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Abstract

Epistatic genetic interactions are key for understanding the genetic contribution to complex traits. Epistasis is always
defined with respect to some trait such as growth rate or fitness. Whereas most existing epistasis screens explicitly test for a
trait, it is also possible to implicitly test for fitness traits by searching for the over- or under-representation of allele pairs in a
given population. Such analysis of imbalanced allele pair frequencies of distant loci has not been exploited yet on a
genome-wide scale, mostly due to statistical difficulties such as the multiple testing problem. We propose a new approach
called Imbalanced Allele Pair frequencies (ImAP) for inferring epistatic interactions that is exclusively based on DNA
sequence information. Our approach is based on genome-wide SNP data sampled from a population with known family
structure. We make use of genotype information of parent-child trios and inspect 363 contingency tables for detecting
pairs of alleles from different genomic positions that are over- or under-represented in the population. We also developed a
simulation setup which mimics the pedigree structure by simultaneously assuming independence of the markers. When
applied to mouse SNP data, our method detected 168 imbalanced allele pairs, which is substantially more than in
simulations assuming no interactions. We could validate a significant number of the interactions with external data, and we
found that interacting loci are enriched for genes involved in developmental processes.
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Introduction

The simultaneous perturbation of two epistatically interacting

genes leads to a phenotype that is not expected based on the

phenotypes of the individual genes. Understanding these phenom-

ena is indispensable for explaining multi-factorial traits and

diseases [1]. In addition, epistatic interactions provide important

insights into the functional organization of molecular pathways

[2,3]. Much effort has therefore been put into the development of

methods to discover epistatic interactions, mostly in linkage and

association studies [1,4–10].

Epistasis is always defined with respect to a specific phenotype

and describes a non-additive interaction effect of two genes on that

phenotype. Most gene interaction studies explicitly measure a

phenotype such as growth rate or viability [11–14]. However, one

can also study implicit phenotypes by searching for the over- or

under-representation of certain allele pairs in a given population.

Such allele pairs are examples of Dobzhansky-Müller incompat-

ibilities: they establish a fitness bias in favor of individuals

inheriting the over-represented allele combination [15]. In their

most extreme form such incompatibilities are embryonic lethal.

Genes harboring these alleles are clearly in epistasis, as none of the

alleles alone has a fitness effect. Only the presence of specific allele

pairs in one individual exposes the phenotype. In this context, an

implicit phenotype is a trait that is not explicitly measured in the

sample but whose regulators can still be inferred from the

genotype data.

Whereas several such incompatibilities are known in plants (see

[16] and references therein), only very few allele incompatibilities

have been reported in mammals [17,18]. A small number of

recent studies have explored this idea for the genome-level

identification of epistatic interactions: if a large number of

individuals is genotyped at a large number of genomic positions,

it becomes possible to test all allele pairs for over- and under-

representation in that population [18–20]. For example, [19]

provide a map of distant linkage disequilibrium (LD) in mouse

recombinant inbred lines (RIL) giving some indication about the

distribution of imbalanced allele pair frequencies in the genome.

However, even though some methodological progress has been

made [18], previous studies could hardly identify a significant

number of interactions. The main obstacle is the humongous

number of statistical hypotheses tested when comparing all

markers in a genome against all markers. When correcting for

multiple hypothesis testing one is usually left with very few or even

no significant allele pairs.

Here, we propose to address this problem by exploiting the

additional information gained from studying family trios. We show

that by analyzing a sufficiently large number of individuals with

known family structure it becomes possible to detect substantially

more interactions than what is expected if all markers were

independent.

Our method, called ‘‘Imbalanced Allele Pair frequencies

(ImAP)’’, relies on sequence data only, making it applicable to

the many already available SNP studies without the need for
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additional phenotype measurements. ImAP is based on inspecting

3|3 contingency tables that track the frequencies of all possible

two-locus allele combinations in heterozygous individuals (assum-

ing a diploid genome). The test that we propose is similar to a x2

test in that it compares the observed frequencies in this table to

expected frequencies assuming independence. However, our

version corrects the expected frequencies for confounding factors

such as family structure or allelic drift [21].

In a population of 2,002 heterozygous mice with known family

structure genotyped at 10,168 markers we identify 168 LD block

pairs with imbalanced alleles. Using simulations we can show that

this number is significantly larger than expected under the null

hypothesis even after correcting for multiple hypothesis testing.

The significance of the top scoring interactions between the LD

blocks could be independently confirmed using a large collection

of RIL. The number of significant allele pair imbalances that we

detected is surprisingly large and was not expected based on the

published evidence.

We have made the top 1,464 interactions identified with ImAP

available as Tables S3 and S4.

Results

Overview of the ImAP procedure
The core step of ImAP consists of a x2-type test comparing the

observed frequency of the joint occurrence of a certain diallelic

genotype in one locus together with a certain genotype in a

second locus with the frequency expected based on the genotypes

of the parents under the null hypothesis (i.e. assuming no

epistasis, Figure 1). The two loci are required to be distant

enough from each other in order not to get false positive results

due to local linkage. This results in a score quantifying the

deviation of allele pair frequencies from their expected values that

is already corrected for inherent population structure. Subse-

quently, the significance of the scores is assessed with a

permutation approach using pseudo-controls that are derived

from the genotypes that parents could have transmitted to their

offspring. We apply this framework in two steps: First, we only

analyze genomic blocks with high local LD using representative

markers. In a second step we drill down to individual marker

pairs. To further verify our results, we established a simulation

procedure that mimics the mating structure of the pedigree under

the assumption of independence.

