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Abstract

Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a
consequence, for any given protein, genetically identical organisms living in a constant environment will contain different
amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as ‘‘phenotypic noise.’’ In
bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes
affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of
promoter-mediated noise are correlated with genes’ functional attributes, using data for over 60% of all promoters in
Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters
that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that
different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association
between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in
bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the
sequence of the promoter region alone.
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Introduction

The phenotype of an individual is often considered to be a

product of the individual’s genotype and the environment in which

it lives. However, significant phenotypic differences may exist

between genetically identical individuals living in a homogeneous

environment [1–7]. In the absence of genotypic differences or

environmental cues, these differences often arise from random

molecular processes during protein expression and development.

In these cases, such variation is termed phenotypic noise. Although

differences between individuals that are due to phenotypic noise

are not encoded genetically, the level of phenotypic noise in a

given gene may be subject to genetic control. One fundamental

question is whether natural selection acts to control or promote

phenotypic noise, and how organisms achieve this control.

It is well established that selection acts strongly on mean

expression level [8–12]. Additionally, there is good evidence that

selection can also act on the variation of gene expression, that is,

on the level of phenotypic noise. Many studies with bacteria and

other microorganisms have identified genes with exceptionally

high levels of phenotypic noise, and several studies have provided

possible adaptive explanations. Both theoretical [13–17] and

empirical studies [18–21] have shown that increased noise and

bistable gene expression can allow organisms to persist in

fluctuating environments, and that selection may thus in some

cases increase phenotypic noise. Other studies have shown that it

can promote the formation of specialized subpopulations that

engage in division of labor [5,22].

However, there have been fewer studies on general patterns of

gene expression noise, for example, across functional groups of

genes. The best-established connection, and the only connection

established for both eukaryotes and bacteria, is between mean

expression level and variation in expression: strongly expressed

genes have high levels of variation across cells [23,24]. However,

mean expression level does not fully determine variation: analyses in

yeast have shown that when mean expression level is accounted for,

gene expression noise exhibits certain strong patterns: for example,

there is a positive association between gene expression noise and

gene expression plasticity (i.e., variation in gene expression across

environments) [24]; genes with TATA boxes exhibit high noise

[24]; and those genes most critical for cell functioning exhibit lower

levels of variation than other genes that are expressed at the same

level [24–26]. This latter correlation is consistent with selection

acting to decouple variation in expression from mean expression in

order to decrease noise in important genes. However, this

association is confounded by other correlations, such as the strong

relationship between noise and expression plasticity.
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There is no data addressing the question of whether functionally

important genes exhibit lower levels of noise in bacteria: only one

analysis of variation in gene expression has been performed in

bacteria [23], which established that genes expressed at higher

levels exhibit more extrinsic noise. This raises the question of

whether these two properties can be decoupled, for example to

lower noise in functionally important genes, even though these

genes may be expressed at high levels.

Thus, although there is good evidence in yeast that genes

important for cell functioning have lower levels of gene expression

noise, the interpretation of this result as evidence of selection

acting to decrease noise has been complicated by the association

between expression plasticity and noise. Additionally, there have

been no analyses of whether the decoupling of mean expression

level and variation in expression exhibits such general patterns in

bacteria. Here, we investigate this possibility, and whether such

decoupling exhibits patterns on a general, genome-wide level.

In contrast to previous studies, which have examined protein

expression noise, we carried out a comprehensive analysis of the

noise conferred by the promoter regions alone in E. coli. Our goals

were three-fold. First, we wanted to test whether the DNA

sequence of the promoter region has a substantial and consistent

effect on noise. Second, we asked whether differences in noise

exhibit discernible patterns, for example across functional

categories of genes. Finally, we assessed whether these patterns

are consistent with selection acting to preventing or promoting

phenotypic noise, or whether other explanations account equally

well for the patterns we observe.

Results

Experimental system
We used an E. coli promoter library [27] consisting of 1832

strains, in which each strain carries a low-copy number plasmid

(3–5 copies per cell [28,29]) with an E. coli promoter region

inserted upstream of a gene for a fast-folding green fluorescent

protein (gfp). This library comprises about 75% of all E. coli

promoters. The term ‘promoter region’ refers to the intergenic

region between two open reading frames, together with 50–150

nucleotides of both the upstream and downstream open reading

frame [27]. The mRNA that is produced consists of a

transcriptional fusion between a short region of the 59 end of the

native mRNA, 31 bp that are identical for all promoters, and the

open reading frame for GFP. A strong ribosome binding site (RBS)

is located immediately upstream of gfp. As the 31 bp preceding the

gfp start codon are identical for all constructs, effects from

differences in the translation initiation rate should be minimal

[30,31]. Additionally, as approximately 90% or more of the

mRNA sequence is identical for each construct, in most cases,

differences in mRNA half-lives between constructs are likely to be

small. The GFP variant is quite stable, so decreases in protein

concentration occur primarily through cell growth and division.

For the above reasons, differences in the mean concentration of

cellular GFP for different promoters are most likely due to

differences in transcription (see Text S1). However, in many

instances the promoter region may affect mRNA half-life or

translation dynamics, since it contains a fraction of the native open

reading frame.

This experimental system removes several mechanisms that are

likely to affect protein expression noise in the native context.

Among these is the chromosomal context of the gene; the mRNA

sequence content, affecting both mRNA half-life and translation;

and the amino acid sequence, affecting protein degradation. In

fact, the only variable among the constructs is the sequence of the

promoter region. By definition, then, the effects on noise that we

measure here are due to the promoter sequence alone. This

experimental approach thus allows us to investigate whether and

how the promoter sequence alone affects noise. Although this

promoter-mediated noise contributes only partially to the total

noise exhibited by a protein, it may play an important role, which

we investigate here; later we use data on protein noise to explore

other factors that contribute to affecting protein expression noise.

The nucleotide sequence of the promoter region is a
consistent determinant of phenotypic variation

To quantitatively measure variation in gene expression from

each promoter, we grew a clonal population of each strain, and

used flow cytometry to measure the GFP concentration in

approximately 100’000 individual cells from each population.

For each strain, we extracted a small gated subset of cells (Figure

S1; see Methods). This gating has the effect of minimizing extrinsic

variation due to physiological differences among cells, such as cell

cycle timing, slow growth, or other physiological stresses (see Text

S1). For each of 1832 strains containing a promoter region from E.

coli, we measured the mean and variance in fluorescence. 1522 of

these yielded measurements significantly above background (GFP

vector lacking a promoter; see Methods). We use the data from

these 1522 promoters for the remainder of our analyses.

The mean and variance of fluorescence are highly repeatable

measurements; when they were assessed for independent cultures,

repeated measurements were extremely accurate (r2 = 0.998 and

0.91, for mean and standard deviation, respectively). This

repeatability existed even when the cultures were grown in

different laboratories, measured on different flow cytometry

machines, and when different methods were used to filter events

(r2 = 0.92 and 0.51 for mean and standard deviation, respectively;

see Methods and Figure S2). Mean fluorescence levels varied over

almost 3 orders of magnitude, qualitatively similar to the variation

in mRNA levels observed in other studies [23]. Comparing our

data on mean fluorescence level with published quantitative data,

we also find that our data set correlates well with measured

transcript levels, and is thus likely to capture an important aspect

of mRNA transcription (see Text S1).

