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Abstract

The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The
gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct
lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding
of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted
cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from
sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal
cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it
underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell
progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In
contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the
commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and
balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights
into the mechanisms by which different cell types in a single organ adopt their respective fates.
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Introduction

Little is known about how the transcriptome of an undifferen-

tiated progenitor is poised between two fates and resolves to one of

two stable, differentiated outcomes during the process of cell fate

determination. The bipotential gonad is a unique system for

studying cell fate decisions during mammalian organ development.

In mice, the gonads arise around embryonic day 10 (E10.0). For

the first 36 hours the gonad primordia harbor the potential to

become testes or ovaries irrespective of genetic sex. The process by

which the bipotential gonad adopts the ovarian or testicular fate is

known as primary sex determination, and involves a binary fate

decision within cells of each gonadal lineage.

The early gonad is composed of four lineages: supporting cells,

interstitial/stromal cells, germ cells, and endothelial cells. The

determinant of gonadal fate in mammals is the Y-chromosome

gene Sry. In XY individuals, expression of Sry in supporting cell

progenitors triggers commitment to a testicular (‘‘male’’) fate,

whereas the absence of Sry expression in XX supporting cells

results in ovarian (‘‘female’’) development [1,2]. Supporting cells

and interstitial/stromal cells arise within the urogenital ridge from

a common mesodermal progenitor, while the primordial germ

cells and endothelial cells migrate into the developing gonad [3–6].

Despite their distinct origins, cells of each lineage in the early

gonad are bipotential progenitors capable of adopting either a

male or female fate, which they do in a coordinated manner to

form a functional testis or ovary [7–9]. Temporal examination of

the transcriptomes of these diverse progenitors as they make their

parallel, binary fate decisions provides an opportunity to

understand how cell fate decisions are made in the context of

organ development.

Some gonadal lineages have been studied at the transcriptome

level in independent experiments [10–15], resulting in the

identification of genes that are up-regulated in a sex- or (in some

cases) lineage-specific manner. However, the molecular relation-

ship between the somatic lineages (i.e., supporting cells versus

interstitial/stromal cells) has never been examined, as these

lineages were not separated in previous studies. Previous studies

did not fully characterize the undifferentiated progenitors or the

temporal sequence for the divergence of the multiple progenitors
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to their sexual fates. Furthermore, other potentially important

transcriptional patterns associated with differentiation and fate

commitment, such as the specific transcript depletion previously

noted in the Arabidopsis root and in early primordial germ cells

[16,17], have not been characterized.

As part of the GenitoUrinary Molecular Anatomy Project

(GUDMAP, http://www.gudmap.org/), we undertook a compre-

hensive transcriptome analysis of the four principle gonadal

lineages in XX and XY gonads at three time points, spanning the

period from the undifferentiated bipotential stage until the cells

adopt sex-specific fates. While this type of comprehensive

transcriptome analysis has been performed in other developing

systems [16,18], the relative simplicity of the gonad and the

theoretical framework for sex determination allowed us to extend

our analysis to test distinct models for the process of cell fate

determination, and to evaluate the fit of these models to the

theories of sex determination that have been proposed in the past

50 years.

To explore how the cells of the gonad adopt their sex-specific

fates, we considered the various theories that have been proposed

for gonadal sex determination. It has been suggested that the

female fate is the ‘‘default’’ state because expression of Sry is

required to ‘‘divert’’ the cells to the male fate [19–21]. The

concept of a female default state originated in the secondary sex

determination literature [19], but that language crept into the field

of primary sex determination and became a way to conceptualize

female gonad development [20,21]. Others proposed that a

female-promoting ‘‘Z’’ gene normally blocks an underlying male

developmental program and that Z is itself blocked by Sry [22].

Still others have proposed that both the female and male programs

require an active switch to initiate differentiation from their

initially ‘‘bipotential’’ state (i.e., that there is an ‘‘ovary-

determining gene’’ as well as a ‘‘testis-determining gene’’) [23].

More recently, it has been suggested that the gonad is balanced

between the male and female fates by antagonistic signaling

pathways [24–27].

We wanted to determine whether one of these models could

describe the differentiation of the gonadal cells at the level of the

transcriptome. Therefore, we re-framed and logically extended

these models so that we could test them against our transcriptional

data, and we used the concept of lineage priming to do so. Studies

suggest that multipotent cells are not a ‘‘blank slate’’, but rather

are ‘‘lineage primed’’ by expressing markers of all potential fates

they can adopt [28–35]. During their differentiation, multipotent

cells repress markers of specific fates that were not adopted while

maintaining gene expression associated with the fate that was

adopted [28–35]. A similar phenomenon has also been observed in

the early embryo, where individual blastomeres express transcripts

that later become restricted to the specific lineages of the blastocyst

[36–38]. It is possible for progenitor cells to be equally ‘‘balanced’’

between their multiple fates, expressing similar numbers of genes

associated with each alternative differentiated fate. However, the

progenitors need not have all differentiation programs equally

represented [28]. Instead a progenitor may show ‘‘biased priming’’

if markers characteristic of one of its possible fates predominate,

indicating the closer relationship of the progenitor to that fate.

We investigated the transcriptional profiles of the gonadal cell

lineages as they differentiate. Interestingly, we identified different

variations of biased lineage priming: while germ cells showed

male-biased priming, supporting cells showed female-biased

priming. This study provides a molecular explanation reconciling

the female default and balanced models of sex determination and

represents a rich resource for the field. In addition, it affords

insight into the mechanisms by which different cell types in a single

organ adopt their respective fates.

Results

Sorted cell microarrays accurately reflect known gene
expression patterns

We quantified global gene expression in four lineages of the XX

and XY developing mouse gonad at E11.5, E12.5, and E13.5. To

isolate individual lineages, we utilized mouse lines expressing

fluorescent cell-specific markers (Figure 1A, Figure S1). The cells

from separately pooled XX and XY gonads were isolated by

fluorescence-activated cell sorting (FACS). Sry-EGFP [7] and Sox9-

ECFP [39] were used as markers for supporting cells (see Materials

and Methods for a full explanation). XY interstitial cells and XX

stromal cells were isolated using Mafb-EGFP [40,41]. The XY

interstitial cells are excluded from testis cords and give rise to

steroidogenic Leydig cells [41]. The XX stroma is not defined

morphologically, but for the purposes of this analysis, is defined as

the population labeled with Mafb-EGFP. Germ cells were isolated

using Oct4-EGFP [42], and endothelial cells were isolated using

Flk1-mCherry [43,44]. In general, cells were pooled from gonads of

multiple embryos on non-inbred genetic backgrounds (see

Materials and Methods). RNA purified from each XX and XY

cell population was used to measure transcript abundance with

Affymetrix Mouse Genechip Gene 1.0 ST Arrays. We produced 3

biological replicates for each population. The data are available in

GEO (accession number GSE27715) and at http://www.gudmap.

org/. RMA normalized values used in our analysis are provided

with the capability to generate an expression graph for any gene,

as a user-friendly resource for the community (Dataset S1).

We also isolated cells from the aSma-EYFP transgenic mouse

[45] with the expectation that this reporter would label a larger

population of cells in the interstitium and stroma (Figure S2A).

While this population transcriptionally resembled the intersti-

tial/stromal population isolated with the Mafb-EGFP line (data

not shown), unlike the Mafb-EGFP positive cells, the aSma-EYFP

cells also expressed high levels of Sry at E11.5, a gene predicted

to be specific to XY supporting cells [46] (Figure S2B). Indeed,

E11.5 aSma-EYFP cells stained positive for both SRY and

Author Summary

How cells diverge from a common progenitor and adopt
specific fates is still poorly understood. We analyzed gene
expression profiles in the distinct cell lineages of the
gonad over the period when sex determination occurs.
The undifferentiated progenitor cells expressed genes
characteristic of both sexual fates, explaining the plasticity
of the gonadal cells to differentiate as male or female cell
types. The establishment of sex-specific fate in both the
germ cells and somatic cells involved activation of some
genes; but, importantly, we show that an active repression
of genes associated with the alternative pathway is also a
characteristic of cell fate commitment. Although germ cell
progenitors expressed genes associated with both possi-
ble fates, genes characteristic of the male fate were over-
represented in the progenitors, giving them a male bias.
However, in somatic cell progenitors, which control sex
determination, genes associated with the female fate were
over-represented. These results suggest an explanation for
why the female fate is the developmental default for the
gonad, and they advance our understanding of how
complex transcriptional networks regulate fate determina-
tion during organ development.

Lineage Priming of Sexual Fate in Gonadal Cells

PLoS Genetics | www.plosgenetics.org 2 March 2012 | Volume 8 | Issue 3 | e1002575



SOX9 protein (Figure S2C). Consequently, at least early in

development, it appears that aSma-EYFP labels a heterogeneous

population of cells containing supporting cells as well as

interstitial/stromal cells. While this finding may have biological

significance, it could also result from leaky expression of the

aSma-EYFP transgene. Thus, we excluded the aSma-EYFP data

from this analysis but have made the data available with the

rest of the microarrays.

Figure 1. Sorted cell lineages and microarray validation. (A) Illustration of the developing XX and XY gonad with supporting cells (blue),
interstitial/stromal cells (purple), germ cells (green), and endothelial cells (red). (B, C, and F) Graphs of the log-transformed, normalized intensity
values from the microarrays for control genes known to be specific to each lineage. The color for each lineage is conserved in all figures and matches
the illustration (A), with XX (R) values shown as dashed lines, and XY (=) values shown as solid lines. The error bars are standard error of the mean
(‘‘standard error’’) of the log transformed values. The Y-axis scale differs for each graph because each transcript cluster has its own intensity range. (B)
The control genes were found in the expected lineage, except for (C) genes characteristic of Leydig cells. Leydig cell genes were highly expressed in
both the interstitium (as expected) and the endothelial cell fraction. (D) Immunofluorescence of E13.5 XY gonads with Flk1-mCherry (red), PECAM1
(germ and endothelial cells, blue), and 3b-HSD (Leydig cells, green). Arrowheads indicate Flk1-mCherry and PECAM1 double positive endothelial cells.
Arrows indicate Flk1-mCherry positive, PECAM1 negative cells that were positive for 3b-HSD, confirming aberrant reporter expression in some Leydig
cells. Asterisks indicate germ cells positive for PECAM1 alone. Scale bar = 25 mm. (E) The XY interstitial cells have very low expression of the
endogenous Flk1 (Kdr) transcript at E13.5, supporting our conclusion that the Flk1-mCherry transgene is aberrantly expressed in Leydig cells.
doi:10.1371/journal.pgen.1002575.g001

Lineage Priming of Sexual Fate in Gonadal Cells
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To validate the cell sorting and microarray data, we examined

the expression of genes known to be specific to each of the cell

populations (Figure 1B). The expression of each control gene was

consistent with previous reports: Dhh (desert hedgehog) was

enriched in XY supporting cells [10], Wnt4 (wingless-related

MMTV integration site 4) was enriched in XX supporting cells

[10], Inhba (inhibin beta-A) was enriched in the XY interstitium

[47,48], Nanos2 (nanos homolog 2) was enriched in XY germ cells

[49], Stra8 (stimulated by retinoic acid gene 8) was enriched in XX

germ cells [50], and Flt1 (FMS-like tyrosine kinase 1, VEGFR1)

was enriched in endothelial cells [51]. Therefore, the microarrays

on the sorted cell populations accurately reflected gene expression

patterns that were previously characterized for each of the cell

lineages.