Mouse genotype data
We applied ImAP to search for potential epistatic interactions

using an outbred heterogeneous stock (HS) of mice that was

established by crossing eight inbred lines [22]. We are using the

genotype data of 2,002 individuals that were genotyped at 10,168
markers. Importantly, the pedigree of these 2,002 individuals is

almost completely known. The HS consists of 84 families, some of

which are large, while others are only nuclear families. These

families were derived from 40 mating pairs of mice from the

original stock after more than 50 generations of random mating.

Genotypes were obtained with the Illumina BeadArray platform

achieving call rates of 99:86%, the genotyping accuracy was

greater than 99:9% [22].

After removing individuals with more than 5% missing data, we

were left with 2,000 individuals. In addition, we excluded markers

with more than 5% missing values and/or a minor allele frequency

(MAF) less than 0:1. Since we observed a rather poor quality of the

genotypes on the X chromosome with relatively few markers

passing the quality criteria, we discarded data from this

chromosome altogether. The filtering resulted in 8,091 markers

used for the subsequent analysis.

We did not have to discard any SNPs due to lack of Hardy-

Weinberg equilibrium as is generally done in genome-wide

association studies. Instead, ImAP corrects for the disequilibrium

(see Methods). In the first run of our analysis, 230 out of 1,159
markers had correction factors greater than 1:1 or smaller than

0:9. There are several explanations for the deviation from Hardy-

Weinberg equilibrium, for example natural selection, genetic drift

or segregation distortion [21,23]. Even though it might not be

possible to distinguish the source of disequilibrium, our correction

can be applied anyway.

Testing LD block representatives
When applying ImAP to the HS mouse data, we limited our

analysis to markers residing on different chromosomes in order to

exclude local LD [18]. An alternative approach would have been

to determine local LD first and subsequently apply ImAP to

regions outside local LD. As described in the Methods, we first

applied ImAP to a reduced set of 1,159 markers, one per LD

block.

Figure 2 shows the spatial distribution of the interactions at the

level of LD blocks in a genome-wide map. As expected, most block

pairs do not interact. At a p-value cutoff of 0:0001 we identify 168
interactions between 272 distinct loci (i.e. LD blocks). This p-value

corresponds to an FDR of 0:5 (Benjamini-Hochberg procedure

[24]). Although we did not achieve very low FDR values, they

were still markedly lower than in five simulated data sets. In two

out of these the minimum FDR was above 0:5.

Most of the loci only interact with one other locus, only 10 loci

participate in more than 2 interactions (Figure S5). Not

surprisingly, there are more significant interactions between large

chromsomes with many measured markers than between small

chromosomes (Figure 3). However, we also found markable

differences in the relative number of interactions per chromosome.

Especially chromosomes 2, 12 and 19 incorporate more loci

carrying allelic incompatibilities than other chromosomes. To see

whether the number of interactors per chromosome is different

from what would be expected by chance, we simulated the 168
interacting marker pairs 100,000 times and compared the

distribution of the number of interactors per chromosome to the

observed values. At a nominal 5% significance level, three

chromosomes (2, 7, and 12) differ from their expected values. At

this significance level, we expect less than one chromosome to

Author Summary

Elucidating non-additive (epistatic) interactions between
genes is crucial for understanding the molecular mecha-
nisms of complex diseases. Even though high-throughput,
systematic testing of genetic interactions is possible in
simple model organisms, such screens have so far not
been successful in mammals. Here, we propose a
computational screening method that only requires
genotype information of family trios for predicting genetic
interactions. We tested our framework on a set of more
than 2,000 heterozygous mice and found 168 imbalanced
allele pairs, which is substantially more than expected by
chance. We confirmed many of these interactions using
data from recombinant inbred lines. The number of
significant allele pair imbalances that we detected is
surprisingly large and was not expected based on the
published evidence. Our framework sets the stage for
similar work in human trios.

Imbalanced Allele Pair Frequencies
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differ significantly by chance. Hence, there is significant variation

of the number of interacting LD blocks between chromosomes.

In order to rule out the possibility of false positive findings due

to increased numbers of missing values or small MAF on some

markers, we compared the distributions of missing values and

MAF between block representatives from significant block pairs to

those of non-significant pairs (Figures S3 and S4). There are no

significant differences between the proportion of missing values

(Wilcoxon rank sum test, p-value 0:67). The MAF tends to be even

higher in the significant blocks compared to the other blocks.

Thus, our results are not biased by missing genotypes or

differences in MAF.

The histograms in Figure 4 compare the distribution of the p-

values that we obtained by applying ImAP to the orignal block

representative data with those resulting from five simulations.

While the histograms of the simulated data sets resemble those of

uniformly distributed p-values under the null hypothesis, the

original data show a clear peak in the low p-value range. The

simulated pedigrees contain significantly less interactions with low

p-values than the real data (one-sided Kolmogorov-Smirnov test

p{valuesv10{23). The p-value distribution of the observed

genotypes is also significantly different from a uniform distribution

(one-sided Kolmogorov-Smirnov test, pv10{69). This is not the

case for all but one of the simulations (p{values 0:991, 0:587,
0:994, v10{12, 0:995). Taken together this confirms that there

are more imbalances in allele pair frequencies than expected by

chance.

