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Abstract

The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail,
but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture
information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered
in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results
of this ‘‘chromosome painting’’ can be summarized as a ‘‘coancestry matrix,’’ which directly reveals key information about
ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost
completely captures the information used by both standard Principal Components Analysis (PCA) and model-based
approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix
combines information across successive markers to increase the ability to discern fine-scale population structure using PCA.
In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which
offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of
separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for
938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local,
and family scales. We present multiple lines of evidence that, while many methods capture similar information among
strongly differentiated groups, more subtle population structure in human populations is consistently present at a much
finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software
used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.
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Introduction

Technologies such as high density genotyping arrays and next

generation resequencing have recently facilitated the production of

an enormous quantity of data with which to investigate genetic

relationships in humans and in other organisms. These data have

the potential to provide a new level of insight into patterns of

dispersal and mating, and recent and ancient historical events.

However there are challenges, in terms of computational burden

and statistical modelling, that are yet to be fully addressed. Two of

the most popular approaches to investigate population structure

using genetic data are exemplified by principal components

analysis (PCA) [1], which is often regarded as a non-parametric

approach, and STRUCTURE [2], based on explicitly modelling

population structure. It is common to apply both approaches to

the same dataset, in order to provide a useful summary of the basic

features of the data. The PCA approach is based on analysing a

matrix (which can be defined in several different ways, e.g. [3–5])

whose entries quantify the genetic similarity between pairs of

individuals. The principal components (PCs) of this matrix thus

represent directions in sample space that maximally explain the

observed pattern of genetic similarity. Visualisation of key patterns

of structure in the data can be achieved by plotting successive PCs:

clusters of individuals can be interpreted as genetic populations,

while admixture of two populations results in sets of individuals

lying along a line [6], although other historical events can also

produce identical PC signals [4] and other issues can also

complicate the interpretation of PCs [4,7].

Model-based methods attempt to more directly reconstruct

historical events. In the simplest version of the STRUCTURE

approach [2], individuals are assumed to come from one of K

discrete populations. Population membership and allele frequen-

cies in each population are jointly estimated from the data via a

Bayesian modelling framework. A group of very widely used (e.g.

[8–10]) current approaches powerfully extend this model by

allowing individuals be admixed, i.e. to have ancestry from more

than one population (e.g. [2,11–17]). Individuals are assigned

ancestry vectors, representing the proportion of their ancestry that
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comes from each of the K populations. Although powerful, these

approaches have drawbacks – determination of K is difficult

despite some technical advances [18,19], and typically Kv10 is

required for satisfactory convergence, due to issues of computa-

tional cost and the presence of distinct local optima, affecting even

the fastest methods such as ADMIXTURE [15]. Further, little

information is provided about the relationships between inferred

populations, though observing how results change with varying K
can aid insight.

The central issue that we address in this work is the fact that

both PCA, and the most popular STRUCTURE-like approaches

analyse single mutations individually, and do not use information

about the relative positions of these mutations in the genome.

However the advent of high-density variation data, together with

both computational [20–22] and experimental [23,24] advances in

techniques for haplotype phasing offer new opportunities for

researchers investigating ancestry, due to the possibility of

exploiting correlated variation patterns, at sets of closely positioned

markers. Markers on the same chromosome are inherited together

unless separated by recombination. At a population level, this

results in linkage disequilibrium (LD) between close markers that

reflects a shared history of descent, invalidating the independence

assumption. Haplotype based analysis has the potential to harness

this information [25–31], but there is as yet no accepted paradigm

for how to utilise shared haplotypes to infer population structure.

Methods to explore admixture have been developed that aim to be

robust to the presence of LD [14,32,33], or directly model LD

patterns [34] to identify ancestry segments. However, the latter

model-based approach requires representative individuals from

the admixing populations to be specified in advance, so does not

represent a framework for identifying population structure.

Here we develop and apply both non-model and model based

approaches, analogous to the PCA and STRUCTURE approach-

es described above, that aim to use much of the information

present in haplotype structure. Both approaches are based on

analysing the same matrix, which we call the coancestry matrix.

Although our main aim is to introduce a framework to exploit LD

information where present, our methods can also treat markers

independently as a limiting case. We show theoretically and in

practice that in this setting, the coancestry matrix approximately

contains all the information used by both PCA, and the model-

based STRUCTURE-like approaches, unifying these apparently

different approaches. Moreover, we show in some settings our

model based approach can be more sensitive than either

STRUCTURE or ADMIXTURE, and is able to reliably infer

over 100 populations simultaneously. When dense marker sets are

available, our haplotype-based algorithm performs substantially

and uniformly better than all methods treating markers indepen-

dently. We illustrate our approach using the Human Genome

Diversity Panel (HGDP) dataset, comprising over 600,000 markers

typed on 938 individuals. Worldwide, we show that the use of

haplotype information improves separation of groups, and reveals

differences in genetic ancestry even among individuals coming

from the same labelled population, and not detectable by the non-

LD-based equivalent approaches.

Methods

Chromosome painting
Our approach attempts to capture the most relevant genealog-

ical information about ancestry in compact form. We construct

and motivate the approach using an example (Figure 1). At each

locus within a chromosome, the sample history can be represented

by a genealogical tree (Figure 1A), whose structure changes along

the genome reflecting ancestral recombination events. First

considering a single haplotype, the tree relationship to the other

haplotypes is fully represented by the most-recent common

ancestor (MRCA) time with each. For every individual haplotype,

at each locus there exists one or more closest relative(s), which we

denote their ‘‘nearest neighbour’’ haplotype(s) in the sample.

Conceptually, we can view our haplotype as the ‘recipient’ of

genetic material from a nearest neighbour ‘donor’ haplotype, who

donates a contiguous DNA segment, bounded by recombination

sites altering the ancestral relationship between the haplotypes

(Figure 1B–1C), and thus beginning new segments, from a

different ‘donor’. From the point of view of our haplotype, the

chain of nearest neighbours along the genome corresponds to the

most recent genealogical events, and so we assume it captures most

of the information on their current population structure that would

be provided by the complete genealogy at the locus. Further, we

also assume that different nearest neighbour segments (which

correspond to distinct coalescence events in regions unbroken by

recombination) provide reasonably independent information on

the ancestry of the individual. Finally, we aim to capture

information on the joint structure of the entire dataset by

constructing donor-recipient relationships for every haplotype, in

the same way.

Because the set of genealogies consistent with a given dataset is

complex to describe, and typically huge, approximate methods are

required in order to make inference computationally practical

[21,22]. We use one such method, the Hidden Markov Model

(HMM) introduced by Li and Stephens [35], which explicitly

reconstructs the chromosome of a ‘recipient’ individual as a series

of chunks from the other ‘donor’ individuals in the sample, using

information on the types of the recipient, and potential donors, at

each mutation. We assume our dataset consists of biallelic

markers. We do not order the haplotypes in the same manner as

the ‘Product of Approximate Conditionals’ likelihood used by Li

and Stephens. Instead, we use an approach in which a single

haplotype within an individual is reconstructed using the

haplotypes from all other individuals in the sample as potential

donors. This process is repeated for every haplotype in turn, so

every individual is ultimately reconstructed in terms of all the other

Author Summary

The first step in almost every genetic analysis is to
establish how sample members are related to each other.
High relatedness between individuals can arise if they
share a small number of recent ancestors, e.g. if they are
distant cousins or a larger number of more distant ones,
e.g. if their ancestors come from the same region. The
most popular methods for investigating these relation-
ships analyse successive markers independently, simply
adding the information they provide. This works well for
studies involving hundreds of markers scattered around
the genome but is less appropriate now that entire
genomes can be sequenced. We describe a ‘‘chromosome
painting’’ approach to characterising shared ancestry that
takes into account the fact that DNA is transmitted from
generation to generation as a linear molecule in chromo-
somes. We show that the approach increases resolution
relative to previous techniques, allowing differences in
ancestry profiles among individuals to be resolved at the
finest scales yet. We provide mathematical, statistical, and
graphical machinery to exploit this new information and to
characterize relationships at continental, regional, local,
and family scales.