An unexpected expression pattern was observed in XY Flk1-

mCherry-positive cells (Figure 1C). We found that genes expressed

in Leydig cells, such as Cyp11a1 (Scc) [52], were enriched in both

XY interstitial (containing steroidogenic Leydig cells) and Flk1-

mCherry-positive ‘‘endothelial’’ populations. This was surprising

given that steroidogenic enzymes have not previously been

reported in endothelial cells [41]. When we immunostained the

Flk1-mCherry-positive cells purified by FACS for a Leydig cell

marker, we found that Leydig cells were present in this sorted

population (data not shown). To investigate the basis for this

finding, we stained E13.5 Flk1-mCherry gonads with the vascular

marker PECAM1 and an antibody against the Leydig cell marker

3b-HSD. We found Flk1-mCherry-positive cells that were negative

for the vascular marker, but positive for the Leydig marker

(Figure 1D). This suggests that the Flk1-mCherry transgene was

ectopically expressed in some Leydig cells. Because the corre-

sponding Flk1 transcript (Kdr) was expressed at low levels in the XY

interstitial cells at E13.5 (Figure 1E), we do not believe that the

Flk1-mCherry-positive, 3b-HSD-positive cells express endogenous

Kdr/Flk1. We concluded that the source of the Leydig cell

contamination was leaky expression of the Flk1-mCherry transgene

in Leydig cells. While this result complicated our analysis of the

endothelial population, it provided strong evidence that the array

data accurately reflected gene expression in the sorted populations.

Lineage, sex, and stage all influence gene expression
To investigate the effects of cell lineage, sex, and stage on global

gene expression and to validate the consistency of expression

measurements in biological replicates, we clustered all 72

individual microarrays based on the expression of transcript

clusters that met our inclusion criteria outlined in the Materials

and Methods (Figure 2A). With the exception of one E11.5 XY

endothelial array (see Materials and Methods), biological repli-

cates, and even samples of different sexes (early XX and XY germ

cells) or stages (late XX supporting cells) that were expected to be

similar, showed consistent expression patterns as indicated by the

tight clustering of those samples (Figure 2A). This again validates

the quality of the microarray data.

The dendrogram indicates that cell lineage is the most

significant factor affecting gene expression. The same general

patterns were observed using other clustering methods (Figure

S3A, S3B). This result was confirmed by an analysis of the sources

of variation (ANOVA), in which lineage was identified as the most

significant factor influencing gene expression variation (Figure 2B,

Figure S3C). Interstitial/stromal cells were distinct from support-

ing cells at all stages, indicating that, despite their shared origin

[3], these are separate lineages by E11.5.

Sex and stage were also sources of expression variation in the

gonadal cell populations, albeit to a lesser extent than lineage

(Figure 2A, 2B). XY and XX supporting cells clustered in distinct

groups at E11.5, confirming that these cells embark on their sex-

specific differentiation by E11.5 [10,11]. There was no distinction

between the sexes in the other cell types until E12.5 or E13.5.

While the late stage XY endothelial cells clustered away from the

early XX and XY endothelial cells, this could be due to the sex-

specific contamination by Leydig cells. In summary, this analysis

confirms the high quality of the data and shows that each lineage is

distinct from E11.5 onwards.

Each lineage has uniquely expressed enriched and
depleted genes that provide insight into the biology of
the cells

To explore the differences between the cell types apparent in

the dendrogram, we identified ‘‘lineage specific’’ genes that were

specifically enriched and depleted in each lineage relative to the

other lineages at each stage. We then determined whether these

genes were expressed in a ‘‘sex-specific’’ (expression was different

between XY and XX samples) or a ‘‘sex-independent’’ (expression

was similar in XY and XX samples) manner. We identified these

genes by performing multiple pairwise comparisons on the

normalized array values (similar to previously described methods

[53]) with a p-value cutoff of 0.05 and a fold change cutoff of 1.5.

‘‘Enriched’’ genes were more highly expressed than in other

lineages, and ‘‘depleted’’ genes were less highly expressed than in

other lineages. Examples of genes showing these different patterns

include the sex-specific enrichment of Dhh in XY supporting cells

(Figure 1B, Figure 3A), the sex-independent enrichment of Flt1 in

XX and XY endothelial cells (Figure 1B, Figure 3A), the sex-

specific depletion of Ccna2 (cyclin A2) in XX supporting cells

(Figure 3A, 3B), and the sex-independent depletion of Gata6

(GATA binding protein 6) in germ cells (Figure 3A, 3B). A full

description of our statistical methods is provided in the Materials

and Methods and a list of all genes identified appears in Dataset

S2A.

Due to the sex-specific Leydig cell contamination of the

endothelial population after E11.5 (Figure 1C–1E), we present

the gene lists (Dataset S2A) but not the graphs (Figure 3A) because

we could not determine whether sex-specific gene expression was

due to an artifact of the contamination or genuine differences in

endothelial cells. We deduced a list of Leydig cell genes (Figure 3A,

Dataset S2A) by identifying genes specifically over-expressed or

under-expressed in both XY endothelial cells and interstitial cells

at E12.5 and E13.5 compared to other lineages. These genes were

removed from XY endothelial gene lists at E12.5 and E13.5

(Dataset S2A).

To evaluate these lists, we first performed permutation testing

(Dataset S2B), and considered those with a false positive rate

,20% as acceptable (lists that did not pass this test are marked

‘‘ns’’) (Figure 3A). Second, we determined whether positive control

genes with known expression patterns, such as the expression of

Sox9 in XY supporting cells, were found in the expected lists

(Dataset S2A). Third, we interrogated all significant lists in

Figure 3A (not ‘‘ns’’ or ‘‘0’’) for enrichment of BioCarta and

KEGG pathways (Dataset S2C) as well as GO terms (Dataset

S2D). As evidence of the high quality of the sorted cell microarray

data, functional annotation of the enriched/depleted lists identi-

fied expected terms for each cell type: germ cell development in

the germ cell lists, steroid production in interstitial and Leydig lists,

vascular development in the endothelial list, and sex determination

in supporting cell lists (Dataset S2C, S2D). All enriched terms for

significant lists are provided to facilitate the discovery of new

pathways involved in the functions of these cells (Dataset S2C,

S2D).

Lineage Priming of Sexual Fate in Gonadal Cells
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This analysis identified several novel expression features of these

cells. For example, all of the lineages had sex-specific and sex-

independent cohorts of depleted genes, with the exception of

interstitial/stromal cells (Figure 3A). The genes identified as

depleted appear biologically relevant based on individual genes

and enriched categories of genes. Both XY and XX germ cells

repressed Gata6 (Figure 3B, Dataset S2A), which can drive

embryonic stem cells to adopt the extraembryonic endoderm fate

[54]. Thus, the repression of Gata6 may be important for

maintaining a totipotent transcriptional state in germ cells.

Similarly, Lef1 became sex-specifically depleted in XY supporting

cells (Dataset S2A). Lef1 can interact with b-catenin in a

transcriptional complex downstream of Wnt signaling [55], and

this pathway antagonizes aspects of testis development [24,56].

Thus, the depletion of Lef1 may be important for maintaining the

male supporting cell fate. The sex-specifically depleted genes in

XX supporting cells were enriched for cell cycle-related pathways

and GO terms (Dataset S2C, S2D). Interestingly, both XX and

XY supporting cells are arrested at E11.5 and only XY supporting

cells re-enter the cell cycle; XX supporting cells remain non-

proliferative [57,58]. It was previously shown that XX cells express

higher levels of cell cycle inhibitors [11] and that cell cycle genes

are over-represented in XY supporting cells [15]. However, our

data suggest a mechanism of cell cycle arrest involving the active

repression of multiple genes important for cell cycle progression in

XX supporting cells.

Additionally, we identified transcripts associated with a sexually

undifferentiated progenitor cell for each lineage. All cell types had

a large number of genes that were lineage-specific and sex-

independent at E11.5 (Figure 3A, ‘‘=+R’’ category). The

identification of shared expression in XX and XY cells

demonstrates that there is a sexually undifferentiated progenitor

for each lineage with a distinct transcriptional state. This was

consistent with previous data suggesting that XX and XY

supporting cells have a common origin [7] as well as the clustering

results showing that supporting cells and interstitial/stromal cells

are distinct lineages by E11.5 (Figure 2A).

Supporting cells exhibited the largest number of sexually

dimorphic genes at E11.5 (Figure 3A, ‘‘=’’ and ‘‘R’’ categories),

in accord with previous evidence that the supporting cell lineage

adopts a sex-specific fate early in gonad development and instructs

the other lineages as to which fate they should adopt [8,10,46,59].

Although it was clear that supporting cells began sex-specific

differentiation by E11.5, XX and XY supporting cells still

expressed sex-independent genes. Since the supporting cells are

in the midst of their sex-specific differentiation at E11.5, the sex-

independent genes likely represent remnants of the sexually-

undifferentiated progenitor state. The XX and XY supporting

cells adopt their distinct sex-specific states by E12.5.

The other three cell types exhibited few sex-specific genes at

E11.5 (Figure 3A, categories ‘‘=’’ and ‘‘R’’), showing that the

differentiation of these lineages is delayed relative to that of the

Figure 2. Gene expression was affected by lineage, sex, and stage. (A) Clustering dendrogram of individual microarray samples. The E11.5,
E12.5, and E13.5 samples are represented by short, intermediate, and long bars, respectively. The dashed bars indicate XX samples, and the solid bars
indicate XY samples. Ward’s method with squared Euclidean distance as the distance metric was used. The arrays cluster primarily by lineage, and
secondarily by sex and stage. (B) Analysis of the sources of variation confirmed that the primary source of variation is lineage, and secondarily sex and
stage.
doi:10.1371/journal.pgen.1002575.g002

Lineage Priming of Sexual Fate in Gonadal Cells
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supporting cells. Germ cells and interstitial/stromal cells began to

adopt lineage-specific, sex-specific transcriptional states by E12.5,

a process that was further advanced by E13.5. This was again

consistent with the dendrogram (Figure 2A). We identified few

lineage-specific genes in the XX stroma at these stages. While

some genes were over-expressed in XX stromal cells when

compared only to XY interstitial cells, most were also dimorphic

in another lineage (Figure S4). This may indicate that the XX

stromal cells are delayed in their differentiation and/or closely

related to the supporting cell lineage based on shared expression of

female-associated genes (like Irx3 and Wnt4; Figure S4).

Predictions of the gonad differentiation models
These analyses defined the transcriptome shared between XX

and XY progenitors for each lineage, and traced the timing of

differentiation and acquisition of sex specific fate for each cell type.

Informed by this analysis, we investigated whether the transcrip-

tome shared by XX and XY progenitors in the germ cell and

supporting cell lineages showed evidence of lineage priming

toward the female or male fate. Progenitors that show lineage

priming express markers of the various fates into which they can

differentiate and subsequently silence genes associated with the

fate not adopted as they differentiate [28–35].