This difference between the real and simulated data can now be

quantified to make suggestions about the number of true allelic

incompatibilities in the HS mouse population. For example, at

pƒ0:0001 (corresponding to an FDRv0:5) we find between 26
and 58 more significant block pairs in the original data compared

to the simulations.

As can be seen in the inset of Figure 2, each chromosome pair

exhibits only few such interacting pairs that are often surrounded

by less significant markers due to local linkage. To further increase

the resolution in these interesting regions, we performed fine

mapping of all marker pairs in the significant block pairs.

Fine mapping
For the second step of the analysis we chose all LD blocks that

were involved in at least one significant interaction. There might

be one or more interacting markers within each LD block and the

above analysis does not reveal which markers within a region are

Figure 1. Schematic overview of the test procedure. Panel A shows the calculation of the test statistic, panel B depicts the calculation of the p-
values. Family information is used for both parts.
doi:10.1371/journal.pgen.1002463.g001

Imbalanced Allele Pair Frequencies
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involved in the interactions. We repeated the calculation of the test

statistics, null distribution and p-values with all markers in those

blocks to find the SNP pairs with the highest signal in each

significant block pair. This resulted in 1,464 marker pairs with a

p{valuev0:0005 (Tables S3 and S4), since each block pair could

contain more than one significant marker pair. Note that the

interpretation of the newly calculated p-values has to be done with

care since a large number of the tested marker pairs is already

assumed to be interacting (they were chosen from interacting LD

blocks) and because markers inside LD blocks are highly

correlated (i.e. not independent). Therefore, it is difficult to

correct for multiple hypothesis testing. However, we can still use

the p-values to rank the interactions, i.e. to identify the most likely

interacting marker inside each LD block.

Overlap with allele imbalances in RIL data
Only few allele incompatibilites in mouse have been reported so

far [17,18]. We are not aware of any analysis that quantitatively

examines the number of such interactions that can be expected in

the whole genome. An overview of the distribution of allele

imbalances in RIL is given in [19]. The authors inferred the

correlation between locus pairs as a measure for distant LD. The

strains used in this study are partly identical to the progenitors of

the HS stock. Thus, it is reasonable to assume at least partial

overlap of incompatible locus pairs between our study and the RIL

data.

We therefore investigated the distant LD of markers that were

genotyped in the RIL as well as in the HS mice. We downloaded

the genotype data for 322 inbred mouse strains (www.genenet

work.org) and recalculated the R2 as well as the MAF of the

common markers. This allowed us to apply the same quality

constraints (MAFw0:1) to the RIL data as to the HS genotypes.

Moreover, only marker pairs on different chromosomes were

considered. After the filtering, 584 markers constituting 777
informative pairs were used for the analysis.

Figure S6 compares the overall distribution of distant linkage

disequilibrium in the RIL data with that of markers with high

ImAP scores. There is a significant difference between the

Figure 2. Genome-wide map of allele incompatibilities. The heatmap shows the negative log10 p-values of each LD block combination on
different chromosomes. Light red spots show putatively interacting loci. Inset shows an enlargement of chromosome 7 versus chromosome 12.
doi:10.1371/journal.pgen.1002463.g002

Imbalanced Allele Pair Frequencies
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background distribution of R2 of common marker pairs on

different chromosomes and the R2 of the top ImAP pairs (one-

sided Kolmogorov-Smirnov test, p{value 0:0004). Marker pairs

with a significant ImAP score tend to be more in distant LD than

other marker pairs. More specifically, 292 out of the 777 marker

pairs have an absolute correlation above 0:2. Thus, a significant

number of interactions obtained from the HS can independently

be confirmed in a different set of mouse populations.

Functional enrichment
We investigated if the genes mapping to loci that participate in

high ranking interactions are enriched for relevant Gene Ontology

(GO) categories [25]. ImAP detects interactions between markers,

not genes. Thus, in order to perform such analysis we have to

assign gene functions to markers. A conservative solution to this

problem is to assign to a marker mi the functions of all genes

encoded between the flanking markers mi{1 and miz1. If there

actually exists a functional enrichment among genes causing allele

incompatibilities this enrichment will be ‘diluted’ due to this

procedure. However, since we do not know the causal genes a

priory there is no other rigorous way of performing such GO

enrichment. This strategy also prevents a bias in GO enrichment

due to local gene clusters with similar annotation.

We further restricted the enrichment analysis to interacting

pairs whose 3|3 table contained exactly one cell with a zero

entry. This corresponds to locus pairs where one allele pair

combination was not observed at all in the sample and can thus be

assumed to be lethal. We reasoned that genes involved in such an

interaction have functions related to organism development. The

mapping of genes and their associated GO terms to these markers

resulted in 1,314 markers having at least one GO term assigned to

them. Seventy three of these markers are involved in one of the

significant interactions.

The enrichment test was conducted using the topGO algorithm

[26]. An advantage of topGO is that it corrects for multiple

hypothesis testing, particularly taking into account the nested

structure of the GO tree. Since the multiple hypothesis testing

correction is inherent in the algorithm, the authors suggest to use

the unadjusted p-values as a ranking criterion. We call all terms

significant with a p{valuev0:01 based on the ‘‘weighting’’

algorithm of topGO.

