078A/N1082A/H1085Y/E1103G Viable Figure S3

In Vivo Dissection of Pol II Trigger Loop Function
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To determine if TL NIR residues function individually or in a

coupled fashion, we constructed pairwise combinations using TL

NIR LOF alleles and a substitution in the TL-adjacent Rpb1

NTP-interacting residue, N479S (Figure 4C). We observed

lethality when H1085 substitutions were combined with substitu-

tions in other TL NIR residues or with N479S, consistent with

H1085 functioning non-redundantly or distinctly from other TL

NIR residues or N479 in the Pol II nucleotide addition cycle.

Surprisingly, when we examined combinations among N479,

Q1078, and N1082 substitutions we did not observe lethality

(Figure 4C). In fact, we observed suppression or epistasis between

Q1078 and N1082 substitutions. These observations suggested a

functional distinction between N-terminal TL NIR residues

(Q1078, N1082) and H1085. Viable substitutions in these residues

maintain sidechains that might still confer some interaction

between the TL and NTPs, however alanine substitutions in key

residues Q1078, N1082, and H1085 were inviable and could not

be directly assessed genetically. Because all LOF TL residues,

including these lethal substitutions, were suppressed by E1103G,

we examined triple mutants that contained pairwise substitutions

in the TL NIR in the background of E1103G (Figure 4D). These

triple mutant combinations revealed similar functional distinctions

between two sets of Pol II active site residues, with the set of

residues containing N479, Q1078 and N1082 being distinct from

H1085. These results may be interpreted in light of structural

information and have implications for the mechanism of TL

function (see Discussion).

In Vivo Transcription Defects of Pol II TL Mutants
To examine our Pol II TL mutants for in vivo transcription

defects, we analyzed expression of IMD genes and URA2

(Figure 5A, 5B), which function in GTP and UTP synthesis,

respectively. Expression of one IMD gene, IMD2, and URA2, have

been linked to GTP or UTP levels, respectively, possibly directly

through alteration of Pol II function by changes in levels of these

transcription substrates [57,58,70,71]. Expression of IMD2 is

required for WT yeast to be resistant to the drug MPA [46,56].

IMD2 transcripts are increased in the presence of MPA due to

reduced GTP levels that result from inhibition of MPA-sensitive

Imd2 homologs, Imd3 and Imd4 [55,56]. A number of

transcription mutants are defective for IMD2 upregulation upon

MPA treatment [35,38,47] while some Pol II mutants have been

reported to show constitutive expression of IMD2 [18,57]. As

IMD2 has a high level of sequence similarity to the pseudogene

IMD1 and to IMD3 and IMD4, and because of possible cross-

hybridization [56], we do not specify that observed changes in our

Northern blotting are solely due to IMD2 changes. However, it has

been demonstrated that the majority of MPA-induced IMD

expression comes from IMD2 [56].

We observed a constitutive upregulation of IMD transcripts in

LOF mutant H1085Y and loss of MPA-responsiveness in GOF

mutants E1103G and G1097D as well as in the H1085Y/E1103G

double mutant (Figure 5A). E1103G appeared to have reduced

expression of IMD genes in the absence of MPA treatment, and

importantly, E1103G and G1097D showed reduced IMD

expression upon MPA treatment. These results are consistent

with the MPA-sensitivity of E1103G and G1097D and the

apparent MPA-resistance of H1085Y (Figure 2) [2]. They also

indicate that defects in IMD expression may fully explain the

MPA-sensitivity of Pol II TL mutants and need not relate to global

elongation defects due to reduced GTP levels, which is the

commonly invoked mechanism for MPA-sensitivity. The results,

however, are consistent with a model in which IMD2 regulation

occurs directly through Pol II-nucleotide sensing.

Activation of URA2 has also been proposed to result from a Pol

II-dependent NTP-sensing event because a class of Pol II mutants

causes constitutive URA2 expression [70,71]. URA2 is normally

controlled by a change in start site selection from upstream start

sites, which produce transcripts that are prematurely terminated

and degraded, to downstream start sites that allow production of

full-length mRNA. The Pol II mutants that lead to URA2

expression are located in the ‘‘switch 1’’ region of Rpb1 [72],

near a residue linked to start site selection [73]. We reasoned that

if URA2 were directly responsive to Pol II-sensing of UTP levels,

then a Pol II TL LOF mutant should also show constitutive

upregulation of URA2, as a reduction of Pol II activity through TL

defects should mimic reduction in substrate levels. We found that

H1085Y caused URA2 to be upregulated (Figure 5B). GOF TL

mutants E1103G and G1097D were closer to WT for URA2

expression, while H1085Y/E1103G showed an increase in URA2

expression. Furthermore, URA2 was not responsive to MPA

treatment, an expected result if URA2 were specifically responsive

to UTP depletion as opposed to GTP depletion.