Four predominant models have been proposed to account for

gonad differentiation that have important historical antecedents in

the sex determination literature, and make different predictions as

to the ‘‘ground state’’ of gonadal progenitors (Figure 4A). It has

been proposed that (1) the female state is a default pathway [19–

21], (2) a female ‘‘Z’’ gene actively represses the male program

[22], (3) both the female and male programs are actively initialized

[23], and (4) the gonad is balanced between the male and female

fates [24–27]. We logically extended and reframed these models in

Figure 3. Lineage-specific enriched and depleted genes revealed distinct differentiation programs. (A) Graphs of the number of genes
specific to each lineage. The gene lists and permutation tests are provided in Dataset S2. The ‘‘=’’ and ‘‘R’’ symbols indicate lineage-specific and sex-
specific genes, while the ‘‘=+R’’ symbol indicates genes that are lineage-specific and sex-independent. Pale bars below the axis indicate genes that
are depleted relative to other lineages. The E11.5 graphs are on the top row, the E12.5 graphs are in the middle, and the E13.5 graphs are on the
bottom row. The germ cell Y-axis is scaled to accommodate the larger number of genes specific to this lineage. Leydig cell genes (burgundy) were
separately identified by cross-referencing the endothelial and interstitial data and added to the bars for the XY interstitium. Lists with .20% false
positives are indicated by ‘‘ns’’. Lists with no genes are marked with ‘‘0’’. Some bars also have a colored gene name exemplifying the pattern within
that category (the graphs for Dhh and Flt1 appear in Figure 1B). (B) Graphs of the log-transformed, normalized intensity values for genes that are sex-
specifically (Ccna2) and sex-independently (Gata6) depleted. The error bars are standard error. Three lineages showed specific gene depletion in
addition to enrichment. Each lineage had transcriptionally distinct progenitors as indicated by ‘‘=+R’’ genes at E11.5. Supporting cells were already in
the midst of their sex-specific differentiation by E11.5 as indicated by genes in the ‘‘=’’ or ‘‘R’’ columns at E11.5, but the other cell types were sexually
undifferentiated at E11.5.
doi:10.1371/journal.pgen.1002575.g003

Lineage Priming of Sexual Fate in Gonadal Cells
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Figure 4. Germ cells showed lineage priming with a male bias. (A) Models tested and their predictions for the relationship between the
differentiated cells and their undifferentiated progenitors. (B, I) Graphs of the log-transformed, normalized intensity values. The error bars are
standard error. Only the values for germ cells are shown, except in the depleted and primed example where all lineages are shown for comparison (B).
(B) Esrp1 and Pcgf5 are examples of male- and female-primed genes, and Mosc2 is an example of a male-primed depleted gene. We used three
different methods to identify primed genes: (C, D, and J) all primed genes were considered, (E, F, and K) only primed and lineage-specifically enriched
genes were considered, and (G, H, and L) lineage-specifically depleted primed genes were analyzed. (C, E, and G) The percentages of primed genes
that were male-primed and female-primed: all methods showed male-biased priming. The boxes contain the p-values from the binomial test with the
expected percentages of the extreme models: 90% male genes (‘‘Male’’), 50% male and female genes (‘‘Balanced’’), and 90% female genes (‘‘Female’’)
(see A). All of the extreme models were excluded because p-values were ,0.05. (D, F, and H) The percentages of male or female genes that were
primed. Significance (*) was determined with the hypergeometric test (p-value,0.05). (I) Graphs illustrating two primed genes whose expression in
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the context of lineage priming so that we could test their

applicability to the differentiation of the individual cell types in

the gonad at the level of the whole transcriptome.

The ‘‘female’’ model predicts that the transcriptome shared by

XY and XX progenitors should be predominately associated with

the differentiated female fate (i.e., ‘‘female primed’’). Conversely,

the ‘‘male’’ model predicts that the transcriptome shared by XY

and XX progenitors should be predominately associated with the

differentiated male fate (i.e., ‘‘male primed’’). If both the male and

female programs are activated de novo as progenitors differentiate,

those progenitors should be a ‘‘blank slate’’ in that they would not

express transcripts associated with either the differentiated male or

female cells. Alternatively, the progenitors could fit the ‘‘balanced

priming’’ model and express a similar number of both male- and

female-associated transcripts at the time when they are poised to

adopt either fate. Finally, the progenitors could be primed to adopt

either fate, but there could be more genes associated with the

female (‘‘female-biased priming’’) or the male (‘‘male-biased

priming’’) fate (Figure 4A).

Germ cell progenitors are primed with a bias toward the
male fate

We analyzed the relationship between XX and XY germ cell

progenitors and their final sexually differentiated fates in multiple

ways to ensure that our methods did not skew the results. We

defined a gene as ‘‘primed’’ if it showed identical levels of

expression in XY and XX germ cells at E11.5 that were retained

or elevated in one sex and not in the other at E13.5 (Figure 4B,

Esrp1 and Pcgf5). This was an unbiased method of identifying genes

characteristic of the female and male fates [60]. Similarly, we

determined ‘‘expression’’ in the E11.5 sexually undifferentiated

progenitors in an unbiased way. We inferred ‘‘expression’’ from

the fact that these genes showed down-regulation in one of the

sexes. In this approach, all primed genes were analyzed, regardless

of whether they were specific to germ cells (Figure 4C, 4D).

In a second approach, we adopted more stringent, but still

unbiased, definitions for the set of genes analyzed (Figure 4E, 4F).

In this approach, we restricted our analysis to primed genes that

were lineage-specifically enriched in E11.5 germ cells and in

differentiated E13.5 germ cells of one sex (Figure 3A). Using an

analogous method, we also explored depleted and primed genes

that were specifically depleted in XY and XX E11.5 progenitors,

were activated by one sex, and remained sex-specifically and

lineage-specifically depleted in the other (Figure 4B, Mosc2,

Figure 4G–4H). Gene lists and associated permutation tests are

provided (Dataset S4A, S4C).

With all methods tested, germ cells showed a similar pattern

indicating male-biased priming. When comparing the percentage

of primed genes that were male or female primed, we observed a

clear bias toward male genes (Figure 4C, 4E, 4G). We performed a

binomial test using the expected values provided with the models

(Figure 4A) to determine if we could exclude the extreme models.

In all cases, the pattern of genes observed was significantly

different from the extreme female and male models as well as the

completely balanced priming model (Figure 4C, 4E, 4G). Thus, a

male-biased priming model best described the transcriptome in

undifferentiated XX and XY germ cell progenitors. This finding

was consistent with the clustering dendrogram showing a closer

relationship of the undifferentiated early germ cells to the late XY

germ cells than to the late XX germ cells (Figure 2A).

We also wanted to ensure that this result was not a statistical

artifact of the size of the underlying lists of male and female

markers. For example, if the male program contained a larger

number of genes than the female program, seeing a male bias in

the number of primed genes could reflect the higher relative

percentage of male pathway genes, rather than a real priming bias

in the progenitor. Thus, we examined the percentage of male and

female genes that showed priming (Fig 4D, 4F, and 4H). Again, in

all cases, we saw that the same male bias was preserved. Given the

large number and percentage (nearly 40% of male germ cell

markers) of genes that showed priming (Figure 4C, 4D), the blank

slate model could be discarded. Thus, germ cell progenitors

showed male-biased priming, including the priming of depleted

genes.

Lastly, we were interested in determining whether genes that

showed priming were expressed at high or low levels. The

expression levels of differentiation markers in the progenitor cells

are low in the hematopoietic system [29], but high levels of

expression of differentiation markers were observed in progenitors

in the early embryo [36]. For our analysis, expression level was

defined relative to the differentiated cell. A gene with ‘‘similar’’

expression was expressed in progenitors at a level similar to the

level in sexually differentiated cells maintaining expression

(Figure 4I, Ddx18), analogous to the high expression observed in

the early embryo [36]. A gene with ‘‘intermediate’’ expression was

expressed in progenitors at a level between the levels observed in

the two sexes (Figure 4I, Cdh1), analogous to the low expression

observed in hematopoietic cells [29]. We analyzed the expression

level for genes identified as primed by each method (Figure 4J–4L).

A majority of both male and female primed genes were similarly

expressed in the undifferentiated germ cell progenitors and the

sexually differentiated cells, regardless of how the set of primed

genes was defined or whether enriched or depleted genes were

considered (Figure 4J–4L). Thus, not only did germ cells show

male-biased priming, but the progenitors frequently expressed

these primed genes at the same level as the sexually differentiated

cells.

We analyzed the lists of genes that exhibited a primed

expression pattern (including all primed genes), and were regulated

in the same way (similar expression in the progenitor and sexually

differentiated cells, Figure 4J) for enrichment of GO terms

(Dataset S4D). The genes primed toward the male germ cell fate

showed a strong enrichment for categories related to RNA

biology, such as RNA binding (Dataset S4D). This is consistent

with the previously reported importance of gene control at the

RNA level during germ cell development, especially in the male

[49,61,62].

All the data indicate that the germ cells are primed with a male-

bias, and that these primed genes are generally expressed at a

similar level in the progenitor and differentiated cell.

Supporting cell progenitors are primed with a bias
toward the female fate

We also examined the relationship between supporting cell

progenitors and their sexually differentiated states. We used the

same method and tested the same models as with germ cells, but

the end point of the analysis for supporting cells was E12.5 because

progenitors is ‘‘similar’’ to the differentiated cell in one sex or ‘‘intermediate’’ between the two sexes. (J–L) In all cases, for both sexes, the majority of
primed genes were similarly expressed in germ cell progenitors and differentiated cells of one sex. Gene lists and permutation tests are provided in
Dataset S4.
doi:10.1371/journal.pgen.1002575.g004

Lineage Priming of Sexual Fate in Gonadal Cells

PLoS Genetics | www.plosgenetics.org 8 March 2012 | Volume 8 | Issue 3 | e1002575



their transcriptome changed little between E12.5 and E13.5

(Figure 3A, Figure S4, Dataset S2A, Dataset S3A). As in the germ

cell analysis, we defined a gene as ‘‘primed’’ if it showed identical

levels of expression in XY and XX supporting cells at E11.5,

which were retained or elevated in one sex and not in the other by

E12.5 (Figure 5A). The same variations of the analytical methods

used for germ cells were also used to identify supporting cell-

specifically enriched and depleted primed genes (Figure 5A). The

Figure 5. Supporting cells showed lineage priming with a female bias. (A and H) Graphs of the log-transformed, normalized intensity values
of genes. The error bars are standard error. Only the values for supporting cells are shown, except in the depleted and primed example where all cell
types are shown. (A) Mdk and Rasgrp1 are examples of male- and female-primed genes and Cenpa is an example of a female-primed depleted gene.
As in the germ cell analysis, we examined all primed genes (B, C, and I), primed and lineage-specifically enriched genes (D, E, and J), and primed and
lineage-specifically depleted genes (F, G, and K). (B, D, and F) The percentages of primed genes that were male-primed and female-primed. The boxes
contain the p-values from the binomial test with the expected percentages of the extreme models. (B) Using the first method, all of the extreme
models could be excluded because they had a p-value,0.05. (D and F) However, using the second and third methods, the balanced and female
models could not be excluded, respectively. (C, E, and G) Nevertheless, examining the percentage of male or female genes that were primed, all
methods showed a significant (*) bias toward the female pathway, as determined by the hypergeometric test (p-value,0.05). Taken together, the
data supported female-biased priming. (H) Graphs illustrating two primed genes, whose expression in the progenitor is ‘‘similar’’ to the differentiated
cell of one sex, or ‘‘intermediate’’ between the two sexes. (I–K) The female-primed genes were predominantly similarly expressed, but the male-
primed genes showed more variability. Gene lists and permutation tests are provided in Dataset S4.
doi:10.1371/journal.pgen.1002575.g005
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gene lists, permutation test results, and GO terms are provided

(Dataset S4B-S4D).

The pattern in supporting cells was less consistent than the

pattern observed for germ cells, but was indicative of female-

biased priming. Examining all of the primed genes, there was a

clear female bias both for the primed genes as a percentage of the

priming program (Figure 5B) and the primed genes as a

percentage of the XY and XX sexually dimorphic genes

(Figure 5C). When restricting our analysis to the genes specifically

enriched in supporting cells (Figure 5D, 5E), we observed a similar

female bias in the percentage of XX and XY genes that were

primed (Figure 5E), but the bias in the percentage of primed genes

associated with the male and female pathways was not sufficient to

exclude the balanced priming model (Figure 5D). This is likely a

statistical artifact due to the small number of primed genes and the

difference in size between the E12.5 XX and XY enriched

supporting cell gene lists (Figure 3A). The genes specifically

depleted in supporting cells showed a strong female bias (Figure 5F,

5G), such that the female model could not be excluded (Figure 5F).