The top ranking GO biological process terms for the original

data as well as for an exemplary simulation are shown in the

Supporting Material (Tables S1 and S2). We found more

significant and more relevant GO terms in the original data

compared to the simulation. As expected, many of the significant

GO terms are related to developmental processes such as germ cell

layer development and development of brain, lung and epitheli-

um. A lot of interesting terms had p-values just above the threshold

of 0:01 (e.g. stem cell maintenance (p~0:013), anterior/posterior

axis specification (p~0:021) or determination of left/right

symmetry (p~0:032)). This analysis shows that markers partici-

pating in interactions are enriched for relevant GO categories.

One might also expect that pairs of interacting markers share

Figure 3. Number of interactions per autosome pair. Results are based on the 168 significant LD block pairs involving 272 loci. The barplot on
the right shows the average number of interactions per LD block for each chromosome. Chromosomes 2, 12, and 19 show the highest participation in
interactions while the fewest interactions per LD block are on chromosome 17.
doi:10.1371/journal.pgen.1002463.g003

Imbalanced Allele Pair Frequencies
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similar functions. However, we did not observe that interacting

markers share GO categories more often than expected by chance

(data not shown).

Comparison of interaction profiles
Epistatic interactions affecting the viability of an organism often

bridge parallel pathways [2,3]. The assumption underlying this

between-pathway model is the existence of functional redundancy

among pathways. A decrease in functionality of only one of two

genes operating in two redundant pathways still allows for

regulation of the downstream process through the second

alternative pathway. However, if both genes are dysfunctional,

both pathways will be disrupted, which may lead to a severe

phenotype (i.e. an epistatic interaction between the two genes).

Therefore, two genes in the same pathway should share some of

their interaction partners, namely those in a functionally similar

pathway [27]. Thus, the interaction profiles of genes in the same

pathway should be correlated (Figure 5A).

Here, we are interested in markers having a significant number

of common interactors. In order to find such groups of markers

with similar interaction profiles, we compared the marker

interaction profiles from the ImAP analysis using the congruence

score [28]. It is calculated as the negative log10 transformed p-

value of a hypergeometric test for the number of shared

interaction partners. Thus, the score relates the number of

interactions shared between two markers to the total number of

interactions each single marker participates in [28].

Since here we are analyzing interaction profiles (i.e. all

interactions of a given marker rather than single interactions) we

chose a less stringent cutoff value for interacting block pairs

(pv0:001). Even though using the more stringent cutoff of 0:0001
also yielded more correlated interaction pairs in the real data than

in the simulations, choosing a higher cutoff increases the difference

between real and simulated data. The fraction of block pairs with

congruence scores w1 andw2 is higher in the original data than

in the five simulations (Figure S7). This difference between the

Figure 4. ImAP p-value distribution. Distribution of the p-values of the original data (black) and five simulations under the null hypothesis of no
allelic incompatibilities (grey). The y-axis is concentrated on the interesting area of high density. The inset shows a zoom on the small p-values in
log10 scale.
doi:10.1371/journal.pgen.1002463.g004

Imbalanced Allele Pair Frequencies
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proportions is significant in four out of five cases for a significant

congruence score (w2, one{sided x2 test p{values v10{5,
0:239, v10{15, v0:0001 andv10{15). Thus, interaction pro-

files are more consistent in the real data compared to our

simulations.

Using gene expression data to prioritize candidate genes
An important and nontrivial step in any genetic mapping study

is to identify the causal genes encoded in the significant loci.

Additional, independent genomic information has been widely

used to prioritize genes in a genetic region of interest [29–31].

Here, we are using expression data for prioritizing candidate

genes at interesting loci. It is likely that several of the allele

incompatibilities are caused through functionally relevant changes

of gene expression between the minor and major alleles at the two

loci [32]. We used expression data from three tissues (lung, liver,

hippocampus) measured in a subset of the HS mice (257, 273 and

468 individuals, respectively). For each marker we considered all

genes encoded in the region defined by the flanking markers. We

then filtered for genes showing significant expression differences

between individuals carrying the major versus minor alleles. This

analysis was performed independently for each marker using one-

way ANOVA with the three possible genotypes as levels. Each

genotype had to be observed in at least 5 individuals.

Among the 1,464 top scoring ImAP pairs, we found 204, 113
and 122 pairs where each locus contained at least one differentially

expressed gene (p{valuev0:05) in the hippocampus, liver and

lung data sets, respectively. 23 locus pairs were associated with the

same differentially expressed genes in all three tissues.

Among the 525 marker pairs with a congruence score greater

than 2 there are 68, 25 and 43 locus pairs containing at least one

differentially expressed gene in the hippocampus, lung and liver

Figure 5. Correlated interaction profiles. (A) Schematic showing relationship between epistatic interactions and molecular pathways. The genes
x and y share three allele incompatibilities with genes from a parallel pathway. In the schematic interaction matrix on the right these shared
interactions lead to correlated interaction profiles (rows are correlated; dashed line). (B) Example of two loci on chromosomes 13 and 19 sharing a
common interacting locus on chromosome 12. The position of the loci on the chromosomes is indicated by red bars. The putatively causal genes are
written below the loci. Arrows indicate interactions with ImAP p-values v0:0005, the dashed line indicates a high congruence score (w2).
doi:10.1371/journal.pgen.1002463.g005

Imbalanced Allele Pair Frequencies
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data, respectively. Figure 5B shows an example of such a marker

pair. The putatively causal genes Fgf10 and Btrc showed

differential expression (ANOVA p{valuev10{6) in the hippo-

campus. The two genes are critically involved in the development

of several tissues such as lung, mammary gland, tooth or

telencephalon [33–37]. This is consistent with the GO terms we

found to be enriched among the top scoring ImAP pairs (Table

S1). Btrc is an inhibitor of Sonic Hedgehog (Shh) signaling, which is

involved in the development of the lung and the telencephalon

[38]. Both, Fgf10 and Shh signaling are involved in development of

anatomical structures and are known to influence each other [39].