Author Summary

Many biological processes in a cell involve small numbers
of molecules and therefore fluctuate over time. As a
consequence, genetically identical cells that live in the
same environment differ from each other in many
phenotypic traits, including the expression level of
different genes. Our aim was to identify types of genes
with particularly low or high levels of variation (‘‘noise’’)
and to understand molecular and evolutionary factors that
determine noise level. Working with the bacterium E. coli,
we analyzed the expression—at the single cell level—of
more than 1,500 different genes. We found particularly low
levels of noise in genes that E. coli needs to live and genes
that this bacterium shares with many related taxa. This
suggests that cellular functions that are particularly
important for this organism evolved towards low levels
of variation. In contrast to previous results with yeast, we
find that genes that change their expression levels in
response to environmental signals do not have high levels
of noise. This suggests that there may be fundamental
differences in how noise is controlled in bacteria and
eukaryotes.

Phenotypic Noise in E. coli
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We find a strong dependence of variation in expression on mean

expression level for any particular promoter (Figure 1), as has been

observed previously [23,24,32]. Because the primary effect of

selection on gene expression occurs as stabilizing selection on

mean expression level [8–11], and mean and variation are closely

coupled, we use a metric that decouples variation in expression

from mean expression level. Modifying the method outlined by

Newman et al. [24] we measured noise as the vertical deviation

from a smoothed spline of mean log expression versus the

coefficient of variation in log expression for all promoters in the

library (see Methods; Figure 1F; Text S1; Dataset S1). When

describing our findings, the term ‘phenotypic noise’ or ‘noise’

always refers to this metric in which variation is corrected for

mean expression; such a measure allows us to assess whether

variation in gene expression is controlled independently of the

mean.

We emphasize that we use the term ‘noise’ to refer to relative

differences in variation when mean expression level is controlled

for. Thus, it is a qualitative measure, and for this reason we

emphasize comparative results of relative differences in promoter-

mediated variation; also for this reason, we restrict our statistical

analyses to non-parametric tests. We refer to this measure as

‘noise’ because it is a reflection of differences between cells that are

likely to arise from stochastic events, but it is not a quantitative

measure of the frequency or effect of those events. In addition,

because we have functional data for genes only, and not

Figure 1. Dependence of variation in mRNA expression on mean mRNA expression level and derivation of a noise metric. A. The
observed variance in mRNA expression increases with increasing mean expression level. Shown are five promoters with various levels of mean and
variance in expression (from left to right: rho transcription termination factor; prpR transcriptional dual regulator, bolA transcriptional dual regulator;
tyrosyl-tRNA synthetase; and dps, an iron sequestration and DNA damage protein). B. The expression level and observed standard deviation for all
1522 promoters used in the analysis. The genes shown in panel A are highlighted in red (the left-most red dot is rho, the right-most dot is dps). C. The
coefficient of variation decreases initially with increasing expression, but plateaus at higher expression levels. D–F. Analogous histograms and graphs
to those shown in panels A–C), but calculated from log-transformed data. As discussed in the text, our focus is on variation in expression; we thus
derived a measure of variation in mRNA expression that is independent of the mean level of mRNA expression, and any measurement artifacts
associated with changes in the mean. This allows us to test whether mean and variation in expression can be decoupled due to selection or changes
in the promoter sequence. The noise metric is the vertical deviation from a smooth spline (blue) calculated from the running median (orange) of
mean log expression level versus the CV of log expression. The slight decrease in CV at low expression levels (panels C and E) is because fluorescence
values lower than one cannot occur. Thus, for weakly expressed genes, the distribution specifying the variation in expression levels is truncated at
one, decreasing the CV.
doi:10.1371/journal.pgen.1002443.g001

Phenotypic Noise in E. coli
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promoters, when we refer to the noise of a ‘gene’ or the functional

category of a ‘promoter,’ we are referring only to the gene that lies

directly downstream of the promoter, unless otherwise specified.

When we calculate this noise metric for the entire library of

promoters, we find excellent repeatability, even in different culture

conditions. The correlations range from 0.50 (Spearman’s rho)

when using data from different labs, to 0.58 when using data

collected in independent experiments in the same lab (Figure S3).

These are lower limit estimates of repeatability, as in each of these

comparisons different culture conditions were used (see Methods).

The repeatability of the noise metric implies that each promoter

sequence has a consistent effect on variation in expression: thus, as

suggested above, there are characteristics inherent to each

promoter that result in different levels of noise.

Noise in gene expression consists of different components

[33,34], and our experimental system mostly reports one of them,

promoter-specific extrinsic noise. Since the promoter-gfp construct

resides on a plasmid with several copies, the cellular GFP

concentration is the sum of the contributions from individual

promoters. Intrinsic noise – variation generated at the level of one

single promoter – is therefore decreased. In addition, because the

GFP protein has a longer half-life than mRNA, the sensitivity of

these noise measurements to intrinsic noise events in transcription

is decreased [35]. Finally, fluctuations in plasmid number, which

are expected to increase noise in all strains equally, may decrease

the sensitivity of this system.

The noise that we measure is thus a qualitative and relative

indication of the amount of promoter-specific extrinsic transcrip-

tional noise [33,34]. If we measure high levels of noise in a protein

controlled by a particular promoter, most likely this occurs

because transcription from this promoter is controlled by factors

(or regulatory networks) having higher noise, or that this promoter

is more sensitive to global extrinsic noise factors (e.g. variations in

polymerase numbers) than other promoters. This experimental

system is thus useful to examine extrinsic promoter-mediated noise

on a genome-wide scale, and to ask how the level of extrinsic noise

differs among promoters.

Even though, as discussed above, our plasmid-based system only

captures some aspects of gene expression, we find that it gives

similar results to chromosomally integrated systems in both mean

and variation of expression. We measured the mean and variation

in expression for nine chromosomally integrated promoter-gfp

fusion constructs [36], and found that both the mean and CV

correlate well with the values that we find for the plasmid-based

system (rho = 0.85, p = 0.006; rho = 0.77, p = 0.016 for mean and

CV, respectively; see Text S1 and Figure S4).

Promoters of essential and conserved genes have lower
levels of noise

Given that the promoter sequence alone has a consistent

influence on mRNA expression and noise levels (above; Figure S3),

this raises the question of whether these levels of noise

systematically differ for different classes, or types, of promoters.

One broad division that can be made is between promoters that

drive the expression of essential genes and those that drive the

expression of non-essential genes (we define a gene as essential if its

deletion yields an inviable genotype in rich media [37]). We used

data for 118 promoters that lie directly upstream of essential genes

or operons [38] that contain at least one essential gene, out of 1456

promoters for whose downstream genes we have information

about essentiality. We find that promoters of essential genes

exhibit significantly lower levels of noise than other promoters: of

the genes with the lowest level of noise (first quartile), 13.1% are

essential; of the genes with the highest level of noise (fourth

quartile), only 2.9% are essential (p = 1.0e-6, Wilcox rank sum

test). This difference is not driven by any mechanisms relating to

mean expression levels, since our measure of noise corrects for this.

Thus, the promoter regions of genes that are essential in the

laboratory environment have evolved such that essential genes

have lower noise levels.

Essentiality in the laboratory is an incomplete and potentially

biased measure of a gene’s importance in the natural environment.

We thus also looked at gene conservation, which may capture

additional aspects of functional importance [39,40]. Considering

non-essential genes only, we found a negative relationship between

noise and functional importance: non-essential genes that have

high levels of conservation in the gamma-proteobacteria clade (of

which E. coli is a member) have promoters conferring low levels of

noise (Spearman’s rho = 20.19, p = 7.2e-12, n = 1350; Figure 2

and Figures S5 and S6). Furthermore, this relationship between

conservation and expression noise exists within functional

categories: it does not depend on broad differences in conservation

between genes of different function, for example between genes

involved in RNA production (expected to be more conserved and

less noisy) versus those involved in carbon metabolism (expected to

be less conserved and more noisy; Figure S7).