IMD2, like URA2, is regulated by a shift in start sites from

upstream starts that lead to premature termination, to downstream

starts upon nucleotide limitation [57,58]. The start site changes in

IMD2 are proposed to relate to concentration of initiating NTP,

with upstream starts initiating with GTP, whereas under GTP-

limiting conditions, the major downstream start initiates with ATP

(Figure 5C). We examined this phenomenon in Pol II TL mutants

by primer extension (Figure 5D, 5E). Examination of downstream

start sites at IMD2 showed that the major ATP start site at 2106

from the IMD2 start codon is induced by MPA treatment in WT

cells (Figure 5D) [74]. TL LOF H1085Y showed constitutive

expression from this start regardless of MPA treatment, and,

interestingly, apparent usage of downstream cryptic starts at

approximately 235 and 245. Although mRNA processing in

theory could generate these shorter new transcripts, it is unlikely as

processed transcripts lacking a 59-cap should be fairly unstable. In

contrast, for TL GOF mutants E1103G and G1097D little or no

usage of the 2106 start was observed, regardless of MPA

treatment, consistent with MPA-sensitivity of these strains and

Table 1. Cont.

Substitution Phenotype Note

N1082A/H1085A/G1097D Inviable

DTL Tip (D1077-GG-1087) Inviable Deletion of TL residues 1077–1087, insertion of Gly-Gly linker

DTL Tip/E1103G Inviable E1103G cannot suppress deletion of TL NIR

Abilities of single and multiply substituted Pol II variants to complement the inviability of a deletion of RPO21/RPB1 are illustrated, along with notes on mutant behavior
and relevant figures.
doi:10.1371/journal.pgen.1002627.t001
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Figure 5. Pol II TL mutants alter transcription of IMD2 and URA2, genes required for GTP and UTP synthesis, respectively. A. Northern
blotting for different Pol II mutants in the presence or absence of 20 mg/ml MPA (2 hours treatment) for expression of IMD gene(s) using IMD2 DNA
probe (top). SED1 was probed as a loading control. Values for IMD normalized to the WT ratio of IMD/SED1 are shown in the graph and represent the
mean relative expression for IMD transcript(s) +/2 the standard deviation for at least three independent experiments. B. Northern blotting for URA2
expression in the presence or absence of 20 mg/ml MPA (2 hours treatment) (top). SED1 was probed as a loading control. Values for URA2 normalized
to the WT ratio of URA2/SED1 are shown in the graph and represent the mean relative expression for URA2 +/2 the standard deviation for at least
three independent experiments. C. Schematic of IMD2 gene transcription in the absence or presence of MPA. IMD2 is not functionally expressed in

In Vivo Dissection of Pol II Trigger Loop Function
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Northern blotting showing no MPA induction of IMD transcripts.

In the H1085Y/E1103G mutant that showed mutual suppression

of respective single mutant phenotypes but reduced activity from

WT in vitro, we observed constitutive usage of the 2106 start, but

at apparent lower levels than H1085Y. In addition, we observed

MPA-dependent loss of upstream start site usage in this set of

mutants, suggesting maintained responsiveness to MPA-effects for

these starts, even though H1085Y showed constitutive use of

downstream starts. In contrast to the observed H1085Y usage of

new 235 and 245 downstream start sites (Figure 5D), we

observed increased E1103G and G1097D usage of upstream starts

relative to WT (Figure 5E), suggesting altered start site selection in

Pol II TL mutants.

Activity-Dependent Control of Pol II Start Site Selection In
Vivo

A number of Pol II subunit and general transcription factor

(GTF) mutants have been found to alter start site selection in S.

cerevisiae [73,75–84], but it is unclear how Pol II activity might

relate to these start site defects. For example, deletion of the Rpb9

subunit of Pol II confers many similar activity defects as Pol II TL

GOF substitutions such as increased rate of elongation and

misincorporation [85–87] and is defective for start site switching at

IMD2 in response to MPA [58]. Additionally, rpb9D has long been

known to exhibit upstream shifts in start site selection [77,79,84],

while many mutations throughout Pol II can cause downstream

shifts in start site selection (references above). Models for Pol II

residue function in start site selection have previously focused on

physical or functional interactions between these residues and

GTFs. We propose that the Pol II TL primarily or exclusively

functions in controlling the Pol II nucleotide addition cycle

(substrate selection, catalysis and translocation), which, for this

work, we define as Pol II activity. Therefore we used our TL

mutants to interrogate the relationship between Pol II biochemical

activity and start site selection in vivo, following our observations of

downstream start site usage at IMD2 in TL LOF H1085Y and

apparent upstream shifts in TL GOF E1103G and G1097D

mutants. We examined start site selection at a number of other

genes by primer extension analysis (Figure 6).