All of these analyses suggested female-biased priming, consistent

with the clustering showing the closer relationship between the less

differentiated early supporting cells and the late XX supporting

cells compared to the late XY supporting cells (Figure 2A).

We also determined if the primed genes showed similar or

intermediate expression in undifferentiated supporting cell pro-

genitors (Figure 5H). For the female-primed genes, we consistently

observed that most genes were similarly expressed (Figure 5I–5K).

Expression levels of male-primed genes were more variable

(Figure 5I–5K), which again could be due to the small number

of genes analyzed. Nevertheless, supporting cell progenitors

expressed at least some of the primed genes at levels similar to

the sexually differentiated supporting cells.

However, the XX and XY supporting cells were already

expressing sexually dimorphic genes by E11.5 (Figure 3A) and

therefore were not fully undifferentiated at the start of our analysis.

With the reporters available to us, collection of a pure population

of progenitors from an earlier stage was not feasible. To determine

whether our results were affected by the differentiation process

already in progress, we reanalyzed a publically available micro-

array time course on sorted Sf1-EGFP cells from the urogenital

ridge that included earlier time points than were collected here

[11] (Figure 6, Figure S5, Dataset S5). While the Sf1-EGFP

reporter allows for the collection of earlier time points, it also labels

a mixed population that includes at least supporting cells and

interstitial/stromal cells [11,52]. This is concerning because

different cell types can have different priming patterns (Figure 4,

Figure 5). Therefore, we identified genes from the Sf1-EGFP data

set that showed priming, and then restricted our analysis to only

those genes whose expression patterns were associated with the

supporting cell lineage as defined by our data set.

Using the same approach as in the analysis of the Sry-EGFP/

Sox9-ECFP sorted supporting cell progenitors, we identified

primed genes within the Sf1-EGFP undifferentiated progenitor

population. To limit the contribution of genes from interstitial/

stromal cells, we set the end point of the analysis at E12.5. E11.0

Sf1-EGFP cells were selected as the starting point for the analysis

presented in Figure 6 because it was closest to the sexual

divergence point of the primed genes, although the analysis from

E10.5 is also provided (Figure S5, Dataset S5B).

While lists of all primed genes identified in the Sf1-EGFP cells

are provided (Dataset S5A), we limited our analysis to only those

genes associated with supporting cells. To define this gene set, we

used two different methods utilizing our purified supporting cell

(Sry-EGFP/Sox9-ECFP) and interstitial/stromal cell data as a

reference. First, we used a rigorous threshold for inclusion and

retained only those genes that were also found to be lineage-

specifically and sex-specifically enriched in our E12.5 XX or XY

Sry-EGFP/Sox9-ECFP supporting cells (Dataset S2A; Figure 6A,

6C, 6D, 6G). In a second approach, we used less rigorous criteria

and removed genes sexually dimorphic in the interstitial/stromal

cells (Figure 6B, 6E, 6F, 6H; Dataset S5A, S5C). Genes that were

sexually dimorphic in both the Sry-EGFP/Sox9-ECFP supporting

cells and the interstitial/stromal population were only removed if

they were expressed at higher levels in interstitial/stromal cells

than in supporting cells.

Regardless of the method used, these data also supported

female-biased priming of the supporting cells. Most of the primed

genes were female, although the progenitors expressed some male

genes as well (Figure 6C–6F, Dataset S5A). Many of these genes

were also similarly expressed (Figure 6G, 6H; Dataset S5A). This

analysis is therefore consistent with the findings from the Sry-

EGFP/Sox9-ECFP data. To investigate the overlap in these data

sets, we determined whether similar transcripts were identified as

primed in both the Sf1-EGFP and Sry-EGFP/Sox9-ECFP data sets

(Figure S6). While a small percentage of the genes primed in the

Sf1-EGFP cells were also identified as primed in the Sry-EGFP/

Sox9-ECFP data, a larger proportion were already sexually

dimorphic by E11.5, although indications of priming could be

observed in some of the expression patterns (Figure S6). This

analysis was also consistent with previous findings showing that

individual genes we identified as primed were expressed in the

supporting cell progenitors and then became sex-specific (Dax1/

Nr0b1, Wnt4, Sox9, and Cbln4 [26,63–66], Dataset S4B, Dataset

S5A). Thus, the analysis of these two independent data sets

produced consistent results for individual genes and reached the

same overall conclusion that the supporting cells are primed with a

female-bias.

Because nearly 30% of female genes showed priming in the Sf1-

EGFP data (Figure 6D, 6F), the blank slate model can be rejected.

The E11.5 Sry-EGFP/Sox9-ECFP progenitors showed a lower

percentage of primed transcripts (Figure 5C, 5E) than the E11.0

Sf1-EGFP progenitors (Figure 6D, 6F), which may be explained by

the fact that the Sry-EGFP/Sox9-ECFP supporting cell progenitors

were already partially sexually differentiated by E11.5 (Figure 3A).

Discussion

A comprehensive understanding of organogenesis requires

systems-level knowledge of transcriptional network dynamics

underlying cell differentiation. By performing a microarray

analysis on sorted cell populations in the fetal mouse gonad over

the course of sex-specific differentiation, we quantified the

transcription dynamics of diverse cell types as they build one of

two different organs from similar pools of progenitors. This study

provided an expression resource for the field of gonad develop-

ment, but more importantly, it characterized the features of the

biological system that could only be appreciated at the whole

transcriptome level. By examining the system as a whole, we

obtained new insights into patterns of cell fate determination and

lineage commitment.

Insights from whole transcriptome characterization of
multiple gonadal lineages

We characterized the transcriptomes of undifferentiated pro-

genitors and analyzed their transition to sexually differentiated

cells. All four lineages analyzed (including interstitial/stromal cells)

have a sexually undifferentiated progenitor cell with a distinct

transcriptome. Although we detected some overlapping sexually
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dimorphic expression patterns that may have biological signifi-

cance between the supporting cells and interstitial/stromal cells

(Figure S4), these lineages have transcriptionally distinct progen-

itors at E11.5 (Figure 3A). However, the differentiation of the

interstitial and stromal cells is sexually asymmetric over this time

period (Figure 7). Whereas the XY interstitium expressed lineage-

specific transcripts, there were few lineage-specific transcripts in

XX stromal cells even at E13.5 (Figure 3A). Thus, the XX stroma

may not fully differentiate until after E13.5. The XX stroma also

showed overlapping sexually dimorphic expression with XX

supporting cells, in part due to pathways downstream of

widespread Wnt signaling in the ovary (Figure S4).

We also provided global transcriptional evidence that the

supporting cells are the first cell type in the gonad to adopt a sex-

specific fate (Figure 3A), as predicted by previous experiments

[10,11,46,59]. While there are some gene expression differences

between E12.5 and E13.5, the supporting cells appear to have

adopted their sex-specific fates by E12.5 (Figure 3A, Figure S4,

Dataset S2, Dataset S3). The sex-specific differentiation of

interstitial/stromal cells and germ cells began at E12.5, when

Figure 6. Data from sorted Sf1-EGFP cells also supported female-biased priming for supporting cells. (A–B) Graphical illustrations of the
genes included in our analysis of priming in the Sf1-EGFP data. Because the Sf1-positive population is a mixture of lineages, we used two methods to
identify the primed genes associated with supporting cells. XY cells are illustrated in this example, but the same operations were also performed for
XX cells. (A) ‘‘Sf1 primed and supporting cell enriched’’ genes were both male-primed in the Sf1-EGFP data (comparing E11.0 and E12.5) and lineage-
specifically enriched in our XY Sry-EGFP/Sox9-ECFP purified supporting cells at E12.5. Red indicates genes being removed from the analysis, and green
indicates genes being retained. (B) For the ‘‘Sf1 primed, removing interstitial/stromal genes’’, we removed genes associated with the interstitial/
stromal cells at E12.5 (i.e., sexually dimorphic in the interstitium/stroma) from the Sf1-EGFP primed genes. Genes that were expressed sexually
dimorphically in both the interstitial/stromal cells and the supporting cells were removed only if expression was higher in the interstitial/stromal cells
than in the Sry-EGFP/Sox9-ECFP supporting cells. The Sf1-EGFP primed genes that were enriched in the Sry-EGFP/Sox9-ECFP supporting cells (C, D, and
G) and those that were identified by removing interstitial/stromal genes (E, F, and H) were analyzed separately. (C and E) The percentages of primed
genes that were male-primed and female-primed. Both methods showed a female bias. The boxes contain the p-values from the binomial test with
the expected percentages of the extreme models, and all extreme models could be rejected as having a p-value,0.05. (D and F) The percentage of
male or female genes that were primed showed a significant (*) bias toward the female pathway, as determined by the hypergeometric test (p-
value,0.05). (G and H) However, primed genes in both sexes were predominantly expressed at similar levels in progenitors and E12.5 supporting
cells of one sex. While supporting cell progenitors have a female bias, they also express some markers of the male pathway at levels similar to male
supporting cells at E12.5. Gene lists and permutation tests are provided in Dataset S5.
doi:10.1371/journal.pgen.1002575.g006
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the supporting cells had essentially completed their differentiation

process (Figure 3A).

Lineage- and sex-specific transcriptional depletion in the
differentiating gonad

For supporting cells, germ cells, and endothelial cells, our methods

were sensitive enough to detect lineage-specific transcript depletion

that could be sex-specific or sex-independent (Figure 3A). Given that

other studies have also reported specific gene depletion [16,17], this

likely represents a common regulatory logic in the transcription

network of differentiating cells. For example, unique cell fate

specification in the sea urchin involves the repression of widely-

expressed genes to ‘‘lock-down’’ the selected fate [67]. We detected

the lineage-specific repression of transcription factors likely involved

in specifying alternative fates in both germ and supporting cells (i.e.,

Gata6 and Lef1, Figure 3, Dataset S2A). We also found evidence for

lineage-specific repression of genes that regulate cell behavior. The

transcriptome of XX supporting cells is characterized by the sex- and

lineage-specific repression of cell cycle genes (Figure 3, Dataset S2),

which is correlated with the failure of XX supporting cells to reenter

the cell cycle [57,58]. A similar phenomenon was reported in

senescence and DNA damage arrest [68,69], indicating this may be a

widely-used mechanism of cell cycle arrest.

Depleted genes also showed evidence of lineage priming in

progenitors with similar patterns as genes expressed and primed

(Figure 4G, 4H; Figure 5F, 5G), particularly in germ cells. The

association between components of the network that are expressed

and repressed suggests that both are important for specifying cell

fate and may be co-regulated as parts of the same transcriptional

program [67].

Contrary to our findings in the other lineages, we did not detect

lineage-specifically depleted genes in the XY interstitial or XX

stromal cells. However, there may be heterogeneity within this

population that masks repression characteristic of any one

subfraction. Since the purity of the germ and supporting cell

populations were likely important for detecting depletion, the

ability to isolate distinct populations within the interstitium/

stroma may be necessary to do the same for this population.

A role for priming in the bipotential supporting cell
lineage

We determined that the supporting cell progenitors are primed

with a female bias, indicating that both male and female genes are

expressed in the progenitor, but that the female program is over-

represented (Figure 7). This female-biased priming model bridges

the more recent evidence for a balance in the gonad between the

male and female fates [24–27] and the classic theory of the female

‘‘default’’ state [19–21]. Although we found genes characteristic of

both the male and female programs in supporting cell progenitors,

the over-representation of the female program in progenitors

explains why the female fate is the ‘‘default’’ state in the absence of

Sry.

The female fate may be the ‘‘default’’ state because the over-

represented female program of supporting cell progenitors is self-

sustaining without additional inputs and leads to silencing of the

alternative testis pathway. The high level expression of primed

genes may make the primed state in the progenitors unstable.