Inference of Population Structure
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individuals. We interpret the donor of each chunk as representing

a nearest neighbour of the recipient haplotype for that stretch,

with each chunk representing a different nearest neighbour

relationship. In the simulated setting shown in Figure 1A,

haplotype 1 actually shares a common ancestor 80 generations

ago with haplotype 5 (orange) from positions 0 to 284, and 150

generations ago with haplotype 4 (pink) from positions 421 to 750.

In between, there is a stretch where there are multiple nearest

neighbour haplotypes (Figure 1C), with the shared ancestor further

back in the past. Figure 1D shows three sample reconstructions -

or ‘paintings’ of the haplotype, produced by the Li and Stephens

algorithm. The algorithm recovers the true genealogical relation-

ships reasonably well, with some uncertainty about boundary

regions, and with regions with multiple nearest neighbour

relationships showing sampling variability. In addition to produc-

ing specific realizations of the painting process, the powerful toolkit

associated with HMMs makes it possible to calculate expectations

of which haplotype acts as donor to haplotype 1 as a function of

position, over an infinite number of such paintings (Figure 1E).

Figure 1F shows the expected number of chunks x1j inferred from

each donor j to haplotype 1, given the data. Extending this across

all individuals, the matrix xij formed by all recipient rows is called

the ‘coancestry’ matrix, and is summed over chromosomes. This

matrix forms the basis of our inference procedure, motivated by

our assumption that chunks provide independent information

about ancestry. Intuitively, the coancestry matrix xij counts the

number of recombination events leading to individual i being most

closely related to j, so gives a natural measure of ancestry sharing.

We note that the expected lengths of the chunks donated by donor

j to haplotype i, lij , and the number of mutations mij in donated

chunks, may provide additional information in principle, but we

do not exploit this here. To implement this approach in practice,

we require previously phased (e.g. [21]) haplotype data from

individuals at a defined set of loci, and (optionally) a previously

estimated genetic map of the recombination distance between

these loci. The Li and Stephens model has two scaling parameters,

the recombination rate r and the mutation rate h, which we set to

be the same for all individuals in the dataset. When analysing

Figure 1. Illustration of the painting process to create the coancestry matrix. We show the process by which a haplotype (haplotype 1,
black) is painted using the others. A) True underlying genealogies for eight simulated sequences at three locations along a genomic segment,
produced using the program ‘ms’ [52] and showing coalescence times between haplotypes at each position. B) The Time to the Most Recent
Common Ancestor (TMRCA) between haplotype 1 and each other haplotype, as a function of sequence position. Note multiple haplotypes can share
the same TMRCA and changes in TMRCA correspond to historical recombination sites. C) True distribution of the ‘nearest neighbour’ haplotype. D)
Sample ‘paintings’ of the Li & Stephens algorithm. E) Expectation of the painting process, estimating the nearest neighbour distribution. F) Resulting
row of the coancestry matrix, based on the expectation of the painting.
doi:10.1371/journal.pgen.1002453.g001

Inference of Population Structure
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markers and using LD information, we estimate r using the

Expectation Maximisation (EM) algorithm [36]. Following [35], h
is fixed to Watterson’s estimate although the parameter can also be

estimated directly from the data using EM. Full details of the

algorithm, which is available for download as part of the

ChromoPainter package, are provided in Text S1.

One important special case is when markers are widely enough

spaced as to be effectively unlinked, i.e. the recombination rate

between any pair of markers is infinite. It is straightforward to

produce our coancestry matrix in this setting by setting the

recombination rate r to infinity (full details in Text S1). In this

setting, chunks will automatically consist of only a single marker,

and thus markers are essentially independent. By painting a single

biallelic marker, all potential donor haplotypes carrying the same

type as the recipient individual are equally likely to actually be

chosen as donors, while potential donor haplotypes carrying the

other type will be very unlikely to be donors. If we additionally

exclude SNPs that vary in only a single individual, which provide

no information in our framework, then this ‘unlinked’ coancestry

matrix can be trivially calculated analytically for any given value of

h. This is a symmetric matrix, and it is advantageously not

necessary to obtain haplotypic phase (see Text S4). We therefore

implement this as a special case in practice, setting h~0.

Importantly, the unlinked coancestry matrix can be calculated

for any dataset, even in the case where markers in fact are in LD,

in which case we view it as summarising available ancestry

information, without utilising LD information. As we will explain

below, this interpretation is justifiable, by considering the standard

PCA and model-based approaches to analyse structure.

Principal components analysis using the coancestry
matrix

We developed and implemented an approach to perform

principal components analysis (PCA), by eigenanalysis of a

normalised version of our coancestry matrix (Text S4). Our

method can be thought of as a natural extension of the approach

of Price et al. [5] to a setting where information is available on the

relationships between densely typed markers. Specifically, we show

(Text S4, Proposition 1) that as r??, our coancestry matrix xij

reduces to the symmetric unlinked coancestry matrix described

above, xij is approximately proportional to that used for the

Eigenstrat PCA decomposition, and that our approach yields PCs

corresponding to those calculated under the Eigenstrat PCA

decomposition [5]. Thus, the Eigenstrat method corresponds

approximately to a special case of our approach. In the results

section, we demonstrate that in practice both methods indeed give

almost identical principal components for r~?. Where we

analyse data as linked (rv?), we simply apply an identical

approach to the unlinked case, and in this case the identified PCs

account for LD patterns, so differ.

Model-based likelihood of the coancestry matrix
As stated above, our coancestry matrix xij estimates the fraction

of chunks in the genome that individual i’s lineage coalesces with

one of the two lineages from (diploid) individual j before that of

any other individual. Intuitively, if individual i and individual j are

in the same population, or related populations, they are expected

to share more recent common ancestors in this manner than are

pairs of individuals from historically separated groups, so xij is

expected to be relatively large. Even if individual i is only partially

admixed with a group closely related to that which j belongs to, we

expect an inflation, albeit of smaller magnitude. Thus, the

coancestry matrix is expected to contain rich information about

population relationships. In developing a model-based approach,

we have not yet implemented a model directly incorporating

admixture, but concentrate on a clustering model (but where we

can infer the number of clusters K , deal with a very large number

of potential clusters, explore relationships between groups, and

quantify ancestry sources in each group). The aim of such a model

is to partition the dataset into K groups with indistinguishable

genetic ancestry, which we interpret as individual populations. We

utilise a Bayesian approach, employing reversible-jump MCMC.

To formalise this idea, we consider K populations characterized

by a donor matrix Pab, 1ƒa,bƒK which can be thought of as a

population-level coancestry matrix and gives the underlying

proportion of chunks from any individual in population a that

come from population b. A population a is a group of na

individuals where: (i) all individuals within the group are equally

related, so receive the same underlying fraction Paa=(na{1) of

their chunks from each of the na{1 other members of the group,

(ii) all individuals within the group share identical relationships

with any other population b, so receive the same fraction Pab=nb of

their chunks from each member of any other population b, and so

(iii) all individuals within the group donate the same fraction,

Pba=na, of the chunks found in any member of population b. Thus,

a chunk from any recipient individual within population a has an

identical donor distribution, and an identical recipient distribution,

across the sample.