Together with the above data on essential genes, this suggests

that the promoter regions of functionally important genes confer

low levels of noise; given that the major effect of promoter

sequence on protein level occurs through mediating transcription,

this decrease in noise likely occurs through the control of

transcriptional processes. The transcriptional regulation of some

bacterial genes has been shown to be constructed such that

increased noise is a result [41]; the data here suggest that on a

genome-wide basis there is a tendency for functionally important

genes to be controlled by less noisy transcriptional processes, that

this trend extends beyond essential genes to conserved, non-

essential genes, and that this trend persists within functional

categories of genes.

Evolutionary history is not a primary driver of the
decreased noise in promoters of essential and conserved
genes

There are several possible explanations for the low levels of

noise observed in essential and highly conserved non-essential

genes, two of which we discuss here (we explore a third

explanation in the following section; however, this list is not

exhaustive). First, it is possible that essentiality and gene

conservation are good descriptors of the functional importance

of a gene, and that selection has acted to decrease noise in such

genes. This has been the explanation put forth in previous

analyses. A second possible explanation is that low noise levels are

difficult to evolve, and as conserved and essential genes have also

spent more evolutionary time in a particular genome than non-

conserved genes, selection has had more time to minimize noise in

these genes. Either of these explanations could result in conserved

and essential genes having lower noise. However, the results of our

analysis suggest that the second explanation is less likely, for the

following reasons.

First, the correlation between gene conservation and noise exists

even for genes that have been acquired very distantly in the past.

We looked for an association between functional importance and

noise considering only genes acquired before the divergence of the

E. coli lineage from alpha-proteobacteria (approximately 2.5 billion

years ago [42]). These genes have had ample time for noise

minimization. Thus, if the time a gene spends in a particular

genome is a strong determinant of noise, there should be no

relation between conservation and noise in this set of genes, as all

Phenotypic Noise in E. coli
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have spent at least 2.5 billion years in the E. coli lineage. However,

the correlation between conservation and noise within these

anciently acquired genes remains strong (Spearman’s rho = 20.23,

p = 2.8e-4, n = 249). That the amount of noise minimization is

related to the level of evolutionary conservation (functional

importance) even in anciently acquired genes strongly suggests

that the time that a gene spends in an organism has little to do with

the level of noise it exhibits.

Second, although horizontally transferred genes are generally

enriched for genes of lesser functional importance, many genes

important for cell functioning have been horizontally transferred

(e.g. some ribosomal genes). Among genes that have been recently

horizontally transferred into E. coli [43], strongly conserved genes

have lower levels of noise (correlation between noise and

conservation: Spearman’s rho = 20.22, p = 6.9e-3, n = 221 for

genes transferred after the split of E. coli from Haemophilus;

Spearman’s rho = 20.25 p = 4.8e-4, n = 171, for genes transferred

after the split of E. coli from Buchnera). When we consider very

recent horizontal gene transfers the negative correlation remains

(Spearman’s rho = 20.16, p = 0.23, n = 65 for genes transferred

after the split of E. coli MG1655 from E. coli CFT073). Although

this correlation is not significant, there are only a small number of

recently transferred genes, and these vary little in their levels of

evolutionary conservation, decreasing the explanatory power of

this variable. Given that the nucleotide divergence between

MG1655 and CFT073 strains is approximately 2% [44], finding

a negative correlation of similar strength (20.16 vs. 20.19 for the

entire data set) is notable.

Thus, the relationship between functional importance and noise

does not appear to be related to the time that a gene has spent in a

genome. The latter result also implies that the decreased noise

observed in functionally important genes, if due to selection, can

occur via a small number of mutations. Alternatively, it is possible

that features of the promoter that influence noise act indepen-

dently of the genetic background, so that genes retain character-

istic levels of phenotypic noise even when horizontally transferred.

We do find some support for this latter hypothesis: promoters of

very recently horizontally transferred genes (ORFan genes; e.g.

[45]) do not exhibit higher levels of noise than other promoters

(Wilcox rank sum, p = 0.69, n = 37).

There is no evidence that noise is an unavoidable
consequence of selection for expression plasticity

Our results, showing that functionally important genes exhibit

lower gene expression noise, is consistent with the hypothesis that

selection has acted to decrease noise in genes important for cell

function. However, many other factors may potentially play a role

in determining noise. A crucial determinant of noise in gene

expression may be in how the gene is regulated: genes that exhibit

large expression plasticity, meaning that they can undergo strong

repression or activation across different environmental conditions,

might be controlled in ways that makes them intrinsically more

noisy. A very strong association between expression plasticity and

noise has been found previously in yeast [24–26].

To investigate whether there is a similar association between

noise and expression plasticity in E. coli, we gathered data on

changes in gene expression across 240 pairs of environmental

conditions [46]. For each pair of conditions, gene expression

changes are expressed as the log ratio of expression in one

condition relative to a reference condition; the value is positive for

Figure 2. Noise in gene expression is dependent on the functional importance of the downstream gene. Conserved non-essential genes
exhibit less noise. Conservation is calculated as the number of gamma-proteobacterial taxa in which an orthologous gene copy is present. Promoters
were binned according to the number of taxa in which an orthologue was found; the relationship is highly significant (for an unbinned analysis,
Spearman’s rho = 20.19, p = 7.2e-12, n = 1350 (Figure S5)). A nonparametric linear fit using Thiel’s method [71] is shown in black.
doi:10.1371/journal.pgen.1002443.g002

Phenotypic Noise in E. coli
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genes that increase their expression, and negative for genes that

decrease their expression under the respective environmental

condition. For each gene, we calculated the median of the absolute

values of the expression changes. This value, which we term the

expression plasticity, is high for genes whose expression frequently

varies between two conditions, and low for genes whose expression

is usually constant between two conditions, regardless of whether

this occurs through repression or activation, or the nature of the

reference condition.

Surprisingly, we found no significant association between noise

and expression plasticity in E. coli (Spearman’s rho = 0.030,

p = 0.27, n = 1354). It is possible that this correlation exists only

in some growth conditions, and that these types of conditions are

under-represented in the dataset. To account for this possibility,

we grouped the condition pairs by their similarity in expression

changes into 18 clusters, calculated the median of the absolute

values of the expression changes, and again found no significant

correlation (Spearman’s rho = 20.002, p = 0.94, n = 1354). Per-

forming a similar analysis for yeast yields a significant positive

relationship between expression plasticity and noise (data from

[47]; unclustered analysis: Spearman’s rho = 0.22, p = 7e-26,

n = 2479). Although the lack of a correlation in E. coli could be

driven by differences in data quality, this is not a likely explanation

(see Text S1 and Figure S8).

Together, these data suggest that in yeast, a substantial fraction

of gene expression noise might be a consequence of requiring

dynamic control of gene expression [26]. However, in E. coli, high

gene expression noise is not an unavoidable consequence of genes

having high expression plasticity. Further supporting this conclu-

sion is the association between functional importance and

expression plasticity in E. coli: essential and conserved genes are

the most dynamically regulated: 42% of essential genes are among

the most dynamically regulated genes (within the top quartile),

while only 13% are among the least dynamically regulated

(bottom quartile) (p = 5e-6, Wilcox rank sum for essential versus

non-essential genes; Spearman’s rho = 0.19, p = 1.1e-11, n = 1209

for the correlation between expression plasticity and conservation).