We found that TL LOF H1085Y caused downstream shift in

start site distribution at ADH1, similar to reported defects of a

number of other Pol II mutants and GTF mutants (Figure 6A).

In contrast, TL GOF E1103G and G1097D substitutions confer

upstream defects similar to those that occur in rpb9D (references

above), a number of TFIIF mutants [78,80–83], and novel

insertion mutants within TFIIB [88]. As with other in vivo and in

vitro phenotypes, combination of H1085Y and E1103G leads to

mutual suppression, extending the correlation between observed

phenotypes and in vitro activity. For transcripts from HIS4 and

PMA1, genes known to be sensitive to start site alterations in

mutant strains [73,79], we also observed upstream shifts in

E1103G and G1097D-bearing strains (Figure 6B). E1103G-

dependent start site changes were suppressed by H1085Y for

these genes as well. It is not obvious how the alteration of TL

function would impact start site selection so strongly, as we

expect TL function to be downstream of initiation events

important for start site selection, such as pre-initiation complex

formation and promoter melting. The strong upstream starts

observed for GOF mutants led us to predict that these positions

should already be accessible to Pol II in WT cells, because TL

function in controlling Pol II activity should be downstream of

promoter melting. Using permanganate footprinting to identify

regions of single-stranded DNA in the GAL1 and GAL10

promoters, Giardina and Lis observed strong permanganate

reactivity at greater than 60 basepairs (bp) upstream of the major

transcriptional start sites, indicating promoter melting far

upstream [89]. We reasoned that GAL1 should show far

upstream start site shifts in TL GOF mutants within this melted

region though it does not normally support productive start sites.

Indeed, we observed new start site usage more than 40 bp

upstream of the major GAL1 start sites in TL GOF mutants, and

a slight shift in starts sites downstream in TL LOF H1085Y

(Figure 6C)(Figure S7).

Discussion

The contributions of TL residues to the Pol II nucleotide

addition cycle (‘‘activity’’ for the purposes of this discussion) are

critical for transcription in vitro and in vivo. The catalytic

contribution of the TL has been proposed to function through

minimization of NTP dynamics within the Pol II active site, which

in turn could increase the probability of catalysis [90]. Our

biochemical experiments coupled with extensive genetic analyses

provide insight into the function of TL residues. We calculated an

approximate 6-fold suppression effect on elongation rate conferred

by the E1103G GOF substitution when it was combined with LOF

substitutions. We used this fold enhancement to infer the putative

defects of inviable TL LOF substitution mutants for which we

were unable to measure elongation rate directly. Assuming an

approximate 6-fold increase in rate contributed by E1103G to the

values of E1103G-suppressed inviable substitution elongation

rates, we infer 7–30 fold defects for N1082A, H1085A and

Q1078A single substitutions (Figure 4B). Examination of analo-

gous substitutions in E. coli or T. thermophilus RNAPs has revealed

large differences in the contribution of these residues to catalysis

with NTP substrates (4 and 6 fold for Eco R933ASceN1082A and

H936ASceH1085A, respectively [7] vs. 50 and 100 fold for Tth

R1239ASceN1082A and H1242ASceH1085A, respectively [5]). Our

results indicate that S. cerevisiae Pol II TL residues have

contributions intermediate to TL residues from different bacteria

and suggest that contributions of TL residues to activity cover a

range of values in homologous enzymes.

Our data also support a functional relationship between regions

adjacent to TL hinges, where the TL has been observed to deviate

from its fully folded, NTP-bound conformation in crystal

structures. These regions are the location of most of the strong

Spt2 and MPAs TL substitutions, as well as the strongest GOF

alleles tested. These results underscore the idea that the TL is

finely balanced between functional states or conformations, and

that the hinges are sensitive to changes that in some cases can

promote Pol II activity. These changes likely occur at the expense

of fidelity, as has been shown for E1103G [2,9]. Alteration of distal

TL residues (e.g. E1103, G1097D) conferred broad suppression on

the absence of MPA or low GTP because upstream transcriptional starts are terminated at a terminator element (stop sign) that can be bypassed by
utilization of downstream start sites. D. Primer extension analysis for downstream IMD2 start site usage in Pol II TL mutants in presence or absence of
20 mg/ml MPA (2 hours treatment). Numbers on right indicate position of RNA terminus relative to the A of the IMD2 ATG codon. Sequence ladder on
right is derived from the primer used in (E) and has been cross-referenced with the primer used here. E. Primer extension analysis for upstream IMD2
start site usage in Pol II TL mutants as in (D). Numbers on right indicate position of RNA terminus relative to the A of the IMD2 ATG codon. Sequence
ladder on right is derived from the same primer used. The examples in D and E are representative of at least three independent experiments.
doi:10.1371/journal.pgen.1002627.g005
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a number of TL NIR substitutions. Thus, it appears that loss of