Our model is now defined by our earlier stated assumption that

donated chunks within an individual are independent, and no

additional information is carried in their size (which for example

determines the number of chunks in the genome). For individuals

i, j in populations qi and qj respectively, the likelihood a single

chunk is donated to individual i from j is Pqiqj
=n̂nqj

where if qi=qj ,

n̂nqj
~nqj

and when qi~qj , n̂nqj
~nqj

{1 (because individuals cannot

donate to themselves). Since chunks are independent, we may

simply multiply the likelihood across chunks. Thus, if there are yij

chunks in total donated from individual i to individual j, the

overall likelihood for individual i is Pj Pqiqj
=n̂nqj

yij . At this point, we

make an approximation to the likelihood, which we partially justify

later. Specifically, we replace the observed number of chunks yij

with the expected number of chunks xij given by the coancestry

matrix, which although not an integer still allows a well-defined

likelihood. We treat chunks in different individuals as independent,

so multiply across individuals to give a complete likelihood:

F (xjp,q)~ P
N

i~1,j~1

Pqiqj

n̂nqj

 !xij=c

: ð1Þ

Note that this likelihood depends on the data only through the

terms xij of the coancestry matrix, which we later show are

approximately sufficient statistics for our inference which aids

computational efficiency. In this likelihood, we have divided the

chunk counts xij by a value c in order to account for a) non-

independence of chunks in practice, and b) our substitution of the

expected for the observed number of chunks copied. c can be thought

of as defining an ‘effective number of independent chunks’, which

can be either less than, or greater than, the true average number of

chunks - we discuss calculation of c later.

In our Bayesian approach, we must model the number and

distribution of the underlying populations via a prior for Pab.

Given sufficient data, the choice of prior should only weakly affect

the results (as discussed in Results, we believe this is an important

strength of our approach). We choose a Dirichlet prior

Pa*Dirichlet(ba) where ba~fba1, � � � ,baKg, which is conjugate

to the multinomial likelihood in Equation 1. The bab values are

proportional to the a-priori expected value of each Pab, and

Inference of Population Structure
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scaling the vector Pa by a value G decreases the variance of all

elements of Pa by a factor G. From the genealogical process, we

would expect excess donor/recipient relationships within a group,

i.e. that Paa is larger than Pab with b=a. From these elements we

construct the prior bab as the product of three elements: a shared

variance term (1{F )=F (analogous to the correlated allele

frequency of Falush et al. [12]), a within population increase

(1zd) and an otherwise uniform distribution of the Vb chunks

donated by population b in total. Specifically,

bab~

1{F
F

Vb
N

N{1
if a= b;

(1zd) 1{F
F

Vb
N

N{1
na{1

na

if a~b:

8><
>: ð2Þ

The factors
N

N{1
and

na{1

na

are adjustments for the fact that

individuals do not act as donors to themselves. We wish to infer the

parameters F and d and therefore place on them a broad

hyperprior based on Gamma distributions. Finally, the assignment

of individuals to populations is given a Dirichlet Process Prior,

which is weakly informative and allows for direct estimation of the

number of populations K . Further details are provided in Text S2.

MCMC scheme for assigning individuals to populations
We have implemented our approach as a software package we

refer to as fineSTRUCTURE. Because we have chosen the prior

of Pab as conjugate to the likelihood in Equation 1, these

population specific parameters can be integrated out analytically.

The posterior probability of a population configuration, which we

call a partition, is conditional on only global parameters (derived

in Text S2). The target of inference is these hyper-parameters (F
and d) but primarily the population assignment q. This we

represent in an unordered form as a list of co-assignments,

avoiding the problem of associating labels with populations.

Inference for q is performed using a Markov chain Monte Carlo

(MCMC) algorithm closely related to that of Pella and Masuda

[19] and also that implemented in the program STRUCTUR-

AMA [37]. The space of possible partitions is explored using an

algorithm which proposes new partitions that are modified

versions of the previous one (see Text S3). Specifically, the

partition is modified by merging or splitting populations, merging

then resplitting, or moving individuals. The proposed partition is

accepted, meaning that it replaces the previous one, with a

probability that depends on the ratio of the likelihood with the

previous partition. F and d are updated within the algorithm using

standard Metropolis-Hastings MCMC updates. In common with

other MCMC algorithms, ours is run for a so-called burnin, after

which the parameters are periodically recorded. If the algorithm is

burned in and run sufficiently long, then the parameter samples

converge to the posterior distribution (see e.g. [38]) of the

parameters given the data, with variation found between samples

reflecting posterior statistical uncertainty of parameter estimates.

We test for convergence to the posterior by considering the

pairwise assignment of population membership for two runs

initialised with different random seeds. If the algorithm is

converged then the frequency of coassignment should differ only

due to Monte-Carlo error between runs.

Estimation of the normalization parameter c
The statistical model that we have derived has a likelihood

depending on the terms xij of the coancestry matrix, which are

rescaled by dividing each xij by a factor c (see above). The factor c
can increase or decrease depending on many factors.

Different chunks will not in practice be fully independent of

each other, tending to decrease the ‘effective’ number of chunks

and therefore increase c. A first reason is that if individuals i and j
share a distinctive haplotype tract, then they will both be counted

as donors for each other and the same chunk will appear twice in

the likelihood, once in xij and the second in xji. Secondly, adjacent

chunks inferred on the same haplotype may not be fully

independent of each other due to limitations of the Li and

Stephens algorithm in modelling recombining genealogies [39]

and to the non-Markovian nature of genealogical relationships

themselves [40]. Thirdly, inaccuracies in the data such as phasing

errors may create misleading chunk boundaries.

Conversely, by averaging over chunk assignment uncertainty in

the painting step we smooth the chunk count distribution for each

individual, decreasing c by reducing variability in chunk numbers

relative to random draws. The effect is particularly large where

there is a great deal of uncertainty about chunk assignment, as is

the case for weakly linked or unlinked markers. In Text S4, we

show that for the special case of unlinked markers (or more

generally when we use the unlinked coancestry matrix for

inference), appropriate choice of c results in our likelihood being

asymptotically (in large datasets not dominated by rare markers)

equivalent to that of STRUCTURE, provided population

structure is not too strong. See Figures S4 and S5 and Text S6

for how strong structure with truly unlinked loci affects our

inference. This validates (for moderate structure) the idea of using

a multinomial-form likelihood for the coancestry matrix. Further,

we show analytically that the correct value of c is 1=(N{1) in the

unlinked case.

Although we have not been able to derive such a formula for

linked data, we can estimate c empirically. Specifically, we

calculate the variance of contributions to the coancestry matrix

xij from non-overlapping chromosomal regions that are large

enough that the chunk counts in each will be approximately

independent. We choose c to match the mean observed variance

of these contributions to that predicted by the (rescaled)

multinomial model using the average number of chunks in the

region. The principle of this approach is to achieve a multinomial

likelihood matching the statistical uncertainty in the real

coancestry matrix terms. In the case of truly unlinked data, this

approach will approximately return the theoretically correct value,

1=(N{1). In both this and the linked setting, using extensive

empirical validation we find that across a range of settings, our

estimation procedure finds a conservative, close to optimal

estimate for c (Text S6).

Our estimation of c is similar in approach to the block jackknife

of SmartPCA [41] though differs in many particulars, and in

interpretation given we can observe cv1 or cw1 in practice. Our

interpretation of xij=c is as an effective number of independent

chunks donated from j to i.