Whereas, low-level expression of fate determinates has been

associated with a stable primed state, the expression of

determinates at high levels has been associated with instability of

the primed state [70]. As priming with high level expression has

also been noted in the early embryo [36], this may be a common

developmental mechanism to ensure that development progresses

and does not become stalled. Thus, this unstable primed state

would naturally lead to female differentiation in the absence of an

intervention from Sry. Under these circumstances, an ovary-

determining gene, as proposed by Eicher and Washburn [23],

would not be necessary.

Differences in the strength of the female bias may explain

differences between humans and mice with respect to the effects of

mutations in individual genes in the female pathway. For example,

mutation of RSPO1 in humans resulted in female-to-male sex

reversal [71]. However, deletion of Wnt4, Rspo1, or b-catenin in

the mouse did not result in full female-to-male sex reversal

[25,66,72,73]. The female bias in mice may be sufficiently robust

to rebound from the loss of any one of these genes. Conversely, a

lower level of female-biased priming in humans could allow

deletion of just one key factor in the female program to disrupt

female development.

Bipotential supporting cells show priming toward the male and

female fates (Figure 5, Figure 6). A previous study identified a

female subnetwork in E11.5 XY gonads [27]. We identified many

of these genes as female-primed (Wnt4, Fst, Rspo1, Dapk1, Pld1,

Actr6, and Dock4, Dataset S5A). The expression of female genes in

XX and XY supporting cell progenitors could be consistent with a

female transcriptional state in the progenitors that is repressed by

the activation of Sry in XY cells rather than by the concept of male

and female priming.

However, the coexpression of male genes in both XX and XY

supporting cell progenitors strongly supports the idea that these

cells are primed to adopt either of their potential fates. These

genes likely represent a male subnetwork operating in the early

XX and XY cells independent of Sry, as Sry is not present in the

XX cells. This work provides a molecular explanation for the

concept of bipotentiality characterized by the coexpression of both

male and female transcripts in the XX and XY supporting cell

progenitors.

The mechanism of priming remains to be determined. It has

been speculated that priming is a byproduct of open chromatin

[29,33,70]. Bivalent chromatin has been reported in embryonic

stem cells at loci expressed at low levels [74]. However, this is

inconsistent with our findings in the gonad where primed genes in

bipotential supporting cell precursors tended to be expressed at

high levels. Other studies in the laboratory are aimed at

investigating the state of chromatin at primed loci.

While priming may be important to establish a bipotential state,

mounting evidence suggests that repression of the primed genes

Figure 7. Models of differentiation for the different gonadal
lineages. The interstitial/stromal cells differentiate asymmetrically over
the time period examined, as we detected few genes specific to the XX
stroma by E13.5, whereas, the XY interstitial population acquired a
larger set of lineage-specific genes. Supporting cells are primed with a
female bias. The natural progression of the primed state may be to
adopt the female differentiated state, but in the presence of Sry the
cells repress the female program and adopt the male fate. Conversely,
germ cells are primed with a male bias. An extrinsic signal may be
required from the mesonephros to induce the adoption of the female
fate; otherwise, germ cells adopt the male fate.
doi:10.1371/journal.pgen.1002575.g007
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associated with the alternative sex is important for supporting or

maintaining cell fate commitment. Genes important for testis (Sox9

and Dmrt1) [75–77] and ovary (Wnt4, Fst, and Rspo1) [25,66,78]

development were identified as expressed in XX and XY

supporting cell precursors and repressed in the opposite sex

(Dataset S4B, Dataset S5A). Over-expression of Sox9 is known to

result in female-to-male sex reversal [79]. Ectopic activation of the

downstream target of WNT4, b-catenin, can reverse differentia-

tion of XY supporting cells and trigger their differentiation as

female cells [56]. Thus, the repression of genes associated with the

opposite sex (which we identified in these experiments) may be as

essential to the cell fate decision as the genes that are expressed.

Priming during germ cell development
The testicular-biased primed state of germ cell progenitors was

surprising because germ cell fate is determined by the somatic

environment [8]. Germ cells that enter an ovarian environment

initiate meiosis (the female fate), while germ cells that enter a testis

environment undergo mitotic arrest (the male fate) [80].

Historically, entry into meiosis was thought to be the default state

for germ cell differentiation [8,81–84]. However, the weight of

current evidence indicates that meiosis (the female fate) is the result

of an external inducing signal produced in the mesonephros and

specifically degraded in the testis by Cyp26b1 [85–89]. While there

is some evidence for a signal promoting the male fate [90–94], this

signal may act by antagonizing the female-promoting signal

[85,91] and/or providing a permissive environment for male germ

cell development [90].

The male-biased transcriptome of germ cell progenitors is

consistent with a male developmental ‘‘default’’ state in the

absence of the female-promoting signal (Figure 7). Interestingly, in

both supporting and germ cells, the dominant fate-determining

signal is associated with the fate under-represented in the

progenitor’s transcriptome (Figure 7). Sry expression in XY

supporting cells is required to stabilize the male program and

repress the female program. Similarly, the external female signal

initiates the meiotic program in germ cells and represses the

alternative male program. XY germ cells adopt the female fate if

Cyp26b1 activity is eliminated (resulting in the presence of the

meiosis-inducing signal), even in an otherwise male environment

[85,86]. Our priming model suggests that the over-represented

male program requires only subtle reinforcement from the somatic

environment. On the other hand, the under-represented female

program cannot be stabilized without its instructive cue, but once

that input is received, it is able to suppress the male program.

One reason why E13.5 XY germ cells share more transcrip-

tional features with the progenitor than XX germ cells may be due

to their maintenance in a more stem cell-like state (Dataset S4A)

[95]. However, XY germ cells at E13.5 are not identical to the

sexually undifferentiated germ cell progenitors at E11.5. Specif-

ically, by E13.5, XY germ cells have repressed genes associated

with the female germ cell program (Figure 4), which may explain

why, even when put into a female environment after E11.5, XY

germ cells can no longer adopt the female fate [8,81].

Priming during differentiation
This study revealed previously unknown systems-level aspects of

the differentiation of two critical cell types during gonad

development, with implications for other developing cells.

Supporting and germ cells arise from different embryonic origins

and respond to different cues during their terminal differentiation,

and yet both show priming. Priming may be a common feature of

differentiation from multipotent progenitors at all levels, as it has

now been identified in the early embryo [36], multipotent

hematopoietic cells [29],bone marrow mesenchymal stem cells

[28], germ cells, and somatic gonadal cells.

However, each priming program appears surprisingly lineage

specific. Even the cells within the gonad do not share a common

bias in their priming programs (Figure 7). Priming may limit the

developmental potential of cells by preparing them to respond in a

unique manner to the same signals used throughout development.

Only certain avenues of differentiation are available while others

are closed [28,30,60]. For example, male supporting cells and

male germ cells exposed to similar Fgf9 signals adopt different fates

[24,91,92,96] because they have different underlying transcrip-

tional networks that prepare the cell to respond differently. In vivo,

a supporting cell progenitor cannot become a germ cell because

the required transcriptional avenues are not available. The ability

to induce pluripotent cells from differentiated cells in vitro may be

related to the ability to return the cell to a primitive primed state,

where many avenues of differentiation are open.

We identified priming patterns using simple, yet flexible,

statistical methods that can be applied to any microarray time

course on a single purified cell population isolated immediately

preceding and following differentiation. While we were able to

analyze the priming of lineage-specific enriched and depleted

transcripts to validate our results (Figure 4, Figure 5), the results

were similar regardless of the method used. Because having other

cell types for comparison is not required, this method can be

broadly applied to other systems exploring differentiation.

Systems biology entails the use of both whole genome analysis

and molecular genetic approaches to inform each other [97].

While studies disrupting the function of individual genes have

clearly identified critical components of the system, they are

unlikely to be sufficient on their own to fully elucidate the

combinatorial interactions within the complex transcriptional

network governing organ development. Recent studies show that

developmental transcriptional networks are highly buffered and

contain redundant factors, suggesting that many important

network players may not have a developmental phenotype when

disrupted [27,98]. While some transcriptional profiles uncovered

in this study may have no functional relevance, others likely

contribute to robustness of the system and allow it to rebound from

perturbation.

In conjunction with the traditional functional studies examining

individual genes, our understanding of gonad organogenesis (and

development in general) is facilitated by a whole system view of the

process as this approach reveals novel phenomena that cannot be

identified by studying single genes. This analysis leads to many

new and exciting hypotheses related to the role of priming in the

differentiation of gonadal cells and provides new insight into the

processes of cellular differentiation and lineage commitment.

Materials and Methods

Mice
All animals were maintained and experiments were conducted

according to DUMC-IACUC and NIH guidelines, based on

existing protocols. We used six different transgenic mouse lines

with fluorescent reporters: Sry-EGFP [Tg(Sry-EGFP)92Ei] (sex

determining region of Chr Y) [7], Sox9-ECFP (SRY-box containing

gene 9) [39], Mafb-EGFP [Mafbtm1Jeng] (a gift from S. Takahashi;

v-maf musculoaponeurotic fibrosarcoma oncogene family, protein

B) [40], aSma-EYFP (a gift from J. Lessard; the official gene name

of aSma is Acta2; actin, alpha 2, smooth muscle) [45], Flk1-mCherry

[Tg(Kdr-mCherry)1Medi] (a gift from M. Dickinson; the official

gene name of Flk1 is Kdr; kinase insert domain protein receptor)

[43,44], and Oct4-EGFP [Tg(Pou5f1-EGFP)2Mnn] (the official
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gene name of Oct4 is Pou5f1; POU domain, class 5, transcription

factor 1) [42]. In most cases, males from these lines were crossed to

CD-1 females (an outbreed line from Charles River), and gonads

from multiple embryos were generally pooled to reduce the impact

of strain variation. All of the males were homozygous for the

marker, with the exception of Mafb-EGFP males. This line is a

targeted insertion of GFP into the Mafb locus, which results in a

Mafb mutant when homozygous. Mafb-EGFP embryos collected in

this study were therefore heterozygous for Mafb; however, we

know of no defects in gonad development in Mafb heterozygotes

(data not shown). To increase the fluorescence intensity for both

the aSma-EYFP (maintained on an FVB/CD-1 mixed line) and

Flk1-mCherry (maintained on the outbreed CD-1 line) reporters,

homozygous males were crossed to homozygous females.

Sry-EGFP and Sox9-ECFP reporters were used to collect

supporting cells. In the Sry-EGFP line, the Sry promoter drives

expression of GFP in cells competent to activate the Sry

promoter in both XX and XY gonads. This labels the

supporting cell lineage in both sexes, but because the transgene

lacks the SRY open reading frame, transgenic XX gonads

express no SRY protein and develop as normal ovaries [7].

While Sry-EGFP expression persists in XX supporting cell

precursors through E13.5, expression of the transgene is

reduced in XY supporting cell precursors after E11.5 in our

hands (data not shown), similar to endogenous Sry expression

[99]. Therefore, Sry-EGFP was used to isolate supporting cells

from XX and XY samples at E11.5, and XX E12.5 and E13.5

samples. Sox9-ECFP was used to sort XY supporting cells at

E12.5 and E13.5. All cells that later express Sox9 can be lineage

traced from Sry-positive cells [46]. Sox9 is also the direct

downstream target of SRY [100]. This Sox9-ECFP reporter

specifically labels XY supporting cells (Figure S1). Thus, we did

not expect that the use of Sox9-ECFP would affect our analysis of

the supporting cells. We validated that this was the case by

ensuring the genes we identified in the Sox9-ECFP population

substantially overlapped those identified in a previous study

using the Sry-EGFP reporter [10], and that some genes

continued to be similarly expressed in the XX Sry-EGFP and

XY Sox9-ECFP supporting cells (data not shown).