NIR function can be compensated by alteration in trigger loop

dynamics. Importantly, functions of TL NIR residues are not

completely bypassed, as activities of tested double mutants are

intermediate between the single mutants, and not all NIR mutants

are suppressible (Table 1, Text S1).

Functional distinctions between TL residues and genetic

epistasis between some residue combinations have been hinted

at in the case of residues analogous to Q1078 and N1082 in T.

thermophilus experiments [5](Text S1), but our combinatorial

genetic analyses reveal this more clearly (Figure 4). Examination

of different Pol II crystal structures shows the TL in a number of

Figure 6. Pol II TL contributes to start site selection at a number of genes. A. Primer extension analysis of RNA 59-ends at ADH1 in Pol II TL
mutants. Sequence ladder at left is derived from primer used in Figure 5E but has been cross-referenced with ADH1 primer used for primer extension
here. Numbers indicate positions of putative start sites in relation to the ADH1 ATG (A is +1). Right panel quantifies start site usage at ADH1 as
determined by primer extension with a radiolabeled oligo. Signals in each lane were divided into bins based on positions of start sites relative to
ADH1 ATG sequence (A is +1) and normalized to total signal per lane. WT start site fractions were subtracted from mutant start site fractions for
particular regions to determine the relative alteration in start site distribution in Pol II mutant strains. A negative value indicates that the mutant has
relatively lower usage for that particular group of start sites and a positive value indicates a relatively higher usage for that particular group of start
sites. Values shown are the average of at least four independent experiments +/2 standard deviation. B. Primer extension analysis of RNA 59-ends at
HIS4 and PMA1 in Pol II TL mutants. C. Primer extension analysis of RNA 59-ends at GAL1 in Pol II TL mutants. Cells are grown in medium lacking
raffinose and then GAL1 is induced by addition of galactose to 2% for two hours. Sequence ladder at left is derived from the same primer used for
primer extension. Numbers indicate positions of putative start sites in relation to the GAL1 ATG (A is +1).
doi:10.1371/journal.pgen.1002627.g006
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states between partially and stably folded in the presence or

absence of matched NTP or NTP analog [1,13,67](Figure 7).

These structures suggest a TL folding pathway wherein N-

terminal TL residues that are proximal to the N-terminal TL

hinge (primarily Q1078), along with other active site residues (for

example, Rpb1 R446 and N479), are positioned essentially at all

times for NTP interaction. Biochemical experiments indicate that

these residues function in ribose 29- and 39-hydroxyl (OH)

recognition, with the 29-OH of course critical for selection of NTPs

over 29-dNTPs [1,5,91]. Upon matched NTP basepairing with the

DNA template, NTP interactions with R446, N479 and Q1078

may stabilize or begin to promote TL-folding in an N-terminal to

C-terminal fashion, where L1081 and N1082 next come into

position via N-terminal TL hinge movement. Supporting such a

step, in some Pol II crystal structures, these residues are observed

adjacent to a matched NTP basepairing with the template, but

without complete folding or stabilization of the TL (Figure 7). Our

genetic analyses suggest that Q1078 and N1082 (along with N479)

are functionally interdependent (see also Text S1). Following initial

hinge movement and TL folding, H1085 and the rest of the TL

loop tip must fold into the closed conformation, and genetic

analyses of H1085 substitutions suggest this step is distinguishable

from functions of other TL NIR residues. It is important to note

that we have not been able to evaluate contributions of residues

L1081 and R446 in our genetic system because all tested

substitutions in these residues were inviable and these substitutions

were generally not suppressed by E1103G (Table 1, Table S1,

Text S1).