One helpful property of this approach is that by attempting to

correct for the true underlying variance of the xij , modelling

deficiencies are at least partially corrected. In particular, we

observe in the Results that treating markers as unlinked, by using

the unlinked version of our coancestry matrix (r~?), results in

robust inference in both simulated and real data – even where

strong association between markers in fact exists. This allows us to

perform comparisons of the two approaches where we use, and do

not use, LD information, on the resolution of fine-scale population

structure.

Tree building
Since the fineSTRUCTURE algorithm can identify fine

subdivisions, it is often important in practice to have some

indication of historical relationships amongst the inferred popu-

lations. We have found that performing inference under the full

Inference of Population Structure
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model using successively reducing values of K (as is commonly

done in ADMIXTURE and related algorithms) does not always

perform well in this setting, e.g. by splitting off highly drifted

groups. Instead, we recommend an approach that performs

inference at the ‘natural’ (i.e. inferred) value of K , and then

generates a tree of relationships amongst these populations. We

start with the maximum a posteriori (MAP) state, found by taking

the MCMC iteration with the highest observed posterior

likelihood and then performing a number of additional hill-

climbing moves to identify any merges or splits that further

improve the posterior probability. Starting from this ‘best’

partition, we successively merge populations, choosing the merge

giving the highest probability for the merged group at each step,

resulting in a bifurcating tree relating each of the populations

together. One of the biggest discriminators between populations is

within-population counts, which largely reflect genetic drift

occurring after a split from other groups, and are thus

uninformative in choosing among group merges. In order to

allow populations that contain related individuals (i.e. with high

xaa) to be merged more easily, during the tree creation we replace

the count matrix x with a modified count matrix x
0

with diagonal

‘flattened’ to be the next highest value in the row, x
0
ij~ maxk xik

where i,j[a and k[b=a. Although this ad hoc approach provides

a key advantage over inference at specific K for locating functional

population units, we emphasize that this tree is not based on any

model of population differentiation. Results may depend signifi-

cantly on sample size, and so should be treated as an approximate

guide to similarity, rather than a full population history. Despite

these caveats, the tree empirically performs well in capturing

relationships at multiple cases when the data is approximately

hierarchical.

Results

We introduce a new approach, described in detail in Models

and Methods and Texts S1, S2, S3, to analyse population

structure, designed for application to large datasets, particularly

where markers are in strong LD but also in other settings. To

summarise, given a dataset of N individuals, we construct an

N|N matrix xij , which we term the coancestry matrix, and

which forms the basis of all our inference. The i,j element xij

estimates the number of discrete ‘segments’ of the genome of

individual i that are most closely related to the corresponding part

of the genome of individual j. This matrix is most powerful when

constructed so as to use joint information provided by tightly

linked markers that are in LD. However, we can also construct an

‘unlinked coancestry matrix’ corresponding to ignoring this

information, which is the correct approach if markers are widely

spread across a genome. Results from using the unlinked matrix

can be used to compare our approach to existing methods, and to

quantify gains in information from taking into account LD

information in measuring coancestry.

Given the linked or unlinked coancestry matrix, we have

described how this can be used to learn about population

structure: firstly, by performing PCA, and secondly, by using a

model-based analysis to identify clusters of individuals with

similar historical ancestry, corresponding to genetically related

populations. In this section, we extensively evaluate properties of

our approach in theory and using simulated data, and perform a

new analysis of the HGDP dataset. We also explain how in

conjunction with the clustering algorithm, analysis of the

coancestry matrix reveals both differences, and details of

historical interactions, among human populations in unprece-

dented detail.

On large datasets, our ‘‘unlinked’’ method performs at
least as well as PCA and STRUCTURE

To understand the properties and performance of our approach

in the simplest possible setting, we begin by analysing the case

where markers are treated as unlinked, i.e. our unlinked

coancestry matrix. In this setting, markers may be truly unlinked,

or there may be LD information being ignored. We began by

analysing datasets simulated under a setting where there was no

underlying population structure, both with and without tight

linkage between markers (Text S6). In this setting, PCA will not

give meaningful results, but encouragingly, our model-based

procedure, which includes a step to estimate the effective number

of chunks in the genome, correctly identified K~1 populations

(Figure S1). This demonstrates our approach is robust, but we

must do more to establish its power to detect structure compared

to previously developed methods, and the total information

present in the data. First considering the problem mathematically,

we related our unlinked coancestry matrix to the N|N matrix

used in a standard PCA approach, Eigenstrat [5]. This revealed

that even though it has a rather different construction and

motivation (based on the Li and Stephens algorithm [35]), our

matrix is simply a linearly scaled version of the Eigenstrat matrix

(Text S4, Proposition 1), implying our PCA approach in this

setting ought to perform almost identically to Eigenstrat, and our

coancestry matrix captures the same information as standard

PCA.

To compare the PCA approaches in practice, we constructed a

simulated dataset designed to represent realistic levels of subtle

population structure. We simulated data for 100 individuals

according to a model containing 5 populations related in a tree-

like manner with three major historical splits forming populations

A, B and C two of which subsequently split (Figure 2A–2B). We

used this scenario for all simulated-data comparisons, and

simulated data with LD between markers. We used forward

simulation of up to 200 genetic regions each 5 Mb in size, using

the program SFS_CODE [42], with parameters chosen to

approximate diversity found within and between European

populations (see Text S5), and genetic maps based on real

estimates for 10 sampled regions of the human genome [26]. We

constructed the unlinked coancestry matrix for these data (which is

shown for 150 regions in Figure 2C), and performed PCA both

using this matrix, and using Eigenstrat on the raw data, yielding as

expected almost indistinguishable results (Figure 2D–2E). These

no-linkage approaches both show only incomplete separation of

the most closely related pair of populations, B1 and B2; we

consider the linked coancestry matrix later.

We next turn to our fineSTRUCTURE model-based analysis,

again considering the unlinked coancestry matrix even though

strong and variable LD exists in the dataset. We first compared

performance of our unlinked model to the popular ADMIXTURE

[15] software (Figure 3B and 3D, details in Text S8). Encourag-

ingly, as the number of 5 Mb regions increased from 5 to 200 we

saw a monotonic performance increase for the no-linkage model,

separating all groups with 200 markers. Further, our approach

outperformed ADMIXTURE, with the ADMIXTURE perfor-

mance levelling at around 60% correlation with the truth. In

practice, we observed ADMIXTURE successfully splitting groups

A, B and C and mostly splitting C1 and C2, but not B1 and B2, as

detailed in Figures S6, S7, S8, S9, S10, S11. ADMIXTURE

performs inference under a model where markers are treated as

unlinked, and where individuals may have genomes made up of

mixtures of inferred source populations, while our simulation

incorporated drift between populations, but not admixture. To

examine whether violations of both these modelling assumptions

Inference of Population Structure
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explain the different results, we simulated a new dataset with the

same underlying population structure of 5 populations as before,

but no linkage (i.e. independence) between markers within each

population. We analysed these data with STRUCTURE, which

uses a similar underlying model to that of ADMIXTURE, but

includes a no-admixture model (Text S7). For small datasets,

STRUCTURE slightly improved performance relative to our

unlinked fineSTRUCTURE model, but for larger SNP numbers,

fineSTRUCTURE was able to identify all population splits (K~5)

while again, STRUCTURE was able to split only populations A,

B and C (K~3). Thus, even when LD information is not used (or

even present), fineSTRUCTURE can offer advantages in some

settings over these existing approaches.