Despite this, promoters of essential and conserved genes exhibit

the lowest level of noise. Thus, in E. coli, there does not appear to

be a constraint preventing promoters with high expression

plasticity from having low noise. In contrast, there is a strong

positive correlation between expression plasticity and noise in

yeast, suggesting that for many genes, such a constraint may exist.

Because essential genes in yeast have low expression plasticity (see

Text S1), the previous finding that essential yeast genes exhibit low

levels of noise might be a consequence of this association between

expression plasticity and noise.

Functional classes differ in their levels of noise
We looked in more detail at how specific functional aspects

relate to gene expression noise. We grouped genes according to the

categories outlined by MultiFun [48], and found substantial

differences between genes having different functional roles

Figure 3. Noise in gene expression is related to the specific
functional role. Genes in different functional categories exhibit high
or low levels of noise. We considered eight of the major categories
delineated by MultiFun (metabolism, information transfer, regulation,
transport, cell processes, cell structure, location, and extra-chromosom-
al origin) [48]. Within each of these categories, we asked whether there
were consistent differences in the amount of noise exhibited by genes
of different function. Major categories and subcategories are ranked by
the amount of noise exhibited by genes in that category; within each
major category, subcategories are colored relative to the average

amount of noise exhibited by all genes in the major category. The color
indicates the probability of the null hypothesis (that genes in a given
subcategory have the same level of noise as genes in other
subcategories; two-sided Wilcox rank sum test). Two stars indicates
that the subcategory exhibits a significantly higher or lower level of
noise than other subcategories after correcting for multiple compari-
sons; one star indicates that the subcategory exhibits a higher or lower
level of noise with p,0.05. Regulation is the only major functional
category that exhibits higher noise, although this result is of only
marginal significance.
doi:10.1371/journal.pgen.1002443.g003

Phenotypic Noise in E. coli
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(Figure 3). Relatively low levels of noise were exhibited in genes

involved in DNA structure (i.e. methylation, bending, and super-

coiling) and building block synthesis (biosynthesis of amino acids,

nucleotides, cofactors, and fatty acids). Low levels of noise in such

housekeeping genes might be expected, given that normal cellular

activities are probably compromised if these proteins are too

abundant or not abundant enough, as has been suggested

previously [49,50]. We also observed particularly low levels of

noise in genes involved in protection (from radiation, cell killing,

drug resistance, or for detoxification). Finally, promoters annotat-

ed as having binding sites for s32 (control of heat shock genes)

have significantly lower levels of noise; several transcription factors

are also associated with low noise (Table 1).

Particularly high levels of noise are primarily found in genes

involved in two functional groups: energy metabolism of carbon

sources (e.g. glycolysis, the pentose phosphate shunt, fermentation,

aerobic respiration), and in adaptation to stress (osmotic pressure,

temperature extremes, starvation response, pH response, desicca-

tion, and mechanical, nutritional, or oxidative stress). Finally,

promoters with binding sites for s38 (control of starvation and

stationary phase genes) exhibit higher levels of noise than

promoters containing binding sites for other sigma factors; several

transcription factors were also associated with higher noise levels

(Table 1).

As the above analysis implied that high levels of noise are not

simply a consequence of having high expression plasticity, the

differences in noise between categories is consistent with

differential selection (although other factors may also be

responsible). For example, one possibility is that some genes

exhibit high levels of noise due to an absence of selection (such that

drift dominates the evolutionary process), in contrast to the

majority of genes in the genome. A second possibility is these genes

have experienced selection for high levels of noise. Variation in

resource utilization between cells can sometimes increase the

growth rate of clonal populations [19,51] by promoting the

utilization of carbon sources that become newly available.

Similarly, noise in genes involved in adaptation to stress could

allow genotypes to persist under conditions where stressors appear

quickly [13,52,53]. Alternatively, genes with high noise may also

be constrained in their ability to evolve lower noise due to trade-

offs with other functions that we have not measured. These results

thus generate explicit and testable hypotheses about the possible

adaptive functions of increased noise in gene expression.

Protein expression noise is controlled through both
transcriptional and post-transcriptional mechanisms

Our focus until now has been on how the nucleotide sequence

of a promoter alone controls phenotypic noise in a plasmid-based

context. Noise at the level of protein is possibly controlled through

additional mechanisms acting at the post-transcriptional level. To

include these mechanisms into our analysis, we used data from a

recent study that measured variation in protein numbers between

cells for a large number of the protein coding genes in E. coli [23].

This study was based on translational fusions of protein coding

genes with YFP in the native chromosomal context. Using

approximately 1’000 of these constructs, the authors used

microscopy to measure the mean and variation in protein number

per cell. This study thus provides us with information on the sum

of intrinsic and extrinsic noise that occurs through both

transcriptional and post-transcriptional processes.

Using this dataset, we quantified protein expression noise in an

analogous manner as for our data, removing genes with very low

expression levels and correcting for mean protein expression level.

Again, this decouples mean protein expression level from variation

in protein expression. We find a significant but weak correlation

between protein noise in this dataset and gene expression noise in

our own (Spearman’s rho = 0.12, p = 0.02, n = 334). A primary

reason for this low correlation may be that the noise in protein

expression was measured during late exponential phase, while we

measured during early exponential phase growth (see Text S1).

We find that, similar to the pattern observed for promoter-

mediated noise, essential and conserved genes have low protein

expression noise (Wilcox rank sum, p = 3e-4, n = 116 essential

genes; Spearman’s rho = 20.21, p = 7.0e-9, n = 645 non-essential

genes). Using variation alone as a metric of noise, without the

correction for mean expression level, gives the opposite result:

essential genes have significantly higher levels of variation [23], as

they are expressed at higher levels, and variation is strongly

positively correlated with mean expression. Finally, corroborating

Table 1. Sigma factors and transcription factors associated with genes exhibiting low or high levels of expression noise.

Transcription factor Number of target genes Noise level p-value (two-sided Wilcox rank test)

MetJ 10 low 0.0016

s32 64 low 0.0052

CpxR 18 low 0.011

ArgR 16 low 0.017

NarP 6 high 0.039

TrpR 6 high 0.029

GadX 10 high 0.027

Fnr 71 high 0.015

Hns 43 high 0.0099

GadW 5 high 0.0089

NarL 19 high 0.0086

IhfA/B 48 high 0.007

s38 85 high 6.7e-7

We analyzed all factors listed in RegulonDB that regulate five or more targets (6 sigma factors and 43 transcription factors in total). All factors with p-values less than
0.05 (uncorrected for multiple tests) are shown.
doi:10.1371/journal.pgen.1002443.t001
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the lack of correlation between promoter-mediated noise and

expression plasticity, protein expression noise and plasticity exhibit

no significant correlation (rho = 0.052, p = 0.16, n = 724).

We find that post-transcriptional processes play a role in

controlling protein expression noise: genes with high protein

expression noise have slightly higher rates of translation initiation

(Spearman’s rho = 0.17, p = 3.3e-6, n = 730; computational pre-

dictions of ribosomal initiation rates from [30,54], and slightly

longer mRNA half-lives [55] (Spearman’s rho = 0.15, p = 4.4e-5,

n = 689). This is consistent with the idea that intrinsic noise in

post-transcriptional mechanisms has a significant effect on total

noise, as theoretical models have suggested [34,56–58]. However,

the extent to which the cell actually employs these mechanisms has

remained unknown. The data here suggest that these mechanisms

affect the noise levels of many genes in E. coli. If this association has

occurred through selection, this implies that although these

mechanisms are quite costly for the cell [59], the advantage of

controlling intrinsic noise outweighs the energetic costs that it

imposes.