The Relationship between MPA Sensitivity and Pol II
Elongation Defects

In vivo it has been observed that some Pol II mutants

constitutively express IMD2 in the absence of drug-induced

stimulation [18,47]. It is unclear whether this constitutive

expression represents a mutant-induced alteration in Pol II start

site specificity or a generic reduction of Pol II activity that mimics

a drug-induced nucleotide depleted state, which itself leads to

altered start site selection. We show here that an MPA-resistant

LOF TL allele caused constitutive IMD2 expression, and in other

work we found that this expression is likely a generic hallmark for

reduced Pol II activity (Braberg et al, in preparation), and not

necessarily due to a specific defect in initiation as previously

proposed [57]. These results support published models that IMD2

regulation is directly responsive to reduction in nucleotide levels as

reduction or increase in Pol II catalytic rates have opposing effects

on the ability of IMD2 to be induced. Our observations that

reduced Pol II activity does not correlate with sensitivity to MPA

suggest that generic Pol II catalytic defects do not confer sensitivity

to reduced nucleotide levels. Given the fact that LOF TL mutants

are highly likely to confer elongation defects in vivo, the absence of

MPA-sensitivity raises the question of whether reduction of GTP

levels sensitizes cells to generic elongation defects caused by any

transcription factor proposed to be acting through Pol II

elongation. MPA sensitivity of any transcription factor mutant

should not be used to infer presence or absence of an elongation

defect because actual nucleotide levels in different mutant strains

may vastly differ due to IMD2 transcriptional effects.

Model for Start Site Selection in Budding Yeast
The observation that TL mutants show polar effects on start site

selection in vivo correlating with in vitro catalytic defects suggests a

model for how Pol II activity may directly influence initiation.

Start site selection in S. cerevisiae is not restricted to a short window

a defined distance from the TATA box, but instead can take place

over a longer region downstream [92]. It has been proposed that

Pol II scans for sequences permissive for productive elongation

[89]. We propose that our mutants primarily affect the nucleotide

addition cycle and not some other step in initiation, therefore we

Figure 7. Model for stepwise function of TL residues in contributing to TL folding and function. A. Structural cartoon showing overlay of
TLs and Rpb1 N479 from a number of Pol II elongation complex/initial transcribing complex crystal structures with TLs in different states of folding/
NTP interaction. Matched GTP nucleotide (orange) and TL and N479 (magenta) are from PDP 2E2H [1], which shows TL in a closed conformation.
Partially folded TL and N479 (yellow) from PDB 4A3F [13], which contains a matched NTP analog (not shown) and short RNA (not shown). Related
structure to PDB 4A3F from PDB 4A3D [13], but without matched NTP analog is shown in gray. Partially folded TL from PDB 1R9T, containing a
mismatched NTP (not shown) is shown in pink. B. Same figure as in (A) but with GTP omitted. Certain residues are relatively closely positioned in all
structures overlaid (N479, Q1078), while other residues are observed stabilized in partially folded structures directly adjacent to the active site (L1081,
N1082). H1085 is observed positioned adjacent to the active site only upon complete folding/stabilization of the TL. Dashed oval indicates likely
location of TL NIR residues when in out conformation where the TL is either mobile or unfolded. This figure was created with Pymol [111].
doi:10.1371/journal.pgen.1002627.g007
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expect promoter melting is already occurring in regions where

start sites are not normally utilized in WT cells, and that scanning

occurs subsequent to template melting, as has been proposed for

GAL genes [89]. Continuous RNA synthesis during the scanning

process does not appear to be required for scanning, as

experiments show that chain-terminating nucleotides do not

abrogate scanning in vitro [93,94]. In light of these results, models

for start site scanning in yeast that do not invoke transcription have

been proposed (i.e. [95], also reviewed in [96]). We show that

substitutions within the Pol II TL that have increased activity in

vitro shift start sites upstream at ADH1, HIS3, PMA1 and GAL1,

and those with reduced in vitro activity shift start sites downstream

at ADH1 and GAL1 (Figure 6 and Figure S8). To explain these

data, we invoke a new transcription-assisted model for start site

scanning (Figure 8). Inefficiently or apparently unused start sites

may allow undetected abortive but not productive initiation. Such

abortive transcription may support Pol II downstream transloca-

tion, providing an explanation how Pol II catalytic mutants alter

start site selection in a polar fashion, which is indicative of altered

scanning as described in the flux model proposed by the Brow lab

[97]. In the flux model, Pol II scanning from upstream to

downstream will utilize starts in a polar fashion, and a decrease in

usage of an upstream start will lead to increased usage of a

downstream start. In our model, upstream shifts in start sites are

due to increased Pol II catalytic activity, which in turn increases

the probability of normally abortive initiation events becoming

productive at the expense of downstream events. Conversely,

downstream shifts in start sites are due to decreased Pol II activity,

which increases the probability that abortive initiation will occur at

upstream positions at the expense of productive initiation from

those positions. Competition between abortive and productive

initiation may occur at key transitions for early elongation

complex stability [98], or by modulating stability of RNA:DNA

hybrid in early transcription complexes as suggested by recent

structural studies from the Kornberg lab [99] and the Cramer lab

[13]. These new structures demonstrated a role for a matched

NTP substrate in the Pol II active site in stabilization of short

nascent RNAs. As GOF Pol II TL alleles have been implicated in

extending the duration of substrate-bound complexes [9], these

GOF alleles may also stabilize early elongation complexes in

addition to increasing elongation rate. Any increase in the

probability of next nucleotide incorporation at the expense of

transcript release would lead to a net increase in productive

elongation and a net decrease in downstream scanning by our

model.