We sought to understand mathematically why our approach,

based on only a summary of the original variation data – the

unlinked coancestry matrix – equivalent to the matrix used for

Eigenstrat’s version of PCA, appears to perform so well relative to

the earlier approaches, which carefully model each individual SNP

marker (Text S4). This revealed that, surprisingly, the formulation

of the likelihood of the data used by both STRUCTURE [2] and

ADMIXTURE [15] can be viewed as approximately a function of

only the terms in the coancestry/PCA matrix (under certain

technical assumptions such as large datasets; Proposition 2). Under

these assumptions, this result then unifies these apparently

different approaches in terms of the underlying information they

exploit (and suggests the PCA matrix of Eigenstrat is a particularly

‘good’ choice [43]). Furthermore, we also show that provided

structure is weak (if strong, all methods are expected to find it), the

multinomial likelihood used by fineSTRUCTURE is approxi-

mately the same as that used by STRUCTURE, with correct

choice of the normalising parameter c (Text S4, Proposition 4),

and we find in practice that this ‘correct’ value of c is well

estimated by the jack-knife procedure described above (Figure S2).

This means that at least for datasets with large numbers of loci,

and ignoring linkage, we expect fineSTRUCTURE, PCA, and

STRUCTURE/ADMIXTURE to all utilise similar information

in the data.

What explains the different behaviour of the model-based

approaches? We believe it is differences in prior models used. Both

STRUCTURE and ADMIXTURE assume all underlying

populations undergo separate genetic drift from some original

founder group, and so this prior model penalises shared drift, for

every individual marker, and so increasingly strongly as the

number of loci increases. Our simulation framework (realistically,

we believe), incorporates drift separate to each group, but also

shared drift common to clusters of populations (caused for

example, by being closer geographical neighbours). By using a

more flexible prior model of structure, fineSTRUCTURE is able

to separate populations C1 from C2, and B1 from B2, which the

existing model-based approaches have difficulty separating even

with sufficient data. By not assuming any particular form for the

population-level coancestry matrix Pab, closely related groups are

allowed to share genetic material, as visualised in Figure 2C.

On dense datasets, our linked method outperforms
unlinked methods

To examine improvements offered by utilising LD information,

we used our linked coancestry matrix as the basis of new PCA and

model-based analyses. The genetic maps used to simulated the

sequence data were also used for inference in the linked model,

though we note (not shown) that the conclusions still hold without

this requirement. We estimated r from the data by averaging

estimates for 50 of the simulated regions. Using linkage

information reduces the within-population variance of the

coancestry matrix relative to the between-population variance

(by a factor of nearly 3 in the data shown in Figure 2C) but does

not change its qualitative structure. We performed PCA

decomposition of the linked coancestry matrix (Figure 2F), yielding

Figure 2. Simulated data scenario and painting results. A) Effective population size and B) population splits used for creating the simulated
data. C) Coancestry heatmaps for linked and unlinked model with N~150 regions and 20 individuals per population, showing (xijzxji)=2 for
(bottom left) the unlinked model, and (top right) the linked model; note that the linked heatmap is slightly asymmetric. D) PCA applied to the dataset
using Eigenstrat on the raw SNP data. E) PCA on the coancestry matrix assuming markers are unlinked and F) linked (see text for details).
doi:10.1371/journal.pgen.1002453.g002
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consistently tighter clustering of points, and in particular clear

separation of populations B1 and B2 by the fourth principal

component, compared to not using LD information (Figure 2D–

2E).

In the model-based setting, linked fineSTRUCTURE strongly

outperforms the unlinked version (Figure 3A), confirming the

utility of LD-based inference, with only 75 regions required

(Figure 3D) to correctly separate all 5 groups vs. 200 when

ignoring linkage. Encouragingly, performance improves more

dramatically for fewer regions, when structure is at the limits of

detection. Examination of a particular case (Figure 3A–3B) with

150 regions shows only a partial separation using unlinked

fineSTRUCTURE of the most similar groups B1 and B2,

analogously to the PCA result. ADMIXTURE (Text S8) also fails

to identify this population split. In practical applications, given a

finite genome size, using linkage information will therefore be

expected to allow clear identification of more subtle (‘fine’)

structure than is detectable otherwise, as we show in the next

section. Figure 3C shows the linked model coancestry matrix

averaged over populations (using the model-based assignment of

individuals to populations), as well as a tree (which is correct

except that population A is not equidistant between B populations

and C populations), inferred as described in Models and Methods.

We view this coancestry matrix and the tree as the ‘outcome’ of

our model-based inference procedure – it details groups found,

their inferred relationship, but also shows the inferred extent of

haplotype sharing between groups, showing for example groups

that share closer genetic relationships. As we explain below, we

believe that in practical applications, this representation can reveal

interesting features of underlying structure.

Worldwide HGDP data analysis identifies novel features
of human populations

We analysed the pattern of population structure in the Human

Genome Diversity Project (HGDP) dataset [9] of 640,698

autosomal SNPs typed in 938 individuals sampled from 53

different labelled groups, with 5 to 46 sampled individuals per

group. Complete inferred-phase haplotypes ([21,44]) were down-

loaded from http://hgdp.uchicago.edu/. Estimated b36 recombi-

nation rates [26] were downloaded from the HapMap website

(http://www.hapmap.org). Despite the size of the dataset, the

fineSTRUCTURE algorithm (Text S10) converges in indepen-

dent runs (Figure S25) to a solution with 149 populations in the

most probable posterior state using the data calculated based on

the linked model (Figure 4A). Our tree building algorithm aims to

represent the relationships among the groups and in the tree, for

which almost half (25 of 53) of the original labelled groups exactly

correspond to a single clade in the tree, 9 corresponding exactly to

a single inferred population. In other cases, geographically

neighbouring groups (e.g. several groups sampled in Pakistan)

are not separated, implying sample labels do not perfectly

Figure 3. Simulated data population assignment results. A) Pairwise coincidence matrix output by fineSTRUCTURE using chunk counts
calculated using (top right) the linked and (bottom left) unlinked model, for the datasets from Figure 2C. The colouring represents the posterior
coincidence probability (which does not drop below 97%) and the dots represent the maximum a posteriori (MAP) probability state. B) STRUCTURE-
style ‘barplot’ for the results in A as well as ADMIXTURE results for the same dataset, where each colour represents a population (K~5, 4 and 4
respectively). C) Aggregated coancestry matrix (bottom left, normalized to have row mean 1) for the linked model dataset (top right) rescaled from
Figure 2C (also top right), shown with the inferred MAP tree (top). D) Correlation with the truth as a function of the number of 5 Mb data regions for
fineSTRUCTURE linked and unlinked models, and ADMIXTURE on the same data.
doi:10.1371/journal.pgen.1002453.g003
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correspond to identifiable ancestry signals. Higher up the tree,

branches correspond to large continental-level groups, similar to

those seen before [45].

In general, many groups are not related through simple

hierarchical ‘tree-like’ drift, but also through complex admixture

events. These relationships are captured directly in our represen-

tation by the coancestry matrix. Although this is high-dimensional

even after clustering individuals into groups, and in future we think

it is important to incorporate admixture in our modelling

framework, we nevertheless believe the very complex structure

of the data itself means visual examination of the coancestry

matrix provides important insights using linkage information.