Collection of gonadal lineages
Timed matings were performed, with the day the vaginal plug

was detected considered E0.5. Embryos were collected at E11.5,

E12.5, and E13.5. For the Mafb-EGFP line, only GFP-positive

embryos were used for sorting. The sex of the gonad is obvious

by eye at E12.5 and E13.5. The E11.5 embryos were genotyped

to determine the sex as previously described using primers to

detect Kdm5c (X chromosome) and Kdm5d (Y chromosome)

[27,101].

To collect gonadal cells, the urogenital ridge and dorsal aorta

were removed, and the gonad/mesonephric complex was isolated.

In most cases, the gonad was separated from the mesonephros.

However, for the Oct4-EGFP sorts, the gonad was left attached

because Oct4 expression is highly specific to germ cells (data not

shown). For the E11.5 Flk1-mCherry sorts, only the anterior and

posterior portions of the mesonephros were removed by cutting at

a 45u angle from the end of the gonad. The gonad vasculature

arises from a plexus in the mesonephros [5]; thus, the gonadal and

a portion of the mesonephric endothelial cells represent one

population. This procedure retained the mesonephric plexus while

removing most of the vasculature associated with the mesonephric

ducts. At E12.5 and E13.5, the mesonephros was removed

completely for the Flk1-mCherry sorts.

XY and XX gonads were separately pooled from one or more

litters and incubated in 250 ml 0.25% Trypsin EDTA (Gibco

#25200) at 37uC for 5–10 minutes. The trypsin was removed and

replaced with 400 ml PBS with or without 4 ml RNase-free DNase

(Promega #M6101). The tissue was dissociated, and the cells were

passed through a strainer (BD Falcon #352235). FACS was

performed by the Duke Comprehensive Cancer Center Flow

Cytometry Shared Resource. The positive fraction was pelleted,

the liquid supernatant was removed, and the cells were

immediately frozen at 280uC.

Preparation of samples and arrays
Generally, cells from multiple embryos were pooled. RNA was

extracted from over 100,000 cells to as few as 10,000 cells using

the RNeasy Micro kit (Qiagen #74004) following the manufac-

turer’s instructions for ‘‘Cells.’’ However, the protocol was started

at step 2 (disruption with RLT), and b-ME was not added. The

cells from multiple sorts were pooled during disruption with RLT

(if necessary), step 3 (homogenization) was skipped, and in step 10

three RPE washes were performed.

Samples were prepared for the Affymetrix Genechip Mouse

Gene 1.0 ST Arrays (#901168) using the Nugen WT-Ovation

Pico RNA Amplification System (#3300), WT-Ovation Exon

Module (#2000), and the Encore Biotin Module (#4200),

following the manufacturer’s instructions. For purification follow-

ing the Pico and Exon kits, the Qiagen QIAquick PCR

Purification Kit (#28104) was used following the instructions

provided by Nugen. Fragmented and labeled product was

submitted to the Duke Institute for Genome Sciences and Policy

Microarray Facility for hybridization and reading.

We ran a total of 91 arrays. This included the arrays on our five

sorted cell types at the three time points with separate XX and XY

samples in biological triplicate as well as one array on a whole P1

mouse RNA sample(a gift from S. Potter) for normalization across

GUDMAP.

Immunofluorescence
Samples were fixed, stained, and imaged as whole gonads with

the mesonephros attached as previously described [102]. Some

samples were first processed through a methanol series and stored

at 280uC prior to rehydration and staining [103]. Primary

antibodies used were: anti-3b-HSD (Santa Cruz sc-30820, 1:100

in samples processed through methanol; TransGenic Inc. KO607,

1:500; K. Morohashi generously provided a non-commercial

antibody before the TransGenic Inc. antibody was available), anti-

PECAM1 (BD Pharmingen 553370, 1:250), anti-SRY (a gift from

P. Koopman and D. Wilhelm), and anti-SOX9 (a gift from P.

Koopman and D. Wilhelm). Secondary antibodies used included

Alexa 647- and 488- conjugated secondary antibodies (Molecular

Probes, 1:500) and Cy3- and Cy5-conjugated secondary antibod-

ies (Jackson ImmunoResearch, 1:500). DAPI (Sigma-Aldrich) was

used to label nuclei.

Initial array processing and analysis
The .cel files were processed with Partek Genomics Suite

version 6.5 (6.11.0207) by RMA with quantile normalization and

median polish summarization at the transcript cluster (gene) level.

Probes were adjusted for GC content and probe sequence. The

data were transformed into log base 2. We removed all transcript

clusters that did not have a cross hybridization category of 1

(perfect match) in the Affymetrix annotation, that did not have a

gene symbol, or that did not have a log base 2 normalized

expression value .6 in at least two out of three replicates of at
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least one sample. The genes that passed this filtering step, and only

these genes, were used in subsequent analyses.

In the case of the analysis of the aSma-EYFP cells (Figure S2),

this initial processing of the arrays included all 91. However, for all

other analyses, we used data generated by processing only 72 of

our arrays because the aSma-EYFP and P1 whole mouse data were

not included. These processed data on the 72 arrays were used in

all portions of the analysis and are provided as a resource for the

community (Dataset S1).

Partek Genomics Suite was used to generate the hierarchical

clustering dendrograms and perform the ANOVA sources of

variation analysis (Figure 2, Figure S3). The clustering methods

used are described in the figure legends. One of the E11.5 XY

endothelial samples was somewhat of an outlier in the clustering.

This may be due in part to its processing, which resulted in

unusually low (but still adequate) yield after the amplification with

the Pico kit. However, we do not believe this compromised the

sample as it still clustered with endothelial cells.

Pairwise comparisons used to identify genes of interest
This analysis was performed at the level of the transcript cluster

(gene), but some genes have multiple transcript clusters. Thus, the

lists of transcript clusters may include multiple entries for the same

gene. For graphical display of the numbers of genes identified

(Figure 3, Figure 4, Figure 5, Figure 6, Figure S4, Figure S5,

Figure S6), each gene was counted only once (i.e., duplicates were

removed). However, in tables, all transcript clusters are shown (i.e.,

duplicates are not removed) (Dataset S2, Dataset S3, Dataset S4,

Dataset S5).

To identify genes of interest, we adopted a simple and flexible

method using multiple or single pairwise comparisons between

samples (analogous to methods used previously [53]). The same p-

value and fold change cutoffs were used throughout. In all cases

where we identified a difference between samples, we used a p-

value cutoff of 0.05, and a fold change cutoff of 1.5 for each

comparison. A gene was deemed to be identically expressed in two

samples if the p-value was.0.05 and the fold change was between

21.5 and 1.5. When multiple pairwise comparisons were done,

the intersection of the multiple lists generated was taken as the

genes of interest.

To identify sex-specifically and lineage-specifically enriched

genes (using E12.5 XY supporting cells as an example), we used

the following pairwise comparisons with the above cutoffs:

1. The gene was more highly expressed in XY supporting cells

than XX supporting cells at E12.5 (i.e., sex-specific expression).

2. The gene was more highly expressed in XY supporting cells

than the XY interstitium, germ cells, and endothelial cells at

E12.5 (XY supporting cells versus XY interstitium, XY

supporting cells versus XY germ cells, etc.) (i.e., lineage-specific

expression).

The intersection of these multiple lists were the genes

considered enriched in XY supporting cells at E12.5 (Figure 3A).

Because the XY supporting cells were not compared to other XX

lineages (e.g., XX germ cells), genes could be identified as enriched

in both the XY supporting cells and a different XX lineage.

Similar comparisons were also used to identify sex- and lineage-

specifically depleted genes, but a gene was deemed ‘‘depleted’’

when its expression was higher in all other cell lineages than the

E12.5 XY supporting cells in the example.

To identify sex-independent and lineage-specifically enriched

genes indicative of sexually undifferentiated progenitor expression

(Figure 3A), we used the following pairwise comparisons (using the

E11.5 supporting cells as an example):

1. The gene was more highly expressed in XY supporting cells

than the XY interstitium, germ cells, and endothelial cells at

E11.5 (i.e., lineage-specific expression among XY cells).

2. The gene was more highly expressed in XX supporting cells

than the XX stroma, germ cells, and endothelial cells at E11.5

(i.e., lineage-specific expression among XX cells).

3. The gene was identically expressed in XX and XY supporting

cells at E11.5 (i.e., identically expressed in progenitors).

Again, similar comparisons were used to identify the lineage-

specifically depleted genes, but a gene was deemed ‘‘depleted’’

when its expression was higher in all other cell lineages than the

E11.5 XY and XX supporting cells in the example. Occasionally,

multiple transcript clusters for a gene may behave differently. In

this case that gene may be identified in multiple lists. For example,

different Myo9a transcript clusters were identified as sex-specifi-

cally enriched in E11.5 XX supporting cells and sex-independently

enriched in E11.5 XX and XY supporting cells (Dataset S2A). The

different behavior of the different transcript clusters in the gene

could be caused by off-target probe binding or alterative splicing.

Leydig cell genes were a special case because both our sorted

interstitial and ‘‘endothelial’’ cells contained Leydig cells

(Figure 1C–1E). To identify Leydig cell genes (Figure 3A), using

E13.5 as an example, we used the following pairwise comparisons:

1. The gene was more highly expressed in the XY interstitium

than XY supporting cells and germ cells at E13.5 (i.e., lineage-

specific expression).

2. The gene was more highly expressed in XY endothelial cells

than XY supporting cells and germ cells at E13.5.

3. The gene was more highly expressed in the XY interstitium

than the XX stroma at E13.5 (i.e., sex-specific expression).

4. The gene was more highly expressed in XY endothelial cells

than XX endothelial cells at E13.5.

Depleted genes were identified similarly, but a gene was deemed

‘‘depleted’’ when its expression was higher in all other cell lineages

than the E13.5 XY interstitium and endothelial cells in the

example. The genes identified as E13.5 Leydig cell genes were

removed from the E12.5 and E13.5 XY endothelial cell gene lists

(Dataset S2A). In all cases, we used the E13.5 Leydig cell lists to

remove the maximum number of genes associated with Leydig

cells. Some of these genes were also identified in the XY interstitial

lists, and they appear in both lists of identified genes (Dataset S2A),

but the overlapping genes were removed from the Leydig cell bar

for the graphical depiction (Figure 3A).

Permutation testing was done to estimate the false discovery rate

in the gene lists. The array data from the samples being used in the

generation of a gene list (in the first example above: XY supporting

cells, XX supporting cells, XY interstitium, XY germ cells and XY

endothelial cells; all at E12.5) were permuted. The series of

operations was run on the permuted columns, and the number of

genes generated from each permutation was stored. The

permutations were performed 200 times, and the mean number

of genes was used to compute the false discovery rate. In all cases,

we considered a false discovery rate of 20% or less as acceptable

(Dataset S2B). Most lists actually had a much lower false discovery

rate. In any case where some of the genes were removed from the

list, such as the removal of Leydig genes from endothelial cell lists,

this operation was ignored in the permutation tests.
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The lists of transcript clusters for the lists considered significant

were inputted into DAVID (http://david.abcc.ncifcrf.gov/)

[104,105] to identify pathway and GO term enrichment. The

full list of transcript clusters used in the analysis (Dataset S1A) was

inputted as the background. We included all KEGG and BioCarta

pathways as well as GO_FAT molecular function (MF) and

Biological Process (BP) terms with a p-value.0.05 (Dataset S2C,

S2D).

Primed genes were identified by multiple methods (Figure 4,

Figure 5). In general, we defined a gene as primed when it was

expressed in the progenitor, then repressed by one sex and

maintained or activated by the other sex. To identify all male-

primed genes, using germ cells as an example, we used the

following pairwise comparisons:

1. The gene was identically expressed in XX and XY germ cells

at E11.5 (i.e., identically expressed in progenitors).