Previously described start site-altering mutants in Pol II general

factors and other Pol II subunits have activities that are entirely

consistent with this model. rpb9D shows upstream shifts in start

sites at ADH1 (and other genes) [77,79], inability to shift to

downstream IMD2 starts upon MPA treatment, and causes Pol II

to be superactive in vitro [85], similarly to superactive TL mutants

E1103G and G1097D. An allele of the TFIIF subunit-encoding

TFG1 gene causes upstream start site shifts in vivo while increasing

efficiency of Pol II initiation in an abortive initiation assay,

consistent with this allele conferring an increase in Pol II activity

[94]. This increase in Pol II activity may be due to a gain of

function in TFIIF or a loss of a negative function, under our

activity-dependent framework for interpreting start site defects.

Consistent with the latter, a recent in vitro study shows that TFIIF

can inhibit initiation at specific template positions on a modified

HIS4 template [100]. On some of the templates used in this study,

TFIIF inhibits transcription initiation from upstream positions,

consistent with polarity of most start site shifting mutants of TFIIF

subunits in vivo. A number of sua7 (TFIIB) alleles show downstream

shifts in start site selection [76,101,102], and in the case of the

highly studied E62K allele, this mutant causes a decrease in Pol II

transcription efficiency in vitro [103]. We provide a framework for

interpreting the relationship between start site selection changes

and the nature of alteration of the initiation process. Increasing or

decreasing efficiency of productive initiation from particular

nucleotide positions may relate to upstream or downstream shifts

in start site selection, which appear to correlate with increases or

Figure 8. Model for transcription-assisted start site scanning through abortive initiation. Cartoon showing predicted start site
distribution for an ADH1-like gene in WT cells (top) or alteration in distribution in the presence of LOF (middle) or GOF (bottom) Pol II TL mutants.
doi:10.1371/journal.pgen.1002627.g008
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decreases in Pol II activity, respectively. While start site defects

strongly correlate with Pol II activity, their contribution to the

growth defects of Pol II TL mutants remains to be determined.

Materials and Methods

Genetic Analyses
To examine mutant polymerase alleles encoding substitutions

in the TL and elsewhere in Rpb1, we perform a plasmid shuffle

with rpb1 CEN LEU2 plasmids by assaying ability of rpb1D cells to

grow without an RPB1 CEN URA3 plasmid. This is accomplished

by treatment of cells with the drug 5-fluoroorotic acid (5-FOA,

Gold Biotechnology), which is toxic to Ura3+ cells [104], thus

selecting cells containing solely an rpb1 CEN LEU2 plasmid so we

might assess the ability of mutant plasmids to complement the

essential function of RPB1. During the course of our experiments,

we identified a previously unreported polymorphism in our RPB1

plasmid encoding substitution of isoleucine at position 69 for the

threonine reported for this position in the Yeast Genome

Database (T69I). This substitution was tracked as far back as

the pRP112 subclone derived from an original RPO21 genomic

clone from the Young lab [105]. Our analyses indicate that this

substitution is phenotypically inert (Figure S8), yet all genetic data

shown are for plasmids with the Ile69 corrected to threonine

(I69T).

Yeast Strains, Plasmids, and Media
Yeast media are prepared in standard fashion as described in

[106] with minor alterations. Yeast extract (1%)(BD), peptone

(2%)(BD), dextrose (2%)(‘‘YPD’’) solid medium (2% bacto-agar,

BD) is supplemented with adenine (0.15 mM final) and tryptophan

(0.4 mM final)(Sigma-Aldrich). YP plates with alternate carbon

sources such as raffinose (2%, USB) or raffinose (2%) plus

galactose (1%, Sigma-Aldrich) also contain antimycin A (1 mg/ml,

Sigma-Aldrich). Minimal media plates are synthetic complete

(‘‘SC’’/‘‘Hopkins mix’’) with amino-acids dropped out as appro-

priate as described in [106] with minor alterations: per standard

batch formulation Adenine Hemisulfate was 2 g, Uracil was 2 g,

myo-inositol was 0.1 g, p-Aminobenzoic acid (PABA) was 0.2 g.