Previous analysis of the worldwide HGDP using ADMIXTURE,

and to an extent PCA, has identified signals of admixture [9,28,45]

in certain groups. In practice, the number of groups that these

methods can infer is typically limited to K~10 or fewer, resulting

in limited resolution in identifying the detail of such admixture

events. In addition, both PCA and ADMIXTURE analyses do not

consistently signal the extent of genetic drift in the dataset. Follow-

up ‘regional’ analyses, for example focussing on Europe, partially

address these issues for drift and admixture within such regions,

but not across larger distances. The linked coancestry matrix

allows simultaneous visualisation of drift, and admixture, and fine-

scale resolution for both (Figure S14). For example (Figure 4B),

previous observations [46] of both Central and East Asian ancestry

in the Hazara (from Pakistan) can now be refined. The coancestry

matrix demonstrates strong haplotype sharing of the Hazara from

other Pakistani groups (e.g, the Pathan) as well as varying

continuously in admixture fraction with groups from today’s

north-east Asia (e.g. the Mongola). This provides direct genetic

evidence corroborating historical evidence [47] of ancestry sharing

between the Hazara and the Mongols. The Burusho, another

Pakistani group showing East Asian admixture, are separated from

the Hazara by fineSTRUCTURE, but have relatively less North-

East Asian DNA, implying distinct admixture histories for these

two groups. Many other HGDP admixture signals could be

analysed similarly.

Although fineSTRUCTURE performs well on the global

dataset, for easier visualisation of results, we developed an

approach analysing structure in only sub-regions of the data, but

based on the same (worldwide) coancestry matrix as before. In

practice, we found this had the second advantage of a small

increase in resolution, while retaining the ability to identify many

long-range population relationships. This increase in power is

related to our prior model – we assume ancestry proportions are

independent across groups, while in fact worldwide historical

relationships among populations result in correlations in these

vectors. Although the prior is overwhelmed by the data for clear

splits (unlike that used by other approaches), our algorithm

nevertheless can merge very similar groups. Within a subregion of

the world, however, differences in ancestry proportions are much

closer to independent, potentially improving precision.

For a regional analysis, we chose to split the dataset into eight

regions, approximately corresponding to ‘sub-continents’, based

only on the results of the merging algorithm used to produce the

population tree (Figure 4A). Each geographic region is analysed

individually by fineSTRUCTURE under the full model, with

other regions considered only via donation of genetic material

when pooled into seven overall counts, corresponding to the total

received from each (the number of individuals is also used). This

approach is a balance of retaining broad-scale information relating

to admixture from external sources, while substantially reducing

dimensionality. Figure S15 shows the tree for these results which is

broadly similar to Figure 4A though differs in some particulars (for

example Maya and Colombian are now split but BantuKenya are

not) partly due to different ‘diagonal flattening’ restrictions across

subcontinents. 226 populations are now found, many of which

may simply be related individuals (e.g. within the Druze) whilst

others reflect real but subtle population structure.

We focus on the European results as an example (Figure 5A),

with other continents shown in Figures S16, S17, S18, S19, S20,

S21, S22, S23, S24. Convergence in all cases was excellent

(Figures S26, S27, S28, S29, S30, S31, S32, S33), despite

significant uncertainty. The smaller scale of the problem here

allows more detail of results to be discussed, but also meaningful

comparison with other approaches. We identified K~20
populations with fineSTRUCTURE, identifying (and in some

cases further splitting) the 8 labelled European groups precisely,

apart from one French individual showing an ancestry pattern

closer to the Tuscans in the dataset (and visually intermediate from

both). Again, examination of the identified coancestry matrix

parameters is helpful in revealing relationships among the groups,

and with outside populations. For example a large coancestry

value within some populations (along diagonal blocks in the

coancestry matrix) can be interpreted as strong genetic drift, which

appears in some groups (e.g. the island Orcadian and Sardinian

populations) but is absent in the French. The multiple populations

found for Orcadians, Sardinians and Tuscans, with particular

subgroups having significantly elevated coancestry even within the

same label, suggests more recent kinship perhaps related to

geography (which we do not have additional information on). The

Adygei (from the Caucasus) are split into three groups, which

instead differ mainly in their levels of Russian admixture within

Europe, and of Central and East Asian ancestry from outside.

Similarly, Tuscans are split from a different North Italian group,

due to a very subtle ‘drift’ signal along the diagonal, but mainly by

having more African and Middle Eastern ancestry (corroborating

results on mitochondrial DNA [48]). Similar signals are seen

across other continents.

We applied ADMIXTURE to the same HGDP European data

as analysed by fineSTRUCTURE (Text S9). Although the

populations are very subtle and ADMIXTURE cross-validation

implies K~1 (Figure S13), we still obtained meaningful results

with K~7 (Figure 5B) and fewer (Figure S12) populations, but

noise for higher K . As expected for this powerful approach,

ADMIXTURE gave useful information on European groups, with

clear separation of Adygei, Russian and Basque for example and

some, but not all, of the within-population splits represented.

Based on this analysis, it is not possible to separate certain groups,

e.g. the Tuscans and Italians, where inferred non-admixed and

admixed individuals are spread among both groups, neither

corresponding to sample labels nor supported by other analyses

(including ADMIXTURE at different K ), and thus results may

reflect modelling uncertainty. More generally, the French,

Figure 4. World HGDP results summary. A) Relationship between populations for the whole world data. Each tip corresponds to a population;
labels include the number of individuals and are coloured red if all individuals within that label are found in a single clade. See text for an
interpretation of the values on the edges; the cut defines the ‘sub-continents’ discussed in the text. B) Transposed coancestry matrix for the Hazara
and Burusho (in full: Figure S14), showing CentralSouthAsia and EastAsia donors, which are each normalised to have mean donation rate of 1. The
box shows the ‘diagonal’ drift component.
doi:10.1371/journal.pgen.1002453.g004
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Italians/Tuscans and some Orcadians are closer to lying along an

admixture continuum in this analysis, while appearing much more

cleanly separated, and homogeneous in ancestry makeup, in the

linked coancestry matrix (which has identifiable ‘blocks’ of colour

for these groups). As expected from the earlier simulations, the

differences with fineSTRUCTURE seem to be concentrated in

the more subtle splits, and also in the fact that ADMIXTURE

analysis cannot here easily benefit from information on outside

genetic contributions, e.g. to distinguish a third Adygei group.

Finally, for the subtle structure present here, care clearly must be

taken in interpreting ADMIXTURE results – in each of the

Orcadian, Italian/Tuscan and Sardinian groups, some individuals

appear genetically mixed and others do not, while the coancestry

matrix does not support such a genuinely distinct relationship.

In addition to using fineSTRUCTURE, we also used our linked

(and unlinked) PCA approaches to analyse the data for Europe

and other continents (Figures S34, S35, S36, S37, S38, S39, S40).

Results in general were consistent with our simulations and with

the model-based analysis, giving better separation of groups for the

linked PCA version, e.g. clean separation of Italians and Tuscans

only when LD information is utilised (Figure S38). Figure 6

illustrates this improvement for a subset of populations in central

East Asia. Only the linked model shows clear separate clusters for

Miao, She and Tujia, or any obvious separation of Tujia and Han.

Figure 5. Coancestry heat map for the Europe sub-continent. A) (bottom left) population averages, (top right) the raw data matrix, and (left)
chunks from other sub-continents. To symmetrise the matrices we show the average of the donor/recipient chunk counts; read the row and column
for an individual to see their full profile. The tree has the same interpretation as Figure 4, and the heatmap between individuals in Europe has the
same interpretation as Figure 2C, with extremely high (black) and low (white) values capped. Each continent has its own scale (top), with the lowest
value in yellow and the highest in blue. B) ADMIXTURE barplot for the same dataset.
doi:10.1371/journal.pgen.1002453.g005
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The latter group are revealed as lying along a line, much noisier in

the unlinked case and suggesting variable levels of coancestry

between Han individuals and other Chinese groups, presumed to

have occurred during the North to South spread of the Han [49],

and directly visible in the coancestry matrix (Figure S10).