According to our gene expression analysis, the minor allele of

Fgf10 leads to a reduced expression of this gene while individuals

carrying the minor allele of Btrc show a higher expression than

individuals with the major allele. Since Btrc is an inhibitor of Shh

signaling, this implies that both minor alleles reduce Hedgehog

signaling.

The Btrc and Fgf10 loci share 13 ImAP interactions. One of them

involves a locus on chromosome 12 containing, among others, the

homeobox transcription factor Nkx2.1, which is indispensable for

lung and telencephalon development. Depending on the cell type

and developmental stage Nkx2.1 either interacts with the Fgf10 and

Shh pathway [38,40] or it independently acts in parallel [41]. Thus,

the reduced activity of Hedgehog signaling in carriers of the minor

Btrc or Fgf10 alleles may be rescued by a fully functional Nkx2.1. The

ImAP analysis suggests that the combination of the minor allele at

the Nkx2.1 locus together with minor alleles at either the Btrc or

Fgf10 locus leads to an embryonic lethal phenotype, presumably due

the loss of the buffering effect of Nkx2.1.

Discussion

We present a new approach to infer epistatic interactions on a

genome-wide scale in family data using sequence information only.

The method scans all marker pairs in the genome for deviation

from the expected allele pair frequencies resulting in a list of

putative pairs featuring an allele incompatibility. Relying on

sequence data only is an advantage compared to existing methods

for the inference of gene-gene interactions, since the approach can

readily be applied to existing SNP data. There is no need for

resource- and cost-intensive phenotype measurements.

Regression and x2 methods have been proposed in the past for

the identification of epistatic interactions [1,7,9,10,42,43] and the

two approaches have been shown to be interconvertible [44]. We

chose a x2-based approach, which makes the fewest assumptions

about the underlying genetic model [45]. Which ever way the

detection of allele incompatibilities is performed, the key notion is

to implement means for accounting for the confounding factors

and to remove single-marker effects (e.g. leading to a deviation

from Hardy-Weinberg equilibrium). Only after accounting for

these confounding factors we got an appreciable number of

significant allele incompatibilities.

We identified substantially more interacting loci than expected

by chance, which is first evidence that we detect true ‘signal’.

Further, we could show that interacting marker pairs are enriched

for genes involved in developmental processes and a significant

number of interactions could be validated using independent

external data. Due to the very large number of pairs tested, finding

a large number of interactions with low p-values even in the

simulations is expected. However, at low p-values we observed

significantly more interactions in the original data than in any of

the simulations; e.g. at pƒ0:0001 we found at least 26 interactions

more than in any of the simulations. Considering that so far

virtually no allele incompatibilities between mouse strains were

reported, this is a surprisingly large number. Suitable statistical

tools for the detection of allele incompatibilities at a genomic scale

did not exist so far. Hence, this study presents first evidence about

the extent of allele incompatibilities in model populations such as

the HS. Although the number of interactions we identified might

not seem immense, it partly explains the difficulties faced when

breeding recombinant inbred lines [19]. For example, during the

generation of the Collaborative Cross, a multiparental recombi-

nant inbred strain panel, 198 of the 650 initial lines were lost

during the first three to five generations of inbreeding [46]. ImAP

helps better understand these issues and it can reveal potential

biases in the breeding process that might be introduced due to

allele incompatibilities.

Future work should also include haplotype information. Local

haplotypes have been inferred for the HS population in terms of

probability of inheritance from any of the eight founder strains

[47]. I.e. haplotypes are expressed as 8{dimensional vectors of

probabilities. Consideration of these haplotypes would consider-

ably increase the complexity of the analysis (thereby also

increasing the number of hypotheses tested), but it might further

improve the accuracy.

An epistatic interaction is always defined with respect to a

specific phenotype. In this study the phenotype is implicit, hidden.

Indeed, looking for allele pairs that are underrepresented in the

HS population reveals the genotype of the non-existing individ-

uals. Therefore, the hidden phenotypes should relate to any

biological processes affecting the fertilisation, the development or

the viability of an individual and thus prevent its appearance in the

population. Interestingly, top scoring marker pairs are enriched for

genes involved in these expected phenotypes.

It is not immediately obvious how our findings translate to

human populations [48,49]. Although we are working with

outbred mice, they were derived from 8 genetically distinct inbred

strains. These founder strains differ at at least 311,647 genomic

positions (SNPs and structural variations) [50]. It is likely that

many of the incompatibilities that we see in the HS developed in

the inbred founder strains used for establishing the HS. Even

though allele incompatibilities cannot evolve in mixing popula-

tions, also human races have been in isolation for more than 100
generations [51–53]. Hence, it is possible that an appreciable

number of incompatibilities exist in the human species. [54] have

shown that incompatibilities in yeast can manifest already after

relatively few (approximately 500) generations. Again, also that

finding is not easily transfered to mammals, as the speed of such

process will depend on several factors, including recombination-

and mutation rates. As the number of family trios that is being

fully sequenced increases [55,56], we expect that our framework

will be applicable to human populations within the next years to

address these questions.

Methods

The ImAP test statistic
The calculation of the test statistic can be divided into several

steps which are depicted in Panel A of Figure 1.