2. The gene was more highly expressed in XY than XX germ

cells at E13.5 (i.e., specific to XY cells).

3. The gene was more highly expressed in XX germ cells at E11.5

than at E13.5 (i.e., this gene is repressed in XX cells).

4. If the gene was also more highly expressed in XY germ cells at

E11.5 than at E13.5, it was removed (i.e., genes showing

differential repression were eliminated).

In the second analysis, we used more stringent criteria to define

genes characteristic of the progenitor cells at E11.5 and

differentiated cells at E13.5 by incorporating information on

lineage-specific expression. To identify the enriched and primed

genes, we used the above comparisons in addition to requiring

that:

5. The gene was more highly expressed in XY germ cells at E11.5

than XY supporting cells, interstitium, and endothelial cells at

E11.5.

6. The gene was more highly expressed in XX germ cells at E11.5

than XX supporting cells, stroma, and endothelial cells at

E11.5.

7. The gene was more highly expressed in XY germ cells at E13.5

than XY supporting cells, interstitium, and endothelial cells at

E13.5.

Finally, we also wanted to explore the possibility of depleted

gene priming. Continuing with the example of XY germ cells, we

used the following pairwise comparisons to identify depleted and

primed genes:

1. The gene was identically expressed in XX and XY germ cells

at E11.5 (i.e., identically expressed in progenitors).

2. The gene was more highly expressed in XY supporting cells,

interstitium, and endothelial cells at E11.5 than XY germ cells

at E11.5 (i.e., lineage specific repression).

3. The gene was more highly expressed in XX supporting cells,

stroma, and endothelial cells at E11.5 than XX germ cells at

E11.5.

4. The gene was more highly expressed in XX than XY germ

cells at E13.5 (i.e., remains repressed in XY cells).

5. The gene was more highly expressed in XY supporting cells,

interstitium, and endothelial cells at E13.5 than XY germ cells

at E13.5 (i.e., lineage-specific repression).

6. The gene was more highly expressed in XX germ cells at E13.5

than at E11.5 (i.e., this gene is activated in XX cells).

7. If the gene was also more highly expressed in XY germ cells at

E13.5 than at E11.5, it was removed (i.e., genes showing

differential activation were eliminated).

The same methods were used to analyze priming in the

supporting cells, but E12.5 was used as the end point of the

analysis. Permutation tests were run on all of these lists of primed

genes.

We then examined these primed genes in two ways. First, we

compiled all genes identified as male or female primed and

determined the percentage associated with each sex (Figure 4C,

4E, 4G; Figure 5B, 5D, and 5F). We used a binomial test for the

different extreme models to determine whether priming showed a

sex-specific bias. A one-tailed test was used for the ‘‘female’’ and

‘‘male’’ models, which were defined as predicting that 90% of the

genes were female-primed or male-primed, respectively. A two-

tailed binomial test was used for the balanced model, which

predicts 50% male and 50% female genes. Any model resulting in

a p-value,0.05 was excluded. If all models were excluded, an

intermediate model was selected.

To ensure that this result was not a statistical artifact of the size

of the underlying lists of male and female markers, we also

displayed primed genes as a percentage of the total ‘‘male’’ or

‘‘female’’ genes (Figure 4D, 4F, 4H; Figure 5C, 5E, 5G). These

male and female genes were determined in different ways to

account for differences in the method of defining primed genes.

When identifying all primed genes, the list of all testis genes

included everything identified in step 2 alone of the process for

generating the primed genes. For the enriched and primed genes,

testis genes were required to meet the requirements of step 2 and

7. For the depleted and primed genes, testis genes were required to

meet steps 4 and 5. A 262 contingency table (with the actual

numbers of genes, not percentages) and a two-tailed hypergeo-

metric test were used to determine if there were a significant

difference in the percentage of primed genes in the male and

female programs. A p-value,0.05 was considered significant. A

significant p-value meant that sex and priming were not

independent variables and that there was a bias in the

representation of the two programs in the progenitor cells.

We further characterized the primed genes identified by each

method based on their expression level. We divided these into two

categories: similar and intermediate expression relative to the

expression in the differentiated cells (Figures 4J–4L, Figure 5I–

5K). For similarly expressed genes, using XY germ cells as an

example, the gene was required to be primed and identically

expressed in XY germ cells at E11.5 and E13.5. For intermediate

expression genes, the gene was required to be primed and more

highly expressed in XY germ cells at E13.5 than E11.5 (or more

highly expressed at E11.5 for depleted and primed genes). Any

gene that did not fall into one of these categories, or had transcript

clusters that fell into both similar and intermediate categories, was

counted as ‘‘other.’’ If a gene had transcript clusters that fell into

the defined similar or intermediate categories and others that did

not fall into either, the gene was still counted as similar or

intermediate. GO term enrichment for all of the primed genes

with similar expression for both supporting and germ cells was

determined using DAVID as described above.

Sf1-EGFP array analysis
To examine earlier expression in supporting cells, we reana-

lyzed previously generated microarray data from Sf1-EGFP sorted

cells [11] (raw data available at http://www.ebi.ac.uk/arrayex-

press/browse.html?keywords = Nef&expandefo = on). Because

these data used a different array format (Affymetrix Mouse
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Genome 430 2.0 arrays), they were analyzed separately. The .cel

files were processed with Partek Genomics Suite in the same

manner as our own, and the same criteria were used to remove

probe sets. The only difference was that rather than using the

cross-hybridization category, the annotation grade was obtained

from NetAffx (http://www.affymetrix.com) [106], and only probes

with unambiguous A and B grade annotation were retained.

Control probes were also removed.

We used the same method to identify and analyze primed genes

as described above. This analysis used the Sf1-EGFP data at E11.0

(or E10.5) and E12.5 (Figure 6, Figure S5, Dataset S5). The

priming analysis was limited to probes associated with the

supporting cells by two methods, although the list of all primed

genes is provided (Dataset S5A, S5B). First, we examined only

genes that were lineage-specifically enriched in our XX or XY

E12.5 Sry-EGFP/Sox9-ECFP data (Figure 3A, Dataset S2A) and

Sf1-EGFP primed (Figure 6A, 6C, 6D, 6G; Figure S5A, S5B, S5E).

Because different arrays were used, we compared between the two

datasets using the gene symbol. If the gene symbol for an Sf1-

EGFP primed gene was also found in the lineage-specific Sry-

EGFP/Sox9-ECFP lists, the gene was retained in the analysis.

Second, we removed the genes associated with the interstitial/

stromal cells at E12.5 from the Sf1-EGFP primed genes (Figure 6B,

6E, 6F, 6H; Figure S5C, S5D, S5F). Using XY cells as an

example, we identified the genes to remove using the following

pairwise comparisons and removal steps:

1. We identified genes more highly expressed in XY interstitial

cells than XY supporting cells at E12.5.

2. We identified genes more highly expressed in XY supporting

cells than XX supporting cells and also XY interstitial cells than

XX stromal cells, then removed the genes identified in step 1.

3. We identified all genes more highly expressed in XY interstitial

cells than the XX stromal cells, and removed all of the genes

remaining in step 2. This list contains genes sexually dimorphic

in the interstitial cells and not the supporting cells, and genes

sexually dimorphic in both the interstitial/stromal cells and the

supporting cells if expression was higher in the interstitial/

stromal cells.

The lists of the genes identified for removal is provided in

Dataset S5C. Again, the comparison between the two data sets

was based on the gene symbol: gene symbols found in the

interstitial/stromal-associated lists were removed from the Sf1-

EGFP primed list.

To calculate the percentage of male and female genes showing

priming (Figure 6D, 6F; Figure S5B, S5D), we used the same

method used in analyzing all primed genes in our own data.

However, in addition to being more highly expressed in one sex at

E12.5, the gene was also required to pass the appropriate filter

used for identifying supporting cell-associated genes.

Supporting Information

Dataset S1 RMA normalized values and intensity value

graphing. We provided an excel file with (A) the log-transformed

RMA normalized intensity values used in our analysis and (B) the

graphic format used to display gene expression in each cell type

over time. The user can copy any row from (A) with values into

row 2 of (B) (yellow) to generate the graph for that gene. Only

transcript clusters included in the analysis are provided, and the

grounds for removing transcript clusters are provided in the

Materials and Methods.

(XLSX)

Dataset S2 Lineage-specific gene lists, permutation tests,

pathway enrichment, and GO term enrichment. (A) Gene lists

generated by multiple pairwise comparisons, graphically illustrated

in Figure 3A. The lists are arranged in order of lineage, stage,

enrichment or depletion, and sex. Genes are in alphabetical order.

(B) Results of permutation tests for all the gene lists displayed in

Figure 3A. Separate entries are listed for the median and mean

number of transcript clusters and individual genes found in the

permutation tests. The number of genes in the actual list and the

percentage of false positives based on the mean number of genes

are also provided. (C) The lists of KEGG and BioCarta pathways

enriched with a p-value,0.05 in each list with a false discovery

rate ,20%. (D) The list of biological process (‘‘BP’’) and molecular

function (‘‘MF’’) GO terms enriched with a p-value,0.05 in each

significant list. In both cases, the lists are arranged in order of

lineage, stage, sex, and enrichment or depletion. The terms in the

list are ranked from lowest to highest p-value.

(XLSX)

Dataset S3 Lists of sexually dimorphic genes, overlapping

expression, and permutation tests. (A) Gene lists generated by a

single pairwise comparison between XY and XX cells of a lineage

graphically illustrated in Figure S4A. Lists of all sexually dimorphic

genes in each lineage at each stage are provided first, followed by

lists of genes sexually dimorphic in multiple lineages. Genes are in

alphabetical order. The gene lists are arranged by stage, sex, and

lineage. When transcript clusters for a single gene behaved

differently, in all cases the gene was counted in the highest

overlapping category. For example, if a gene had one transcript

cluster sexually dimorphic in only one lineage and another that was

dimorphic in two lineages, it was counted as being dimorphic in

both lineages. ‘‘1’’ next to a gene name indicates the gene was

counted as ‘‘R E13.5 over-expressed in all cell types’’ (the triple

overlap in the Venn diagram in Figure S4A) even though it

appeared in other categories (Syngap1 and Myo9a). (B) Results of

permutation tests for the single pairwise comparisons. (C) Lists of

genes that were sexually dimorphic in only two lineages, expressed

identically in both lineages, and enriched in these two lineages

compared to the remaining two lineages (Figure S4E). Genes are in

alphabetical order. The gene lists are arranged by lineage, sex, and

stage. The gene considered in the triple overlap (Syngap1) is again

marked by the 1 and removed from the analysis.

(XLSX)

Dataset S4 Germ cell and supporting cell primed gene lists,

permutation tests, and GO term enrichment. (A and B) Gene lists

generated by multiple pairwise comparisons to identify germ cell

(A) and supporting cell (B) primed genes, graphically illustrated in

Figure 4 and Figure 5. Genes are in alphabetical order. The gene

lists are arranged by method of identifying primed genes, and sex.

The genes with similar and intermediate expression are provided

after each list of primed genes. ‘‘1’’ next to a gene name indicates

its transcript clusters appeared in both the similar and interme-

diate expression lists, and so was counted in Figure 4 and Figure 5

as ‘‘Other’’. (C) Results of permutation tests for the lists of primed

genes. (D) The lists of biological process (‘‘BP’’) and molecular

function (‘‘MF’’) GO terms enriched with a p-value,0.05 in all of

the primed genes with similar expression (Figure 4J, Figure 5I).

The lists are arranged in order of lineage and sex. The terms in the

lists are ranked from lowest to highest p-value.

(XLSX)

Dataset S5 Sf1-EGFP primed gene lists and permutation tests.