The strongest advantage to using the linked model is in

separating subtly different groups, and we see many cases in our

data where labelled groups are split into smaller populations by

fineSTRUCTURE, but although these show features consistent

with their representing genuine ancestral differences, we do not

have additional information, for example on geography to

confirm these populations. We therefore devised a scheme to

overcome our incomplete information, using the fact that

although completely unlinked, two approximately equally sized

halves ‘A’ and ‘B’ of an individual’s genome automatically share

all sampling details, and thus have the same underlying ancestry.

Examining similarity in ancestral profiles for the two halves thus

provides an indication of whether ancestry differences observed

(from half the genome) are genuine, at the finest possible scale.

Specifically, we analysed half of the individuals at a time (splitting

the dataset approximately evenly for each label), painting their

chromosomes using an identical donor set consisting of the other

half of the sample, so chunk counts for individual ‘A’ or ‘B’ halves

are comparable across individuals. For each individual ‘A’ half,

we paired with the most correlated individual ‘B’ half, and

recorded the fraction of times this ‘B’ half came from the same

individual (Figure 7), and compared this to random chance when

using population or label groupings. The results validate our

populations as reflecting genuine ancestral differences, pairing

halves within clusters more of the time than using labels alone.

Interestingly, we paired up genomic halves within individuals

consistently more often than predicted by than our clustering

(and uniformly more often using linked than unlinked informa-

tion) demonstrating that human population structure exists at

finer scale than the clustering detects, and is most powerfully

identified using linkage information.

Discussion

Partial or complete barriers to mating create groups with distinct

genetic ancestry, or, in the present terminology, populations. In our

approach, we assume that chromosomes within a particular

population have characteristic probabilities of sharing stretches of

similar DNA from individuals in their own and in other populations,

and view these probabilities as defining population composition and

relationships. To infer groups, we first reduce data dimensionality by

estimating the relationships among all pairs individuals using a

‘‘coancestry matrix’’, which is central to our method and based on

‘painting’ the chromosomes of each individual [35]. Loci can be

treated as linked or unlinked in the genome. In the unlinked case, we

have shown that in theory and in practice, our model-based (MCMC)

and PCA approaches are very closely related to the previous

approaches exemplified by STRUCTURE and Eigenstrat [2,5], and

that the parametric and non-parametric approaches can all be

thought of as, approximately, interpretations of information present in

the coancestry matrix. This helps explain previous observations [50]

that structure is frequently detectable using both types of approach, or

neither. Other approaches to summarizing matrices, such as sparse

value decomposition, might bring out additional features [43].

We have also shown that the linked approach substantively

improves performance, where LD information is present among

tightly packed markers, achieving a resolution in the HGDP that is

to our knowledge unprecedented. Intuitively, we believe that the

underlying reason is that using haplotype sharing identifies

relationships among individuals in the recent past much more

strongly than individual ancient SNP sharing, enabling more

subtle, recent population structure to be captured [31]. This does

not mean the approach is optimal – additional improvements may

be found by utilising information (within our framework) on the

size of shared haplotypes, mutations private to particular groups,

and haplotypic sharing further back in time. We believe the

advantages offered by exploiting haplotypic information will

continue to grow as full sequence data becomes predominant [51].

Figure 6. PCA for East Asia HGDP data. The first 2 PCA components of the East Asian ‘continent’ as defined in Table S1 are shown for A) the
linked model and B) the unlinked model. Only the named labels are displayed for clarity; Figure S37 shows the full set. Further structure will be
present in other principal components (not shown).
doi:10.1371/journal.pgen.1002453.g006

Inference of Population Structure

PLoS Genetics | www.plosgenetics.org 12 January 2012 | Volume 8 | Issue 1 | e1002453



In practical implementation, our approach uses two initial,

parallelizable analyses: a phasing step, common in modern

population genetic analyses, and a subsequent chromosome

painting step, both run once on a given dataset, and feasible for

datasets with millions of markers using computer clusters.

Subsequent steps using the resulting coancestry matrix have

computational time depending only on the number of individuals,

which with our efficient algorithmic implementation enable us to,

for example, analyse far larger numbers of populations – hundreds

in the HGDP - than other approaches that reanalyse each

mutation at each iteration. We observed a substantial performance

improvement for the linked model, when applied to the HGDP

data phased jointly using fastPHASE [21], despite inevitable errors

in the haplotypes produced by all such phasing approaches.

However, we caution against naively combining and analysing

datasets phased separately, or by different approaches, which may

introduce spurious differences in haplotype composition.

In the model-based approaches discussed here, we have described

how the coancestry matrix captures key relationships among groups.

However, future approaches may aid interpretation of results, and

power, by explicitly modelling the processes of drift, and subsequent

admixture, among identified populations and their effect on this

matrix. The theory developed here for the unlinked case suggests a

close connection between population level genetic drift and the

coancestry matrix. Although this (like average pairwise coalescent

times [4]) will not uniquely specify historical events, genetic drift

specific to a population will have the effect of elevating the within-

population coancestry value, while admixture causes a population to

become more similar, both as a donor and recipient to the group it is

admixing with. Relating identified groups in this manner and

developing new ways of representing population structure are both

needed, given both the very fine stratification (into 226 groups)

achieved by the approach and the half-matching results

demonstrating even more structure present in the data. Allowing

individuals to show continuous variation in proportions of ancestry

from multiple groups might capture this signal [2]. However,

because we observe a drift signal private to most of our identified

groups, we believe a necessary but difficult modelling challenge is to

incorporate successive rounds of genetic drift, admixture, further

genetic drift, and even familial relationships into such models.

Overall, our results demonstrate we have not yet reached the

limits of the information available using genetic information, and

particularly the precision with which ancestry sources can be

determined. As full sequence data and larger sample sizes become

increasingly available, we anticipate resolution will improve

further beyond the level of countries, to regions within countries

in many cases, and this will be of value in a range of settings. The

methods described here can produce highly accurate clustering

and sensible choices of the number of populations in humans and

other species, and can be applied to full genome sequences for

thousands of individuals.

The algorithms described in this article have been implemented in

computer software packages ChromoPainter and fineSTRUCTURE,

which are available at http://www.paintmychromosomes.com/.

Supporting Information

Figure S1 Correlation with truth for Unlinked data. 15000 non-

rare (w5% allele frequency) unlinked SNPs were simulated, and

inference considered with a varying number of individuals and with

varying chunk scaling c, when there is no true population structure.

Black indicates perfect correlation, which is always achieved at the

theoretical (black line) and empirical estimated (dots) values of c.

(Note that at N~40 the correlation is perfect at the theoretical

value of c, but not at c~0:02, the nearest point on the grid.)

(TIFF)

Figure S2 Correlation with the truth for linked data. A varying

number of individuals with varying chunk scaling c are considered,

with the 5 populations described in Figure 2 of the main text (and 150

regions of data). Left (a) is for the linked model, Right (b) is for the

Figure 7. Half-matching using correlations for HGDP data. For each continent, we show the proportion of times in which two sets of
chromosomes of a particular individual are matched correctly based on similarity of their coancestry profile. Coancestry profiles are calculated using a
training set as described in the text. Results for coancestry matrices are calculated using correlation between individuals based on the linked and
unlinked models. Also shown are the expected success in clustering if individuals within the same label or same inferred (linked results)
fineSTRUCTURE population each had the same ancestry profile.
doi:10.1371/journal.pgen.1002453.g007
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unlinked model. The empirical estimated values of c are shown as

dots.

(TIFF)

Figure S3 Correlations within the coancestry matrix for

unlinked data. Left: the raw coancestry matrix for the same

scenario as simulated in the main text but with 15000 unlinked

SNPs. Centre: the renormalized coancestry matrix based on the

true population distribution. Right: The difference, highlighting

the correlated nature of the error terms for the coancestry matrix

(there are differences for the merged B1 and B2 populations only).