Discussion

We have shown here that by using a simple plasmid based

system that different promoters consistently confer different levels

of phenotypic noise. In particular, we find that functionally

important genes have promoters that confer lower levels of gene

expression noise, and certain functional categories are enriched or

depleted for promoters that confer high noise. The noise metric we

use accounts for mean expression level, so these patterns are not

due to differences in expression levels between essential and non-

essential genes, or to characteristics related indirectly to expression

level (for example, systematic differences in cellular stress levels

due to GFP). Furthermore, these noise characteristics appear to

extend across different growth conditions, as promoter-mediated

noise is similar during growth in non-stressful (arabinose and

glucose) and stressful (low-levels of antibiotic) conditions (see

Figure S3).

We have excluded several confounding factors from the

association between noise and functional importance, including

the age of the gene and the association with expression plasticity.

The lack of association between promoter sequence and

expression plasticity is surprising, given the strong relationship

that has been observed in yeast [24], and that promoter sequence

is a strong determinant of transcript level (see Text S1). The low

noise of promoters of functionally important genes is consistent

with the hypothesis that natural selection acts to control against

variation in proteins that are important for cellular functioning

[60]. However, it is important to emphasize that we cannot

exclude other factors being responsible for this pattern.

We cannot yet determine the level at which the effects of

promoter-mediated noise control extend to the protein level.

Processes downstream from transcription may have significant

effects on noise, and might sometimes overwhelm the effects

arising on the transcriptional level. The association that we find

between promoter-mediated noise and protein noise suggests that

in many cases, transcriptional noise does correspond with the noise

observed further downstream. However, we cannot say how strong

this association is for all genes.

As our noise metric largely excludes both intrinsic noise and

global extrinsic noise, these results suggest that promoter-mediated

noise is systematically reduced in functionally important genes

through gene-specific mechanisms. Thus, it seems that the

regulatory inputs for these promoters have evolved to minimize

noise. This has been shown previously for single regulatory

networks [61]; here we show that it also appears to occur for many

different genes. In addition to promoter-mediated control of noise,

we find that proteins that exhibit low levels of noise have short

mRNA half-lives and low rates of translation initiation. Although

previous work has shown that variation in expression is strongly

positively associated with mean expression level [23], the data here

show that these two characters can be uncoupled, so that

transcriptional noise can be controlled independently of the mean,

and that this uncoupling is stronger for some types of genes (those

that are functionally important) than others.

Although it has been hypothesized previously that functionally

important genes have been selected to exhibit low levels of noise

[62], it has been difficult to unambiguously show this. In

particular, it has been difficult to separate the effects of expression

plasticity and low noise, as all previous studies connecting noise

and functional importance have been in yeast, where this

association is quite strong [24–26] (see Text S1). The data shown

here provide evidence that in E. coli, these two characteristics are

unconnected.

In eukaryotes, one of the dominant regulatory mechanisms

associated with transcriptionally noisy genes is chromatin structure

(noisy genes tend to contain TATA boxes and are frequently

regulated by SAGA [21,24,63]). A corollary of this is that in yeast

there is a strong association between noise and expression

plasticity, as dynamically regulated genes are often associated

with chromatin remodeling factors. Much of this noise is thought

to arise because of the two step process inherent in eukaryotic

transcription, in which initial access to the DNA occurs through

relaxation of histone binding, followed by transcription factor and

polymerase binding [64]. Homologous mechanisms do not exist in

bacterial systems; this may fundamentally affect the correlation

between noise and expression plasticity. Despite these mechanistic

differences, we do find a significant positive correlation between

the promoter-mediated noise in E. coli genes and protein

expression noise in their S. cerevisiae orthologues (rho = 0.31,

p = 0.015, n = 60; Figure 4). Thus, although these organisms might

differ in the mechanisms affecting gene expression noise, genes of

similar function do exhibit similar levels of noise. However, protein

expression noise, as calculated from [23] exhibits no correlation

with gene expression noise in S. cerevisiae.

The data presented here show that: (1) For many genes, the

promoter region of a gene controls noise in a consistent manner;

(2) Functionally important genes are controlled such that noise is

decreased; (3) The lower noise observed in functionally important

genes does not appear to result from these genes having been

present in the genome for a longer period of time; (4) There is no

correlation between the noise conferred by a promoter and the

expression plasticity of mRNA expression that is controlled

through that promoter. In particular, this latter observation

implies that there may be fundamental differences between the

mechanisms giving rise to phenotypic noise in bacterial versus

eukaryotic systems.

Methods

Strains
All strains have been described previously [27]. Briefly, each

strain in the library contains a plasmid with a ‘promoter region’

cloned upstream of a fast-folding GFP. These promoter regions

consist of an intergenic region, together with 50–150 bp of the

upstream and downstream genes. The inclusion of part of the

upstream and downstream open reading frames ensures that the

majority of transcriptional control elements are contained in the

construct. The library contains all K12 intergenic regions longer
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than 40 bp. We note that although the system is plasmid based,

copy-number variation is relatively low. The plasmid contains an

SC101 replication origin, for which segregation is tightly

controlled [29]. For this reason variation in plasmid number per

cell is expected to be less than under a binomial distribution,

although variation in plasmid numbers will contribute additional

extrinsic noise.

The strains with chromosomal integrations of the promoter-

GFP fusions have been described previously [36]. Briefly, the

promoter-GFP fusions were cloned and inserted into the attTn7

locus using a delivery plasmid containing a multiple cloning site

surrounded by the terminal repeats of Tn7 [65].

Growth conditions, sample preparation, and flow
cytometry

All strains were grown in minimal media (M9) supplemented

with 0.2% arabinose. Overnight cultures grown in same media

were diluted 1:500 and allowed to grow to mid-exponential phase

at 37uC, shaken at 200 rpm. The cells were incubated with Syto

red 62 (Molecular Probes) to stain the chromosome. The filters

used for cytometry were 488/530+/215 for GFP and 633/660+/

210 for the nucleic acid staining. In calculating the repeatability

of the noise metric (Figure S3), two additional growth conditions

were used: M9 supplemented with 0.2% glucose, and M9

supplemented with 0.2% glucose and 2.5 ng/ml ciprofloxacin.

Figure 4. E. coli and yeast orthologues have similar noise levels. Orthologues in S. cerevisiae were determined through a reciprocal best-hit
analysis for all the genes in E. coli. The number of reciprocal best-hit orthologues depended on the e-value cut-off that was set; this plot shows all
orthologues with an e-value lower than e-35 (rho = 0.31, p = 0.015, n = 60). The data on yeast noise are from [24]; noise values for both S. cerevisiae
and E. coli have been scaled such that the mean is zero and the standard deviation in noise is one.
doi:10.1371/journal.pgen.1002443.g004
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Filtering of data
The data were collected from a culture containing cells in

different physiological states and quality. To minimize heteroge-

neity driven by these processes, we selected a small subset of cells

with minimal CV. For the majority of promoters, the CV of the

population was minimized between 5,000 and 10,000 cells,

although gating had only a minimal effect on CV, decreasing it

by 10–20% at most. Larger values than this generally contained

cells of differing size and complexity, affecting the variance in

fluorescence; smaller values contained too few cells to be a reliable

indicator of the population. Thus, for all promoters, fluorescence

data for 100,000 cells was collected and this data was subsequently

filtered so that the fluorescence data from only 10,000 cells were

analyzed further. These data were exported into text files and

analyzed using the R statistical framework [66] (the raw data is

available at http://mara.unibas.ch/silander.html).