1. Let O be the set of all individuals for which we have genotype

information on the individuals themselves and their parents. This

set might differ between markers due to missing values. Hence, for

each marker only these trios are taken into account for which there

are no missing values in the genotypes of both the parents and the

offspring.

2. For each individual in O, calculate the probability to inherit

each genotype based on the genotypes of the parents. This

calculation is based on Mendelian laws.
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Let Xij(gm)[f0,1g be the genotype indicator of a diploid

individual i[O on marker j. gm, m~1,2,3, can take one of the

three values (AA), (Aa), (aa), where A is the major allele and a the

minor allele on marker j. X̂Xij(gm) is the corresponding expected

genotype probability.

The expected genotype of individual i on marker j is derived

from the genotypes of the parents under the assumption of equal

chances of inheriting each of the two possible alleles from each of

the parents. The resulting probabilities for all possible parental

genotype combinations are shown in Table 1.

3. Correct the expected genotypes for possible confounding

factors such as segregation distortion. There might be a preference

in the inheritance of a certain genotype on one marker in the

population which is independent of interaction effects, e.g. if this

genotype leads to increased fitness. In order to correct the

expected frequencies for allele selection that is independent of

other loci we multiply each individual’s expected genotype by the

ratio of the sample-wide observed and expected frequencies for the

corresponding marker (based on all samples):

X̂X
0
ij(gm)~X̂Xij(gm):

X
o[O

Xoj(gm)

X
o[O

X̂X oj(gm)
: ð1Þ

Normalize the corrected expectation so that the probabilities for

each marker sum up to 1:

X̂X
adj
ij (gm)~

X̂X
0
ij(gm)X

k[f1,2,3g
X̂X
0
ij(gk)

: ð2Þ

This guarantees an adjustment of expected allele frequencies in

cases where the observed frequency of a marker in the population

deviates from the theoretically expected values.

4. Next, the observed and expected number of times each

combination of genotypes of two markers appears, can be inferred.

Let Gjk(gm1
,gm2

) be the observed frequency of the genotype

combination (gm1
,gm2

) on markers j and k, ĜGjk(gm1
,gm2

) the

corresponding expected frequency. They are obtained by

summing over all individuals i[O:

Gjk(gm1
,gm2

)~
X
i[O

Xij(gm1
)~1 ^ Xik(gm2

)~1
� �

, ð3Þ

ĜGjk(gm1
,gm2

)~
X
i[O

X̂X ij(gm1
):X̂X ik(gm2

): ð4Þ

Using the product of the marginal probabilities of each single

marker genotype for calculating the probability of the genotype

combination mimics the assumption of no epistatic effects under

the null hypothesis. This step results in the 3|3 tables in the boxes

‘‘observed genotype combination’’ and ‘‘expected genotype

combination’’ in Figure 1.

5. Finally, a x2-like test statistic can be obtained by first

calculating the squared difference of observed and expected

frequencies for each genotype combination (gm1
,gm2

) of two

markers j and k divided by the corresponding expected frequency.

The final score for a marker pair is the sum of these values over all

nine possible genotype combinations,

x2
jk~

X
m1,m2[f1,2,3g

(Gjk(gm1
,gm2

){ĜGjk(gm1
,gm2

))2

ĜGjk(gm1
,gm2

)
: ð5Þ

Permutation p-values
The significance of the imbalances observed for each marker

pair is assessed with a permutation approach based on pseudo-

controls. This approach has already been adopted in related

problems [57].

The general outline of the procedure is shown in Figure 1B. For

each parent-child trio we infer the four genotypes that the child

could have inherited at each marker assuming independence.

These are then randomly combined to pseudo-offspring genomes

in which each of the possible 16 marker pair - genotype

combinations could in principle appear. Calculations were done

using the R package trio [58].

We use these pseudo genotypes to assess the significance of the

test statistics of each marker pair by calculating an empirical

marker-specific null distribution based on 10,000 permutations.

The permutation p-value is calculated as the fraction of pseudo-

control test statistics exceeding the observed score. FDR is

obtained with the Benjamini-Hochberg approach [24].

In an earlier version of our analysis pipeline we calculated the p-

values based on the x2 distribution. The degrees of freedom were

obtained by using the actual number of genotypes present in the

population for each marker pair, jM1j and jM2j. The degrees of

freedom are then calculated as dfM1M2
~(jM1j{1):(jM2j{1).

However, we found that the distribution of these parametric p-

values differed conditional on the minor allele frequencies (MAF)

of the markers, as shown in Figure S1. The x2 distribution based p-

values tend to be too conservative when the MAF is small. The

underlying cause is a shift in the distribution of the test statistics

depending on the MAF (Figure S2). This phenomenon was greatly

reduced when we changed to the permutation based p-value

calculation as can be seen in Figure S1.

Fine mapping of interesting loci
In order to speed up the calculations but still retain an

acceptable resolution of loci with potentially interacting genes, we

pursued the following strategy.

Table 1. Expected genotype probabilities.