Top: These matrices based on the ‘true’ population structure given

by the labels. Bottom: These matrices based on merging the most

recent split, setting B~(B1,B2).

(TIFF)

Figure S4 Correlation with truth for Unlinked data with strong

population structure. This is a demonstration of how our model

breaks down in the presence of strong population structure and

unlinked data, and our method for fixing this. This figure shows the

correlation with the truth for 15000 non-rare (w5% allele

frequency) unlinked SNPs under the simulation demographic

model described in the main text. Left: results for the raw data.

Right: results for the modified data matrix x
0

as described above.

(TIFF)

Figure S5 Correlation with truth for fineSTRUCTURE and

STRUCTURE. (black) is fineSTRUCTURE and (red) is

STRUCTURE, considered as a function of the number of

unlinked SNPs. Data are simulated as described, with all SNPs

having minor frequency w0:05. The fineSTRUCTURE results

are based on the unlinked model as described above, and the

STRUCTURE results are based on the no-admixture model using

the ‘F model’ prior started at the best possible configuration for a

particular K. Optimal correlations are obtained at this configu-

ration when there is no uncertainty in the assignment. Note that

the scale is logarithmic to emphasise the behaviour with few SNPs.

(TIFF)

Figure S6 ADMIXTURE results for simulated data at 25

linked regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 3.

(TIFF)

Figure S7 ADMIXTURE results for simulated data at 50 linked

regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 3.

(TIFF)

Figure S8 ADMIXTURE results for simulated data at 75 linked

regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 3.

(TIFF)

Figure S9 ADMIXTURE results for simulated data at 100

regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 4.

(TIFF)

Figure S10 ADMIXTURE results for simulated data at 150

regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 4.

(TIFF)

Figure S11 ADMIXTURE results for simulated data at 200

regions. Top: cross-validation error (lower is better). True

populations are separated by a black line. The maximum

correlation with truth is obtained at K = 4.

(TIFF)

Figure S12 ADMIXTURE results for the HGDP Europe

dataset. A range of K is considered as described in the text.

Dashed lines separate fineSTRUCTURE populations, solid lines

separate labelled populations. fineSTRUCTURE agrees with all

labelled populations with the exception of the Tuscan/French.

(TIFF)

Figure S13 ADMIXTURE cross validation error as a function

of K . The recommended procedure is to choose the K with the

minimum cross-validation error, here K~1.

(TIFF)

Figure S14 Whole world HGDP coancestry matrix. Some

population labels are omitted for clarity; this has only been done

when the neighbouring population contains the same labels and

the exact distribution is recoverable from the tree and Figure 4 of

the main text. The colour scale is non-linear, and population sizes

have been square-rooted for clarity.

(TIFF)

Figure S15 ‘‘Sub-continental’’ tree for all HGDP populations.

Inference was performed in separate subcontinents groupings as

defined in Figure 4 of the main text, with details for each

subcontinent given in Figures S16, S17, S18, S19, S20, S21, S22,

S23, S24.The interpretation is the same as Figure 4 of the main

text (except that probabilities have been removed for clarity).

(TIFF)

Figure S16 ‘‘Sub-continental’’ coancestry matrix. Groupings as

defined in Figure 4 of the main text. Recipient groups are on the

left. Note that Africa has been capped, and copies 232 chunks to

itself.

(TIFF)

Figure S17 ‘‘Sub-continent’’ of Africa coancestry matrix.

(bottom left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)

Figure S18 ‘‘Sub-continent’’ of CentralSouthAsia coancestry

matrix. (bottom left) the Population coancestry matrix and (top

right) the Individual coancestry matrix.

(TIFF)

Figure S19 ‘‘Sub-continent’’ of Druze coancestry matrix.

(bottom left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)

Figure S20 ‘‘Sub-continent’’ of EastAsia coancestry matrix.

(bottom left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)

Figure S21 ‘‘Sub-continent’’ of Europe coancestry matrix.

(bottom left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)

Figure S22 ‘‘Sub-continent’’ of MiddleEast coancestry matrix.

(bottom left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)
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Figure S23 ‘‘Sub-continent’’ of NorthEastAsia coancestry ma-

trix. (bottom left) the Population coancestry matrix and (top right)

the Individual coancestry matrix.

(TIFF)

Figure S24 ‘‘Sub-continent’’ of ‘‘Other’’ populations. ‘Other’ is

defined as America, Oceania and some Asian individuals. (bottom

left) the Population coancestry matrix and (top right) the

Individual coancestry matrix.

(TIFF)

Figure S25 Whole HGDP pairwise coincidence matrix. (bottom

left) run 1 and (top right) an independent run 2. It is recommended

to view this figure online and use zoom tools.

(TIFF)

Figure S26 Africa pairwise coincidence matrix. (bottom left) run

1 and (top right) independent run 2.

(TIFF)

Figure S27 CentralSouthAsia pairwise coincidence matrix.

(bottom left) run 1 and (top right) independent run 2.

(TIFF)

Figure S28 Druze pairwise coincidence matrix. (bottom left) run

1 and (top right) independent run 2.

(TIFF)

Figure S29 EastAsia pairwise coincidence matrix. (bottom left)

run 1 and (top right) independent run 2.

(TIFF)

Figure S30 Europe pairwise coincidence matrix. (bottom left)

run 1 and (top right) independent run 2.

(TIFF)

Figure S31 MiddleEast pairwise coincidence matrix. (bottom

left) run 1 and (top right) independent run 2.

(TIFF)

Figure S32 NorthEastAsia pairwise coincidence matrix. (bottom

left) run 1 and (top right) independent run 2.

(TIFF)

Figure S33 ‘‘Other’’ populations pairwise coincidence matrix.

(bottom left) run 1 and (top right) independent run 2.

(TIFF)

Figure S34 PCA for the continent of Africa. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Figure S35 PCA for the continent of America. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Figure S36 PCA for the continent of CentralSouthAsia. The

first two components are shown; furhter structure will be present

in the higher components.

(TIFF)

Figure S37 PCA for the continent of EastAsia. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Figure S38 PCA for the continent of Europe. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Figure S39 PCA for the continent of MiddleEast. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Figure S40 PCA for the continent of Oceania. The first two

components are shown; furhter structure will be present in the

higher components.

(TIFF)

Table S1 Population labels assigned to ‘‘continents’’ for PCA.

(PDF)

Text S1 Mathematical description of the Painting algorithm.

(PDF)

Text S2 Derivation of the fineSTRUCTURE Partition Posterior

probability.

(PDF)

Text S3 Mathematical details of the fineSTRUCTURE MCMC

moves and acceptance probabilities.

(PDF)

Text S4 Theory linking PCA, STRUCTURE and fineSTRUC-

TURE. This includes Propositions 1–4 and a brief summary of

what they imply.

(DOCX)

Text S5 Simulation procedure for linked data using

SFS_CODE.

(PDF)

Text S6 Empirical evaluation procedure for the scaling parameter

c. This includes the simulation procedure for unlinked data, and the

empirical validation that our procedure correctly identifies c.

(PDF)

Text S7 Empirical comparison of fineSTRUCTURE to

STRUCTURE.

(PDF)

Text S8 Details of the ADMIXTURE linked simulation

evaluation procedure.

(PDF)

Text S9 Details of the ADMIXTURE HGDP analysis.

(PDF)

Text S10 Results for HGDP data. These comments interpret

Figures S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24,

S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37,

S38, S39, S40, i.e. the fineSTRUCTURE and PCA-based

continent and sub-continent analyses for the HGDP dataset.

(PDF)
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