The filtering process occurred in one of two ways. For the

majority of the analysis, it occurred as follows: (1) the first 1000

acquisition events were excluded to minimize inaccuracies in

fluorescence measurements resulting from sample crossover and

initial inaccuracies in measurements that we observed; (2)

extreme outliers (all cells with red fluorescence values below

ten and GFP values of one or less) were removed; (3) to enrich

for cells in similar physiological states and stages of the cell cycle,

for each promoter, a kernel density was fitted to the log red

fluorescence data (indicative of the amount of nucleic acid in the

cell), with Gaussian smoothing in which the density was

estimated at 512 points using the method of Silverman for

bandwidth selection [67]. The maximum value of this kernel

density was determined, and 10,000 cells were selected from a

symmetrical interval around this peak (see Dataset S2 for

simplified code). This number of cells minimized the variation in

GFP signal due to external influences (Figure S2), while still

allowing us to sample a large number of cells. The mean,

median, and standard deviation for this population of cells were

then calculated.

For secondary confirmation of previous measurements, events

were filtered on the basis of FSC and SSC alone: (1) again, the first

1000 acquisition events were excluded; (2) extreme outliers (all

cells with SSC, FSC or GFP values of one or less) were removed;

(3) a bivariate normal was fit to the log FSC and log SSC values,

and values outside of two standard deviations were removed

(cellular debris); (4) to enrich for cells in similar physiological states

and stages of the cell cycle, a 2 d kernel density was fitted to the

FSC and SSC data. The maximum value of this kernel density was

determined, and 10,000 cells were selected from an elliptical gate

around this point, oriented by the covariance between FSC and

SSC (Figure S1). This gating was performed using the flowCore

package [68]. Again, the mean, median, and standard deviation

for this population of cells were calculated.

Several promoters gave rise to distributions that appeared to be

either bimodal or have extremely high variances. The promoters

having the highest CV (.0.6), and all promoters exhibiting a

bimodal expression pattern were reanalyzed by restreaking for

single colonies and measuring fluorescence a second time. We

found that for all promoters exhibiting bimodal patterns, the

bimodality disappeared upon restreaking to obtain a single clone; a

previous analysis of protein levels in E. coli cells confirms the rarity

of bimodal distributions [23]. We thus concluded that the bimodal

distributions were likely due to contamination from a second

promoter construct. For this reason, these promoters were

removed the analysis. Three samples were removed from the

analysis, one on the basis of abnormal DNA staining, and two due

to small sample sizes.

We calculated a 95% confidence interval around the mean

fluorescence of the empty vectors (containing gfp, but no

promoter), and excluded all promoters with a mean fluorescence

less than this range from the analysis (below 2.26 fluorescence

units). There is thus only a 2.5% chance that the GFP signal for

any promoter included in the analysis is due to only to

autofluorescence.

Measuring variation in mRNA expression within a
population

Our goal was to define a consistent metric of noise in mRNA

expression that enabled comparison of genes with different mean

expression levels (in other words, to decouple mean from

variation in expression). We thus followed a method similar to

that outlined by Newman et al. [24], in which noise is defined as

the deviation from a sliding window of the median expression

level versus the CV for each promoter. To more robustly estimate

the deviation, we defined noise as the vertical deviation from a

smoothed spline (6 degrees of freedom) that covered a running

median of mean log expression versus CV of log expression

(window of 15 data points); a smoothed spline is not subject to the

small deviations that a running median is (Figure 1F). For

simplicity, we refer to this deviation as noise in gene expression,

or noise. We note that noise is homoscedastic across expression

levels: mean expression level versus noise or the absolute value of

noise gives no significant regression. This is not the case for two

related metrics of noise based on vertical deviation from a smooth

spline: if log mean expression versus CV of expression or mean

log expression versus standard deviation of log expression are

used, both result in highly expressed genes having extreme levels

of noise (either very high or very low) (Figure 1B, 1C, 1E). In

contrast, for the metric of noise we use, genes having very high

expression are not more likely to have extreme levels of noise. In

addition, there is no significant correlation of noise with mean

expression level (rho = 20.035, p = 0.17, n = 1522). Lastly, our

results are robust when using similar noise metrics (e.g. vertical

deviation from the running median, Euclidean distance from the

smoothed spline, or if different spline fits are used; see Text S1).

The noise metric is a highly reliable measure; for separate

measurements of two independent cultures grown in different

growth media yields a Spearman’s rho value of 0.58 (p,1e-120;

Figure S3).

Gene essentiality and growth phenotypes
Data on gene essentiality was taken from the PEC dataset [37].

Promoters were considered essential if they drove the expression of

an essential gene or an operon containing an essential gene. For

conservation, only the immediate downstream gene was taken into

account.

Gene conservation and horizontal transfer
Using data from Ragan et al. (2006), for each gene that

appeared to have experienced horizontal transfer, we used the

median value of the estimated phyletic depth at which the

horizontal transfer occurred. We then selected those genes that

had been acquired after the divergence of E. coli from Haemophilus

(220 genes), Buchnera (170 genes), or E. coli CFT073 (42 genes), and

used these sets to calculate the relationship in recently transferred

genes between noise and gene conservation.

We calculated gene conservation using a reciprocal shortest

distance strategy [69] to search for putative orthologues of E. coli

genes in 105 fully sequenced gamma-proteobacteria or 58 alpha-

proteobacteria [70]. We considered genes present in at least 30 out
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of 58 (.50%) fully sequenced alpha-proteobacterial taxa to have

been acquired before the E. coli – alpha-proteobacteria divergence.

Enrichment of functional classes for high or low noise
promoters

Promoters were grouped by functional class according to the

gene annotations for the immediate downstream gene, as outlined

in MultiFun [48] into eight major categories: metabolism,

information transfer, regulation, transport, cell process, cell

structure, cellular location, and extra-chromosomal element; each

major category contained up to eight subcategories. To test for the

enrichment of low or high noise genes, for each major category,

each subcategory was tested against the remaining genes in that

major category for enrichment of promoters with higher or lower

noise using a Wilcox rank sum test.

mRNA abundances, half-lives, and expression ratios
Data on relative mRNA abundances and half-lives were taken

from [55]. Data on relative mRNA expression levels (i.e.

expression ratios) for 240 different conditions were taken from

the E. coli Gene Expression Database (http://genexpdb.ou.edu/).

These conditions were also grouped using hierarchical clustering

into 18 clusters in which expression ratios were similar using the

Lance-Williams formula as implemented by hclust in the R

statistical package.

Operon structure and sigma factor binding sites
Data on both operon structure and the binding sites of sigma

factors was taken from RegulonDB (http://regulondb.ccg.unam.

mx/).

Noise in yeast orthologues
Orthologous genes in yeast were identified using a reciprocal

best-hit analysis, with varying e-value cut-offs. The significance of

the correlation, although low, is robust to changes in the

stringency of the e-value cut-off (we note that as the stringency

of this cutoff is increased, the number of orthologues decreases,

necessarily decreasing the significance: e-20: rho = 0.2, p = 0.07; e-

30: rho = 0.28, p = 0.02; e-40: rho = 0.26, p = 0.06; e-50:

rho = 0.25, p = 0.11).

Statistical analyses
Unless otherwise specified, all categorical comparisons were

performed using a non-parametric two-sided Wilcox rank sum test

and all reported correlations are non-parametric Spearman rank

correlations. The p-values for the Spearman rank correlations

were calculated using the default settings of the cor.test() function

in R, which uses an asymptotic t approximation.