Offspring

Parent 1 Parent 2 AA Aa aa

AA AA 1 0 0

AA Aa 0.5 0.5 0

AA aa 0 1 0

Aa Aa 0.25 0.5 0.25

Aa aa 0 0.5 0.5

aa aa 0 0 1

Expected genotype probabilities in the offspring for each possible allele
combination of the parents.
doi:10.1371/journal.pgen.1002463.t001
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In a first run of ImAP we split the data into blocks of high

linkage disequilibrium (LD). This is again done with the package

trio, which provides an algorithm to estimate LD block borders

in parent-offspring data. Afterwards, one representative marker

is chosen randomly among all markers with a minimum number

of missing values in each LD block and the test is applied to all

possible combinations of these representatives on different

chromosomes. The restriction to markers on different chromo-

somes is applied to rule out false positive results due to local

linkage disequilibrium. Subsequently, we identify all block pairs

which were assigned an FDR below 0:5 and repeat the analysis

using all markers from those blocks. In this way we restrict

testing of individual marker pairs to genomic regions that are

suggestive for interactions. Finally, we select the highest scoring

marker pairs from each locus pair as the ‘interacting pairs’. This

two-step approach allows for an accurate mapping of epistatic

interactions over the whole genome by simultaneously restricting

the number of tests and the computing time to a more

reasonable level.

Pedigree simulation
The pseudo-control data was used to compute p-values. In

order to also correct for multiple hypothesis testing and for testing

for any other possible biases in our data we simulated the mating

process in the mouse population assuming independence of the

markers but adhering to the original pedigree structure.

The simulation starts with the first generation of mice for

which we have genotype information (F0 generation). Using

fastPHASE [59] we infer the haplotypes of these individuals.

fastPHASE is based on the notion that haplotypes cluster into

locally restricted groups which can be described using a Hidden

Markov model. As opposed to other methods, fastPHASE

assumes that due to recombination events the group membership

changes continuously across the chromosome and not only at the

block borders.

Obtaining the haplotypes of the F0 generation allows us to

initialize the mating process. For each mother and father of an

F1 individual we start with randomly choosing whether they

pass on the maternal or the paternal allele of the first marker on

a chromosome to the offspring. Then, using either general or

sex-specific recombination rates (Supplementary Material in

[22]), we sample whether the second marker is inherited from

the same chromosome or whether a recombination took place

during meiosis. This procedure is continued until a complete

chromosome is assembled that is passed on to the offspring.

The whole process is repeated until all generations are

simulated.

Subsequently, we randomly add 0:01% genotyping errors

(making sure we do not introduce any Mendelian errors) as well

as the same missing values as in the original data.

Since the simulation only accounts for local linkage but not for

any other influences on allele frequencies, these data should not

contain any true gene-gene interactions. The proportion of false

positive findings should be comparable to the original data due to

the same error rates and missing values.

Supporting Information

Figure S1 Permutation p-values vs analytical p-values based on

the x2 distribution. The colour code shows different MAF of the

markers. The smaller the MAF, the more the analytical p-values

are conservative.

(PDF)

Figure S2 Exemplary distributions of the test statistics depend-

ing on the MAF of the markers. The scores follow a x2 distribution

with increasing degrees of freedom for larger MAF.

(PDF)

Figure S3 Cumulative distribution functions of the proportion of

missing values of representative markers of significant and non-

significant LD block pairs.

(PDF)

Figure S4 Cumulative distribution functions of the MAF of

representative markers of significant and non-significant LD block

pairs.

(PDF)

Figure S5 Number of interactions for each of the 272 loci

involved in the 168 LD block interactions with pƒ0:0001. 6, 3
and 1 loci have 3, 4 and 5 interactors, respectively.

(PNG)

Figure S6 Cumulative distribution function of the overall distant

linkage disequilibrium in the RIL (grey) and RIL marker pairs

with ImAP p-value ƒ0:0001 (black).

(PDF)

Figure S7 Fraction of congruence scores w1 and w2 for

interaction profiles in original data and five simulations.

(PDF)

Table S1 GO enrichment of top ranking marker pairs in the

original data. All genes between the flanking markers are

considered.

(PDF)

Table S2 GO enrichment of top ranking marker pairs in the

simulated data. All genes between the flanking markers are

considered.

(PDF)

Table S3 Top ranking ImAP interactions. The first two columns

contain the IDs of all 1,464 marker pairs with a p-value ƒ0:0001
after fine mapping of LD blocks. The third column contains the

corresponding x2 score. The last two columns contain the ImAP p-

value and FDR of the marker pair.

(XLSX)

Table S4 Mapping from marker IDs to Ensembl gene IDs. For

each marker mi in the first column all genes that are located

between its flanking markers mi{1 and miz1 are given in the

second column. Gene information is based on Ensembl Build 37

from November 2011.

(XLSX)

Acknowledgments

We thank Richard Mott (University of Oxford, UK) for help with the HS

genotyping data. We thank the Center for High-Performance Computing,

TU Dresden, for providing computational resources.

Author Contributions

Conceived and designed the experiments: AB MA. Analyzed the data: MA.

Wrote the paper: AB MA. Implemented the statistical methods: MA.

References

1. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical

methods to detect it in humans. Human molecular genetics 11: 2463.

2. Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using

protein networks. Nature Biotechnology 23: 561–566.

Imbalanced Allele Pair Frequencies

PLoS Genetics | www.plosgenetics.org 10 February 2012 | Volume 8 | Issue 2 | e1002463



3. Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic

maps: from genomes to interaction networks. Nature Reviews Genetics 8:
699–710.

4. Hoh J, Ott J (2003) Mathematical multi-locus approaches to localizing complex
human trait genes. Nature Reviews Genetics 4: 701–709.

5. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting
multiple loci that inuence complex diseases. Nature Genetics 37: 413–417.