For studies with mycophenolic acid (MPA, Sigma-Aldrich), MPA

was added to minimal SC-Leucine medium at 20 mg/ml from a

10 mg/ml stock in ethanol. Construction of mutants is described

in Text S1. Yeast strain genotypes, numbers and plasmid

descriptions are found in Tables S1 and S2.

Pol II Purification and In Vitro Transcription Assays
Pol II enzymes were purified from yeast strains expressing

mutant rpb1 genes from a low copy plasmid from the endogenous

RPO21 promoter via a tandem-affinity tag (TAP) on Rpb3, in a

procedure derived from [107] and as described in [2]. All mutant

enzymes are Rpb1 I69 variants, except H1085Q/E1103G,

F1086S/E1103G and Q1078A/E1103G, which are T69 variants.

Transcription reactions of Pol II elongation complexes formed on

nucleic acid scaffolds follow the approach described by Komissar-

ova et al [108], and are performed as in [2] with the following

modifications: for some experiments, amounts of all nucleic acids

were reduced to 1/10th the amount stated in [2] (to 30 pmol from

300 pmol, etc.)(Text S1). Reactions were separated on 13.5%

acrylamide-bisacrylamide gels (19:1 ratio) containing 16TBE and

7 M urea and quantitated as previously described [2].

Primer Extension and Northern Blotting Analysis
Total yeast RNA was purified as described [109]. Primer

extension analysis was performed exactly as described (http://labs.

fhcrc.org/hahn/Methods/mol_bio_meth/primer_ext.html) [110]

with the following modifications. Total RNA used was 30 mg, and

in the case of more dilute RNA samples, volumes of reactions were

increased by 50% to accommodate greater volume of sample.

Reverse transcriptase (RT) was M-MLV RT from either Life

Technologies or Fermentas. RT synthesis reactions were supple-

mented with 1 ml RNAse Inhibitor (Fermentas). Extension

products were separated on either 7% or 10% acrylamide-

bisacrylamide gels (19:1 ratio) containing 16TBE and 7 M Urea.

Northern blotting was performed essentially as described in

manual for GeneScreen hybridization membranes (Perkin-Elmer)

with the following modifications. RNA samples (20 mg) were

prepared in NorthernMax loading buffer (Ambion/AB). Prehy-

bridization solution did not contain SSPE or SSC buffers, but

contained 56Denhardt’s solution, 50 mM Tris-HCl pH 7.5, 1 M

NaCl, 0.1% sodium pyrophosphate, 0.1% SDS instead of 1%,

10% Dextran Sulfate, 50% formamide, and 500 mg/ml sheared/

denatured salmon sperm DNA. Probes for northern blots were

radiolabeled using a-32P-dATP by random priming using the

Decaprime II kit (Ambion) according to manufacturer’s instruc-

tions. Blots were washed at twice for 10 minutes each wash at

42uC with 26SSC, 0.5% SDS, then twice at 67uC with 56SSC,

0.5% SDS for 30 minutes each wash, then twice in 0.26SSC for

30 minutes each wash at room temperature. Primer extension gels

and northern blots were visualized by phosphorimaging (GE

Healthcare or Bio-Rad) and quantified using ImageQuant 5.0

(GE) or Quantity One (Bio-Rad) software, with data exported to

Microsoft Excel for management. Oligo sequences for site-directed

mutagenesis, primer extension analysis, amplification of DNA for

Northern blotting and in vitro transcription are available upon

request.

Supporting Information

Figure S1 In vivo transcriptional phenotypes utilized in this

study. A. The Spt2 phenotype utilized in this work relates to

suppression of a Ty1 delta (h) element insertion into the 59 end of

the LYS2 coding region creating the lys2-128h allele [59]. This

insertion renders WT cells Lys2 (top) as they are only able to

express a short non-functional transcript (black arrow), while

mutation of a number of factors allows transcription of LYS2 from

a cryptic promoter (red arrow, bottom), most likely somewhere

within the h insertion, allowing the cells to become Lys+. B. The

galactose toxicity phenotype utilized here relates to transcriptional

interference between GAL10 transcription and GAL7 transcription

caused by compromise of GAL10 39-end formation through

deletion of the major polyadenylation signal (gal10D56) and

subsequent interference with GAL7 initiation (black arrows)

[60,61,112]. Decrease in GAL7 transcription allows the buildup

of a toxic metabolite normally metabolized by Gal7p, thus

presence of galactose in the medium becomes toxic under

conditions where other GAL genes are expressed. Mutations in a

number of factors that enhance GAL10 39-end formation, enhance

termination downstream of GAL10, or increase GAL7 transcription

can suppress this toxicity (red arrows).