Supporting Information

Figure S1 Gating methodology for FSC and SSC. Data for

100,000 cells was collected. From these cells, a subset of

approximately 10,000 cells were selected from an elliptical gate

(red) centered on the densest area of cells.

(PDF)

Figure S2 Repeatability of flow cytometry measurements of

mean and standard deviation in gene expression. A. Repeatability

of measurements of mean expression. Shown are measurements of

two full biological replicates for 92 promoters measured using

different settings on different flow cytometry machines in different

laboratories, and with different filtering methods (red; r2 = 0.912)

or on the same machine with the same settings and filtering

methodology (black; r2 = 0.998). B. Repeatability of measurements

of standard deviation in gene expression. Conditions and colors

are identical to those in A. r2 = 0.509 and 0.922 for different and

identical flow cytometry machines, respectively.

(PDF)

Figure S3 Repeatability of noise metric across growth condi-

tions. Shown are two conditions of growth and the measured noise

levels for all genes exhibiting mean fluorescence above background

levels. The metric is highly consistent (rho = 0.58; p,1e-120).

(PDF)

Figure S4 Plasmid and chromosomally integrated promoters

exhibit similar mean and variation in expression. We measured

mean log expression and the coefficient of variation in expression

for nine promoter-gfp fusions that were chromosomally integrated

at the attTn7 site and compared this to those found for the plasmid-

based system. We found that the chromosomally integrated

constructs exhibited good correlations with the plasmid-based

system (rho = 0.85, p = 0.006; rho = 0.77, p = 0.016 for mean (left

panel) and CV (right panel), respectively). We would expect there

to be changes in either the mean or variation in expression if

titration of transcription factors in the plasmid-based system had a

large effect on regulation. It does not appear that this is the case.

Although the chromosomal CV of slp appears smaller than when

on the plasmid, some of this difference is likely due to the difficulty

in accurately measuring the chromosomal CV for slp, as the

fluorescence level is only slightly above the background fluores-

cence.

(PDF)

Figure S5 Full scatter plot of the relationship between gene

conservation of non-essential genes and noise. The conservation

level of 1334 non-essential genes is plotted against the phenotypic

noise observed for each gene. As noted in the main text, this

relationship is highly significant (Spearman’s rho = 20.20,

p = 4.75e-13). A non-parametric regression line fit using Thiel’s

incomplete method [71] is shown in red.

(PDF)

Figure S6 Conserved genes exhibit lower levels of noise. Four

genes are shown as examples: bhsA (stress resistance), glgS

(carbohydrate metabolism), dnaK (heat shock), and lon (protein

degradation). bhsA and glgS both exhibit relatively high levels of

noise, and are less well conserved; dnaK and lon exhibit low levels of

noise and are almost perfectly conserved across gamma-proteo-

bacteria.

(PDF)

Figure S7 Broad differences in gene expression noise between

functional categories does not drive the negative correlation

between gene conservation and noise. For each functional class

containing more than 30 non-essential genes, the Spearman

correlation between gene conservation and noise was calculated.

The numbers in parentheses indicate the number of non-essential

protein coding genes in that subcategory. For some subcategories,

there is little variation in either conservation or noise; thus the

correlation is not always strong. However, in nearly all cases, the

correlation remains negative; those subcategories with p,0.05 are

shaded in grey.

(PDF)

Figure S8 There is no relationship between standard deviation

in gene expression across environments and noise in expression.

Promoters were binned according to the observed standard

deviation in gene expression across environments. Regardless of

whether or how binning was performed, no significant relationship
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between the standard deviation in gene expression across

environments and the level of noise in expression could be found.

This contrasts strongly with previous results from previous studies

in yeast.

(PDF)

Text S1 Supplementary information containing further details of

the analysis and discussion.

(DOC)

Dataset S1 Mean, median, standard deviation, and noise values

for each promoter. The first column lists the name of the

downstream gene; the next four columns list the mean and

standard deviation of the fluorescence values for the log-

transformed and original data, respectively. The sixth column

lists the noise statistic for each gene.

(XLS)

Dataset S2 Simplified code (in R) that was used to process the

raw FACS data.

(R)

Acknowledgments

We thank T. Bollenbach for sharing bacterial strains, R. Beiko for sharing

data on horizontal transfer, E. van Nimwegen for valuable discussions, and

three reviewers for helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: OKS NN MA AZ. Performed

the experiments: OKS NN AZ AB IK. Analyzed the data: OKS NN MA.

Contributed reagents/materials/analysis tools: AZ AB IK UA. Wrote the

paper: OKS NN MA.

References

1. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression
in a single cell. Science 297: 1183–1186.

2. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to

stochasticity in gene expression. Proceedings of the National Academy of
Sciences of the United States of America 99: 12795–12800.

3. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene
expression. Nature 422: 633–637.

4. Raser JM, O’shea EK (2004) Control of stochasticity in eukaryotic gene

expression. Science 304: 1811–1814.

5. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, et al. (2008)
Self-destructive cooperation mediated by phenotypic noise. Nature 454:

987–990.

6. Freed NE, Silander OK, Stecher B, Bohm A, Hardt WD, et al. (2008) A Simple
Screen to Identify Promoters Conferring High Levels of Phenotypic Noise. Plos

Genetics 4: e1000307.

7. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA
synthesis in mammalian cells. Plos Biology 4: 1707–1719.

8. Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the
Drosophila melanogaster subgroup. Nature Genetics 33: 138–144.

9. Lemos B, Meiklejohn CD, Caceres M, Hartl DL (2005) Rates of divergence in

gene expression profiles of primates, mice, and flies: Stabilizing selection and
variability among functional categories. Evolution 59: 126–137.

10. Gilad Y, Oshlack A, Rifkin SA (2006) Natural selection on gene expression.

Trends in Genetics 22: 456–461.

11. Bedford T, Hartl DL (2009) Optimization of gene expression by natural
selection. Proceedings of the National Academy of Sciences of the United States

of America 106: 1133–1138.

12. Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, et al. (2005) The

transcriptional consequences of mutation and natural selection in Caenorhabdi-

tis elegans. Nature Genetics 37: 544–548.

13. Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: A

model of survival in changing environments. Genetics 169: 1807–1814.

14. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and
information in fluctuating environments. Science 309: 2075–2078.

15. Davidson CJ, Surette MG (2008) Individuality in Bacteria. Annual Review of

Genetics 42: 253–268.

16. Donaldson-Matasci MC, Lachmann M, Bergstrom CT (2008) Phenotypic

diversity as an adaptation to environmental uncertainty. Evolutionary Ecology

Research 10: 493–515.

17. Veening JW, Smits WK, Kuipers OP (2008) Bistability, Epigenetics, and Bet-

Hedging in Bacteria. Annual Review of Microbiology 62: 193–210.

18. Bishop AL, Rab FA, Sumner ER, Avery SV (2007) Phenotypic heterogeneity
can enhance rare-cell survival in ‘stress-sensitive’ yeast populations. Molecular

Microbiology 63: 507–520.

19. Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a
survival strategy in fluctuating environments. Nature Genetics 40: 471–475.

20. Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental

evolution of bet hedging. Nature 462: 90–U97.

21. Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, et al. (2006)

Phenotypic consequences of promoter-mediated transcriptional noise. Molecular

Cell 24: 853–865.

22. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001)

Fruiting body formation by Bacillus subtilis. Proceedings of the National

Academy of Sciences of the United States of America 98: 11621–11626.

23. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, et al. (2010) Quantifying E.

coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single

Cells. Science 329: 533–538.

24. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. (2006)

Single-cell proteomic analysis of S-cerevisiae reveals the architecture of
biological noise. Nature 441: 840–846.

25. Lehner B (2008) Selection to minimise noise in living systems and its implications
for the evolution of gene expression. Molecular Systems Biology 4: 170.

26. Lehner B (2010) Conflict between Noise and Plasticity in Yeast. Plos Genetics 6:

e1001185.

27. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, et al. (2006) A

comprehensive library of fluorescent transcriptional reporters for Escherichia

coli. Nature Methods 3: 623–628.

28. Lobner-Olesen A (1999) Distribution of minichromosomes in individual

Escherichia coli cells: implications for replication control. Embo Journal 18:

1712–1721.

29. Peterson J, Phillips GJ (2008) New pSC101-derivative cloning vectors with

elevated copy numbers. Plasmid 59: 193–201.

30. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome

binding sites to control protein expression. Nature Biotechnology 27: 946–U112.

31. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-Sequence

Determinants of Gene Expression in Escherichia coli. Science 324: 255–258.

32. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, et al. (2006) Noise in

protein expression scales with natural protein abundance. Nature Genetics 38:
636–643.

33. Raser JM, O’shea EK (2005) Noise in gene expression: Origins, consequences,

and control. Science 309: 2010–2013.

34. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)
Regulation of noise in the expression of a single gene. Nature Genetics 31:

69–73.

35. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation

at the single-cell level. Science 307: 1962–1965.

36. Bollenbach T, Kishony R (2011) Resolution of Gene Regulatory Conflicts

Caused by Combinations of Antibiotics. Molecular Cell 42: 413–425.

37. Kato JI, Hashimoto M (2007) Construction of consecutive deletions of the

Escherichia coli chromosome. Molecular Systems Biology 3: 132.

38. Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Pena-

loza-Spinola MI, et al. (2008) RegulonDB (version 6.0): gene regulation model of

Escherichia coli K-12 beyond transcription, active (experimental) annotated

promoters and Textpresso navigation. Nucleic Acids Research 36: D120–D124.

39. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more
evolutionarily conserved than are nonessential genes in bacteria. Genome

Research 12: 962–968.

40. Krylov DM, Wolf YI, Rogozin IB, Koonin EV (2003) Gene loss, protein

sequence divergence, gene dispensability, expression level, and interactivity are

correlated in eukaryotic evolution. Genome Research 13: 2229–2235.

41. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of

developmental pathway bifurcation in phage lambda-infected Escherichia coli

cells. Genetics 149: 1633–1648.

42. Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote

evolution: insights into the origin of methanogenesis, phototrophy, and the
colonization of land. Bmc Evolutionary Biology 4: 44.

43. Ragan MA, Harlow TJ, Beiko RG (2006) Do different surrogate methods detect

lateral genetic transfer events of different relative ages? Trends in Microbiology

14: 4–8.

44. Touchon M, Hoede C, Tenaillon O, Barbe Vr, Baeriswyl S, et al. (2009)

Organised Genome Dynamics in the Escherichia coli Species Results in Highly

Diverse Adaptive Paths. Plos Genetics 5: e1000344.

45. Daubin V, Ochman H (2004) Bacterial Genomes as new gene homes: The

genealogy of ORFans in E-coli. Genome Research 14: 1036–1042.

46. Conway T (2009) Oklahoma University E. Coli Gene Expression Database.

http://genexpdb.ou.edu/main/.

47. Gasch AP, Eisen MB (2002) Exploring the conditional coregulation of yeast gene

expression through fuzzy k-means clustering. Genome Biology 3: resear-

ch0059–research0059.22.

Phenotypic Noise in E. coli

PLoS Genetics | www.plosgenetics.org 12 January 2012 | Volume 8 | Issue 1 | e1002443



48. Serres MH, Riley M (2000) MultiFun, a multifunctional classification scheme for

Escherichia coli K-12 gene products. Microb Comp Genomics 5: 205–222.
49. Kovacs K, Hurst LD, Papp B (2009) Stochasticity in Protein Levels Drives

Colinearity of Gene Order in Metabolic Operons of Escherichia coli. Plos

Biology 7: e1000115.
50. Levine E, Hwa T (2007) Stochastic fluctuations in metabolic pathways.

Proceedings of the National Academy of Sciences of the United States of
America 104: 9224–9229.

51. Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating

environments. Genetics 167: 523–530.
52. Booth IR (2002) Stress and the single cell: Intrapopulation diversity is a

mechanism to ensure survival upon exposure to stress. International Journal of
Food Microbiology 78: 19–30.

53. Sumner ER, Avery SV (2002) Phenotypic heterogeneity: differential stress
resistance among individual cells of the yeast Saccharomyces cerevisiae.

Microbiology-Sgm 148: 345–351.

54. Salis HM (2010) Genome-wide predicitions: translation initiation rates. https://
salis.psu.edu/GenomeWidePredictions.shtml.

55. Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global
analysis of mRNA decay and abundance in Escherichia coli at single-gene

resolution using two-color fluorescent DNA microarrays. Proceedings of the

National Academy of Sciences of the United States of America 99: 9697–9702.
56. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression.

Proceedings of the National Academy of Sciences of the United States of
America 94: 814–819.

57. Paulsson J, Ehrenberg M (2001) Noise in a minimal regulatory network: plasmid
copy number control. Quarterly Reviews of Biophysics 34: 1–59.

58. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory

networks. Proceedings of the National Academy of Sciences of the United States
of America 98: 8614–8619.

59. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of

intracellular noise. Nature 420: 231–237.

60. Wang Z, Zhang JZ (2011) Impact of gene expression noise on organismal fitness

and the efficacy of natural selection. Proceedings of the National Academy of

Sciences of the United States of America 108: E67–E76.

61. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial

chemotaxis. Nature 397: 168–171.

62. Batada NN, Hurst LD (2007) Evolution of chromosome organization driven by

selection for reduced gene expression noise. Nature Genetics 39: 945–949.

63. Tirosh I, Weinberger A, Carmi M, Barkai N (2006) A genetic signature of

interspecies variations in gene expression. Nature Genetics 38: 830–834.

64. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene

expression: From theories to phenotypes. Nature Reviews Genetics 6: 451–464.

65. McKenzie GJ, Craig NL (2006) Fast, easy and efficient: site-specific insertion of

transgenes into Enterobacterial chromosomes using Tn7 without need for

selection of the insertion event. Bmc Microbiology 6.

66. R Development Core Team (2007) R: A Language and Environment for

Statistical Computing.

67. Silverman BW (1986) Density Estimation. London: Chapman and Hall.

68. Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, et al. (2009) flowCore:

a Bioconductor package for high throughput flow cytometry. Bmc Bioinfor-

matics 10.

69. Wall DP, Fraser HB, Hirsh AE (2003) Detecting putative orthologs.

Bioinformatics 19: 1710–1711.

70. Silander OK, Ackermann M (2009) The constancy of gene conservation across

divergent bacterial orders. BMC Research Notes 2: 2.

71. Thiel H (1950) A rank-invariant mathod of linear and ploynomial regression

analysis III. Proceedings Koninklijke Nederlandse Akademie Van Wetenschap-

pen. pp 1897–1912.

Phenotypic Noise in E. coli

PLoS Genetics | www.plosgenetics.org 13 January 2012 | Volume 8 | Issue 1 | e1002443