6. Phillips PC (2008) Epistasis - the essential role of gene interactions in the
structure and evolution of genetic systems. Nature Reviews Genetics 9: 855–867.

7. Cordell HJ (2009) Detecting gene-gene interactions that underlie human
diseases. Nature Reviews Genetics 10: 392–404.

8. An P, Mukherjee O, Chanda P, Yao L, Engelman CD, et al. (2009) The
challenge of detecting epistasis (GxG interactions): Genetic analysis workshop

16. Genetic Epidemiology 33: S58–S67.

9. Liu T, Thalamuthu A, Liu J, Chen C, Wang Z, et al. (2011) Asymptotic

distribution for epistatic tests in casecontrol studies. Genomics 98: 145–151.

10. Wang Z, Liu T, Lin Z, Hegarty J, Koltun WA, et al. (2010) A general model for

multilocus epistatic interactions in Case-Control studies. PLoS ONE 5: e11384.

doi:10.1371/journal.pone.0011384.

11. Beltrao P, Cagney G, Krogan NJ (2010) Quantitative genetic interactions reveal

biological modularity. Cell 141: 739–745.

12. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The

genetic landscape of a cell. Science 327: 425–431.

13. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, et al. (2005)

Exploration of the function and organization of the yeast early secretory
pathway through an epistatic miniarray profile. Cell 123: 507–519.

14. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, et al. (2001)
Systematic genetic analysis with ordered arrays of yeast deletion mutants.

Science 294: 2364–2368.

15. Orr HA (1996) Dobzhansky, Bateson, and the genetics of speciation. Genetics

144: 1331–1335.

16. Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential

gene-ow barrier in plant species. Nature Reviews Genetics 8: 382–393.

17. Montagutelli X, Turner R, Nadeau JH (1996) Epistatic control of non-

Mendelian inheritance in mouse interspecific crosses. Genetics 143: 1739.

18. Payseur BA, Place M (2007) Searching the genomes of inbred mouse strains for

incompatibilities that reproductively isolate their wild relatives. Journal of
Heredity 98: 115–122.

19. Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant

inbred mice: highresolution consensus maps for complex trait analysis. Genome
Biol 2: 10046.

20. Lawrence R, Day-Williams AG, Mott R, Broxholme J, Cardon LR, et al. (2009)
GLIDERS–a web-based search engine for genome-wide linkage disequilibrium

between HapMap SNPs. BMC Bioinformatics 10: 367.

21. Griffiths A (2000) An introduction to genetic analysis. New York: W.H.

Freeman, seventh edition.

22. Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, et al. (2006) A High-

Resolution single nucleotide polymorphism genetic map of the mouse genome.
PLoS Biol 4: e395. doi:10.1371/journal.pbio.0040395.

23. McLean JR, Merrill CJ, Powers PA, Ganetzky B (1994) Functional identifuca-
tion of the segregation distorter locus of Drosophila melanogaster by germline

transformation. Genetics 137: 201–209.

24. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J Roy Statist Soc 57: 289–300.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nature Genetics 25: 25–29.

26. Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional
groups from gene expression data by decorrelating GO graph structure.

Bioinformatics 22: 1600–1607.

27. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, et al. (2008)
Conservation and rewiring of functional modules revealed by an epistasis map in

fission yeast. Science 322: 405–410.

28. Ye P, Peyser BD, Pan X, Boeke JD, Spencer FA, et al. (2005) Gene function

prediction from congruent synthetic lethal interactions in yeast. Molecular
Systems Biology 1: E1–E12.

29. Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an efficient
method for interpreting eQTL associations using protein networks. Molecular

Systems Biology 4: 162.

30. Lage K, Karlberg EO, Strling ZM, Olason PI, Pedersen AG, et al. (2007) A

human phenomeinteractome network of protein complexes implicated in genetic
disorders. Nature Biotechnology 25: 309–316.

31. Lee S, Dudley AM, Drubin D, Silver PA, Krogan NJ, et al. (2009) Learning a
prior on regulatory potential from eQTL data. PLoS Genet 5: e1000358.

doi:10.1371/journal.pgen.1000358.

32. Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, et al. (2005)

Integrating genotypic and expression data in a segregating mouse population to

identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits.

Nature Genetics 37: 1224–1233.
33. Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung

morphogenesis. Physiological Reviews 87: 219–244.

34. Kudo Y, Guardavaccaro D, Santamaria PG, Koyama-Nasu R, Latres E, et al.
(2004) Role of f-box protein betaTrcp1 in mammary gland development and

tumorigenesis. Molecular and Cellular Biology 24: 8184–8194.
35. Pedchenko VK, Imagawa W (2000) Pattern of expression of the KGF receptor

and its ligands KGF and FGF-10 during postnatal mouse mammary gland

development. Molecular Reproduction and Development 56: 441–447.
36. Miletich I, Cobourne MT, Abdeen M, Sharpe PT (2005) Expression of the

hedgehog antagonists rab23 and Slimb/betaTrCP during mouse tooth
development. Archives of Oral Biology 50: 147–151.

37. Pispa J, Jung HS, Jernvall J, Kettunen P, Mustonen T, et al. (1999) Cusp
patterning defect in tabby mouse teeth and its partial rescue by FGF.

Developmental Biology 216: 521–534.

38. Gulacsi A (2006) Shh maintains nkx2.1 in the MGE by a Gli3-Independent
mechanism. Cerebral Cortex 16: i89–i95.
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