(A and B) Gene lists generated by multiple pairwise comparisons,

graphically illustrated in Figure 6 and Figure S5. Genes are in

alphabetical order. The gene lists are arranged by the method of
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selecting supporting cell primed genes, and sex. The list of all

primed genes identified in the Sf1-EGFP data without limiting the

list to genes associated with supporting cells, ‘‘all’’, are also

provided. Lists of similar and intermediate expression primed

genes follow each list of primed genes (except for the first). Lists are

provided starting the priming analysis at both E11.0 (A) and E10.5

(B). (C) Gene lists of interstitial/stromal associated genes that were

used to remove interstitial/stromal genes from the priming analysis

as illustrated in Figure 6B. (D) Lists of genes illustrated in Figure

S5G that were primed at E10.5 or E11.0 and became sexually

dimorphic 12 hours later. Genes are in alphabetical order. (E)

Lists of genes illustrated in Figure S5H. Of the genes that were

primed at E10.5 or E11.0 and remained similarly expressed in XX

and XY cells 12 hours later, we identified genes that showed a

significant and similar change in expression in both XX and XY

cells. Genes are in alphabetical order. (F) Lists of genes illustrated

in Figure S6A that were primed in the Sf1-EGFP and Sry-EGFP/

Sox9-ECFP data, were primed in the Sf1-EGFP data and dimorphic

in the Sry-EGFP/Sox9-ECFP data, and a subset of these E11.5

dimorphic genes that showed indications of previous priming in

the Sry-EGFP/Sox9-ECFP cells. Genes are in alphabetical order.

(XLSX)

Figure S1 Lineage-specific fluorescent tags used for FACS.

Images of E13.5 XY and XX gonads with DAPI (blue) and each

fluorescent marker used: Sox9-ECFP and Sry-EGFP (cyan) labeling

supporting cells, Mafb-EGFP (purple) labeling the interstitial/

stromal cells, Oct4-EGFP (green) labeling germ cells, and Flk1-

mCherry (red) labeling endothelial cells. Scale bar = 100 mm.

(TIF)

Figure S2 aSma-EYFP labeled a heterogeneous population

containing supporting cell precursors. (A) Images of E13.5 XY

and XX gonads with DAPI (blue) and aSma-EYFP (pink) labeling

the interstitial/stromal cells. (B) Graphs of the log-transformed,

normalized intensity values. The error bars are standard error.

The Sry transcript is expressed at similarly high levels in both XY

supporting cells and aSma-EYFP cells at E11.5, and declines

rapidly in both cell types. Expression of Sry is lower in the Mafb-

EGFP cells. However, the pattern seen with Sry did not hold true

for most supporting cell markers: Sox9 is expressed at a lower level

in both aSma-EYFP and Mafb-EGFP cells than in supporting cells.

(C) SRY and SOX9 proteins are also present in aSma-EYFP cells.

Antibodies against SRY (red) and SOX9 (blue) co-label aSma-

EYFP (green) cells. Cells with aSma-EYFP and SRY alone are

indicated with arrows, whereas cells with aSma-EYFP, SRY, and

SOX9 are indicated with arrowheads. Scale bar = 25 mm. This

suggests that aSma-EYFP is expressed in a heterogeneous

population of early gonadal cells containing supporting cell

progenitors.

(TIF)

Figure S3 Alternative methods showed generally similar pat-

terns indicating the importance of lineage, sex, and stage.

Clustering dendrograms of the individual arrays generated using

(A) Average linkage with Euclidean distance as a distance metric

and (B) Complete linkage with Pearson’s dissimilarity as a distance

metric. Consistent with Figure 2A, the arrays cluster primarily by

lineage, and secondarily by sex and stage. The largest differences

were in the relationship of the somatic populations to each other,

although the same clusters could always be identified. (C)

Examining the sources of variation with the median F ratio shows

a similar pattern to the mean F ratio (Figure 2B) with the primary

source of variation being lineage.

(TIF)

Figure S4 Overlap of genes that are sexually dimorphic in at

least one lineage. (A) The number of genes over-expressed

(‘‘sexually dimorphic’’) in XY or XX cells of each lineage at each

stage. Genes were identified by a single pairwise comparison

between XX and XY cells for each lineage at each stage (Dataset

S3A). Many more genes are identified here than in Figure 3A

because additional pairwise comparisons were performed to

restrict the analysis to genes that showed lineage-specificity in

Figure 3A. The area proportional Venn diagrams were generated

using Venn Diagram Plotter v1.4.3740 from PNNL and

OMICS.PNL.GOV (http://omics.pnl.gov/software/VennDia-

gramPlotter.php). The sizing of the Venn diagrams relative to

each other is approximate. Endothelial cells were not analyzed.

The numbers shown indicate the number of genes exclusively in

each portion of the diagram (except for E11.5 for which the total

number of genes dimorphic in the supporting cells is shown). Lists

marked ‘‘ns’’ had a false positive rate .20% (Dataset S3B). The

overlapping areas on the Venn diagrams indicate genes sexually

dimorphic in multiple lineages. Most genes dimorphic in the XX

stroma were also dimorphic in another lineage. (B–D) Graphs of

the log-transformed, normalized intensity values. The error bars

are standard error. Endothelial cell values are not shown. (B)

Many genes sexually dimorphic in multiple lineages were over-

expressed in one of the lineages, as was the case for Sox9. However,

this could be explained by the low and variable contamination

expected after FACS. To address this issue, we used antibody

stains of sorted cells to estimate that the XY E13.5 germ cells had

,1% contamination with supporting cells, but the XY E13.5

interstitium was more variable and had between 1% and 15%

supporting cell contamination (data not shown). Therefore,

patterns similar to Sox9 were not further analyzed. (C–D)

However, not all genes sexually dimorphic in multiple lineages

had a pattern consistent with low level contamination. (C) Axin2, a

Wnt/b-catenin transcriptional target gene [107], was highly

expressed in the three XX cell types examined, indicative of

widespread Wnt signaling in the ovary. (D) Similarly, Irx3

(Iroquois related homeobox 3), a gene known to be ovary-specific

[108], showed convergent expression in the XX stroma and

supporting cells. We identified more genes with a pattern similar to

Irx3 as sexually dimorphic in only two lineages, expressed

identically in both lineages, and enriched in these two lineages

compared to the remaining two (Dataset S3C). Genes sexually

dimorphic in all three lineages were not analyzed. There were few

genes meeting these criteria in the overlap between the germ cells

and other lineages (Dataset S3C), but (E) more genes met these

criteria in the overlap between interstitial/stromal cells and

supporting cells (Dataset S3C). The XX stroma in particular

expressed several transcripts at similar levels to the XX supporting

cells, although the populations are not identical as the XX

supporting cells have many more lineage-specific transcripts

(Figure 3A). Some of these shared transcripts are downstream of

Wnt4 signaling in the ovary (Calb1, Fgfr2, Irx3, Sema3a, and Tkt)

[109], and Wnt4 itself showed this pattern. Thus, at least some of

these similarities may be attributable to widespread Wnt signaling

in the ovary, as reported by Axin2 expression in all 3 lineages (C).

(TIF)

Figure S5 E10.5 Sf1-EGFP primed genes generally supported

female-biased priming, but the E11.0 analysis was more

informative. The analysis of the Sf1-EGFP primed genes

(beginning the analysis at E10.5 and comparing to Sf1-EGFP cells

at E12.5) was also limited to genes enriched in the Sry-EGFP/Sox9-

ECFP supporting cells at E12.5 (A, B, and E) or to those genes

identified by removing interstitial/stromal genes (C, D, and F). (A

and C) The percentages of primed genes that were male-primed

Lineage Priming of Sexual Fate in Gonadal Cells

PLoS Genetics | www.plosgenetics.org 18 March 2012 | Volume 8 | Issue 3 | e1002575



and female-primed. The first, but not the second, method showed

a female bias. The boxes contain the p-values from the binomial

test with the expected percentages of the extreme models. The

balanced model can be rejected with the first (A), but not the

second (C), method. (B and D) Examining the percentage of male

or female genes that were primed similarly showed a significant (*)

bias toward the female pathway, as determined by the hypergeo-

metric test (p-value,0.05), for the first (B), but not the second (D),

method (ns). (E and F) The primed genes for both sexes are

predominantly similarly expressed in progenitors and E12.5

differentiated cells. However, E10.5 may not be the appropriate

starting point for the priming analysis. (G) No primed genes

(identified by removing interstitial/stromal genes) became dimor-

phic between E10.5 and E11.0 (‘‘0’’). Thus, starting the analysis at

E11.0 does not result in the loss of any information. Starting at

E11.0 is also preferable because it is closer to the divergence point.

(H) Between E10.5 and E11.0, 98% of the primed genes were

identically expressed in XX and XY samples at both E10.5 and

E11.0, and 76% of the primed genes were identically expressed in

XX and XY samples at both E11.0 and E11.5 (data not shown).

Of these genes, 16% were changing expression level in the same

way (see I) in both XX and XY cells between E10.5 and E11.0,

whereas only 4% fell in this category between E11.0 and E11.5.

This difference was significant (*), as determined by the

hypergeometric test with a p-value,0.05, and affects how primed

genes are called. This problem is illustrated in (I) by the graphs of

the log-transformed, normalized intensity values from Sf1-EGFP

cells (black) of two genes identified as primed at E10.5, but not at

E11.0. Tpx2 showed significant identical changes in expression in

XX and XY cells between E10.5 and E11.0. A similar pattern was

observed in many other genes that did not reach significance, such

as Ppil5, and so this pattern may be more pervasive than indicated

by the number meeting the significance thresholds shown in H.

This type of expression pattern confounds the analysis when we

compare expression at E10.5 to E12.5 to identify primed genes.

This may be caused by changes in the number of supporting cell

progenitors, or alternatively, the continued transcriptional devel-

opment of the progenitors between E10.5 and E11.0 may establish

the priming program immediately preceding sexual divergence.

For these reasons, we chose to start the analysis at E11.0. The gene

lists for these analyses are provided in Dataset S5.

(TIF)

Figure S6 Overlap of primed genes between the Sf1-EGFP and

Sry-EGFP/Sox9-ECFP data sets. (A) To cross-validate the analysis,

we determined whether genes primed in the Sf1-EGFP data

(removing interstitial/stromal genes, Figure 6E) were also identified

as primed in the Sry-EGFP/Sox9-ECFP data (all genes with a

priming pattern, Figure 5B). Some of the same primed genes were

identified in both data sets (blue). Many more of the Sf1 primed

genes were already sexually dimorphic in the Sry-EGFP/Sox9-ECFP

cells by E11.5 (light and dark green). This is not surprising since

primed genes were already becoming dimorphic at E11.5 based on

the Sf1-EGFP data (Figure S5G). Some of the genes that were

already sexually dimorphic in the E11.5 Sry-EGFP/Sox9-ECFP cells

showed some indication of previous priming in the Sry-EGFP/Sox9-

ECFP data (light green). These genes met the same requirements for

defining a primed pattern outlined in the Materials and Methods,

but rather than being identical at E11.5, the sex for which the gene

was primed had higher expression at E11.5. This pattern is

illustrated in (B) by the graphs of the log-transformed, normalized

intensity values for the Sf1-EGFP (black) and Sry-EGFP/Sox9-ECFP

(blue) cells for the gene Dock4. The error bars are standard error.

Together, these primed or E11.5 dimorphic categories account for

over half of the Sf1-EGFP primed genes, indicating both arrays

showed consistent results for many genes. A number of Sf1-EGFP

primed genes (48%) were not identified as primed or sexually

dimorphic in Sry-EGFP/Sox9-ECFP cells at E11.5 (yellow). This was

expected as probe sets for the two arrays, as well as the cell types

collected, were different. The identification of similar patterns for

the same genes in these two different data sets despite their

differences gives us confidence in the results. The gene lists for these

analyses are provided in Dataset S5F.

(TIF)
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