(TIF)

Figure S2 Genetic analyses of Pol II TL single substitution

mutants combined with E1103G or G1097D substitutions

distinguish between different classes of Pol II mutant and show

extensive suppressive relationships. A. 10-fold serial dilutions of

saturated cultures for a number of Pol II TL substitutions

combined with E1103G plated on different media as in Figure 1,

with single mutant panels from Figure 1 shown for comparison

purposes. B. 10-fold serial dilutions of saturated cultures for a

In Vivo Dissection of Pol II Trigger Loop Function
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number of Pol II TL substitutions combined with G1097D are

plated on different media as in Figure 1.

(TIF)

Figure S3 Additional Pol II TL single substitution and multiple

substitution mutants. 10-fold serial dilutions of saturated cultures

of Pol II TL mutant strains plated on different media. Also note

that the multiply substituted Q1078S/N1082A/H1085Y/E1103G

mutant is viable but confers a strong growth defect. When

combined with an A1076V substitution, previously identified as

sit1-8G (as a double mutant with rpb1-N479Y conferring a

phenotype reminiscent of the Spt2 phenotype) [22], we observed

that A1076V suppressed growth defects of Q1078S/N1082A/

H1085Y/E1103G, and that it also confers viability to Q1078A/

N1082A/H1085Y/E1103G.

(TIF)

Figure S4 Quantification of elongation rates in Pol II mutants.

Run-off transcription as a fraction of total transcription is

determined and plotted versus reaction time for specified Pol II

mutants. Multiple lines per graph indicate data from time courses

generated from separate individual reactions. A. WT I69. B. WT

T69. C. N1082S. D. H1085Q. E. L1101S. F. E1103G. G.

F1086S/E1103G. H. H1085Q/E1103G. I. H1085Y/E1103G. J.

N1082A/E1103G. K. H1085A/E1103G. L. Q1078A/E1103G.

M. G1097D with standard NTP concentrations. N. G1097D with

high NTP concentrations (MgCl2 raised to 10 mM from 5 mM).

(TIF)

Figure S5 Quantification of elongation rates in Pol II mutants.

Rates determined from Figure S4 for each NTP concentration are

plotted versus NTP concentration and curve fitted by non-linear

regression. A. WT Pol II enzymes. B. Single mutant Pol II

enzymes. C. Double mutant Pol II enzymes. D. G1097D with

standard NTP concentrations. E. G1097D with high NTP

concentrations (MgCl2 raised to 10 mM from 5 mM).

(TIF)

Figure S6 Western blotting for Rpb1 and Rpb3-TAP from Pol

II variants. A. Western blotting for Rpb1 expression levels from

WT and rpb1 mutant yeast strains using an antibody to the N-

terminus of Rpb1 (Text S1). Because our strains contain Rpb3-

TAP, the protein A tag on Rpb3-TAP was also recognized by

either the primary or secondary antibodies used. Blotting for Pgk1

was used to confirm equal loading of lanes (bottom panels). Blots

shown are representative of three independent experiments. B.

Quantification of Rpb1/Pgk1 ratio from three independent

experiments. Error bars indicate +/2 standard deviation of the

mean. The anti-Rpb1 antibody has a high background, and

subtraction of this background caused standard deviations to

generally increase, so both background subtracted and unsub-

tracted quantifications are shown.

(TIF)

Figure S7 Quantification of start site distribution at GAL1 in Pol

II mutants. Start site usage at GAL1 as determined by primer

extension with radiolabeled oligo was divided into bins based on

radioactive signal at positions of start sites relative to GAL1 ATG

sequence (A is +1) and normalized to total signal per lane. WT

start site fractions were subtracted from mutant start site fractions

for particular regions to determine the relative alteration in start

site distribution in Pol II mutant strains. A negative value indicates

that the mutant has relatively lower usage for that particular group

of start sites and a positive value indicates a relatively higher usage

for that particular group of start sites. Values shown are the

average of three independent experiments +/2 standard devia-

tion.

(TIF)

Figure S8 No effect of Rpb1 I69 substitution on in vivo

phenotypes. 10-fold serial dilutions of yeast strains expressing

T69 or I69 variants of Rpb1 as the sole source of Rpb1 were

spotted onto various media to determine phenotypes. Results

indicate that I69 is phenotypically inert.

(TIF)

Table S1 rpb1 mutant plasmids used in genetic analyses of the

Pol II TL.

(DOCX)

Table S2 Strain genotypes for yeast used in this study.

(DOCX)

Text S1 Description of plasmids, yeast strains, supporting

discussion of genetic analyses of Pol II TL residues, and supporting

methods.

(DOCX)
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